
MOBIL��P�
Intermediate Compiler Languages for

�Explicit Parallel� Imperative Languages
Internal Report

J�urgen Vollmer�

FriWi Schr�oer�

Gesellschaft f�ur Mathematik und Datenverarbeitung

August ��� �����

�GMD Research Group at the University of Karlsruhe� Vincenz�Prie�nitz�Stra�e �� D����� Karlsruhe ��
Phone	
��������������� email	 vollmer�karlsruhe�gmd�de

�GMD FIRST� D��� Berlin� Rudower Chaussee ��
��������������� email	 friwi��rst�gmd�de
�Rev	 ���� Status	 released

Abstract

Mobil and its extension Mobil�P are the low level intermediate compiler languages of the Mocka � Mocka�P
Modula�� � Modula�P compilers developed at the GMD in Karlsruhe� The programming language Modula�P a
superset ofModula�� o�ers explicit parallelism on the language level� based on Hoare�s communication sequential
processes� Mobiland Mobil�P form the interface between the compiler front end �syntactic � semantic analysis
and transformation� and the code generator for a speci	c target processor� The semantics of Mobil and Mobil�P
are given in terms of an interpreter for the Mobil � Mobil�P instructions�

Contents

� Introduction �

�
 Characteristics of Mobil and Mobil�P �

� Introduction into Mobil and Mobil�P �

��
 Operators �

�� Attributes �

��� Arguments and result �

��� Machine data types �

��� The Mobil memory model �

��� Views of Mobil �

� De�nition of Mobil �
�
 The Mobil interpreter �
� The Mobil instructions �

��
 Declarations �
�� General operations �
��� The Mobil Constants �
�
��� Structured Constants �
�
��� Address computation �
�
��� Compiler generated variables �
�
��� Memory access �
�
��� Memory access and arithmetic �
�
��� Integer arithmetic �
�
��
� Real arithmetic �
�
��

 Set arithmetic �
�
��
 Misc conversions �
�
��
� Comparisions �
�
��
� Control �ow �
�
��
� Procedure call and parameter passing �

�� Generating Mobil by MOCKA �

���
 Mobil Grammar �

��� Procedure call �
���� Parameter passing �
���� Procedure nesting �

� De�nition of Mobil�P ��
��
 The Mobil�P interpreter �
�� The Mobil�P instructions �

���
 Declarations �
��� Channel instructions �
���� Timer instructions �
���� Parallel statements �
���� Replication �
���� The ALT statement ��

��� Generating Mobil�P by MOCKA�P �

Rev� ���� released� June ��� ���	 mobil�tex

MOBIL��P�

����
 The Mobil�P grammar �

���� Parallel statements �
����� The ALT statement �

��� Transputer machine instructions �

Bibliography ��

 mobil�tex Rev� ���� released� June ��� ���	

Chapter �

Introduction

��� Characteristics of Mobil and Mobil�P

Mobil�P �Vollmer ��a� is the low level intermediate language of the Modula�P �Vollmer ��b� Vollmer et al ��
compiler system Mocka�P� Mocka�P itself is based on the Modula�� �Wirth ��� compiler system Mocka�

�Schr�oer ��a�� with the intermediate language Mobil� �Schr�oer ��b��
The compilation process of Mocka is divided into three phases� The parser constructs an abstract syntax tree�
using the intermediate language ASTA� After the semantic analysis has taken place� this is transformed into
the intermediate language Mobil�� A code generator translates a Mobil program into an assembly language
program�
Several code generators for Mobil and Modula�� has been produced� either by hand writing �MC��K�
VAX� Transputer� or generating using the BEG code generator generator tool �Emmelmann et al ��� �MIPS�
SPARC�MC��K� Transputer�� The �exibility of the Mobil intermediate language has been proven by extending
it to Mobil�P and by adding Mobil back ends to a di�erent �Pascal� front end�
Mobil has three characteristics� it is�

� low level�

� machine independent�

�� fully typed�

Low level means that the block structure of the source language is �attened� loops are translated into �un�
conditional jumps� boolean expressions are mapped into jump cascades for implementing the short cut
evaluation semantics of Modula��� The access path for variables and memory access is made completely
explicit� Local modules are also �attened and the body is transformed to an ordinary procedure� called
automatically when the body of the enclosing module is called� All bodies of implementation modules are
called according to the Modula�� rules� when initiating the main program�

Machine independence is achieved by using machine instructions in a three address format and having only
the notion of data and address operands� which may be seen as an unbound set of abstract registers� Also
a simple but general storage model is used�

Typed is Mobil in the sense that it knows several scalar machine types like short and long signed quantities�
but their actual sizes is not speci	ed by Mobil �but by supporting procedures�� Also for each operand of
an operator the type must be given�

��� Introduction into Mobil and Mobil�P

A Mobil module is a sequence of procedure de	nitions enclosed in BeginModule and EndModule� A procedure
de	nition is a sequence of instructions enclosed in BeginProcedure and EndProcedure�

�Modula�� COmpiler KArlsruhe
�Modula�� Backend Intermediate Language
�sometimesMobil stands for both� Mobil and Mobil
P�

Rev� ���� released� June ��� ���	 mobil�tex �

MOBIL��P�
 Introduction

A Mobil instruction has the form�
OPERATOR ATTRIBUTES ARGUMENTS RESULT�

All items except the 	rst may be missing�
A Mobil instruction is issued by the compilers front end using a procedure call

OPERATOR �ATTR�� � � �� ATTRm� ARG�� � � �� ARGn� RESULT��

����� Operators

The OPERATOR together with ATTRIBUTES the de	ne the action to be performed�
There are two kinds of operators�

Declarations introduce unique identi	cations for program objects like modules� procedures� code labels� string
addresses� etc� These unique identi	cations are used subsequently in the Mobil program to access these
objects� Each object must be declared before it is used�

Actions Are the instructions of the abstract machine� They either return a single result �output� or not� In
the latter case they are called Mobil statements�

����� Attributes

Attributes specify properties of the Mobil operators and operands� like their type� external value� or size of data
entities�
There are several kinds of attributes�

Mode speci	es the type of an operand�

Integers and cardinals are used to specify things like sizes and alignments of storage entities�

Relation is used to specify the relation of a comparison operator�

TYPE Relation � �RelEqual
�RelUnequal
�RelLess
�RelLessOrEqual
�RelGreater
�RelGreaterOrEqual
��

ModuleKind TYPE ModuleKind � �ProgramModule� ImplementationModule� ProcessModule�� speci	es the
kind of module currently compiled�

Labels are used as symbolic addresses of a speci	c piece of code�

ModuleIndex � ProcedureIndex� and StringIndex are used to identify modules� procedures and string
constants�

and some more� The attributes and their meaning are described together with the operator that uses them�

����� Arguments and result

ARGUMENTS is a list of operands computed as output of previous instructions and used here as input� RESULT
is the operand computed by the instruction� Each operand is de	ned exactly once as a result and used exactly
once as an argument� Hence� Mobil instructions for expressions are called in post	x order by the front end�
Mobil distinguishes between two classes of operands� Data operands and Address operands� Data operands are
used to hold values of di�erent machine types that are fetched from memory using a Content instruction or that
are result from some computation�
Address operands provide access to memory locations� Pointer values are considered as data� they can be
retyped to serve as addresses�

� mobil�tex Rev� ���� released� June ��� ���	

��� The Mobil memory model MOBIL��P�

����� Machine data types

Mobil knows the following machine data operands types� also called Modes�

� UnsignedByte

� UnsignedWord

� UnsignedLong

� SignedByte

� SignedWord

� SignedLong

� FloatShort

� FloatLong

Each data object� whether scalar or structured� has two special properties�

� its size� and

� an alignment�

Size gives the number of bytes needed to store a value of this type� This usually also de	nes the range of values
representable by that data type� The alignment speci	es the kind of addresses� at which a value may be stored
in memory� The alignment requirement is usually a small number out of the set f
������
�g� An alignment of
�� for example� speci	es� that these data objects may be stored in memory only on addresses� which are divisible
by � without of a reminder� More formally� MemAdr�x� MOD Alignment � 	� where x is of type Mode�
The alignment requirement for structured source language types is usually the maximum of the component
types�
The mapping from source language types to machine language types� size and alignment is speci	ed by a set of
procedures and constants� which are part of a code generator description for a given hardware� For example�
the Modula�� front end and the Transputer �T ���� back end perform the following mapping�
Modula data type value range Mobil Transputer

size alignment
BOOLEAN � � FALSE UnsignedByte
 byte

 � TRUE
CHAR � �� �� UnsignedByte
 byte

coded as ASCII
enumeration � �� �� elements UnsignedByte
 byte

�� �� �� �
 UnsignedWord � byte
�������
 UnsignedLong � byte �

BITSET � �� �
 UnsignedLong � byte �
SHORTCARD � �� �� �
 UnsignedWord � byte �
CARDINAL � �� �� �
 UnsignedLong � byte �
LONGCARD � �� �� �
 UnsignedLong � byte �
SHORTINT ��������
 SignedWord � byte �
INTEGER ��������
 SignedLong � byte �
LONGINT ��������
 SignedLong � byte �
POINTER ��������
 SignedLong � byte �
ADDRESS ��������
 SignedLong � byte �
REAL FloatShort � byte �
LONGREAL FloatLong � byte �

����� The Mobil memory model

The memory of the abstract Mobil machine is partioned into frames�
For each separately compiled �source language� module there is a module frame �STATICFRAME
module���
The frame contains the static variables of the module� Objects in that frame are accessed by a StaticVariable
instructions which speci	es the frame of the module and o�set of the object in the frame�
For each procedure there is a local variable frame �VARFRAME�� The frame contains the local variables of the
procedure� Objects in that frame are accessed by a LocalVariable instruction which speci	es the o�set in the

Rev� ���� released� June ��� ���	 mobil�tex �

MOBIL��P�
 Introduction

frame� If the variable belongs to a frame of a procedure di�erent from the current one �i�e� a procedure statically
surrounding the current one in the original source program�� it is accessed by a FrameBase instruction� which
speci	es the static nesting level of the procedure and returns the address of that frame� The GlobalVariable
instruction uses the returned variable frame address and the variable�s o�set in that frame to return the address
of the variable�
For each procedure there is a parameter frame �PARAMFRAME�� The frame contains the parameters passed
to the procedure� It is established by the caller and 	lled using Pass instructions� Objects in that frame are
accessed using LocalParam instructions �corresponding to LocalVariable instructions�� If the object belongs
to the parameter frame of a procedure di�erent from the current one is� it is accessed using a ParamBase
instruction �corresponding to the FrameBase instruction� and GlobalParam instruction using the frame address�
Compiler created variables are called tempos� There are two classes of Tempos� DataTempos may be used to
store data� AddressTempos to store addresses� Their scope is bound to the procedure� they are declared in�
Structured values of the source language are mapped to sequences of scalar machine types� For each 	eld the
alignment requirements of the 	elds type must be ful	lled�� The entire data object is accessed by the address
of its 	rst 	eld� The other 	elds are accessed relative to this 	rst object� These o�sets are either computed at
compile time �records� and arrays with constant indices� by AddO�set or at runtime �arrays� by Subscript�

����� Views of Mobil

Two viewpoints may be taken concerning Mobil� First� it may be seen as an instruction set of an abstract
machine having an arbitrary number of registers� Second� a Mobil program is a forest �sequence� of expression
trees� Operands represent edges� instructions are the nodes of the tree� Mobil statements form the root of a
tree� Instructions without arguments from the tree leaves�
The 	rst view leads to a very easy implementation of a code generator� just expand each Mobil instruction into
some target processor instructions and map operands to real target registers� which are allocateds �on the �y��
The second view is more appropriate for a Mobil optimizer� which transforms a Mobil program into a �better�
one� or for a more sophisticated code generator �like BEG� which does tree pattern matching to generate less
expensive code for several tree nodes �Mobil instructions� together�

�There are no �packed� data types�

� mobil
��tex Rev� ���� released� June ��� ���	

Chapter �

De�nition of Mobil

��� The Mobil interpreter

The semantics of instructions is described by specifying an interpreter for Mobil�
The interpreter uses the following data structures�

PC �program counter� refers to the Mobil instruction to be executed next�

VARBASE 	i
 is the base address of the VARFRAME for the procedure at static nesting level i�

PARMEBASE 	i
 is the base address of PARAMFRAME for the procedure at static nesting level i�

CALLBASE is the address of a parameter frame that is currently used to pass parameters�

FUNRES is the result of the last function call�

NEST is the static nesting level of the current procedure�

M is the untyped memory of the machine� M
adrn� denotes a slice of n bytes starting at address adr� The
operation ALLOCATE �adr� size� creates a new slice in M with size and returns its address in adr�

STACK is used to save and restore administration data� PUSH and POP operations refer to the stack�

D	i
 is the i�th Data tempo of the current procedure�

A	i
 is the i�th Address tempo of the current procedure�

The Mobil machine knows two kinds of registers classes� data and address registers� The data registers may hold
values of several types according to the Mobil Modes� There are an arbitrary number of such registers� They
are single assignment and single use registers� op�mode describes� that the register is used with the given mode�
Additionally op�adr� op�pointer speci	es that the value is an address� op�bitset is interpreted as a BITSET value�
mapped to some machine type�
The Mobil machine knows the usual �un�signed integer and �oating arithmetic� Some operators are speci	ed
by describing them in terms of the corresponding Modula�� functionality�

��� The Mobil instructions

IN �OUT� speci	es that this is an input �result� operand� ATTR indicates an attribute� The keyword PROCE�
DURE is used to mark Mobil declarations from the other instructions� Since they don�t return a data oraddress
operand� their results are marked with VAR� The inputs of declarations are not specially marked�
Attributes and arguments of Mobil instructions marked with a y are used only if the front end compiles a
Modula�P program� For Modula�� they are not needed�

Rev� ���� released� June ��� ���	 mobil
��tex �

MOBIL��P� De	nition of Mobil

����� Declarations

All results of a declaration are unique for the current compiled compilation unit� except for the declaration of
tempos� The scope of a tempo is bound the procedure declared it�

PROCEDURE DeclareModule
extern� BOOLEAN

y kind� ModuleKind
CompUnitName� ARRAY OF CHAR

VAR ref� ModuleIndex
extern � TRUE� i� the module is another imported compilation unit�

PROCEDURE DeclareProcedure
extern� BOOLEAN
IsFunction� BOOLEAN
ProcName� ARRAY OF CHAR
ProcNumber� SHORTCARD
module� ModuleIndex
level� SHORTCARD
father� ProcIndex

VAR ref� ProcIndex
extern � TRUE� i� the procedure is imported from an other compilation unit� IsFunction � TRUE� i� the
procedure is a function� Each procedure of an compilation unit has a unique ProcNumber� module speci�es
the module� the procedure is declared in� level speci�es the nesting level of the procedure� Global procedures
get level 	� If the procedure is declared local to another� father speci�es that procedure�

PROCEDURE DeclareString
length� SHORTCARD
string� ARRAY OF CHAR

VAR ref� StringIndex
length gives the number of signi�cant characters of the string�

PROCEDURE DeclareLabel
VAR lab� Label
Labels are used for symbolic addresses of a piece of code�

PROCEDURE DeclareDataTempo
mode� Mode

VAR tempo� DataTempo
The front end may introduce temporary storage for compiler generated variables� The scope of a data tempo
is bound to the current compiled procedure�

PROCEDURE DeclareAddressTempo
VAR tempo� AddressTempo
The front end may introduce temporary storage for compiler generated variables� The scope of a address
tempo is bound to the current compiled procedure�

����� General operations

BeginModule
ATTR ModuleName� ARRAY OF CHAR
ATTR VarSize� LONGINT
ATTRy kind� ModuleKind
Indicates the beginning of a module� ModuleName is the name of the module� VarSize is the size of the
module frame �in bytes��

EndModule
Indicates the end of module�

� mobil
��tex Rev� ���� released� June ��� ���	

��� The Mobil Constants MOBIL��P�

BeginProcedure
ATTR index� ProcIndex
ATTR level� SHORTCARD
ATTR VarSize� LONGINT
ATTR ParamSize� LONGINT
Indicates the beginning of a procedure� index is the index of the procedure as de�ned by a DeclareProcedure
directive� level is the static nesting level of the procedure� VarSize is the size of procedure frame �in bytes��
ParamSize is the size of the procedures parameter frame �in bytes��
PUSH �NEST��

PUSH �PARAMBASE �level���

PUSH �VARBASE �level���

NEST �� level�

PARAMBASE �level� �� CALLBASE�

ALLOCATE �VARBASE �level�	 VarSize��

EndProcedure
Indicates the end of a procedure�

CopyOpenArray
ATTR DataO�set� LONGINT
ATTR HighO�set� LONGINT
ATTR elemsize� LONGINT
ATTRy IsGlobalProcess� BOOLEAN
Initial treatment of �open array� value parameters �the instructions is issued for each open array value
parameter at the beginning of the procedure�� Open arrays are passed as as two parameters�
��� the address of the data vector and
��� the value of the HIGH function applied to the array�
DataO�set is the o�set of parameter ��� and HighO�set is the o�set of parameter ��� in the parameter
frame of the actual procedure� The instruction creates a copy of the data vector and changes the �rst
parameter such that it points to the copy�
yIsGlobalProcessBody � TRUE� i� this instruction is emitted in the body procedure of a PROCESS
MODULE�
high	 size � CARDINAL�

source	 target � address�

high �� M �PARAMBASE �NEST�
 HighOffset� size �address���

size �� �high
�� � elemsize�

source �� M �PARAMBASE �NEST�
 DataOffset� size �address���

ALLOCATE �target	 size��

M �target� size� �� M �source� size��

M �PARAMBASE �NEST�
 DataOffset� size �address�� �� target�

Mark
ATTR line� SHORTCARD
ATTR col� SHORTCARD
Passes the current source position to the Mobil program�

SkipData
IN op� DataOperand
No action� �eats� not needed data values� Ignore
the value of op�
SKIP�

SkipAddress
IN op� AddressOperand
No action� �eats� not needed address values� Ignore
the value of op�
SKIP�

Rev� ���� released� June ��� ���	 mobil
��tex �

MOBIL��P� De	nition of Mobil

����� The Mobil Constants

ShortCardConstant
ATTR c� SHORTCARD
OUT result� DataOperand
Returns the SHORTCARD constant c�
resultshortcard �� c�

LongCardConstant
ATTR c� LONGCARD
OUT result� DataOperand
Returns the LONGCARD constant c�
resultlongcard �� c�

ShortIntConstant
ATTR c� SHORTINT
OUT result� DataOperand
Returns the SHORTINT constant c�
resultshortint �� c�

LongIntConstant
ATTR c� LONGINT
OUT result� DataOperand
Returns the LONGINT constant c�
resultlongint �� c�

RealConstant
ATTR c� REAL
OUT result� DataOperand
Returns the REAL constant c�
resultreal �� c�

LongRealConstant
ATTR c� LONGREAL
OUT result� DataOperand
Returns the LONGREAL constant c�
resultlongreal �� c�

CharConstant
ATTR c� CHAR
OUT result� DataOperand
Returns the CHAR constant c�
resultchar �� c�

BoolConstant
ATTR val� BOOLEAN
OUT result� DataOperand
Returns the BOOLEAN constant c�
resultboolean �� c�

SetConstant
ATTR c� BITSET
OUT result� DataOperand
Returns the BITSET constant c�
resultbitset �� c�

NilConstant
OUT result� DataOperand
Returns the POINTER constant NIL�
resultpointer �� c�

ProcedureConstant
ATTR index� ProcIndex
OUT result� DataOperand
Returns a reference to the procedure given by index� This reference may be used to call the procedure or to
assign it to a procedure variable or parameter�
resultlabel �� PROCSTART �index��

����� Structured Constants

StringAddr
ATTR index� StringIndex
OUT result� AddressOperand
Returns the address of a string constant designated by index�
result �� STRINGADDR �index��

����� Address computation

StaticVariable
ATTR module� ModuleIndex
ATTR o�set� LONGINT
OUT result� AddressOperand
Returns the address of a variable located in a module frame� module is the corresponding module� o�set is
the o�set of the variable in the frame�
result �� STATICBASE �module�
 offset�

� mobil
��tex Rev� ���� released� June ��� ���	

��� Address computation MOBIL��P�

FrameBase
ATTR proc� ProcIndex
ATTR level� SHORTCARD
OUT result� AddressOperand
Returns a reference to a procedure frame� In the original source program the procedure was declared at
nesting level level and enclosed the current one� Used to access a GlobalVariable�
result �� VARBASE �level��

ParamBase
ATTR proc� ProcIndex
ATTR level� SHORTCARD
OUT result� AddressOperand
Returns a reference to the parameter frame of a procedure� In the original source program the procedure
was declared at nesting level level and enclosed the current one� Used to access a GlobalValueParam�
GlobalVarParam or GlobalOpenArrayValueParam�
result �� PARAMBASE �level��

LocalVariable
ATTR o�set� LONGINT
OUT result� AddressOperand
Returns the address of a variable located in the frame of the current procedure� o�set is the o�set of the
variable in the frame�
result �� VARBASE �NEST�
 offset�

GlobalVariable
ATTR o�set� LONGINT
IN frame� AddressOperand
OUT result� AddressOperand
Returns the address of a variable located in the procedure frame indicated by frame� o�set is the o�set of
the variable in the frame�
result �� frame
 offset�

LocalValueParam
ATTR o�set� LONGINT
OUT result� AddressOperand
Returns the address of a value parameter� The Parameter is located in the parameter frame of the current
procedure� o�set is the o�set of the item in the frame�
result �� PARAMBASE �NEST�
 offset�

LocalVarParam
ATTR o�set� LONGINT
OUT result� AddressOperand
Returns the address of a var parameter� The address is located in the parameter frame of the current
procedure� o�set is the o�set of the item in the frame�
result �� M �PARAMBASE �NEST�
 offset� size �address���

GlobalValueParam
ATTR o�set� LONGINT
IN base� AddressOperand
OUT result� AddressOperand
Returns the address of a value parameter� The parameter is located in the parameter frame frame� o�set
is the o�set of the item in the frame�
result �� frame
 offset�

Rev� ���� released� June ��� ���	 mobil
��tex

MOBIL��P� De	nition of Mobil

GlobalVarParam
ATTR o�set� LONGINT
IN frame� AddressOperand
OUT result� AddressOperand
Returns the address of a var parameter � The address is located in the parameter frame frame� o�set is the
o�set of the item in the frame�
result �� M �frame
 offset� size �address���

LocalOpenArrayValueParam
ATTR o�set� LONGINT
OUT result� AddressOperand
Returns the address of a data vector passed as an �Open Array�� The address is located in the parameter
frame of the current procedure� o�set is the o�set of the item in the frame�
result �� M �PARAMBASE �NEST�
 offset� size �address���

GlobalOpenArrayValueParam
ATTR o�set� LONGINT
IN frame� AddressOperand
OUT result� AddressOperand
Returns the address of a data vector passed as an �Open Array�� The address is located in the parameter
frame frame� o�set is the o�set of the item in the frame�
result �� M �frame
 offset� size �address���

AddO�set
ATTR o�set� LONGINT
IN BaseOp� AddressOperand
OUT result� AddressOperand
Returns the address of a subobject� BaseOp is the address of the containing object� o�set is the o�set of
subject inside the containing object�
result �� BaseOp
 offset�

Subscript
ATTR IndexMode� Mode
ATTR LwbMode� Mode
ATTR UpbMode� Mode
ATTR ElemSize� LONGINT
IN BaseOp� AddressOperand
IN IndexOp� DataOperand
IN LwbOp� DataOperand
IN UpbOp� DataOperand
OUT result� AddressOperand
Returns the address of an array element� BaseOp is the address of the array� IndexOp is the index �with
mode IndexMode�� LwbOp and UpbOp specify lower and upper bound of the array �with modes LwbMode
and UpbMode�� ElemSize is the size of the array elements �in bytes��
result �� BaseOp
 �IndexOpIndexMode � LwbOpLwbMode� � ElemSize�

UsePointer
IN op� DataOperand
OUT result� AddressOperand
Returns the POINTER value op as address�
result �� oppointer�

 mobil
��tex Rev� ���� released� June ��� ���	

��� Memory access and arithmetic MOBIL��P�

����� Compiler generated variables

AssignDataTempo
ATTR mode� Mode
ATTR tempo� DataTempo
IN op� DataOperand
Stores the value given by op in the temporary
tempo�mode is the mode of op�
D �tempo� �� opmode�

AssignAddressTempo
ATTR tempo� AddressTempo
IN op� AddressOperand
Stores the address given by op in the temporary
tempo�
A �tempo� �� op�

UseDataTempo
ATTR mode� Mode
IN tempo� DataTempo
OUT result� DataOperand
Returns the value stored in the temporary tempo�
mode is the mode of tempo�
resultmode �� D �tempo��

UseAddressTempo
ATTR tempo� AddressTempo
OUT result� AddressOperand
Returns the address stored in the temporary tempo�
resultmode �� A �tempo��

����	 Memory access

Assign
ATTR mode� Mode
IN lhs� AddressOperand
IN rhs� DataOperand
Assigns the value given by rhs to the storage lo�
cation given by lhs�mode speci�es the mode of the
value�
M �lhs� size �mode�� �� rhsmode�

AssignLong
ATTR size� LONGINT
IN lhs� AddressOperand
IN rhs� AddressOperand
Assigns the value stored at the address given by rhs
to the storage location given by lhs� size speci�es
the length of the value �in bytes��
M �lhs� size� �� M �rhs� size��

Content
ATTR mode� Mode
IN op� AddressOperand
OUT result� DataOperand
Returns the value stored at the address given by op� mode speci�es the mode of the value�
resultmode �� M �op� size �mode���

����
 Memory access and arithmetic

Inc�
ATTR mode� Mode
IN addr� AddressOperand
The value at the storage location given by addr is
incremented by one� mode is the mode the object at
address addr�
x � mode�

x �� M�addr� size�mode���

M�addr�size�mode�� �� x
��

Inc�
ATTR mode� Mode
IN addr� AddressOperand
IN val� DataOperand
The value at the storage location given by addr is
incremented by val� mode is the mode the object at
address addr�
x � mode�

x �� M�addradress� size �mode���

M�addradress�size�mode�� �� x
valmode�

Rev� ���� released� June ��� ���	 mobil
��tex
�

MOBIL��P� De	nition of Mobil

Dec�
ATTR mode� Mode
IN addr� AddressOperand
The value at the storage location given by addr is
decremented by one� mode is the mode the object
at address addr�
x � mode�

x �� M�addradress� size�mode���

M�addradress�size�mode����x���

Dec�
ATTR mode� Mode
IN addr� AddressOperand
IN val� DataOperand
The value at the storage location given by addr is
decremented by val� mode is the mode the object at
address addr�
x � mode�

x �� M�addradress�size �mode���

M�addradress�size�mode�� �� x�valmode�

Incl
ATTR mode� Mode
IN addr� AddressOperand
IN val� DataOperand
mode IN Number� 	 � val � ��� all other is an
error� is not checked�
The value val is included into the BITSET value at
the storage location given by addr� mode speci�es
the mode of val�
x � bitset�

x �� M�addr�size�bitset���

M�addr�size�bitset�� �� x
valmode�

Excl
ATTR mode� Mode
IN addr� AddressOperand
IN val� DataOperand
mode IN Number� 	 � val � ��� all other is an
error� is not checked�
The value val is excluded from the BITSET value at
the storage location given by addr� mode speci�es
the mode of val�
x � bitset�

x �� M�addr� size�bitset���

M�addr�size�bitset�� �� x�valmode�

����� Integer arithmetic

FixedNegate
ATTR mode� Mode
IN op� DataOperand
OUT result� DataOperand
Returns the negated �unary minus� value of op�
mode is the mode of the argument and the result�
resultmode �� � opmode�

FixedPlus
ATTR mode� Mode
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
Returns the sum of op
 and op� mode is the mode
of the arguments and the result�
resultmode �� op�mode
 op�mode�

FixedMinus
ATTR mode� Mode
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
Returns the result of subtracting op from op
�
mode is the mode of the arguments and the result�
resultmode �� op�mode
 op�mode�

FixedMult
ATTR mode� Mode
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
Returns the result of multiplying op
 and op�
mode is the mode of the arguments and the result�
resultmode �� op�mode � op�mode�

FixedDiv
ATTR mode� Mode
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
Returns the result of dividing op
 by op� Integer
division is used� mode is the mode of the arguments
and the result�
resultmode �� op�mode DIV op�mode�

FixedMod
ATTR mode� Mode
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
Returns the remainder of dividing op
 by op�
mode is the mode of the arguments and the result�
resultmode �� op�mode MOD op�mode�

� mobil
��tex Rev� ���� released� June ��� ���	

��

 Set arithmetic MOBIL��P�

FixedAbs
ATTR mode� Mode
IN op� DataOperand
OUT result� DataOperand
Returns ABS�op�� mode is the mode of the argument and the result�
resultmode �� ABS�opmode��

������ Real arithmetic

FloatNegate
ATTR mode� Mode
IN op
� DataOperand
OUT result� DataOperand
Returns the negated �unary minus� value of op�
mode is the mode of the argument and the result�
resultmode �� � opmode�

FloatPlus
ATTR mode� Mode
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
Returns the sum of op
 and op� mode is the mode
of the arguments and the result�
resultmode �� op�mode
 op�mode�

FloatMinus
ATTR mode� Mode
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
Returns the result of subtracting op from op
�
mode is the mode of the arguments and the result�
resultmode �� op�mode
 op�mode�

FloatMult
ATTR mode� Mode
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
Returns the result of multiplying op
 and op�
mode is the mode of the arguments and the result�
resultmode �� op�mode � op�mode�

FloatDiv
ATTR mode� Mode
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
Returns the result of dividing op
 by op� mode is
the mode of the arguments and the result�
resultmode �� op�mode � op�mode�

FloatAbs
ATTR mode� Mode
IN op
� DataOperand
OUT result� DataOperand
Returns ABS�op�� mode is the mode of the argu�
ment and the result�
resultmode �� ABS�opmode��

������ Set arithmetic

SetUnion
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
x � A �B � x � A � x � B
Returns the union of the BITSET operands op
 and
op�
resultbitset��op�bitset
op�bitset�

SetDi�erence
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
x � A �B � x � A � x �� B
Returns of subtracting the BITSET operands op

and op�
resultbitset��op�bitset�op�bitset�

Rev� ���� released� June ��� ���	 mobil
��tex
�

MOBIL��P� De	nition of Mobil

SetIntersection
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
x � A �B � x � A � x � B
Returns the intersection of the BITSET operands
op
 and op�
resultbitset��op�bitset�op�bitset�

SetSymDi�erence
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
x � A�B � �x � A � x �� B� � �x �� A � x � B� �
x � A xor B when A� B interpreted as bit vectors�

Returns the set symmetrical di�erence of the BIT�
SET operands op
 and op�
resultbitset��op�bitset�op�bitset�

SetPlusSingle
ATTR ElemMode� Mode
IN SetOp� DataOperand
IN ElemOp� DataOperand
OUT result� DataOperand
Returns a BITSET� which is obtained by including the element ElemOp into the BITSET SetOp� ElemMode
is the mode of ElemOp�
resultbitset��SetOpbitset
fElemOpElemModeg�

SetPlusRange
ATTR LwbMode� Mode
ATTR UpbMode� Mode
IN SetOp� DataOperand
IN LwbOp� DataOperand
IN UpbOp� DataOperand
OUT result� DataOperand
Returns a BITSET� which is obtained by including the elements in the range
LwbOp ��� UpbOp� into the
BITSET SetOp� LwbMode is the mode of LwbOp� UpbMode is the mode of UpbOp�
resultbitset �� SetOpbitset
 f x � LwbOpLwbMode 	 x 	 UpbOpUpbModeg�

������ Misc conversions

Cap
IN op� DataOperand
OUT result� DataOperand
lower case letters to upper case letters
Returns CAP�op��
resultchar �� CAP�opchar��

Float
IN op� DataOperand
OUT result� DataOperand
converts CARDINAL value to a REAL value
Returns FLOAT�op��
resultFloatShort��FLOAT�opUnsignedLong��

Trunc
ATTR opmode� Mode
ATTR resultmode� Mode
IN op� DataOperand
OUT result� DataOperand
converts REAL value to a CARDINAL value
Returns FLOAT�op��
opmode is the mode of op� resultmode is the mode
of the result�
resultUnsignedLong��FLOAT�opFloatShort��

Adr
ATTR arg� AddressOperand
OUT result� DataOperand
Returns the address de�ned by op as DataTempo�
resultpointer �� op

� mobil
��tex Rev� ���� released� June ��� ���	

��
� Comparisions MOBIL��P�

Coerce
ATTR premode� Mode
ATTR postmode� Mode
IN op� DataOperand
OUT result� DataOperand
Returns the value given by op� which has mode premode� converted into a representation with mode
postmode�
resultpostmode �� oppremode�

Check
ATTR IndexMode� Mode
ATTR LwbMode� Mode
ATTR UpbMode� Mode
ATTR CheckLwb� BOOLEAN
ATTR CheckUpb� BOOLEAN
IN IndexOp� DataOperand
IN LwbOp� DataOperand
IN UpbOp� DataOperand
OUT result� DataOperand
Checks �LwbOp 	 IndexOp� if CheckLwb is TRUE� Checks �IndexOp 	 UpbOp� if CheckUpb is TRUE�
Returns IndexOp as result�
IF CheckLwb AND NOT �LwbOpLwbMode �� IndexOpIndexMode� THEN ABORT END�

IF CheckUpb AND NOT �IndexOpIndexMode �� UpbOpUpbMode� THEN ABORT END�

resultIndexMode �� IndexOpIndexMode�

������ Comparisions

FixedCompare
ATTR mode� Mode
ATTR rel� Relation
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
Compares op
 and op according to relation rel�
Returns a BOOLEAN value indicating the result�
mode is the mode of the arguments�
resultboolean �� op�mode rel op�mode�

FloatCompare
ATTR mode� Mode
ATTR rel� Relation
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
Compares op
 and op according to relation rel�
Returns a BOOLEAN value indicating the result�
mode is the mode of the arguments�
resultboolean �� op�mode rel op�mode�

PointerCompare
ATTR rel� Relation
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
Compares the POINTER values op
 and op ac�
cording to relation rel� Returns a BOOLEAN value
indicating the result
resultboolean ��

op�pointer rel op�pointer�

TestOdd
ATTR mode� Mode
ATTR cond� BOOLEAN
IN op
� DataOperand
OUT result� DataOperand
Tests whether ODD�op� evaluates to cond� Returns
a BOOLEAN value indicating the result�
resultboolean �� ODD�opmode� � cond�

Rev� ���� released� June ��� ���	 mobil
��tex
�

MOBIL��P� De	nition of Mobil

SetCompare
ATTR rel� Relation
IN op
� DataOperand
IN op� DataOperand
OUT result� DataOperand
Compares the BITSET operands op
 and op according to relation rel� Returns a BOOLEAN value indi�
cating the result� mode is the mode of the arguments�
Meaning of �rel� attribute �A rel B� A� B � BITSET
��� � A equal B
��� � A not equal B � �A � B� � 	
��� � A
 B � �A �B� � A
��� � B
 A � �A �B� � B
���� � NOT �A � B� � �A �B� � B
���� � NOT �A � B� � �A �B� � A
resultboolean �� op�mode rel op�mode�

TestMembership
ATTR ElemMode� Mode
ATTR cond� BOOLEAN
IN elem� DataOperand
IN set� DataOperand
OUT result� DataOperand
If cond is TRUE� it is tested whether the value given by elem is contained in the BITSET operand set� If
cond is FALSE � it is tested whether elem is not contained in set� ElemMode is the mode of elem� Returns
a BOOLEAN value indicating the result�
IF cond THEN resultboolean �� elemElemMode IN setbitset

ELSE resultboolean �� NOT �elemElemMode IN setbitset�

END�

������ Control ow

PlaceLabel
ATTR lab� Label
De�nes the current location as the target of a
branch to the label lab�

Goto
ATTR target� Label
Branches to target�
PC �� target�

Switch
ATTR mode� Mode
ATTR lwb� LONGINT
ATTR upb� LONGINT
ATTR CaseLabels� ARRAY OF Label
ATTR DefaultLabel� Label
IN op� DataOperand
If the value given by op is in the range lwb �� upb the entry with index op � lwb of table CaseLabels is
selected and a branch occurs to that label� Otherwise a branch occurs to the label DefaultLabel� mode is
the mode of op�
IF lwb �� opmode �� upb THEN PC �� CaseLabels �op�

ELSE PC �� DefaultLabel END�

� mobil
��tex Rev� ���� released� June ��� ���	

��
� Procedure call and parameter passing MOBIL��P�

TestAndBranch
ATTR cond� BOOLEAN
ATTR target� Label
IN op� DataOperand
Branches to target � if the value of the BOOLEAN
operand op is equal to cond�
IF opboolean � cond

THEN PC �� target END�

FixedCompareAndBranch
ATTR mode� Mode
ATTR rel� Relation
ATTR target� Label
IN op
� DataOperand
IN op� DataOperand
Compares op
 and op according to relation rel�
mode is the mode the arguments� Branches to tar�
get if the test yields TRUE�
IF op�mode rel op�mode

THEN PC �� target END�

FloatCompareAndBranch
ATTR mode� Mode
ATTR rel� Relation
ATTR target� Label
IN op
� DataOperand
IN op� DataOperand
Compares op
 and op according to relation rel�
mode is the mode the arguments� Branches to tar�
get if the test yields TRUE�
IF op�mode rel op�mode

THEN PC �� target END�

SetCompareAndBranch
ATTR rel� Relation
ATTR target� Label
IN op
� DataOperand
IN op� DataOperand
Compares the BITSET operands op
 and op ac�
cording to relation rel� Branches to target if the
test yields TRUE� rel has the same meaning as in
SetCompare�
IF op�bitset rel op�bitset

THEN PC �� target END�

PointerCompareAndBranch
ATTR rel� Relation
ATTR target� Label
IN op
� DataOperand
IN op� DataOperand
Compares the POINTER values op
 and op ac�
cording to relation rel� Branches to target if the
test yields TRUE�
IF op�pointer rel op�pointer

THEN PC �� target END�

TestOddAndBranch
ATTR mode� Mode
ATTR cond� BOOLEAN
ATTR target� Label
IN op� DataOperand
Tests whether ODD�op� evaluates to cond�
Branches to target if the test yields TRUE�
IF ODD�opmode� � cond

THEN PC target END�

TestMembershipAndBranch
ATTR ElemMode� Mode
ATTR cond� BOOLEAN
ATTR target� Label
IN elem� DataOperand
IN set� DataOperand
If cond is TRUE � it is tested whether the value given by elem is contained in the BITSET operand set� If
cond is FALSE � it is tested whether elem is not contained in set� ElemMode is the mode of elem� Branches
to target if the test yields TRUE�
IF cond THEN IF elemElemMode IN setbitset THEN PC �� target END�

ELSE IF NOT �elemElemMode IN setbitset� THEN PC �� target END� END�

Rev� ���� released� June ��� ���	 mobil
��tex
�

MOBIL��P� De	nition of Mobil

������ Procedure call and parameter passing

PreCall
ATTR ParamSize� LONGINT
Begins a procedure or function call operation� Initializes a parameter list �parameter frame�� This list
is called the actual list until a corresponding PostCall instruction follows� The list is extended by Pass
instructions� The instructions surrounded by PreCall and PostCall may contain a nested call sequence�
Inside the enclosed sequence the actual parameter list is de�ned by that sequence� ParamSize speci�es the
total size of data �in bytes� passed to the routine�
PUSH �CALLBASE��

ALLOCATE �CALLBASE	 ParamSize��

PassValue
ATTR mode� Mode
ATTR o�set� LONGINT
IN op� DataOperand
Copies the value of op to the actual parameter list� mode is the mode of the value� o�set is the o�set of
the parameter in the parameter frame�
M �CALLBASE
 offset� size�mode�� �� opmode�

PassLongValue
ATTR size� LONGINT
ATTR o�set� LONGINT
IN op� AddressOperand
Copies a long value to the actual parameter list� size speci�es the size of the value �in bytes�� o�set is the
o�set of the parameter in the parameter frame� op denotes the address of the value�
M �CALLBASE
 offset� size� �� M �op� size��

PassOpenArrayValue
ATTR o�set� LONGINT
IN op� AddressOperand
Copies the address od a data vector to the actual parameter list� o�set is the o�set of the address in the
parameter frame� �Although the data vector is passed as a value parameter it is not here but inside the
called procedure using a CopyOpenArray instruction��
M �CALLBASE
offset� size�address�� �� op�

PassStringValue
ATTR SourceLength� LONGINT
ATTR TargetLength� LONGINT
ATTR o�set� LONGINT
IN op
� AddressOperand
Copies a string value to the actual parameter list� SourceLength speci�es the length of argument� TargetSize
speci�es the length expected by the procedure� If SourceLength is less than TargetLength the argument string
has to be extended� o�set is the o�set of the parameter in the parameter frame� op denotes the address of
the string�
M �CALLBASE
 offset� TargetLength� �� M �op�max�SourceLength	TargetLength���

PassAddress
ATTR o�set� LONGINT
IN op� AddressOperand
Copies the address given by op to the actual parameter list� o�set is the o�set of the address in the parameter
frame�
M �CALLBASE
 offset� size�address�� �� op�

Call
IN proc� DataOperand
Invokes the procedure or function given by proc using the actual parameter list�
PUSH�PC��

PC �� proc�

� mobil
��tex Rev� ���� released� June ��� ���	

���
 Mobil Grammar MOBIL��P�

SysCall
ATTR sysproc� SysProc
Invokes a procedure of the Run Time System using the actual parameter list� sysproc speci�es the procedure�
PUSH �PC��

PC �� SYSPROCSTART �sysproc��

PostCall
ATTR ParamSize� LONGINT
Ends a procedure or function call operation� ParamSize speci�es the total size of data �in bytes� passed to
the routine�
POP �CALLBASE��

FunctionResult
ATTR mode� Mode
OUT result� DataOperand
Returns the result of the immediately preceding function call� mode is the mode of the function result�
resultmode �� FUNRES�

Return
ATTR ParamSize� LONGINT
Exit from the current procedure� ParamSize spec�
i�es the total size of data �in bytes� passed to the
routine�
POP �VARBASE �NEST���

POP �PARAMBASE �NEST���

POP �NEST��

POP �PC��

ReturnValue
ATTR mode� Mode
ATTR ParamSize� LONGINT
IN op
� DataOperand
Exit from the current function� Let op be the result
of the function call� mode speci�es the mode of the
result� ParamSize speci�es the total size of data �in
bytes� passed to the routine�
FUNRES �� opmode�

POP �VARBASE �NEST���

POP �PARAMBASE �NEST���

POP �NEST��

POP �PC��

��� Generating Mobil by MOCKA

The following sections shows some speci	cs of the Mocka compiler� generating Mobil instruction for a Modula��
program�

����� Mobil Grammar

The following is a context free grammar� of how the Modula�� front end calls the Mobil instruction procedures�
Notice that the instruction procedures are called in post	x order for expressions� terminal denotes terminal
symbols� i�e� Mobil operators� �symbol� denotes zero or one occurrence� fsymbolg zero or more occurrences of
symbol� � and � are used for grouping symbols� The nonterminal symbols Expr denotes a DataOperand while
Adr denotes an AddressOperand� The attributes of the operators are not shown�

Rev� ���� released� June ��� ���	 mobil
��tex

MOBIL��P� De	nition of Mobil

MobilProgram ��� BeginModule fGlobalDecl � Procedureg EndModule�

GlobalDecl ��� DeclareModule � DeclareProcedure�

Procedure ��� BeginProcedure fCopyOpenArrayg fDecl � Stmtg EndProcedure�

Decl ��� DeclareDataTempo � DeclareAddressTempo � DeclareLabel � DeclareString�

Stmt ��� Mark � PlaceLabel �

Expr Adr Assign � Adr Adr AssignLong �

Expr AssignDataTempo � Adr AssignAddressTempo �

Adr Inc� � Expr Adr Inc� � Adr Dec�� Expr Adr Dec� �

Expr Adr Incl � Expr Adr Excl �

Expr SkipData � Adr SkipAddress �

Goto � Expr TestAndBranch � Expr Switch �

Expr Expr FixedCompareAndBranch � Expr Expr FloatCompareAndBranch �

Expr Expr SetCompareAndBranch � Expr Expr PointerCompareAndBranch �

Expr Expr TestMembershipAndBranch � Expr TestOddAndBranch �

CallSequence � Return � Expr ReturnValue �

CallSequence ��� PreCall fPassParamg ProcCall PostCall�

ProcCall ��� Expr Call �FunctionResult	 � SysCall�

PassParam ��� Expr PassValue � Adr PassLongValue � Adr PassOpenArrayValue �

Adr PassStringValue � Adr PassAddress �

Expr ��� ShortCardConstant � LongCardConstant � ShortIntConstant �

LongIntConstant � RealConstant � LongRealConstant �

CharConstant � BoolConstant �

SetConstant � NilConstant � ProcedureConstant �

UseDataTempo � Adr Content �

Expr FixedNegate � Expr Expr FixedPlus � Expr Expr FixedMinus �

Expr Expr FixedMult � Expr Expr FixedDiv � Expr Expr FixedMod �

Expr FixedAbs �

Expr Expr FloatPlus � Expr Expr FloatMinus � Expr Expr FloatMult �

Expr Expr FloatDiv � Expr FloatAbs �

Expr Expr SetUnion � Expr Expr SetDifference � Expr Expr SetIntersection �

Expr Expr SetSymDifference � Expr Expr SetPlusSingle �

Expr Expr Expr SetPlusRange �

Expr Cap � Expr Float� Expr Trunc � Expr Adr � Expr Coerce �

Expr Expr FixedCompare � Expr Expr FloatCompare � Expr Expr SetCompare �

Expr Expr PointerCompare � Expr Expr TestMembership � Expr TestOdd �

CallSequence �

Adr ��� StringAdr � LocalVariable � Adr GlobalVariable � StaticVariable �

LocalValueParam � LocalVarParam � LocalOpenArrayValueParam �

Adr GlobalValueParam � Adr GlobalOpenArrayValueParam �

Expr UsePointer � FrameBase � ParamBase � Adr AddOffset �

Adr Expr Expr Expr Subscript � UseAddressTempo�

����� Procedure call

The Mocka compiler front end generates the Mobil instructions of a function procedure call intermixed with the
expression�s instructions�
For example� the Mobil instructions for the assignment and function call x �� �
 f ���� are generated in the
following sequence�

LongintConstant
��op��
PreCall
���
LongintConstant
�� op��
PassValue
op�����
ProcedureConstant
�f�� op��
Call
op��
FunctionResult
��� op��
PostCall
���
FixedPlus
��� op�� op�� op��
LocalVariable
�x�� op��
Assign
��� op�� op��

Having the forest of expression tree view of Mobil� a function procedure call in an expression is side e�ect free�

 mobil
��tex Rev� ���� released� June ��� ���	

���� Procedure nesting MOBIL��P�

in the sence that the Mobil code for the function procedure call is not contained the expression�s Mobil tree�
The function�s value is used through the FunctionResult instruction�
The forest of the above example look like��

PreCall
PassValue

LongintConstant
��
Call

ProcedureConstant
�f��
PostCall
Assign

LocalVariable
�x�� ���
FixedPlus
LongintConstant
��
FunctionResult

In the tree view of Mobil� this fact has some bad consequences� If in an expression several functions are called�
it is not clear� which FunctionResult refers to which function call� Hence the Mobil code must be rewritten� if a
tree is constructed out of the in post	x order generated Mobil instructions� The operand op� generated by the
FunctionResult ����op�� instruction is replaced �while constructing the tree view� by the operand op� generated
by the following instruction sequence�

DeclareDataTempo
��� t��
AssignDataTempo
��� t�� op��
UseDataTempo
��� t�� op��

The operand op� is now used in the tree� instead of the original op�� returned by Functionresult�
This replacement is not needed in the post	x view since the FunctionResult operator follows immediately the
Call instruction of the function which produces this result�

����� Parameter passing

The Mocka compiler generates the Pass instruction in a �right to left� fashion� The right most parameter of a
source program procedure call is passed 	rst� the left most is passed as the last parameter�

����� Procedure nesting

If procedure Q is declared local to procedure P� Q is processed by Mocka before P� This fact may be used for
example� for not executing the interpreters PUSH � POP �PARAMBASE
level�� and PUSH � POP �VARBASE

level�� instruction in the BeginProcedure � Return � ReturnValue instructions� ifQ doesn�t use variables declared
in P�

�The root is printed on the left margin	 tree children are printed below its parent with some indentation�

Rev� ���� draft� June ��� ���	 mobil
p�tex �

Chapter �

De�nition of Mobil�P

��� The Mobil�P interpreter

The abstract Mobil�P machine is a generalization of the Mobil interpreter� It main extension are the notion of
processes and channels� The parent process of a process P is that process� which created P� The main program
of a Modula�P program forms the �	rst� process of a program� it has obviously no parent process�
The Mobil�P interpreter uses the following data structures and operations�

PID Each process has a unique process identi�cation �PID�� Each PID has several attributes� described below�

ME is a special PID� the PID of the process executing ME� Most data structures and interpreter operations
have an parameter or quali	er PID� Ommitting this parameter or quali	er always refers to the �current�
process� i�e� reads as pid � ME�

pid�PARENT is the parent PID of the process pid��

pid�PC refers to the Mobil�P instruction to be executed by process pid next�

Process pid executes the statements denoted by the PC� as long as PC � �� A process stops its execution
if PC � 	� Another process may assigning it a value � � which causes the execution that instruction �and
possibly following instructions��

pid�REP VAL denotes the value of the replicator variable� used by the replicated process pid� If the process
pid is not replicated� this value is unde	ned�

CREATE NEW PROCESS returns a new unique PID and assigns it to ME of that new process� It also
initializes the PC of the new process to 	� i�e� no statements are executed�

pid�CHILD denotes the PID returned by the last call to CREATE NEW PROCESS done by process pid�

pid�WAIT FOR denotes the number of child processes of the process pid has to be terminated� before it may
execute the instruction following its EndParallel instruction�

pid�VARBASE	i
� pid�PARAMBASE	i
� pid�STATICBASE 	module
� pid�CALLBASE�
pid�FUNRES� pid�NEST� pid�D	i
� pid�A	i
 are de	ned as for the Mobil interpreter� These data
structures are now local to each process� Ommitting the i or module parameter denotes the entire data
object used by that process�

pid�R	i
 There is an additional class of compiler generated variables� called replicator tempos� Their scope
is bound to the procedure declaring it� pid�R
i� denotes the i�th replicator tempo� A replicator tempo
consists of two 	elds� count and and value �pid�R
i��CNT and pid�R
i��VAL� respectively��

pid�ALT SKIP is a boolean �ag� set to true� i� all boolean expressions of an ALT statement are evaluated to
FALSE�

�the phrase process pid is an abbreviation for� the process with PID pid�

� mobil
p�tex Rev� ���� draft� June ��� ���	

��� Channel instructions MOBIL��P�

pid�ALT GUARD READY is a boolean �ag� set to true� i� a guard of the ALT statement has become ready�

pid�ALT WAITING is a boolean �ag� set to true� if the process is now waiting for a guard to become ready�
i�e� a WaitForReadyGuard instruction has been executed�

pid�ALT SELECTED is a code address� referring to the alternative selected for execution�

M is the untyped memory of the machine� Notice� M as entire entity it is not local to any process�

CID Each channel has a unique channel identi�cation �CID�� Each CID has several attributes� described below�

cid�READY is a boolean �ag� cid�READY � TRUE speci	es that a process has reached a communication
statement for this channel and is now waiting until another process wants to communicate�

cid�ALT is a boolean �ag� cid�ALT � TRUE speci	es that a process �containg channel cid as a channel guard�
is executing an ALT statement and waits for communication�

cid�MSG is the message send by a process� cid�MSG is unde	ned if cid�READY � FALSE� A process may
send a message i� cid�READY � FALSE and read a message i� cid�READY � TRUE� Reading also
implies cid�READY �� FALSE�

cid�PID speci	es the PID of the process reaching a communication statement �for channel cid� 	rst� The 	rst
process suspends itself and is activated by the second one� cid�PID is de	ned i� cid�READY � TRUE�

cid�NEXT speci	es the instruction of process cid�PID to be executed after activating it� i�e� the instruction
after the communication statement� which caused its suspension� cid�NEXT is de	ned i� cid�READY �
TRUE�

OPEN returns a new CID�

CLOCK is a clock �implemented outside of the interpreter�� It has several attributes� described below�

CLOCK�SYSTIME returns the current system time� Notice� this must not be a global time for all processes�

CLOCK�ALT 	pid
 is a boolean value is true� i� process pid uses a time guard in an ALT statement�

CLOCK�DELAY 	pid
 is a boolean value is true� i� process pid has suspended itself for some time�

CLOCK�TIME 	pid
 if CLOCK�ALT �pid� or CLOCK�DELAY �pid� is TRUE� speci	es that process pid has
to be activated if CLOCK�SYSTIME is later than CLOCK�TIME
pid��

CLOCK�NEXT	pid
 if CLOCK�ALT �pid� or CLOCK�DELAY �pid� speci	es the instruction to be executed�
if the clock activates process pid�

The set of interpreter instructions given of one Mobil�P instruction are atomic� in the sense that at one time
only one process may access attributes of the data structures� for example the channel attributes�
Notation example� cid�PID�ALT READY GUARD speci	es the attribute ALT READY GUARD of the process
cid�PID�
Some Mobil instructions are now in some aspect �process local�� e�g� StaticVariable now refers to
ME�STATICBASE
module� � o�set� But ME�STATICBASE
module� may be copied form the parent pro�
cess �in case of a local Modula�P process� or is new allocated �in case of a global Modula�P process��

��� The Mobil�P instructions

����� Declarations

PROCEDURE DeclareReplicatorTempo
VAR tempo� ReplicatorTempo
Declares a new replicator temporary variable� Its scope is bound to the current compiled procedure�

Rev� ���� draft� June ��� ���	 mobil
p�tex �

MOBIL��P� � De	nition of Mobil�P

����� Channel instructions

OpenChannel
IN channel� AddressOperand
Opens the channel for communication�
cid � CID�

cid �� OPEN�

cidREADY �� FALSE�

cidALT �� FALSE�

M�channel�size�CHANNEL�� �� cid�

Receive
ATTR mode� Mode
IN channel� AddressOperand
IN dest� AddressOperand
Receive a value with mode mode from channel chan�
nel and stores it in memory starting with address
dest� If another process waits for sending a mes�
sage� activate it� If no other process want to send a
message� suspend ME and signal �receiver ready��
cid � CID�

cid �� M�channel�size�CHANNEL���

IF cidREADY � TRUE

THEN �� partner is ready and suspended ��

cidPIDPC �� cidNEXT� �� activate��

ELSE �� suspend me and signal ��

cidNEXT �� CODEADDR �L��

cidREADY �� TRUE�

PC �� �� �� suspend ME ��

END�

L� M�dest�size�mode�� �� cidMSG�

cidREADY �� FALSE�

ReceiveLong
IN channel� AddressOperand
IN dest� AddressOperand
IN size� DataOperand
Receive size bytes from channel channel and stores
them in memory starting with address dest� If an�
other process waits for sending a message� activate
it� If no other process want to send a message� sus�
pend ME and signal �receiver ready��
cid � CID�

cid �� M�channel�size�CHANNEL���

IF cidREADY � TRUE

THEN �� partner is ready and suspended ��

cidPIDPC �� cidNEXT� �� activate ��

ELSE �� suspend me and signal ��

cidNEXT �� CODEADDR �L��

cidREADY �� TRUE�

PC �� �� �� suspend ME ��

END�

L� M�dest�sizelongcard� �� cidMSG�

cidREADY �� FALSE�

� mobil
p�tex Rev� ���� draft� June ��� ���	

���� Parallel statements MOBIL��P�

Send
ATTR mode� Mode
IN channel� AddressOperand
IN value� DataOperand
Sends a value with mode over the channel�
If another process waits for receiving a message� ac�
tivate it�
If no other process want to receive a message� sus�
pend ME and signal �sender ready��
cid � CID�

cid �� M�channel�size�CHANNEL���

cidMSG �� opmode�

IF cidREADY � TRUE

THEN �� partner is ready and suspended ��

cidPIDPC �� cidNEXT� �� activate ��

ELSE �� suspend me and signal ��

cidREADY �� TRUE�

IF cidALT � TRUE

THEN �� check for waiting ALT ��

cidPIDALT READY GUARD �� TRUE�

IF cidPIDALT WAITING � TRUE THEN

cidPIDPC �� cidNEXT� �� activate ��

END�

END�

cidNEXT �� CODEADDR �L��

PC �� �� �� suspend ME ��

END�

L� �� next instruction ��

SendLong
IN channel� AddressOperand
IN source� AddressOperand
IN size� DataOperand
Sends size bytes starting in memory from address
src to the channel� If another process waits for re�
ceiving a message� activate it� If no other process
want to receive a message� suspend ME and signal
�sender ready��
cid � CID�

cid �� M�channel�size�CHANNEL���

cidMSG �� M�source�sizelongcard��

IF cidREADY � TRUE

THEN �� partner is ready and suspended ��

cidPIDPC �� cidNEXT� �� activate ��

ELSE �� suspend me and signal ��

cidREADY �� TRUE�

IF cidALT � TRUE

THEN �� check for waiting ALT ��

cidPIDALT READY GUARD �� TRUE�

IF cidPIDALT WAITING � TRUE THEN

cidPIDPC �� cidNEXT� �� activate ��

END�

END�

cidNEXT �� CODEADDR �L��

PC �� �� �� suspend ME ��

END�

L� �� next instruction ��

����� Timer instructions

GetSysTime
IN dest� AddressOperand
Reads the system time and stores it in memory�
M�dest�size�TIME�� �� CLOCKSYSTIME�

Delay
IN time� DataOperand
Delays the current process until the system time is
later than the time speci�ed by time�
CLOCKDELAY�pid� �� TRUE�

CLOCKTIME�pid� �� timetime�

CLOCKNEXT�pid� �� CODEADDR �L��

PC �� ��

L� CLOCKDELAY�pid� �� FALSE�

Rev� ���� draft� June ��� ���	 mobil
p�tex �

MOBIL��P� � De	nition of Mobil�P

����� Parallel statements

BeginParallel
ATTR NextInstr� Label
Indicates the beginning of a parallel statement�
NextInstr indicates the statement to be executed af�
ter all child processes have been terminated�
MEWAIT FOR � ��

EndParallel
ATTR NextInstr� Label
Indicates the end of a parallel statement� The cur�
rent process is suspended� until all child processes
have terminated�
MEWAIT FOR �� MEWAIT FOR ���

IF MEWAIT FOR � �

THEN ��there are non terminated children��

MEPC �� �� �� stops execution now ��

ELSE �� all children are terminated ��

MEPC �� CODEADDR �NextInstr��

END�

BeginProcess
Indicates the start of the process body�

EndProcess
ATTR NextInstr� Label
Indicates the end of the process body� nextInstr speci�es the instruction to be executed� by the parent process
after all child processes of it has been terminated�
MEPARENTWAIT FOR �� MEPARENTWAIT FOR � ��

IF MEPARENTWAIT FOR � � THEN �� all children have terminated ��

MEPARENTPC �� NextInstr� �� activates parent ��

END�

MEPC �� ��

StartProcess
ATTR processLab� Label
ATTR replicated� BOOLEAN
ATTR RepTempo� DataTempo
Starts a child process� If it is a replicated process� the replicator variable of the child process gets its value
assigned�
MEWAIT FOR �� MEWAIT FOR
 ��

CHILD �� CREATE NEW PROCESS�

CLOCKDELAY�CHILD� �� FALSE�

CLOCKALT�CHILD� �� FALSE�

CHILDVARBASE �� MEVARBASE� �� copies var base ��

CHILDPARAMBASE �� MEPARAMBASE�

CHILDSTATICBASE �� MESTATICBASE� �� for all modules ��

IF replicated THEN CHILDREP VAL �� R �RepTempo�VAL END�

CHILDPC �� processLab� �� starts of child execution now ��

� mobil
p�tex Rev� ���� draft� June ��� ���	

���� The ALT statement MOBIL��P�

StartGlobalProcess
IN proc� DataOperand
IN processorNr� DataOperand
ATTR ParamSize� LONGINT
proc denotes a ProcedureConstant� which denotes the body procedure of a process module
The earliest point the all imported modules are known is linking or interpreting time�
processorNr codes an information used by a runtime system supporting the real execution of Mobil�P pro�
gram� Its intended meaning is the number of a processor the code has to be executed� or a strategy how to
determine this number�
FORALL m � fmodule �transitively� imported by process module procg DO

ALLOCATE �STATICBASE �m�	 static var size �m���

END�

PUSH�PC��

ALLOCATE �CHILDCALLBASE	 ParamSize��

CHILDCALLBASE �� MECALLBASE�

PC �� proc�

����� Replication

InitReplication
ATTR RepTempo� DataTempo
ATTR EndLab� Label
IN lwb� DataOperand
IN upb� DataOperand
Initializes the replicator temporary variable�
R�RepTempo�CNT �� ORD�upbmode� � ORD�lwbmode�
 ��

R�RepTempo�VALmode �� lpbmode�

R�RepTempo�CNT � � THEN PC �� EndLab END�

DoReplication
ATTR RepTempo� DataTempo
ATTR StartLab� Label
ATTR EndLab� Label
Implements loop for replication�
R�RepTempo�CNT �� R�RepTempo�CNT � ��

INC �R�RepTempo�VALmode��

IF R�RepTempo� � � THEN PC �� EndLab ELSE PC �� StartLab� END�

UseProcessRepVal
ATTR level di�� CARDINAL
OUT RepValue� DataOperand
Access the value of the replicator variable of a replicated process� level di� � �� means the value of the
replicator variable of this process� level di� � n means the replicator variable with level di� � n�
 of the
parent� i�e� the �level di�� grand parent�
RepValuemode �� MEPARENT� � �PARENTREP VALmode�

�� where PARENT occurs level diff times ��

Rev� ���� draft� June ��� ���	 mobil
p�tex �

MOBIL��P� � De	nition of Mobil�P

����� The ALT statement

BeginAltInput
ATTR ContainsTimer� BOOLEAN
Indicates the beginning of of a ALT statement� Con�
tainsTimer is TRUE� i� an input of the TIMER is
part of a guard of this ALT statement�
MEALT GUARD READY �� FALSE�

MEALT WAITING �� FALSE�

EndAltInput
ATTR ContainsTimer� BOOLEAN
Indicates the end of the enable � wait � disable se�
quence� ContainsTimer is TRUE� i� an input of
the TIMER is part of a guard of this ALT statement�
Jumps to the instructions of the selected alternative�
PC �� MEALT SELECTED�

CheckBoolGuard
ATTR check tempo� DataTempo
IN bool val� DataOperand
OUT result� DataOperand
The check� that at least one boolean expression of
an ALT statement is true� is done incrementally� by
a �OR� of the value stored in check tempo and the
bool val�
D�check tempo�bool �� D�check tempo�bool

OR bool valbool�

resultbool �� bool valbool�

CheckAlt
ATTR check tempo� DataTempo
ATTR else label� Label
If the value stored in check tempo is FALSE� then
the code marked with else label will be executed�
after all alternatives are disabled� This includes�
that the following alternative input statements are
skipped� If this value is TRUE� the next instruction
is executed�
IF check tempobool � FALSE THEN

PC �� CODEADDR �else label��

END�

WaitForReadyGuard
ATTR WaitLab� Label
ATTR ContainsTimer� BOOLEAN
If no guard is already ready� suspends the process and waits for a guard to become ready� If a guard is
ready� execute the instruction marked with WaitLab� ContainsTimer is TRUE� i� an input of the TIMER
is part of a guard of this ALT statement�
IF MEALT GUARD READY � FALSE THEN

MEALT WAITING �� TRUE�

MEPC �� ��

ELSE MEPC �� CODEADDR �WaitLab��

END�

EnableSkip
ATTR WaitLab� Label
IN bool expr� DataOperand
This guard is ready� if the bool expr is true� Wait�
Lab speci�es the instruction to be executed� if the
processes is activated �here it may be not needed��
IF bool exprbool � TRUE THEN

MEALT GUARD READY �� TRUE�

END�

DisableSkip
ATTR target� Label
IN bool expr� DataOperand
IF bool exprbool � TRUE THEN

MEALT SELECTED �� CODEADDR �target��

END�

�� mobil
p�tex Rev� ���� draft� June ��� ���	

����
 The Mobil�P grammar MOBIL��P�

EnableChannel
ATTR WaitLab� Label
IN bool expr� DataOperand
IN channel� AddressOperand
If bool expr evaluates to TRUE� informs the chan�
nel channel that it is used in an ALT statement
otherwise nothing happens� WaitLab speci�es the
instruction to be executed� if the processes is acti�
vated by a sender�
cid � CID�

cid �� M�channel�size�CHANNEL���

IF bool exprbool � TRUE THEN

cidNEXT �� CODEADDR �WaitLab��

cidALT �� TRUE�

IF cidREADY � TRUE

THEN �� partner is suspended��

MEALT READY �� TRUE�

END�

END�

DisableChannel
ATTR target� Label
IN bool expr� DataOperand
IN channel� AddressOperand
If bool expr evaluates to TRUE and a sender is
waiting the corresponding alternative will be se�
lected� If no sender is ready� informs channel chan�
nel that it is no longer used in a guard� IF the
bool expr evaluates to FALSE� nothing happens�
cid � CID�

cid �� M�channel�size�CHANNEL���

IF bool exprbool � TRUE THEN

IF cidREADY � TRUE THEN

MESELECTED �� CODEADDR �target��

END�

cidALT �� FALSE�

END�

EnableTimer
ATTR WaitLab� Label
IN bool expr� DataOperand
IN time expr� DataOperand
If the bool expr evaluates to TRUE� and the sys�
tem time becomes later than time expr�time then
this guard becomes ready� WaitLab speci�es the in�
struction to be executed� if the processes is activated
by the clock�
IF bool exprbool � TRUE THEN

CLOCKALT�ME� �� TRUE�

CLOCKNEXT�ME� �� CODEADDR �WaitLab��

CLOCKTIME�ME� �� time exprtimetime�

END�

DisableTimer
ATTR target� Label
IN bool expr� DataOperand
IN time expr� DataOperand
If bool expr evaluates to TRUE and the system
time is later than the time time expr than the
corresponding alternative will be selected� IF the
bool expr evaluates to FALSE� nothing happens�
IF bool exprbool � TRUE THEN

IF CLOCKSYSTIME � time exprtime THEN

MESELECTED �� CODEADDR �target��

END�

CLOCKALT �� FALSE�

END�

BeginAlternative
Indicates the beginning of an alternative

EndAlternative
ATTR NextInstr� Label
Indicates the end of the alternative� Jumps the in�
struction marked by NextInstr�
PC �� CODEADDR �NextInstr��

��� Generating Mobil�P by MOCKA�P

The following sections shows some speci	cs of the Mocka�P compiler� generating Mobil instruction for a Modu�
la�P program�

����� The Mobil�P grammar

Some syntax rules are extended�

Rev� ���� draft� June ��� ���	 mobil
p�tex �

MOBIL��P� � De	nition of Mobil�P

Decl ��� ��� � DeclareReplicatorTempo�

Expr ��� ��� � UseProcessRepVal�

Stmt ��� ��� � Adr OpenChannel � Adr Adr Receive � Adr Adr Expr ReceiveLong �

Expr Adr Send � Adr Adr Expr SendLong �

Adr ReadTimer � Expr Delay �

BeginAlt fEnableg Wait fDisableg EndAlt fAlternativeg PlaceLabel �

BeginParallel fCreateProcessg EndParallel fProcessBodyg PlaceLabel �

Enable ��� �StartReplication	 Expr CheckBoolGuard

EnableSkip � Adr EnableChannel � Expr EnableTimer�

�EndReplication	�

Wait ��� CheckAlt WaitForReadyGuard�

Disable ��� �StartReplication	 Expr

DisableSkip � Adr DisableChannel � Expr DisableTimer�

�EndReplication	�

Alternative ��� BeginAlt �Receive � ReceiveLong	 fStmtg EndAlt�

CreateProcess ��� �StartReplication	 StartProcess �EndReplication	�

ProcessBody ��� PlaceLabel BeginProcess
fStmtg � GlobalProcess� EndProcess�

GlobalProcess ��� PreCall fPassParamg StartGlobalProcess PostCall�

StartReplication ��� DeclareReplicatorTempo Expr Expr InitReplication PlaceLabel�

EndReplication ��� DoReplication PlaceLabel�

����� Parallel statements

For a PAR statement the compiler front end emits the following additional instructions� For each process body
and for the instruction following the PAR statement a label is declared� Replicated processes are implemented
by surrounding StartProcess by a loop� For each replicated process a replicator tempo and two labels �for start
and end of the loop� are declared�

����� The ALT statement

The ALT statement is translated into a sequence of Enable instructions� They inform the channel or timer� that
they are used in a guard� Then the process must wait� until a guard is ready� After the process returns from
waiting� the guards must be disabled� to inform them that they are no longer part of a guard� During disabling
it is deceided which alternative out of the set of ready ones is selected for execution� After the enable � wait �
disable instructions the instructions of the alternative bodies is emitted� An Alternative ends by branching to
the instruction following the ALT statement�
The interpreter forces a speci	c strategy �the last disabled alternative�� but the real implementationmay choose
the alternative arbitrary�
For a ALT statement the compiler front end emits the following additional instructions� For each alternative
body� for the instruction following the ALT statement� and for the ELSE part a label is declared� If the ELSE
part is missing� instructions for calling the AltError system procedure are generated�
For checking the boolean expressions of guards one data tempo is declared and assigned to FALSE� it is used by
the CheckBoolGuard and CheckAlt instructions� If the boolean expression is ommitted in the source program�
the front end inserts a BooleanConstant with value TRUE�
Replicated alternatives are implemented by surrounding the Enable � Disable instructions by a loop� For each
replicated alternative a replicator tempo and two labels �for start and end of the loop� are declared�
The arguments of the �non�replicated� Enable � Disable instructions are computed once and then stored in
tempos� which are created by the front end� For replicated alternatives the arguments of the Disable instruction
are recomputed each time�
The 	rst action of an alternative with a channel guard is to read message from the channel� then the code for
the alternative follows�

��� Transputer machine instructions

To implement for a Transputer �INMOS ��a� based system runtime system e�ciently� some of the basic Trans�
puter instructions should be directly available in a Modula�P program� Since the Mocka�P system doesn�t
has an inline assembler� these Transputer instructions are provided by a module� known to the compiler� like

� mobil
p�tex Rev� ���� draft� June ��� ���	

��� Transputer machine instructions MOBIL��P�

the SYSTEM module� The semantics of these Transputer instructions is de	ned in the Transputer manuals
�INMOS ��a� INMOS ��b��

Transputer OUT
IN link� DataOperand
IN size� DataOperand
IN src� DataOperand
implements the out Transputer instruction�

Transputer OUTB
IN link� DataOperand
IN val� DataOperand
implements the outb Transputer instruction�

Transputer OUTW
IN link� DataOperand
IN val� DataOperand
implements the outw Transputer instruction�

Transputer IN
IN link� DataOperand
IN size� DataOperand
IN dest� DataOperand
implements the in Transputer instruction�

Transputer MOVE
IN source� DataOperand
IN size� DataOperand
IN dest� DataOperand
implements the move Transputer instruction�

Rev� ���� released� June ��� ���	 mobil�tex ��

Bibliography

�Emmelmann et al ��� Helmut Emmelmann� F�W� Schr�oer� and Rudolf Landwehr� Beg a generator for e�cient
back ends� ACM SIGPLAN NOTICES� ������ ��� July
����

�INMOS ��a� INMOS� editor� The Transputer instruction set � a compiler writers� guide� Prentice
Hall� Inc��
����

�INMOS ��b� INMOS� The Transputer reference manual� Prentice Hall� Inc��
����

�Schr�oer ��a� F�W� Schr�oer� Das GMD Modula� Entwicklungssystem� GMD�Spiegel�
�
����

�Schr�oer ��b� F�W� Schr�oer� Mobil� An intermediate language for portable optimizing compilers� draft
of an unpublished internal paper�
����

�Vollmer ��a� J�urgen Vollmer� Kommunizierende sequentielle Prozesse in Modula�� Entwurf und Im�
plementierung eines Transputer Entwicklungssystems� Master�s thesis� Universit�at
Karlsruhe� May
����

�Vollmer ��b� J�urgen Vollmer� Modula�P� a language for parallel programming� Proceedings of the
First International Modula�� Conference October ������ ����� Bled� Yugoslavia� pages
�� ���
����

�Vollmer et al �� J�urgen Vollmer and Ralf Ho�art� Modula�P� a language for parallel programming� de	�
nition and implementation on a transputer network� In Proceedings of the ���� Interna�
tional Conference on Computer Languages ICCL���� Oakland� California� pages �� ���
IEEE� IEEE Computer Society Press� Los Alamitos� California� April
���

�Wirth ��� Niklaus Wirth� Programming in Modula��� Springer Verlag� Heidelberg� New York� third�
corrected edition�
����

�� mobil�tex Rev� ���� released� June ��� ���	

