
COMPARE

Data�ow Equations for Parallel

Programs that Share Memory
Deliverable ������

The COMPARE Consortium

Release� ���
Date� January ��� ����
Status� release
Con	dentiality� public
Reference� GMD
����
dfepp

Copyright notice� c����� by the COMPARE Consortium

All rights reserved� No part of this document may be photocopied� reproduced or translated in any way� without prior
written consent of the COMPARE Consortium� The members of the COMPARE Consortium are ACE Associated Com�
puter Experts bv� GMD Forschungsstelle an der Universit�at Karlsruhe� Harlequin Limited� INRIA� STERIA� Stichting
Mathematisch Centrum �CWI�� and Universit�at des Saarlandes�

Every care has been taken in manufacturing the supplied product and its documentation� The COMPARE Consortium
will neither assume responsibility for any damages caused by the use of its products� nor accept warranty or update claims�
unless stated explicitly otherwise in a special agreement�

The information contained in this document is subject to change without notice�

Printed in Germany�

CONTENTS COMPARE

Abstract

Traditional data �ow analysis methods are designed for sequential programs� Hence they
may fail when applied to control �ow parallel imperative programs that share memory and
are based on the MIMD computer model� Current approaches mostly use a copy�in�copy�out
semantics� when entering�exiting a process� to model shared memory�

To avoid this restriction� this paper extends the notion of program execution paths� Se�
lecting some speci�c paths out of the set of all possible paths� allows to give simple data
�ow equations which are proved to be equal to the meet over all path solution� Since these
data �ow equations are extensions of the sequential ones� they �t very well to the traditional
optimization methods�

An example shows that the code generator of a compiler as well as a reordering assembler
needs this kind of data �ow analysis to avoid unnecessary memory barrier instructions and
to produce correct instruction reorderings� respectively�

Another paper is currently under work �actually it	s already present� but only in german

which extends this theory so that it can be used with the control �ow graph representation
of a source program�

Contents

� Introduction �
��� The classical data �ow problems �

��
 What could go wrong� �

� The sample language �

� The idea �

� Which information reaches a statement �in the parallel context� �

� Which information reaches the end of the PAR statement 	

 Conclusions ��

A Data �ow equations for the IF and REPEAT statement ��

B Complete proofs �

C Frequently used formulas �

D An Example ��

GMD������dfepp�Rel ����January ��� �		
 �

Introduction COMPARE

� Introduction

To exploit the power of todays� processors� optimizations like common subexpression elimination�
constant folding� dead code elimination etc� must be performed for parallel programs as well
as for sequential ones� Optimizing a program requires analyzing it� and this is often done by
applying data �ow equations to the program� Traditional data �ow analysis methods are designed
for sequential programs� Hence they may fail when applied to control �ow parallel programs�
�Midki� et al ��� presents some examples� where traditional analyzing and optimizing techniques
fail when applied to parallel programs�
Current approaches in analyzing the data �ow of parallel programs have either a restricted

model of shared memory� or even disallow it� �Reif ��� investigates the data �ow of communi

cating processes� but these do not share memory� Processes communicate solely through syn

chronous channels� �Srinivasan et al ��a� describes an e�cient method of computing the Static
Single Assignment form �Cytron et al ��� for explicitly parallel programs with wait clauses�
The parallel sections must be data independent� except where explicit synchronization is used�
�Srinivasan et al ��b� Wolfe et al ��� introduce the Parallel Control Flow Graph and the Parallel
Precedence Graph which may form the basis of concrete optimizing algorithms� �Chow et al �
� use
abstract interpretation as framework to obtain program properties� like side e�ects� data depen

dencies� object lifetimes and concurrent expressions� �Grunwald et al ��� present a solution for the
reaching de	nition problem� both with and without synchronization� But they restrict themselves
to PCF FORTRAN �de	ned by the Parallel Computing Forum� standard conforming programs�
which means access to shared variables is done only at synchronization points� For process start
and process end they assume a copy in�copy out semantics�
Our investigation is based on an imperative language with explict control �ow parallelism�

dynamic process creation� and shared memory� As computing model we assume a MIMD �multiple
instruction� multiple data� system� where each process is executed on a separate processor� Each
processor runs independently of each other and has its own set of registers� which are invisible for
other processors� All processors access a shared memory� without the above mentioned restrictions�
The main result of this paper is an extension of the well known sequential data �ow equations
covering forward�backward and may�must data �ow problems�

�� Theorem � shows which data �ow information reaches a statement �in the parallel context��
and

� theorems
 and � give the information which reaches the end of the in parallel executed
statements�

Section
 de	nes the language we base our investigation on� section � presents the idea which
leads to the main result� and sections � and � shows the theorems�

��� The classical data �ow problems

The four �classical� data �ow problems are classi	ed intomay andmust problems and the direction
of information propagation �forward � backward� �cf� table ��� If the information which reaches a
program point comes from the preceding statements� the problem is called a forward problem� if
it comes from the following statements� it is called a backward problem� If the information has to
be available in all predecessors �successors� the problem is called a must problem� if it has to be
available in at least one� it is a may problem �Hecht ����
Usually� the data �ow information is computed over a control �ow graph� Another possibility

is to use the structure tree of the program �Babich et al ��� Aho et al ���� We chose this approach�
since it allows easier formulation�
In this paper we consider only forward problems� for backward problems the results may be

stated in a similar way�

GMD������dfepp�Rel ����January ��� �		

Introduction COMPARE

Must May
forward Available Expressions Reaching De	nitions

backward Very Busy Expressions Live Variables

Table �� Classi	cation of the �classical� data �ow problems�

The equations are always stated using the sets gen�S�� kill�S�� in�S�� out�S�� gen is the set of
the informations generated by statement S and reaching its end� kill is the set of informations
invalidated by S and still invalid at the end of S� in represents the informations reaching S�
and out the set of informations reaching the end of S� gen and kill are de	ned in terms of the
underlying data �ow problem� e�g� the set of generated de	nitions of a variable or set of computed
expressions� For example in the reaching de	nition problem� the assign statement id �� expr

generates this de	nition of variable id and invalidates all other de	nitions of this variable�
The most important equations are the ones for propagating the information from one statement

to the next in sequential execution� S�� S	� For these there is no distinction between must and
may problems and the information is propagated as shown in table
� The equations for the other
sequential statements are given in appendix A�

gen�S� � gen�S	� � gen�S��� kill�S	�
� ���

kill�S� � kill�S	�� kill�S��� gen�S	� �
�

in�S�� � in�S�

in�S	� � out�S��

out�S� � out�S	�

Table
� Data �ow equation for S ��� S�� S	

The following equation holds for the sequential statements �Aho et al ����

out�S� � gen�S� � in�S�� kill�S� ���

��� What could go wrong�

This section shows the potential problems� when applying sequential data �ow analysis to an
explicit parallel program� The small program	 executes the processes P� and P	 in parallel� It is
intuitively clear that critical� and critical	 are never executed at the same time�
A simple
minded optimizer could perform the following �optimizations� �which would be cor

rect in sequential contexts��
� Propagate a � � and b � � to IF a � � and IF b � � respectively�
� Then the expressions could be statically evaluated to TRUE�
� Dead code elimination removes the IF and ELSE parts�
� Both� critical� and critical	 are executed�
But even without traditional optimizations performed by the compiler� things could go wrong when
using an assembler which does instruction scheduling �reordering�� to better use the processor�s
internal parallelism �i�e� the pipelined processing of instructions��

�If a and b are sets� then a� b is the set di�erence and is de�ned as a� b
� a � b�
��Lamport �	� �shown in table �� presents this problem concerning the design of parallel computers�
��Lamport �	� presents this problem concerning the design of parallel computers�

GMD������dfepp�Rel ����January ��� �		
 �

Introduction COMPARE

a �� �� b �� ��
PAR

�P�� �P	�
a �� �� b �� ��
IF b � � IF a � �
THEN critical�� THEN critical	�

a �� �� b �� ��
ELSE else� ELSE else	
END END

END

Table �� Simple parallel program�

The non
optimized code of process body P� on a typical RISC processor is given in table ��
The instruction scheduler could now decide to reorder the instructions� e�g� to insert another
instruction between a register load and an immediately following register use instruction �e�g�
ldc ��r�� st r��a� which results in the code for P� shown in table �a� In this case� it can
happen that critical� and critical	 are executed both� as shown in table �b�

ldc �� r� Load constant � into register r��
st r�� a Store the content of register r� in memory at address a�
ld b� r� Load content of memory at address b into a register�
cmp r�� � Compare a register with a constant� set condition code�
jeq then� Conditional branch to then�� if condition code equal set�
code of else�

� � �

Table �� Non
optimized code for Process P�

ldc �� r�
ld b� r�
st r�� a
cmp r�� �
jeq then�
���

�a

time t� t	 t
 t� � � �

Processor� � ldc �� r�� ld b� r�� �r� � �� st r�� a� cmp r�� �� � � � critical�

Processor	 � ldc �� r�� ld a� r�� �r� � �� st r�� b� cmp r�� �� � � � critical	
�b

Table �� Code and execution of reordered code

Even worse� some processors �like the Dec Alpha Chip �DEC �
�� are able to reorder the memory
accesses to di�erent addresses to some degree� Hence� even the unchanged code could give the

GMD������dfepp�Rel ����January ��� �		
 �

The idea COMPARE

wrong result� To avoid this situation� the Dec Alpha Chip o�ers a memory barrier instruction�
which delays the processor until all memory requests are ful	lled� In our example this instructions
must follow every memory access� which results in a great slow
down of the program speed�
On a system with distributed memory� the shared memory access may implemented by calls to

the operating system� which transports a value from the memory it is stored in to the destination
where it is needed� If these calls are asynchronously performed �e�g� the memory fetch is separated
into two calls� a non blocking ask for value�address� and a blocking wait for value�address��� the
same problem arises�
�Lamport ��� o�ers a solution which is formalized by �Afek et al ���� Memory access have to

ful	ll the two conditions�
�� Each processor executes the memory access in the order speci	ed by the program�

� All access to a single memory cell are executed in a 	rst
in
	rst
out queue�

It is obvious� that these conditions are too restrictive� since optimizations of �really� independent
memory accesses are forbidden�
The base of these transformations is information like the reaching de�nitions or available ex	

pressions� The reason for the above shown problems is that they use the wrong information� i�e�
the information was calculated in a �sequential context�� not considering the parallelism expressed
in the program�

� The sample language

A simple imperative language will be used in this paper� having loops� conditional statements� and
a statement to execute other statements in parallel� �explict control �ow parallelism�� Replicators
allow dynamic process creation� and processes share memory�

Prog ��� Stmt

Stmt ��� Identifier ���� Expr 	 Stmt

��� 	

IF Expr THEN Stmt ELSE Stmt END	

REPEAT Stmt UNTIL Expr 	 PAR ProcessBody

�	� END�

ProcessBody ��� �Replicator
 Stmt

��� �

Replicator ��� ��� Identifier ��� LowerBound TO UpperBound �
� �

LowerBound ��� Expr �

UpperBound ��� Expr �

Expr ��� usual expressions

Prog is the root symbol of the grammar� Stmt

��� is a list of statements separated by a
semicolon� �Replicator
 stands for an optional Replicator part�
The PAR statement executes all processes speci	ed by ProcessBody in parallel and indepen

dently� The processes executing this PAR statement is suspended until all child processes have ter

minated� A ProcessBody is a list of statements which may be replicated� That is� max�UpperBound
� LowerBound � �� �� processes are forked which all execute the statements following the repli

cator� Each replicated process gets its private copy of the replicator variable Identifier� which
has in each replicated process a unique value in the range �LowerBound �� UpperBound
� Repli

cated processes are also called forall loops in other languages� Each variable can be accessed in
each process� No automatic synchronization is done for the access�
Procedures are not contained in the language� since the analysis and optimizing problems can

be solved in the usual way�

� The idea

A single run of a program may be seen as an execution of sequence of assign statements�
hs�� � � � � sni� starting with s� and ending with sn� The si in the sequence are selected by some

GMD������dfepp�Rel ����January ��� �		
 �

The idea COMPARE

�magic�� i�e� by the conditionals� loops� and par�s
� If the program terminates� the sequence is
	nite� To compute the data �ow information� reaching a statement in this sequence is straight
forward� Use the equations for S ��� S�� S	 of table
�
But now the meaning of data �ow information is to state facts about any program run� not a

speci	c one� Hence all possible sequences� or paths� must be considered� The following formulas
show how all program paths are computed�� If path is de	ned as the set of all assign statement
sequences� path �� fhs�� � � � � snijsiis an assignmentg� then pn � path is de	ned as the n
fold
concatenation of path p� and p� �

Sn
i
� p

i� with some n� The set paths�S� is now de	ned as the
set of all paths� produced by statement S� For example� paths�Prog� is the set of all possible paths
of a program�

paths�S� �

�����������
concat�paths�S��� paths�S���� � S ��� S��S��

fhSig � S � assign statement
paths�S�� � paths�S��� � S ��� IF E THEN S� ELSE S�� END

paths��S�� � S ��� REPEAT S� UNTIL E

merge�paths�S��� paths�S���� � S ��� PAR S� 	 S�� END

Where merge returns all paths which may be generated by a PAR statement�
merge�hs��� � � � � s

�
n�i� hs��� � � � � � s

��
n��i� ���

hs�� � � � � sn��n��i

���� �i � j � f�� � � � � n�g	k� l � f�� � � � � n� n��g � sk � s�i� sl � s�j � k � l or

�i � j � f�� � � � � n��g	k� l � f�� � � � � n� n��g � sk � s��i � sl � s��j � k � l

�
merge mixes the paths of the branches of a PAR statement such that the order of the statements
in one branch is obeyed in the merged path� but between two statements s�i� s

�
i�� in a path of one

branch the merged path may contain statements of the other branch� e�g� s�i� s
��
k� s

�
i��� merge may

be extended to take as arguments set of paths� merge �
path

path �
path �merge�P �� P ��� ��S
p��P ��p���P �� merge�p�� p���
It is clear� several runs of a sequential program execute with the same input always the same

path� But for a parallel program there are several paths possible�
Depending on the may�must property of the data �ow problem� the data �ow information

is the union �may� or intersection �must� of the information computed for all paths� reaching a
statement S�

info�S� �
	

p�prefix�paths�Prog ��S�

info�p����

info�S� �
	

p�paths�S�

info�p� ���

V
and � stands� depending on the problem� for either set union or set intersection�

prefix�paths�Prog�� S� is the set of paths� reaching statement S� Equation ��� is used when
the information depends on the preceding statements �like in�� ��� is used if this not the case� like
for gen and kill� For out ��� can be used too� since it depends on in� for which the other equation
is used� These equations correspond to the so called meet over all paths solution of the data �ow
problem �Kildall ����
Since for a single path it is known how to compute the data �ow information� the algorithm

to get the data �ow information reaching a statement S is now clear� However� it has a big

�This is possible due to the interleaving semantics of the language�
�For the sake of simplicity� they are given only for PAR statements with two branches and no replicators� The

generalization is straight forward�

GMD������dfepp�Rel ����January ��� �		
 �

Which information reaches a statement �in the parallel context� COMPARE

drawback� the number of paths may be exponential in the number of conditionals or even in	nite
if the program contains loops�
A better solution would be� 	nd a simple formulaFinfo�S� computing the data �ow information

info�S� based only on the structure tree of the program� and proof that this formula returns the
same as this meet over all path solution�
The next sections shows the main result of this paper�

�� it is shown which information reaches a statement �in the parallel context�� and

� which information reaches the end of a PAR statement�

For the 	rst result� two sets �in� ein� are used to represent the data �ow information reaching
a statement� instead of only one in the sequential case�
The second result is based on the fact that it is su�cient to consider some speci	c paths instead

of all possible paths� For these speci	c paths� a simple formulaFinfo�S� can be given and it returns
the same results as the belonging meet over all path solution�
For the PAR S� 	 S	 END statement with the two branches S� and S	� these speci	c paths

are� concat�paths�S��� paths�S	�� and concat�paths�S	�� paths�S���� i�e� the paths resulting from
the concatenated execution of S��S	 and S	�S��
For example� Analysing the PAR s�� s	 	 s
 END statement� for which the si are simple

statements� only the two paths hs�� s	� s
i and hs
� s�� s	i are needed for the analysis� The third
possible path hs�� s
� s	i need not to be considered�
For PAR statements with n branches the paths from the n� concatenated statements Si� � � � � �Sin �

where �� � �i�� � � � � in� � perm��� n� is a permutation of the numbers �� � � � � n� are used�
If the sample language would have a process synchronisation statement� the number of paths

could be reduced� since some path never occur in any program run� Hence not considering this
kind of statement� produces a �worst case� data �ow information which is still correct�
Including a goto statements doesn�t change the ideas� it complicates only the description� This

is due to the fact that we are using the structure tree and not a control �ow graph for representing
a program in our presentation of the ideas�

� Which information reaches a statement �in the parallel
context�

In the sequential case only one set is de	ned to represent the information reaching a statement�
In the parallel case two sets are needed�

in�S
 The information propagated along the edges of the structure tree� i�e� without considering
the e�ect of the statements executed parallel to S� That is the information which comes
from the statements executed always before S�ein�S
 The set of informations reaching S� which stems from sequentially before S executed
statements and from statements executed in parallel to S�

It is obvious� that ein�S� � Vp�prefix�paths�Prog��S� out�p�� The same distinction can be made for

the set of information reaching the end of a statement� but fout�S� is not of interest� hence only
out�S� is used�
The set sibl�S� �sibling� contains all assign statements which may be executed in parallel to S�

Theorem � �Information reaching a statement� For an arbitrary statement S holds�

�For the sake of simplicity�the following precedence rules are used
 a � b � c � a � �b� c� and
V

i
ai �

V
i
bi �

�
V

i
ai�� �

V
i
bi��

GMD������dfepp�Rel ����January ��� �		
 �

Which information reaches a statement �in the parallel context� COMPARE

�a� if the problem is a may problem

p�prefix�paths�Prog��S�

out�p� � in�S� �

s�sibl�S�

gen�s�

�b� if the problem is a must problem
�
p�prefix�paths�Prog ��S�

out�p� � in�S��

s�sibl�S�

kill�s�

Proof �Theorem �a� The proof is done in two steps �
� and ����

�
� It has to be shown�
S

p�prefix�paths�Prog ��S� out�p�
 in�S� �
S

s�sibl�S� gen�s�

Let x �
S

p�prefix�paths�Prog ��S� out�p�� then there is in a path p � prefix�paths�Prog�� S� a
statement sp which generates x and x is not invalidated later in p� The assignment statements
in p stem either from program statements� which are executed sequentially before S� or from
statements which may be executed in parallel to S� �see the de	nition of paths�S��� If sp is
a statement which is always executed before S then x � in�S� holds� If sp a statement which
may be executed in parallel to S� then x �

S
s�sibl�S� gen�s��

��� It has to be shown� in�S� �
S

s�sibl�S� gen�s�

S

p�prefix�paths�Prog ��S� out�p�

Let x � in�S� and x ��
S

s�sibl�S� gen�s�� then the claim holds obviously�

Let x �
S

s�sibl�S� gen�s� be generated by a statement s � sibl�S�� Since there is for every

s � sibl�S� a path ps which executes s as its last statement before executing S� and ps �
prefix�paths�Prog�� S�� the claim holds�

Proof �Theorem �b� Lemma� Let x �
T

p�prefix�paths�Prog ��S� out�p�� then x � in�S� holds�
That is� if x reaches S� then x is generated by a statement which is executed always be

fore S� Otherwise there would be a statement s � sibl�S� which generates x and since
x �

T
p�prefix�paths�Prog ��S� out�p�� s must be executed in all paths before S� which contradicts

s � sibl�S��

�
� It has to be shown�
T

p�prefix�paths�Prog ��S� out�p�
 in�S��
S

s�sibl�S� kill�s�

Let x �
T

p�prefix�paths�Prog ��S� out�p�� hence x � in�S�� Now it has to be shown that x ��S
s�sibl�S� kill�s�� Assume� there is a statement s � sibl�S� which kills x� Then we can

construct a path ps� where s is the last statement before S� and hence x is not part of
out�ps�� Since ps � prefix�paths�Prog�� S�� x is not part of

T
p�prefix�paths�Prog��S� out�p�

which contradicts our initial assumption� Hence if x �
T

p�prefix�paths�Prog ��S� out�p� it cannot
be killed by a statement executed in parallel to S�

��� It has to be shown� in�S��
S

s�sibl�S� kill�s�

T

p�prefix�paths�Prog ��S� out�p�

Because x � in�S��
S

s�sibl�S� kill�s� on all paths
� p� �� p�fstatements executed sequentially

before Sg with p � prefix�paths�Prog�� S�� x is generated by a statement sp� and and

�When speaking in the context of paths from statements which are executed in parallel to others� we mean that
these statements are contained in a PAR statement in di�erent branches� or if the branch is replicated� the same
branch too�

�For a path p and a set of statements S� p�S is de�ned to be the restricted path containing only statements of
the set S�

GMD������dfepp�Rel ����January ��� �		
 �

Which information reaches the end of the PAR statement COMPARE

x � out�p��� Since x ��
S

s�sibl�S� kill�s�� x is not killed by statements which may be executed
in parallel to S� Hence x is generated on path p by sp� and it is not killed in p after executing
sp� � since p contains compared to p� only additional statements which may be executed in
parallel to S� Hence x �

T
p�prefix�paths�Prog ��S� out�p��

	 Which information reaches the end of the PAR statement

Theorem � Data �ow equations for the PAR statement with n branches
For the S ��� PAR S� � � � � � Sn END statement� and no process body is replicated� it holds

if out is a may	problem

gen�S� �
n

j
�

gen�Sj�

kill�S� �
n

j
�

kill�Sj ��
n

k
�

gen�Sk�

out�S� � gen�S� �

�
in�S��
n

j
�

kill�Sj�

�A
if out is a must	problem

gen�S� �
n

j
�

gen�Sj��
n

k
�

kill�Sk�

kill�S� �
n

j
�

kill�Sj �

out�S� � gen�S� �

�
in�S��
n

j
�

kill�Sj�

�A

All proofs follow the same road� Compute the data �ow information for the �special paths��
resulting from the n� statement sequences Si� � � � � �Sin �

V
���perm���n� info�Si� � � � � �Sin � and show

that this equal to the meet over all paths solution
V

p�paths�S� info�p�� which is de	ned to be

info�S��
First we give the data �ow equations for the �special paths��

���perm���n�

gen�Si� � � � � �Sin � �
n

j
�

gen�Sj � ���

�
���perm���n�

gen�Si� � � � � �Sin � �
n

j
�

gen�Sj ��
n

k
�

kill�Sk� ���

���perm���n�

kill�Si� � � � � �Sin � �
n

j
�

kill�Sj � ���

GMD������dfepp�Rel ����January ��� �		
 �

Which information reaches the end of the PAR statement COMPARE

�
���perm���n�

kill�Si� � � � � �Sin � �
n

j
�

kill�Sj ��
n

k
�

gen�Sk� ���

���perm���n�

out�Si� � � � � �Sin � �
n

j
�

gen�Sj ��

�
in�S� �

n

k
�

kill�Sk�

�
����

�
���perm���n�

out�Si� � � � � �Sin � �

�
 n

j
�

gen�Sj��
n

k
�

kill�Sk�

�A �

�
in�S��

n

l
�

kill�Sl�

�
����

Proof �Equations
� �� Since�

gen�S�� � � � �Sn�
���
� gen�Sn���gen�Sn�����gen�Sn�	��� � � ���kill�Sn�����kill�Sn�

Sn
j
� gen�Sj �

and

gen�S�� � � � �Sn�
���
� gen�Sn� � �gen�Sn��� � �gen�Sn�	� � � � � �� � kill�Sn���� � kill�Sn� � gen�Sn��

thenS
���perm���n��gen�Sin ��

S
���perm���n� gen�Si� � � � � �Sin �

S
���perm���n��

Sn
j
� gen�Sj �� and henceSn

k
� gen�Sk�

S
���perm���n� gen�Si� � � � � �Sin �

Sn
j
� gen�Sj� which is the desired result�

The same is done for kill�S��

Proof �Equations �� 	� The proof is given for gen� equation ��� is proved similarly� The proof
shows the two set inclusions� �
� and ���

�
� To be shown�
T
���perm���n� gen�Si� � � � � �Sin �

Sn

j
� gen�Sj��
Sn

k
� kill�Sk��T
���perm���n� gen�Si� � � � � �Sin �

S
���perm���n� gen�Si� � � � � �Sin � �

Sn

j
� gen�Sj��

Let x �
T
���perm���n� gen�Si� � � � � �Sin � then x can not be killed by any statement Sk� � �

k � n� Otherwise� assume x will be killed by a statement Sk� then there is a permutation ���
where in � k� i�e� Sk is the last statement� Hence x �� gen�Si� � � � � �Sin �� which contradicts
the assumption� that x is generated by all permuted statement sequences�

Hence x �
Sn

j
� gen�Sj ��
Sn

k
� kill�Sk��

��� To be shown�
Sn

j
� gen�Sj ��
Sn

k
� kill�Sk�

T
���perm���n� gen�Si� � � � � �Sin ��

Let x �
Sn

j
� gen�Sj��
Sn

k
� kill�Sk� then x is not invalidated by any statement Sk� � � k �
n� but generated by some Sj � � � j � n� Hence x �

T
���perm���n� gen�Si� � � � � �Sin ��

Proof �Equation ���S
���perm���n� out�Si� � � � � �Sin �

�
�
�

S
���perm���n��gen�Si� � � � � �Sin � � in�Si� � � � � �Sin �� kill�Si� � � � � �Sin ��

since ��� � perm��� n� � in�Si� � � � � �Sin � � in�S� and ���� �
��� ���� �
��
�

Sn
j
� gen�Sj �� �in�S��

Sn
k
� kill�Sk�� � �in�S� �

Sn
l
� gen�Sl��

�
Sn

j
� gen�Sj �� �in�S��
Sn

k
� kill�Sk��

Proof �Equation ��� The proof shows the two set inclusions� �
� and ���

�
� To be shown�T
���perm���n� out�Si� � � � � �Sin �
 �

Sn

j
� gen�Sj ��
Sn

k
� kill�Sk�� � �in�S��
Sn

l
� kill�Sl���

GMD������dfepp�Rel ����January ��� �		
 ��

Which information reaches the end of the PAR statement COMPARE

T
���perm���n� out�Si� � � � � �Sin �

�
�
�T

���perm���n��gen�Si� � � � �Sin � � in�Si� � � � � �Sin �� kill�Si� � � � � �Sin ��

 �
T
���perm���n� gen�Si� � � � � �Sin ���

�
T
���perm���n��in�Si� � � � � �Sin �� kill�Si� � � � � �Sin ���

since ��� � perm��� n� � in�Si� � � � � �Sin � � in�S� and ����� ���� ���
� �

Sn

j
� gen�Sj��
Sn

k
� kill�Sk�� � �in�S��
Sn

l
� kill�Sl��

��� To be shown�
�
Sn

j
� gen�Sj ��
Sn

k
� kill�Sk�� � �in�S� �
Sn

l
� kill�Sl��

T
���perm���n� out�Si� � � � � �Sin ��

Let x � �
Sn

j
� gen�Sj ��
Sn

k
� kill�Sk�� � �in�S��
Sn

l
� kill�Sl�� then

�� x �
Sn

j
� gen�Sj ��
Sn

k
� kill�Sk� or

� x � in�S��
Sn

l
� kill�Sl��

In both cases x is never killed by a statement Si� � � i � n� In the 	rst case x is generated
by some statement Sj and since not killed� it is contained in out�Si� � � � � �Sin �� In the second
case it it reaches the start of the statement sequence Si� � � � � �Sin and since not killed by it�
x � out�Si� � � � � �Sin ��

Now the correctness of the formula is proved� i�e� that they return the same result as the meet
over all paths solutions�

���perm���n�

gen�Si� � � � � �Sin � �

p�paths�S�

gen�p� if gen is a may
problem ��
�

�
���perm���n�

gen�Si� � � � � �Sin � �
�

p�paths�S�

gen�p� if gen is a must
problem ����

���perm���n�

kill�Si� � � � � �Sin � �

p�paths�S�

kill�p� if kill is a may
problem ����

�
���perm���n�

kill�Si� � � � � �Sin � �
�

p�paths�S�

kill�p� if kill is a must
problem ����

���perm���n�

out�Si� � � � � �Sin � �

p�paths�S�

out�p� if out is a may
problem ����

�
���perm���n�

out�Si� � � � � �Sin � �
�

p�paths�S�

out�p� if out is a must
problem ����

Proof �Equations ��� ��� The proof is given for gen� equation ���� is proved similarly� The
proof shows the two set inclusions� �
� and ���

�
� To be shown�
S
���perm���n� gen�Si� � � � � �Sin �

S
p�paths�S� gen�p��S

���perm���n� gen�Si� � � � � �Sin � �
S
���perm���n�

�S
p�path�Si� �����Sin �

gen�p�
�

Since a path p � path�Si� � � � � �Sin � is a path of the set paths�S�� the inclusion holds�

GMD������dfepp�Rel ����January ��� �		
 ��

Which information reaches the end of the PAR statement COMPARE

��� To be shown�
S
���perm���n� gen�Si� � � � � �Sin �

���
�
Sn

j
� gen�Sj� �
S

p�paths�S� gen�p��

Let x �
S

p�paths�S� gen�p� then there is a path p � paths�S� with x � gen�p�� In p there

is a statement sp with x � gen�sp� and sp cannot be followed by a statement in p� which
kills x� Now p has the form p � hX� sp�Y i� then in the subpath Y there is no statement
which invalidates x� Let sp be a statement from Sj � � � j � n� then it must be shown that
x � gen�Sj�� If p is restricted to the statements of Sj � then Y�Sj contains only statements of
Sj � Since Y contains no statements which killx� this is true for Y�Sj � Hence p�Sj � paths�Sj �
implies x � gen�Sj��

Proof �Equations ��� ��� The proof is given for kill� equation ���� is proved similarly� The
proof shows the two set inclusions� �
� and ���

�
� To be shown�
T
���perm���n� kill�Si� � � � � �Sin �

T
p�paths�S� kill�p��

Let x �
T
���perm���n� kill�Si� � � � � �Sin �

���
�
Sn

j
� kill�Sj � �
Sn

k
� gen�Sk� then there is j� � �

j � n with x � kill�Sj��
Sn

k
� gen�Sk�� i�e� x is killed by Sj � and x is not generated by any
other branch of the PAR statement�

Let p an arbitrary path of the set paths�S�� Since pj � p�Sj is a path from the set paths�Sj��
x � kill�pj� holds� and spj is the statement killing x on pj � and after that statement x
is not generated on pj � p has now the form hX� spj �Y i� In Y there are no statements
from Sj � which generate x �otherwise x �� kill�Sj �� and p cannot contain statements from
Sk� � � k � n� j �� k which generate x �otherwise x ��

Sn

k
��j �
k gen�Sj��� and hence there
is no statement in Y generating x� Now we have for any path p� x � kill�p� and hence
x �

T
p�paths�S� kill�p��

��� To be shown�
T
���perm���n� kill�Si� � � � � �Sin � �

T
p�paths�S� kill�p��T

���perm���n� kill�Si� � � � � �Sin � �
T
���perm���n�

�T
p�path�Si� �����Sin �

kill�p�
�

Since a path p � path�Si� � � � � �Sin � is a path of the set paths�S� the inclusion holds�

Proof �Equations �
� ��� If out a may�must�	problem� then obviously gen is a may�must�	 and
kill a must�may�	problem� Using the previous results� when calculatingS
���perm���n� out�Si� � � � � �Sin � and

T
���perm���n� out�Si� � � � � �Sin �� and the fact that for all permu

tations �� � perm��� n�� in�Si� � � � � �Sin � � in�S� holds� demonstrates the goals �see appendix B��

Theorem � Data �ow equations for the PAR statement with replicators
For the S ��� PAR S� � S	 � � � � � Sn END statement with possibly replicated branches it holds

�a� if upbi � lwbi � � � 	 the equations of theorem � and theorem �� remain valid

�b� if upbi � lwbi � � � 	 the following equations hold�

�Sibl�Si� of the replicated statement Si now contains also its own statements�
	n�r�
 not replicated

GMD������dfepp�Rel ����January ��� �		
 �

Conclusions COMPARE

If out is a may	problem �upbi 	 lwbi � � � ��
ein�S� � in�S� �

s�sibl�S�

gen�s�

gen�S� �
n

j
�

gen�Sj�

kill�S� �
n

j
��Sj n�r�

kill�Sj ��
n

k
�

gen�Sk�

out�S� � gen�S� �

�
in�S��
n

j
��Sj n�r�

kill�S�

�A

If out is a must	problem �upbi 	 lwbi � � � ��
ein�S� � in�S��

s�sibl�S��s n�r�

kill�s�

gen�S� �
n

j
��Sj n�r�

gen�Sj ��
n

k
�

kill�Sk�

kill�S� �
n

j
�

kill�Sj�

out�S� � gen�S� �

�
in�S��
n

j
�

kill�Sj�

�A

Proof �Theorem �a� We have to show that� if Si is replicated then info�PAR S� 	 � � � 	 Sj 	

Sj�� 	 � � � 	Sn END
 � info�PAR S� 	 � � � 	 Sj 	 Sj 	 Sj�� 	 � � � 	Sn END
 holds� Working
out the equations for may	 and must	problems using theorem
 shows this� The proof of equation �
is still valid �see appendix B��

Proof �Theorem �b� The proofs are performed by calculating info�PAR � � � 	 Sj 	 � � � END

� info�PAR � � � 	 Sk 	 � � � END
� where in the Sj the replicators are assumed to generate more
than one process and in Sk they are omitted� i�e� generate no process�

 Conclusions

Without doubt� control �ow parallel programs have to be analyzed and optimized as well as
sequential ones� Since the traditional data �ow analysis methods are designed in the context of
sequential programs� they have to be adapted to 	t into the parallel programming paradigm�
But instead of restricting either the shared memory model in the language� or force the user

to instruct the compiler not to modify certain regions of code �by e�g� specifying a variable to be
volatile or using pragmas� the equations presented in this paper may be used� Since they are an
extension of the sequential ones� they may be easyly integrated into an existing optimizer�
Solutions to other data �ow problems than those which have been presented� can be derived

by the method shown in the proofs� Concatenate the process bodies� permute them� calculate a
formula for the union�intersection of these n� statement sequences and proof the equality with the
meet over all paths solution� using the proof techniques given in the previous sections�

GMD������dfepp�Rel ����January ��� �		
 ��

REFERENCES COMPARE

References

�ACM��� ACM� ��
 ACM Symposium on Principles of Programming Languages� Jan

uary ����� Austin� Texas�

�ACM�
� ACM� ��
 ACM SIGPLAN	SIGACT Symposium on Principles of Program	
ming Languages� January ���
� Albuquerque� New Mexico�

�Afek et al ��� Yehuda Afek� Geo�rey Brown� and Michael Merritt� Lazy caching� ACM
Transactions on Programming Languages and Systems� ��������
!
��� Jan

uary �����

�Aho et al ��� Alfred V� Aho� Ravi Sethi� and Je�ery D� Ullman� Compilers� Principles�
Techniques and Tools� Addison
Wessley Publishing Company� �����

�Babich et al ��� Wayne A� Babich andMehdi Jazayeri� The method of attributes for data �ow
analysis� Acta Informatica� ������!
�
� ����� Part I Exhaustive Analysis�
Part II Demand Analysis�

�Banerjee et al ��� U� Banerjee� D� Gelernter� A� Nicolau� and D� Padua� editors� Languages and
Compilers for Parallel Computing� volume ��� of Lecture Notes in Computer
Science� Springer Verlag� Heidelberg� New York� August �����

�Chow et al �
� Jyh
Herng Chow and Williams Ludwell III Harrison� Compile
time analysis
of parallel programs that share memory� In �ACM���� pages ���!���� ���
�

�Cytron et al ��� Ron Cytron� Jeanne Ferrante� Barry K� Rosen� Mark N� Wegman� and
F� Kenneth Zadeck� An e�cient method of computing static single assign

ment form� In �ACM���� pages
�!��� �����

�DEC �
� Digital Equipment Cooperation DEC� Alpha Architecture Handbook� DEC�
USA� February ���
� Preliminary�

�Grunwald et al ��� Dirk Grunwald and Harini Srinivasan� Data �ow equations of explicitly
parallel programs� In PPoPP ��� ACM SIGPLAN NOTICES� �����

�Hecht ��� Matthew S� Hecht� Flow analysis of computer programs� North Holland�
�����

�Kildall ��� Gary A� Kildall� A uni	ed approach to global program optimization� In
ACM Symposium on Principles of Programming Languages� pages ���!
���
October �����

�Lamport ��� Leslie Lamport� How to make a multiprocessor computer that correctly exe

cuts multi process programs� IEEE Transactions on Computers� c

��������!
���� September �����

�Midki� et al ��� S�P� Midki� and David A� Padua� Issues in the optimization of parallel
programs� In Proceedings of the ���� International Conference on Parallel
Processing� pages ���!���� Volume II� August �����

�Reif ��� John H� Reif� Data �ow analysis of distributed communicating processes�
Technical Report TR
�

��� Harvard University� Center for Research in
Computing Technology� September �����

GMD������dfepp�Rel ����January ��� �		
 ��

Data �ow equations for the IF and REPEAT statement COMPARE

�Srinivasan et al ��a� Harini Srinivasan and Dirk Grunwald� An e�cient construction of parallel
static single assignment form for structured parallel programs� Technical
Report CU
CS
���
��� University of Colorado at Boulder� Department of
Computer Science� December �����

�Srinivasan et al ��b� Harini Srinivasan and Michael Wolfe� Analysing programs with explicit
parallelism� In �Banerjee et al ���� �����

�Wolfe et al ��� Michael Wolfe and Harini Srinivasan� Data structures for optimizing pro

grams with explicit parallelism� In �Zima ���� pages ���!���� �����

�Zima ��� Hans Zima� editor� Parallel Computing� �
 Int
 ACPC Conference Salzburg�
Austria� volume ��� of Lecture Notes in Computer Science� Springer Verlag�
Heidelberg� New York� September �����

Appendix

A Data �ow equations for the IF and REPEAT statement

For the S ��� IF E THEN S� ELSE S	 END statement the equations look like�

in�S�� � in�S�
in�S	� � in�S�
gen�S� � gen�S�� � gen�S	�
kill�S� � kill�S�� � kill�S	�
out�S� � out�S��� out�S	�
If out is a May
problem

in�S�� � in�S�
in�S	� � in�S�
gen�S� � gen�S�� � gen�S	�
kill�S� � kill�S�� � kill�S	�
out�S� � out�S��� out�S	�
If out is a Must
problem

For the statement S ��� REPEAT S� UNTIL E holds�

in�S�� � in�S� � gen�S��
gen�S� � gen�S��
kill�S� � kill�S��
out�S� � out�S��
If out is a May
problem

in�S�� � in�S� � kill�S��
gen�S� � gen�S��
kill�S� � kill�S��
out�S� � out�S��
If out is a Must
problem

It is important to see that no iteration is needed to compute these sets as needed if the equations
are formulated over the control �ow graph �Aho et al ����

GMD������dfepp�Rel ����January ��� �		
 ��

Frequently used formulas COMPARE

B Complete proofs

Proof �Equation �
�S
���perm���n� out�Si� � � � � �Sin �

�
�
�S

���perm���n� gen�Si� � � � � �Sin � �
S
���perm���n��in�Si� � � � � �Sin �� kill�Si� � � � � �Sin ��

since ��� � perm��� n� � in�Si� � � � � �Sin � � in�S�
�

S
���perm���n� gen�Si� � � � � �Sin � �

S
���perm���n��in�S�� kill�Si� � � � � �Sin ��

�	��
�

S
���perm���n� gen�Si� � � � � �Sin � � in�S��

T
���perm���n� kill�Si� � � � � �Sin �

��	������
�

S
p�paths�S� gen�p�� in�S��

T
p�paths�S� kill�p�

����
�

S
p�paths�S� gen�p��

S
p�paths�S��in�S�� kill�p��

since �p�paths�S� � in�p� � in�S�
�

S
p�paths�S��gen�p�� in�p�� kill�p��

�
�
�

S
p�paths�S� out�p�

Proof �Equation ���
T
���perm���n� out�Si� � � � � �Sin �

����
�
Sn

j
� gen�Sj� �
Sn

k
� kill�Sk� � in�S� �Sn
l
� kill�Sl�

������
����������
� gen�S� � in�S�� kill�S�

�
�
� out�S�

by de	nition
�

T
p�paths�S� out�p�

Proof �Theorem �b� Obviously� �a� �
Sn

j
��Sj n�r� gen�Sj �

Sn

k
� gen�Sk�

�b� �
Sn

j
��Sj n�r� kill�Sj �

Sn

k
� kill�Sk� and �c� �
Sn

j
� kill�Sj�

Sn

k
��Sk n�r� kill�Sk��ein May Obviously� since �a��ein Must Since �b� together with �

��

gen�kill May Obviously since� �a� and �b�� respectively�

gen�kill Must It is only shown for gen� kill is proved similarly�

�
Sn

j
� gen�Sj ��
Sn

k
� kill�Sk�� � �
Sn

l
��Sl n�r� gen�Sl��
Sn

i
��Si n�r� kill�Si��
����
�Sn

j
� gen�Sj � �
Sn

k
� kill�Sk� �
Sn

l
��Sl n�r� gen�Sl��
Sn

i
��Si n�r� kill�Si� �Sn
j
��Sj n�r� gen�Sj��

Sn
k
� kill�Sk�� since �a�� �c��

out May�
�
Sn

j
� gen�Sj �� in�S��
Sn

k
� kill�Sk��� �
Sn

l
��Sl n�r� gen�Sl�� in�S��
Sn

i
��Si n�r� kill�Si�� �Sn

j
� gen�Sj � � in�S��
Sn

k
��Sk n�r� kill�Sk�� since �c� and �

��

out Must� �
Sn

j
� gen�Sj ��
Sn

k
� kill�Sk� � in�S��
Sn

l
� kill�Sl���

�
Sn

j
��Sj n�r� gen�Sj��
Sn

k
��Sk n�r� kill�Sk� � in�S��
Sn

l
��Sl n�r� kill�Sl�� �Sn
j
��Sj n�r� gen�Sj� �

Sn
k
� kill�Sk� � in�S� �

Sn
l
��Sl

kill�Sl�� see gen
 Must and �b�� �c�

and �

��

C Frequently used formulas
The following equations for set di�erences hold� a� b� c� b�� b	 are sets�

a� b � a � b ����

a � �b � c� � �a� b� � �a� c� ����

a � �b � c� � �a� b� � �a� c� �
��

�a � b�� c � �a� c� � �b� c� �
��

b�
 b	 � �a� b	�
 �a� b�� �

�

a � �a � b� � a � b �
��

a � �a � b� � a �
��

�a� b� � c � �a � c� � b � a� �b � c��
��

a� �b � c� � �a � b� � �a � c� �
��

a� �b � c� � a � b if a � c � � �
��

GMD������dfepp�Rel ����January ��� �		
 ��

An Example COMPARE

D An Example

This example shows the de	nitions reaching the statements in and after a PAR statement�

definition definitions reaching this statement

a �� �� ��� a��� b��� c��� d���

b �� �� ��� a���� b��� c��� d���

d �� ���� ��� a���� b���� c��� d���

PAR

a �� �� ��� a���� b��������� c���� d�������

IF b � � a���� b��������� c���� d�������

THEN

c �� critical����� ��� a���� b��������� c���� d�������

a �� �� ��� a���� b��������� c������ d�������

END�

d �� f�d�� ��� a������ b��������� c������ d�������

	

b �� �� ��� a�������� b���� c���� d������

IF a � � a�������� b���� c���� d������

THEN

c �� critical����� ��� a�������� b���� c���� d������

b �� �� ���� a�������� b���� c������ d������

END�

d �� f�d�� ���� a�������� b������� c������ d������

END�

��� a������ b������� c������ d�������

GMD������dfepp�Rel ����January ��� �		
 ��

