COMPARE___

Dataflow Equations for Parallel
Programs that Share Memory

Deliverable 2.11.1

The COMPARE Consortium

Release: 1.1

Date: January 17, 1994

Status: release

Confidentiality: public

Reference: GMD-1101-dfepp

Copyright notice: (©1994 by the COMPARE Consortium

All rights reserved. No part of this document may be photocopied, reproduced or translated in any way, without prior
written consent of the COMPARE Consortium. The members of the COMPARE Consortium are ACE Associated Com-
puter Experts bv, GMD Forschungsstelle an der Universitdat Karlsruhe, Harlequin Limited, INRIA, STERIA, Stichting
Mathematisch Centrum (CWI), and Universitét des Saarlandes.

Every care has been taken in manufacturing the supplied product and its documentation. The COMPARE Consortium
will neither assume responsibility for any damages caused by the use of its products, nor accept warranty or update claims,
unless stated explicitly otherwise in a special agreement.

The information contained in this document is subject to change without notice.

Printed in Germany.

_ CONTENTS

Abstract

Traditional data flow analysis methods are designed for sequential programs. Hence they
may fail when applied to control flow parallel imperative programs that share memory and
are based on the MIMD computer model. Current approaches mostly use a copy-in/copy-out
semantics, when entering/exiting a process, to model shared memory.

To avoid this restriction, this paper extends the notion of program execution paths. Se-
lecting some specific paths out of the set of all possible paths, allows to give simple data
flow equations which are proved to be equal to the meet over all path solution. Since these
data flow equations are extensions of the sequential ones, they fit very well to the traditional
optimization methods.

An example shows that the code generator of a compiler as well as a reordering assembler
needs this kind of data flow analysis to avoid unnecessary memory barrier instructions and
to produce correct instruction reorderings, respectively.

Another paper is currently under work (actually it’s already present, but only in german)
which extends this theory so that it can be used with the control flow graph representation
of a source program.

Contents

1

=]

g a &8 »

Introduction
1.1 The classical data flow problems
1.2 What could go wrong?

The sample language

The idea

Which information reaches a statement (in the parallel context)
Which information reaches the end of the PAR statement
Conclusions

Data flow equations for the IF and REPEAT statement

Complete proofs

Frequently used formulas

An Example

GMD-1101-dfepp/Rel 1.1/January 17, 1994

COMPARE_____

[\]

13

15

16

16

17

Introduction COMPARE_____

1 Introduction

To exploit the power of todays’ processors, optimizations like common subexpression elimination,
constant folding, dead code elimination etc. must be performed for parallel programs as well
as for sequential ones. Optimizing a program requires analyzing it, and this is often done by
applying data flow equations to the program. Traditional data flow analysis methods are designed
for sequential programs. Hence they may fail when applied to control flow parallel programs.
[Midkiff ¢ 4! 90] presents some examples, where traditional analyzing and optimizing techniques
fail when applied to parallel programs.

Current approaches in analyzing the data flow of parallel programs have either a restricted
model of shared memory, or even disallow it. [Reif 84] investigates the data flow of communi-
cating processes, but these do not share memory. Processes communicate solely through syn-
chronous channels. [Srinivasan ¢ 4/ 91a] describes an efficient method of computing the Static
Single Assignment form [Cytron ¢ ¢ 89] for explicitly parallel programs with wait clauses.
The parallel sections must be data independent, except where explicit synchronization is used.
[Srinivasan ¢ ¢ 91b, Wolfe ¢ 4/ 91] introduce the Parallel Control Flow Graph and the Parallel
Precedence Graph which may form the basis of concrete optimizing algorithms. [Chow ¢! ¢/ 92] use
abstract interpretation as framework to obtain program properties, like side effects, data depen-
dencies, object lifetimes and concurrent expressions. [Grunwald ¢ ¢/ 93] present a solution for the
reaching definition problem, both with and without synchronization. But they restrict themselves
to PCF FORTRAN (defined by the Parallel Computing Forum) standard conforming programs,
which means access to shared variables is done only at synchronization points. For process start
and process end they assume a copy in/copy out semantics.

Our investigation is based on an imperative language with explict control flow parallelism,
dynamic process creation, and shared memory. As computing model we assume a MIMD (multiple
instruction, multiple data) system, where each process is executed on a separate processor. Fach
processor runs independently of each other and has its own set of registers, which are invisible for
other processors. All processors access a shared memory, without the above mentioned restrictions.
The main result of this paper is an extension of the well known sequential data flow equations
covering forward/backward and may/must data flow problems:

1. Theorem 1 shows which data flow information reaches a statement (in the parallel context),
and

2. theorems 2 and 3 give the information which reaches the end of the in parallel executed
statements.

Section 2 defines the language we base our investigation on, section 3 presents the idea which
leads to the main result, and sections 4 and 5 shows the theorems.

1.1 The classical data flow problems

The four “classical” data flow problems are classified into may and must problems and the direction
of information propagation (forward / backward) (cf. table 1). If the information which reaches a
program point comes from the preceding statements, the problem is called a forward problem; if
it comes from the following statements, it is called a backward problem. If the information has to
be available in all predecessors (successors) the problem is called a must problem, if it has to be
available in at least one, it is a may problem [Hecht 77].

Usually, the data flow information 1s computed over a control flow graph. Another possibility
is to use the structure tree of the program [Babich ¢ “ 78 Aho ¢! %! 86]. We chose this approach,
since 1t allows easier formulation.

In this paper we consider only forward problems, for backward problems the results may be
stated in a similar way.

GMD-1101-dfepp/Rel 1.1/ January 17, 1994 2

Introduction COMPARE_____

Must May
forward | Available Expressions | Reaching Definitions

backward | Very Busy Expressions Live Variables

Table 1: Classification of the “classical” data flow problems.

The equations are always stated using the sets gen[S], kill[S], in[S], out[S]. gen is the set of
the informations generated by statement S and reaching its end. k¢!l is the set of informations
invalidated by S and still invalid at the end of S. ¢n represents the informations reaching .S,
and out the set of informations reaching the end of S. gen and kll are defined in terms of the
underlying data flow problem, e.g. the set of generated definitions of a variable or set of computed
expressions. For example in the reaching definition problem, the assign statement id := expr
generates this definition of variable id and invalidates all other definitions of this variable.

The most important equations are the ones for propagating the information from one statement
to the next in sequential execution: S;; Ss. For these there is no distinction between must and
may problems and the information is propagated as shown in table 2. The equations for the other
sequential statements are given in appendix A.

gen[S] = gen[Sa] U gen[S1] — kall[S2]! (1)
kill[S] = kill[S2] U kill[S1] — gen[S2] (2)
in[S1] = in[9]
in[Sa] = out[Si]
out[S] = out[Ss]

Table 2: Data flow equation for S ::= S;; S,

The following equation holds for the sequential statements [Aho ¢ ¢ 86]:
out[S] = gen[S] U in[S] — kill[S] (3)

1.2 What could go wrong?

This section shows the potential problems, when applying sequential data flow analysis to an
explicit parallel program. The small program? executes the processes P; and P, in parallel. It is
intuitively clear that criticaly and criticals are never executed at the same time.

A simple-minded optimizer could perform the following “optimizations” (which would be cor-
rect in sequential contexts):
e Propagate a = Oand b = 0to IF a = 0 and IF b = O respectively.
e Then the expressions could be statically evaluated to TRUE.
e Dead code elimination removes the IF and ELSE parts.
= Both, critical; and criticals are executed!
But even without traditional optimizations performed by the compiler, things could go wrong when
using an assembler which does instruction scheduling (reordering), to better use the processor’s
internal parallelism (i.e. the pipelined processing of instructions).

1If @ and b are sets, then a — b is the set difference and is defined as a — b := a N b.
?[Lamport 79] (shown in table 3) presents this problem concerning the design of parallel computers.
?[Lamport 79] presents this problem concerning the design of parallel computers.

GMD-1101-dfepp/Rel 1.1/ January 17, 1994 3

Introduction COMPARE_____

a:=0;b:=0;
PAR
(F1) (F2)
a:=1; b:=1;
IFb=0 IFa=0
THEN criticaly; | THEN criticals;
a:=0; b :=0;

ELSE else; ELSE else,
END END

END

Table 3: Simple parallel program.

The non-optimized code of process body P; on a typical RISC processor is given in table 4.
The instruction scheduler could now decide to reorder the instructions, e.g. to insert another
instruction between a register load and an immediately following register use instruction (e.g.
ldc 1,r0; st r0,a) which results in the code for P; shown in table ba. In this case, it can
happen that critical; and eriticals are executed both, as shown in table 5b!

lde 1,10 | Load constant 1 into register ro0.
st r0, a | Store the content of register r0 in memory at address a.
1d b, rl | Load content of memory at address b into a register.

cmp rl,0 | Compare a register with a constant, set condition code.
jeq then; | Conditional branch to theny, if condition code equal set.
code of elsey

Table 4: Non-optimized code for Process P

ldc 1, 10
1d b, rl
st r0, a
cmp 11,0
jeq then;
5a
time tl tz t3 t4 N
Processory: | Ide 1,10; Id b, rl; (rf = 0) str0,a; cmprl, 0; ...|criticaly
Processora: | 1de 1,10; Id a, rl; (rf = 0) str0,b; cmprl, 0; ...|criticaly
5b

Table 5: Code and execution of reordered code

Even worse, some processors (like the Dec Alpha Chip [DEC 92]) are able to reorder the memory
accesses to different addresses to some degree. Hence, even the unchanged code could give the

GMD-1101-dfepp/Rel 1.1/ January 17, 1994 4

__ The idea COMPARE_____

wrong result. To avoid this situation, the Dec Alpha Chip offers a memory barrier instruction,
which delays the processor until all memory requests are fulfilled. In our example this instructions
must follow every memory access, which results in a great slow-down of the program speed.

On a system with distributed memory, the shared memory access may implemented by calls to
the operating system, which transports a value from the memory it is stored in to the destination
where it is needed. If these calls are asynchronously performed (e.g. the memory fetch is separated
into two calls: a non blocking ask_for_value(address) and a blocking wait_for_value(address)), the
same problem arises.

[Lamport 79] offers a solution which is formalized by [Afek ¢ * 93]. Memory access have to
fulfill the two conditions:

1. Each processor executes the memory access in the order specified by the program.

2. All access to a single memory cell are executed in a first-in-first-out queue.

It is obvious, that these conditions are too restrictive, since optimizations of “really” independent
memory accesses are forbidden.

The base of these transformations is information like the reaching definitions or available ez-
pressions. The reason for the above shown problems is that they use the wrong information, i.e.
the information was calculated in a “sequential context”, not considering the parallelism expressed
in the program.

2 The sample language

A simple imperative language will be used in this paper, having loops, conditional statements, and
a statement to execute other statements in parallel. (explict control flow parallelism). Replicators

allow dynamic process creation, and processes share memory.
Prog = Stmt

Stmt = Identifier ":=" Expr | Stmt//";" |
IF Expr THEN Stmt ELSE Stmt END|
REPEAT Stmt UNTIL Expr | PAR ProcessBody//"|" END.

ProcessBody := [Replicator] Stmt//";"
Replicator == "[" Identifier ":'" LowerBound TO UpperBound "]"
LowerBound = Expr .
UpperBound = Expr .
Expr n= usual expressions.
Prog is the root symbol of the grammar. Stmt//";" is a list of statements separated by a

semicolon. [Replicator] stands for an optional Replicator part.

The PAR statement executes all processes specified by ProcessBody in parallel and indepen-
dently. The processes executing this PAR statement is suspended until all child processes have ter-
minated. A ProcessBodyis a list of statements which may be replicated. That is: max (UpperBound
- LowerBound + 1, 0) processes are forked which all execute the statements following the repli-
cator. Each replicated process gets its private copy of the replicator variable Identifier, which
has in each replicated process a unique value in the range [LowerBound .. UpperBound]. Repli-
cated processes are also called forall loops in other languages. Each variable can be accessed in
each process. No automatic synchronization is done for the access.

Procedures are not contained in the language, since the analysis and optimizing problems can
be solved in the usual way.

3 The idea

A single run of a program may be seen as an execution of sequence of assign statements,
(s1;...;8n), starting with s; and ending with s,. The s; in the sequence are selected by some

GMD-1101-dfepp/Rel 1.1/ January 17, 1994 5

__ The idea COMPARE_____

“magic”, i.e. by the conditionals, loops, and par’s®. If the program terminates, the sequence is

finite. To compute the data flow information, reaching a statement in this sequence is straight
forward: Use the equations for S ::= Sy; S5 of table 2.

But now the meaning of data flow information is to state facts about any program run, not a
specific one. Hence all possible sequences, or paths, must be considered. The following formulas
show how all program paths are computed*. If path is defined as the set of all assign statement
sequences, path = {(s1;...;s,)|siis an assignment}, then p” € path is defined as the n-fold
concatenation of path p, and p* = (I, p', with some n. The set paths[S] is now defined as the
set of all paths, produced by statement S. For example, paths[Prog] is the set of all possible paths
of a program.

concat(paths[S’], paths[S"]) :S =5, 5"

{(S)} : S = assign statement

paths[S] = < paths[S'| U paths[S"] :S = IF E THEN S’ ELSE S" END
paths™[S'] : S = REPEAT S’ UNTIL E
merge(paths[S'], paths[S""]) :S:= PAR S’ | S” END

Where merge returns all paths which may be generated by a PAR statement:

merge({sh;...;sh), (s)s..;s0)) =

{(51; e S

Vi<jed{l,...n'}3kle{l,....n +n"} sy =s,s1=5; = k<l or
Vi<jed{l,...n"}3k,le{l,....,n +n"} sy =s] 51 =57 =k <l

merge mixes the paths of the branches of a PAR statement such that the order of the statements
in one branch is obeyed in the merged path, but between two statements s}; s;,, in a path of one
branch the merged path may contain statements of the other branch: e.g. si;s{;si, ;. merge may
be extended to take as arguments set of paths: merge : 2P91h x 2path _ 9path i merge(P! P") 1=
Uprepr prepr merge(p’, p”)

It is clear, several runs of a sequential program execute with the same input always the same
path. But for a parallel program there are several paths possible.

Depending on the may/must property of the data flow problem, the data flow information
is the union (may) or intersection (must) of the information computed for all paths, reaching a

statement S:

infolS] = /\ infolp] (4)

pEprefiz(paths[Prog],S)

infolS] =\ infoly] (5)

pEpaths[S]

N and A stands, depending on the problem, for either set union or set intersection.
prefiz(paths[Prog], S) is the set of paths, reaching statement S. Equation (4) is used when
the information depends on the preceding statements (like én), (5) is used if this not the case, like
for gen and kill. For out (5) can be used too, since it depends on in, for which the other equation
is used. These equations correspond to the so called meet over all paths solution of the data flow
problem [Kildall 73].

Since for a single path it is known how to compute the data flow information, the algorithm
to get the data flow information reaching a statement S is now clear. However, it has a big

3This is possible due to the interleaving semantics of the language.
4For the sake of simplicity, they are given only for PAR statements with two branches and no replicators. The
generalization is straight forward.

GMD-1101-dfepp/Rel 1.1/ January 17, 1994 6

_ Which information reaches a statement (in the parallel context) COMPARE____

drawback: the number of paths may be exponential in the number of conditionals or even infinite
if the program contains loops.

A better solution would be: find a simple formula F;,, ;,[.S] computing the data flow information
info[S] based only on the structure tree of the program, and proof that this formula returns the
same as this meet over all path solution.

The next sections shows the main result of this paper:

1. it is shown which information reaches a statement (in the parallel context), and
2. which information reaches the end of a PAR statement.

For the first result, two sets (in, 271) are used to represent the data flow information reaching
a statement, instead of only one in the sequential case.

The second result is based on the fact that it is sufficient to consider some specific paths instead
of all possible paths. For these specific paths, a simple formula Fj,, ;,[S] can be given and it returns
the same results as the belonging meet over all path solution.

For the PAR S; | S5 END statement with the two branches S; and S5, these specific paths
are: concat(paths[Sy], paths[Sa]) and concat(paths[Sa], paths[S1]), i.e. the paths resulting from
the concatenated execution of Sy;S59 and Ss; S7.

For example: Analysing the PAR s;; s» | s3 END statement, for which the s; are simple
statements, only the two paths (s1;s2;s3) and (s3;s1;s2) are needed for the analysis. The third
possible path (s1; s3; s2) need not to be considered.

For PAR statements with n branches the paths from the n! concatenated statements S;,;...; S;,,
where 7= (i1,...,4,) € perm(1,n) is a permutation of the numbers 1, ... n, are used.

If the sample language would have a process synchronisation statement, the number of paths
could be reduced, since some path never occur in any program run. Hence not considering this
kind of statement, produces a “worst case” data flow information which is still correct.

Including a goto statements doesn’t change the ideas, it complicates only the description. This
is due to the fact that we are using the structure tree and not a control flow graph for representing
a program in our presentation of the ideas.

4 Which information reaches a statement (in the parallel
context)

In the sequential case only one set is defined to represent the information reaching a statement.

In the parallel case two sets are needed:
in[S] The information propagated along the edges of the structure tree, i.e. without considering
the effect of the statements executed parallel to S. That is the information which comes

from the statements executed always before 5.
in[S] The set of informations reaching S, which stems from sequentially before S executed

statements and from statements executed in parallel to 5.
It is obvious, that in[S] = A ¢ e piv(paths[prog),s) 0ut[p]. The same distinction can be made for
the set of information reaching the end of a statement, but out[S] is not of interest, hence only
out[S] is used.
The set s:bl[S] (sibling) contains all assign statements which may be executed in parallel to S.

Theorem 1 (Information reaching a statement) For an arbitrary statement S holds®:

5For the sake of simplicity,the following precedence rules are used: a Ab —c = a A (b — ¢) and /\l a; — /\l b; =

(/\i a;) = (/\i bi).

GMD-1101-dfepp/Rel 1.1/ January 17, 1994 7

_ Which information reaches a statement (in the parallel context) COMPARE____

(a) if the problem is a may problem:

U out[p] = in[S]U U genls]

pEprefiz(paths[Prog],s) sE€s1bi[S]

(b) if the problem is a must problem:

N outlp) = in[S]— |] kill[s]

pEprefiz(paths[Prog],s) s€s1bi[S]

Proof (Theorem 1a) The proof is done in two steps “C” and “D”:

“C” It has to be shown: UpEprefix(paths [Progl,S) out[p] C in[S]U U ¢ inpsy 96n 5]
Let z € Upeprefw(pmhs [Prog],s)out[p] then there is in a path p € prefix(paths[Prog],S) a
statement s, which generates z and z is not invalidated later in p. The assignment statements
in p stem either from program statements, which are executed sequentially before .S, or from
statements which may be executed in parallel to S° (see the definition of paths[S]). If s, is
a statement which is always executed before S then « € in[S] holds. If s, a statement which
may be executed in parallel to S, then « € Use“bl]gen[s].

“2” It has to be shown: [] U UsEszbl gen[] - UpEprefix(paths[Prog],S) OUt[p]
Let @ € in[S] and @ ¢ ¢ 551 9¢n(s], then the claim holds obviously.

Let @ € Usesmips) 9enls] be generated by a statement s € sibl[S]. Since there is for every
s € sibl[S] a path ps which executes s as its last statement before executing S, and ps; €
prefiz(paths[Prog], S), the claim holds.

Proof (Theorem 1b) Lemma: Let zr € ﬂpepwﬂx(pmhs[ljmg]ys) ou.t[p],. then # € in[S] holds.
That is, if = reaches S, then z is generated by a statement which is executed always be-
fore S. Otherwise there would be a statement s € sibl[S] which generates z and since
x € ﬂpepwﬂx(pmhs[];mg]ys) out[p], s must be executed in all paths before S, which contradicts
s € sibl[S].

“g” It has to be shown: ﬂpEprefix(paths[Prog],S) OUt[p] - Zn[S] - UsEsibl[S]]CZ”[S]
Let z € ﬂpeprefm(pmhs[ng]ys) out[p], hence & € in[S]. Now it has to be shown that » ¢
Usesivipsy #ill[s]: Assume: there is a statement s € sibl[S] which kills z. Then we can
construct a path ps, where s is the last statement before S, and hence z is not part of
out[ps]. Since p; € prefiz(paths[Prog],S), x is not part of ﬂpepwﬂx(pmhs[lgmg]ys) out[p]
which contradicts our initial assumption. Hence if & € (¢ e piv(paths[Prog],s) OUt[p] it cannot
be killed by a statement executed in parallel to S.

“2” It has to be shown: Zn[S] - UsEsibl[S]]CZ”[S] - mpEprefix(paths[Prog] S) OUt[p]

Because @ € in[S]— U, ¢ ipips) Kill[s] on all paths” p’ := p/{statements executed sequentially
before S} with p € prefixz(paths[Prog],S), x is generated by a statement s, and and

6 When speaking in the context of paths from statements which are executed in parallel to others, we mean that
these statements are contained in a PAR statement in different branches, or if the branch is replicated, the same
branch too.

"For a path p and a set of statements S, p/S is defined to be the restricted path containing only statements of
the set S.

GMD-1101-dfepp/Rel 1.1/ January 17, 1994 8

__ Which information reaches the end of the PAR statement COMPARE_____

v € out[p']. Since v ¢ ¢ ;s kill[s], @ is not killed by statements which may be executed
in parallel to S. Hence z is generated on path p by s,/ and it is not killed in p after executing
sy, since p contains compared to p’ only additional statements which may be executed in

parallel to S. Hence & € (), ¢pe piv(pathsProg),s) OUt[P]-

5 Which information reaches the end of the PAR statement

Theorem 2 Data flow equations for the PAR statement with n branches
Forthe S ::= PAR S, | ... | S, END statement, and no process body is replicated, it holds:

if out 2s a may-problem

genls] = | genls;]

kill[S)]

Il
-
T
=
|
-
R
[}
=,
[¥5)
&,

out[S] = gen[S]U [in[S]— U kill[S;]

if out 1s a must-problem

gen[S] = U gen[S;] — U kill[Sk]
j=1 k=1

kill[S] = Lnjkill[Sj]
out[S] = gen[S]U in[S]—Uki”[Sj]

All proofs follow the same road: Compute the data flow information for the “special paths”,
resulting from the n! statement sequences S;,;...;5;,: /\Z‘Ep(mn(1 n) info[Si,;...;5:,] and show

n

that this equal to the meet over all paths solution /\pEpaths[S] info[p], which is defined to be
infolS].

First we give the data flow equations for the “special paths”:

U gen[Siy; .. ;8] = Ugen[Sj] (6)

7€perm(1l,n) ji=1

ﬂ gen[Siy; .. ;8] = U gen[S;] — U kill[Sk] (7)
Teperm(1l,n) ji=1 k=1

U kiltSi;. 800 = | kill[s;) (8)
7€perm(1l,n) j=1

GMD-1101-dfepp/Rel 1.1/ January 17, 1994 9

__ Which information reaches the end of the PAR statement COMPARE_____

() kill[Si,;.. ;5] U kall[S U gen[Sk] (9)

Teperm(1l,n)

U outlSi:.. i8] = U gen[S;]U (in[S] -U kill[Sk]) (10)
j=1 k=1

Teéperm(1l,n)

(N outlSi;. ;5] (O gen[S;] — O kill[Sk]) U (in[S] - O kill[S,]) (11)
j=1 =1

Teéperm(1l,n)

Proof (Equations 6, 8) Since:

gen[Si;.. . Su] 2 gen[Sn]U(gen[Sn—1]U(gen[Sp—slU— .. = kill[Sn_1]) = kill[S,] € U, gen[S;]

and
gen[Sy; ... 5] Y gen[Sp] U (gen[Sn1] U (gen[Sn—s] U —...) — kill[Sp_1]) — kill[Sn] D gen[Sa],
then
Uz‘Eperm(l,n)(gen[Sin]) - Uz‘Eperm(l,n) gen[Sil; S Sln] - Uz‘Eperm(l,n)(U?:l gen[SJ]) and hence
Uy gen[Sk] C Uz‘eperm(l,n) gen[Si;...55:,]C U;L:1 gen[S;] which is the desired result.

The same is done for kill[S]. m

Proof (Equations 7, 9) The proof is given for gen, equation (9) is proved similarly. The proof
shows the two set inclusions: “C” and “2”

“C” To be shown: ﬂz‘eperm(l,n) gen[Si;. .55,] C U _, gen[S;] — Uy, kill[Sk].

ﬂz‘Eperm(l n) gen[Sil; S S] C Uz‘Eperm(l,n) gen[Sil; S Sln] = U]’:l gen[SJ]
Let # € ﬂzEperm(l n)gen[S“, ...;5;,.] then a can not be killed by any statement Sg,1 <

k < n. Otherwise, assume x will be killed by a statement Sy, then there is a permutation 7,
where i, = k, i.e. Sg is the last statement. Hence @ ¢ gen[S;,;...;S;,], which contradlcts

n

the assumption, that « is generated by all permuted statement sequences.

Hence x € j_, gen[S;] — U=, kill[Sy].
“D>” To be shown: U _, gen[S;] — Ur_, kall[Sy] C Meeperm(i,n) 96nLSiys - 5.5,

n

Let z € U L gen[S;]—UJr—, kill[Sy] then x is not invalidated by any statement S, 1 < k <
n, but generated by some S;,1 < j < n. Hence z € ﬂzEperm(l n)gen[S“, 58]

n

Proof (Equation 10)

Uz‘eperm(Ln)OUt[Sil;"'5Sin]
® Urepermnm(@enlSi; - S,] Uin[Sis .5 9:,] = kill[S, ;.5 50,))
since V7 € perm(1,n) : i [is .35,] = in[S] and (6), (20), (9), (26)
U%: gen[S;] U (in [] Up=1 kill[Sk]) U (in[STO UL, gen[Si])
= Ujzi 9enlS;10 (in[S] = Uj, kill[Sk])

Proof (Equation 11) The proof shows the two set inclusions: “C” and “2”

“C” To be shown:
Meeperm(in @UutlSis - 58,1 € (Uj=y genlS;] — Upzy Rill[Se]) U (in[S] — Uiz, kill[S1]).

GMD-1101-dfepp/Rel 1.1/January 17, 1994 10

__ Which information reaches the end of the PAR statement COMPARE_____

3
mz‘Eperm(l,n) OUt[Sil; R Sln] =
Meeperm(,my(genlSu; .. S, JUin[Si;. .5 Si,] = kill[Siy; .. .5 5,])
mz‘Eperm(l,n) gen[Sil; S Sln])u
(ﬂz‘Eperm(l,n)(in[Sil; R Sln] - kl”[Sha B Sln]))
since V7 € perm(1,n) : in[S;,;...;S;,] = in[S] and (19),(7),(8)
= (U= 9enlS] = Ugzy Rill[Se]) U (in[S] = Uiz, kall[S1])

N

“2” To be shown:
(Uj=1 9enlSi] = Ug=y Rill[Se]) U (in[S] = Uiz Kill[S) € Meepermr,n) 085 -3 S,
Let z € (U;L:1 gen[S;] — Up—, kill[S]) U (in[S] — U, kill[S]) then

1.z € U?Il gen[S;] — Uy —, kill[Sk] or
2. z € n[S] — U, kill[Si].

In both cases & is never killed by a statement S;, 1 < ¢ < n. In the first case z is generated
by some statement .S; and since not killed, it is contained in out[S;,;...;S;,]. In the second
case it 1t reaches the start of the statement sequence S;,;...;.5;, and since not killed by it,
z € out[Siy;. .55,]

n

Now the correctness of the formula is proved, i.e. that they return the same result as the meet
over all paths solutions.

U gen[Siy; .. .35, = U gen[p] if gen is a may-problem (12)
Teperm(1l,n) pEpaths[S]

ﬂ gen[Siy; ... S,] = ﬂ gen[p] if gen is a must-problem (13)
Teperm(1l,n) pEpaths[S]

U kill[Si;. .58, = | killlp] if kill is a may-problem (14)
Teperm(1l,n) pEpaths[S]

() kill[Si;.. ;5] = () killlp] if kill is a must-problem (15)
Teperm(1l,n) pEpaths[S]

U out[S;;...;8:,] = U out[p] if out is a may-problem (16)
Teéperm(1l,n) pEpaths[S]

ﬂ out[S;;...;8:,] = ﬂ out[p] if out is a must-problem (17)
Teéperm(1l,n) pEpaths[S]

Proof (Equations 12, 14) The proof is given for gen, equation (14) is proved similarly. The
proof shows the two set inclusions: “C” and “2”

“C” To be shown: Uz‘eperm(l,n) gen[Siy; 3511 € U,peparnsisy 9€nlpl-

Usepermai,ny 9enlSiss - 5851 = Usepermoi,ny (UpEpath[S,l;...;S,n] gen[P])
Since a path p € path[S;,;...;5;,] is a path of the set paths[S], the inclusion holds.

GMD-1101-dfepp/Rel 1.1/ January 17, 1994 11

Which information reaches the end of the PAR statement COMPARE_____

6 n
“2” To be shown: Uz‘Eperm(l,n) gen[Sil; R Sln] (:) Uj:l gen[SJ] 2 UpEpaths[S] gen[p]

Let @ € Upepatnsps 9enlp] then there is a path p € paths[S] with # € gen[p]. In p there
is a statement s, with z € gen[s,] and s, cannot be followed by a statement in p, which
kills z. Now p has the form p = (X;s,;Y), then in the subpath Y there is no statement
which invalidates z. Let s, be a statement from S;,1 < j < n: then it must be shown that
x € gen[S;]. If p is restricted to the statements of S;, then Y/S; contains only statements of
S;. Since Y contains no statements which kill 2, this is true for Y/S;. Hence p/S; € paths[S;]
implies z € gen[S;].

Proof (Equations 15, 13) The proof is given for kill, equation (13) is proved similarly. The
proof shows the two set inclusions: “C” and “2”

“C” Tobe shown: (Negpermr) KilllSiy;- -5 50 € Myeparnssy KilllP]-

Let z € ﬂz‘Eperm(l,n)ki”[Sil; oS © U?:l kill[S;] — Up—, gen[Sk] then there is j, 1 <

J < n with x € kill[S;] — Uy_, 9en[Sk], 1.e. x is killed by S;, and x is not generated by any
other branch of the PAR statement.

Let p an arbitrary path of the set paths[S]. Since p; = p/S; is a path from the set paths[S;],
x € kill[p;] holds, and s,, is the statement killing x on p;, and after that statement x
is not generated on p;. p has now the form (X;s, ;Y). In Y there are no statements
from S;, which generate z (otherwise & ¢ kill[S;]) and p cannot contain statements from
S, 1 < k < n,j# k which generate z (otherwise z ¢ UZ:L]'#k gen[S;]), and hence there
is no statement in Y generating #. Now we have for any path p: « € kill[p] and hence

LS ﬂpEpaths[S] klll[p]

“2” To be shown: (Nigperminy Kill[Siss 5501 2 (Npepatnsisy Filllp]-

Meeperm(i,ny KilllSis5 -3 51,1 = Magperm(a,n) (ﬂpEpath[S,l;...;S,n] ki”[P])
Since a path p € path[S;,;...;5;,] is a path of the set paths[S] the inclusion holds.

Proof (Equations 16, 17) If out a may(must)-problem, then obviously gen is a may(must)- and
kill a must(may)-problem. Using the previous results, when calculating

Useperm(in) 0ut[Sis; -+ 585,] and Mieperm1n) 0ut[Siy; - -5 5:,], and the fact that for all permu-
tations 7 € perm(1,n),in[S;,;...;S;,] = in[S] holds, demonstrates the goals (see appendix B).

Theorem 3 Data flow equations for the PAR statement with replicators
FortheS ::= PAR S; | Sy | ... | S, END statement with possibly replicated branches it holds:

(a) if upb; - lwb; + 1 > O the equations of theorem 1 and theorem 2* remain valid.
(b) if upb; - lwb; + 1 > O the following equations hold®:

8 84bI[S;] of the replicated statement S; now contains also its own statements.

9

n.r.: not replicated

GMD-1101-dfepp/Rel 1.1/ January 17, 1994 12

__ Conclusions COMPARE_____

If out is a may-problem (uph; - lwb; + 1> 0):
imn[S] = n[SJU] gen[s]

s€s1bl[S]
gen[S] = | genlS)]
ji=1
kill[S] = U ki[s;1— | genlSi]
j=1,58; n.r k=1

out[S] = gen[S]U |in[S]—] kill[S]

j=1,58; n.r

If out is a must-problem (upb; - lwb; + 1 > 0):
n[S] = in[S]— UJ kill[s]

s€s1bl[S],s n.r.

n

gen[S] = U gen[S;] — U kill[Sk]
k=1

j=1,58; n.r

kill[S] = Lnjkill[Sj]

out[S] = gen[S]U | in[S] —] kill[S;]
j=1
Proof (Theorem 3a) We have to show that, if S; is replicated then info[PAR S1 | ... | S; |
Sjt1 | ... I8, END] =infol[PAR Sy | ... | S; | S; | Sj41 | ... IS, END] holds. Working

out the equations for may- and must-problems using theorem 2 shows this. The proof of equation 1
is still valid (see appendix B). m

Proof (Theorem 3b) The proofs are performed by calculating info[PAR ... | S; | ... END]
AitnfolPAR ... | S | ... END], where in the S; the replicators are assumed to generate more
than one process and in Sy they are omitted, i.e. generate no process. m

6 Conclusions

Without doubt, control flow parallel programs have to be analyzed and optimized as well as
sequential ones. Since the traditional data flow analysis methods are designed in the context of
sequential programs, they have to be adapted to fit into the parallel programming paradigm.

But instead of restricting either the shared memory model in the language, or force the user
to instruct the compiler not to modify certain regions of code (by e.g. specifying a variable to be
volatile or using pragmas) the equations presented in this paper may be used. Since they are an
extension of the sequential ones, they may be easyly integrated into an existing optimizer.

Solutions to other data flow problems than those which have been presented, can be derived
by the method shown in the proofs: Concatenate the process bodies, permute them, calculate a
formula for the union/intersection of these n! statement sequences and proof the equality with the
meet over all paths solution, using the proof techniques given in the previous sections.

GMD-1101-dfepp/Rel 1.1/January 17, 1994 13

— REFERENCES

References

[ACMB8Y]
[ACMY2]

[Afek ¢t @ 93]

[Aho ©t @/ 86]

[Babich ¢ @/ 78]

[Banerjee ¢ 4! 91]

[Chow ¢t 4! 92]

[Cytron ¢ @ 89]

[DEC 92]
[Grunwald ¢* ¢ 93]
[Hecht 77]

[Kildall 73]

[Lamport 79]

[Midkiff ¢t @/ 90]

[Reif 84]

COMPARE_____

ACM. 16. ACM Symposium on Principles of Programming Languages, Jan-
uary 1989. Austin, Texas.

ACM. 19. ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, January 1992. Albuquerque, New Mexico.

Yehuda Afek, Geoffrey Brown, and Michael Merritt. Lazy caching. ACM
Transactions on Programming Languages and Systems, 15(1):182-205, Jan-
uary 1993.

Alfred V. Aho, Ravi Sethi, and Jeffery D. Ullman. Compilers; Principles,
Techniques and Tools. Addison-Wessley Publishing Company, 1986.

Wayne A. Babich and Mehdi Jazayeri. The method of attributes for data flow
analysis. Acta Informatica, 10:345-272, 1978. Part I Exhaustive Analysis,
Part II Demand Analysis.

U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors. Languages and
Compilers for Parallel Computing, volume 598 of Lecture Notes in Computer
Science. Springer Verlag, Heidelberg, New York, August 1991.

Jyh-Herng Chow and Williams Ludwell IIT Harrison. Compile-time analysis
of parallel programs that share memory. In [ACM92], pages 130-141, 1992.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. An efficient method of computing static single assign-
ment form. In [ACM89], pages 25-35, 1989.

Digital Equipment Cooperation DEC. Alpha Architecture Handbook. DEC,
USA, February 1992. Preliminary.

Dirk Grunwald and Harini Srinivasan. Data flow equations of explicitly

parallel programs. In PPoPP 93. ACM SIGPLAN NOTICES, 1993.

Matthew S. Hecht. Flow analysis of computer programs. North Holland,
1977.

Gary A. Kildall. A unified approach to global program optimization. In
ACM Symposium on Principles of Programming Languages, pages 194-206,
October 1973.

Leslie Lamport. How to make a multiprocessor computer that correctly exe-
cuts multi process programs. IEEE Transactions on Computers, ¢-28(9):690—-
691, September 1979.

S.P. Midkiff and David A. Padua. Issues in the optimization of parallel
programs. In Proceedings of the 1990 International Conference on Parallel
Processing, pages 105-113, Volume II, August 1990.

John H. Reif. Data flow analysis of distributed communicating processes.
Technical Report TR-12-83, Harvard University, Center for Research in
Computing Technology, September 1984.

GMD-1101-dfepp/Rel 1.1/ January 17, 1994 14

_ Data flow equations for the IF and REPEAT statement COMPARE____

[Srinivasan ¢ ¢ 91a] Harini Srinivasan and Dirk Grunwald. An efficient construction of parallel
static single assignment form for structured parallel programs. Technical
Report CU-CS-564-91, University of Colorado at Boulder, Department of
Computer Science, December 1991.

[Srinivasan ¢ ¢ 91b] Harini Srinivasan and Michael Wolfe. Analysing programs with explicit
parallelism. In [Banerjee ¢ 4 91] 1991.

[Wolfe ¢t 4! 91] Michael Wolfe and Harini Srinivasan. Data structures for optimizing pro-
grams with explicit parallelism. In [Zima 91], pages 139-156, 1991.

[Zima 91] Hans Zima, editor. Parallel Computing, 1. Int. ACPC Conference Salzburg,
Austria, volume 591 of Lecture Notes in Computer Science. Springer Verlag,
Heidelberg, New York, September 1991.

Appendix

A Data flow equations for the IF and REPEAT statement

For the S ::= IF E THEN S; ELSE S, END statement the equations look like:
in[S1] = in[Y] in[S1] = in[Y]
in[Sa] = in[Y] in[Sa] = in[Y]
gen[S] = gen[S1] U gen[Ss] gen[S] = gen[S1]Ngen[Ss]
kill[S] = kill[S1] N kdll[Ss] kill[S] = kill[S1] U kill[S5]
out[S] = out[S1]U out[Ss] out[S] = out[S1] N out[Ss]
If out is a May-problem If out is a Must-problem
For the statement S ::= REPEAT S; UNTIL E holds:
in[S1] = in[S]Ugen[S] in[S1] = in[S] — kdll[Sy]
gen[S] = gen[Si] gen[S] = gen[Si]
kill[S] = kill[Sy] kdI[S] = kdll[S1]
out[S] = out[Si] out[S] = out[Si]
If out is a May-problem If out is a Must-problem

It is important to see that no iteration is needed to compute these sets as needed if the equations
are formulated over the control flow graph [Aho ¢ ¢! 86].

GMD-1101-dfepp/Rel 1.1/January 17, 1994 15

__ Frequently used formulas COMPARE____

B Complete proofs

Proof (Equation 16)
3
Uz‘Eperm(l,n) OUt[Sh; R Szn] -
Uz‘Eperm(l,n) gen[S“’ ’Sln] U UzEperm(l n)(ln[Sha S Szn] -]CZ”[S“, S Szn])
since V7 € perm(1,n) : in[S;,;...;S;,] = in[9]

n

= Uz‘eperm(l,n) gen[S;,;...; S, JU UzEperm(l wy(in[S] = kill[S;y; .. 5 S,])

—~
N

(20) .

= Usepermem 960l 5 S0 UinlST = Mrgpermr,ny KilllSins -5 55,
(12),(15) !

(:) Upepatnsisy 96n[pl U inlST = My cpanssy kil [p)

19

Unepatnsisy 961U Uy eparnspsy (inlS] — kill[p])
since Ypeparnsis] : in[p] = in[S]

Unepatnspsy(gentp] U inlp] — kill[p))
UpEpaths[S] OUt[p]

3

—~
N

"
Proof (Equation 17) (\sep.pm(1,q) 0ut[Si;- -5 55,] (L o ' gen[S;] — Up—y kill[Sk] U in[S] —
Uiz, kill[S]

7),(13),(8),(14 . . 3
LD o [S]U in[S) - kill]S] 2 out[s] p—lr
| |

Proof (Theorem 3b) Obviously: (a) : U?:l,sj o 9enlS;] C Ur_y gen[Sk]
(b) : U?:l,Sj n.r. kl”[SJ] g UZ:l kl”[Sk’] and (C) : U?:l kl”[SJ] g UZ:l,Sk n.r. kl”[Sk’]

in May Obviously, since (a).
in Must Since (b) together with (22).
gen/kill May Obviously since, (a) and (b)), respectively.

by definition

gen/kill Must It is only shown for gen, kill is proved similarly.

(U= gen(S) = Upoy KiUSI) N (Ui s, o genlS] = Uiz s, ., Filllsi]) &
Uj:l gen[] 0 Uk 1 kl”[Sk] n U? 1,51 n.r. gen[Sl] n U?:l,S, n.r. kl”[Sl] =
U?II,S]' n.r. gen[] Uk‘ 1klll[5k] since (a) (C)
out May:
(Uj=1 gen[S;]Uin[S] = Ugy kill[Se]) U(UiZy s, . gen[STUn[S] = ULy s, . Kill[S]) =
U;L:1 gen[S;1Un[S] — Uy _, S nr Kill[SE], since (c) and (22).
out Must: (U _y9en[S;] — Up—, kill[Sg] Uan[S]) — U7, kall[S])n
(U? 1,5; n.r. gen[] Uk 1,5 n.r. klll[Sk] U Zn[] - U;L:l,Sl n.r. klll[Si]) =
U] 18, nr gen[S;] — Uk 1 kill[Sk] U in[S] — Ul:l,Sz kill[Sr]. see gen - Must and (b), (c)
and (2).

C Frequently used formulas

The following equations for set differences hold, a,b, ¢, by, bs are sets:

a—b = anb (18) an(a—b) = a—5b (23)
—(bUe) = (a=b)Nn(a—c) (19) aU(a—b) = a (24)
—(bne) = (a=b)U(a—c¢) (20) (a=b)y—c = (a—c)—b=a—(bUc)2h)

(aUb)—c = (a—c)U(b—c (21) —(b—¢) = (a—=b)U(anc) (26)
by Cby = (a—by)C(a—b1) (22) —(bUc¢) = a—b ifanc=10 (27)

GMD-1101-dfepp/Rel 1.1/January 17, 1994 16

_ An Example COMPARE____

D An Example

This example shows the definitions reaching the statements in and after a PAR statement.

definition definitions reaching this statement
a := 0; (1) a:{¥ b:{} c:{} a:{}
b := 0; (2) a:{1} b:{} c:{} a:{}
d := ...; (3) a:{1} b:{2} c:{} a:{}
PAR
a := 1; (4) a: {1} b:{2,8,10} c:{9} d:{3,11}
IFb=0 a:{4} b:{2,8,10} c:{9} a:{3,11}
THEN
¢ := critical_1(); (5) a:{4} b:{2,8,10} c:{9} d:{3,11}
a := 0; (8) a:{4} b:{2,8,10} c:{5,9} d:{3,11}
END;
d := £(d); n a:{4,6} b©:{2,8,10} c:{5,9} d:{3,11}
|
b := 1; (8) a:{1,4,6} b:{2} c:{5} 4d:{3,7}
IF a = 0 a:{1,4,6} b:{8%} c:{6} 4a:{3,7}
THEN
¢ := critical_2(); (9) a:{1,4,6} b:{8%} c:{6} 4a:{3,7}
b := 0; (10) a:{1,4,6} b:{8} c:{5,9} 4:{3,7}
END;
d := £(d); (11) a:{1,4,6} b:{8,10} c¢:{5,9} 4:{3,7%}
END;

a:{4,6} b:{8,10} «c¢:{5,9} d4:{7,11%}

GMD-1101-dfepp/Rel 1.1/January 17, 1994 17

