
Published in the Proceedings of the GI workshop Parallelrechner und Programmiersprachen �PARS�

in Schlo� Dagstuhl� Germany� ������ �����	

�� pages �
 � �


Modula�P �

a Language for Parallel Programming and

the Implementation of its Channel Communication�

J�urgen Vollmer

Gesellschaft f�ur Mathematik und Datenverarbeitungy

Abstract

Hoare�s CSP �Communicating Sequential Processes� provide a powerful framework for the description
and analysis of parallel programs� Modula�P extends Modula�� with the concurrent features of CSP� i�e�
parallelly executed processes� synchronous message passing and simultaneous waiting for input from several
channels� Modula�P tackles some problems other CSP�based languages don�t solve� The language and the
implementation of its channel communication is presented�

� The language

Modula�P �Vollmer ��� Vollmer et al ��� is a language for programming parallel MIMD� computers	 It is a
superset of Modula�� �Wirth �
� enriched with language constructs based on the Communicating Sequential
Processes �CSP� �Hoare �
�	

Modula�P provides the PAR statement to initiate concurrent execution of its components	

PAR p�j � � � jpn END

Processes is either declared as local or global processes	 Local processes are simple statement sequences	
They share variables with the parent process	 The language doesn�t provide synchronization on variable ac�
cesses	 A global process is declared in a PROCESS MODULE� which is syntactically similar to the main module of
a Modula program� except that value parameters may be passed	 Each global process has its own instance of
all �transitively
 imported global variables	 It doesn�t share any variables with other global processes	 Commu�
nication between global processes is done solely using channels �see below
	 Global processes may be executed
on di�erent processors	 The distribution may be controlled by specifying a placement for the global process �AT
expression
 in the PAR statement	 If no placement is given a default strategy is used	

Synchronous communication between processes is done via typed channels	 A channel is declared as a usual
Modula variable�

VAR channel � CHANNEL OF OtherType

The statement
channel � expression

writes the value computed by expression to channel which a further process may read and assign to variable
by the statement

channel � variable

Channels must be initialized using the standard procedure OPEN	 This is usually done by the parent process
of the communicating processes	 Notice� Messages are routed automatically through the network by a runtime
system	

The language knows the notion of an abstract clock	 Its values are of the type TIME and are read from the
prede�ned channel TIMER	 Processes may delay themselves for some time by the statement

TIMER � AFTER expression

�This research was supported in part by ESPRIT under ESPRIT project ���� �COMPARE��
yVincenz�Prie	nitz�Stra	e 
� D���

 Karlsruhe 
� email� vollmer�karlsruhe�gmd�de
�Multiple Instructions Multiple Data

�



Modula�P � A Language for Parallel Programming � Implementation of its Channel Communication �

Processes may wait for several events simultaneously by means of an ALT statement	 A guard may contain
an optional boolean expression and an input request from a channel or a time out condition	 If a guard of an
alternative is ready �i	e	 the optional boolean expression evaluates to TRUE and a process wants to communicate
via the channel� or the time has passed
� the corresponding statement is executed	 If the optional boolean
expression booli evaluates to FALSE� the alternative is discared	 If all alternatives are discarded� stmts� is
executed	

ALT bool��chn � var � stmts� j � � � j booln�TIMER � AFTER expr � stmtsn ELSE stmts� END

Similarly to Modula���s ARRAY OF WORD �BYTE
 parameter passing mechanism there exists an untyped chan�
nel� too	 A formal parameter of type ARRAY OF WORD �BYTE
 is compatible to all types in Modula��	 This may
be used to program very �exible� but type unsafe general routines	 Analogously� any type of message may be
passed over a CHANNEL OF ANY� using only the size of the message and the address of the source � destination�

channel � source address� message size

channel � destination address� message size

The message size of the sender and receiver must match� and the receiver process has to provide enough
memory for storing the received message� before	 This kind of channel may used as a guard of an ALT statement�
too	

Processes and alternatives may be replicated using a replicator inside of a PAR or ALT statement	 lower

and upper may be variables of any enumeration type� INTEGER� or CARDINAL	 Each process or alternative�
respectively� gets a unique value assigned� which is in the range �lower �� upper�	 This value may be accessed
in the process or alternative through the replicator variable i� respectivly and used like a constant	

PAR �i � lower TO upper� process�i� j � � � END
ALT �i � lower TO upper� bool�i��chn �i� � x �i� � stmts�i� j � � � END

� Program examples

��� Producer�Consumer

The following is the Modula�P solution for the producer � consumer problem� Several producers generate some
data� which must be consumed by a single consumer process� e	g	 several printer jobs use a single printer �see
�gure �
	

All processes are declared in process modules	 The procedure doit executes the producer and consumer
processes in parallel	 The Modula���Modula�P open array language feature is used� to express that a variable
number of processes is used	 The number of producers depends on the number of declared channels	 The
consumer emits a timeout message� if in a given time span no data is sent by any producer	

��� Pipeline parallelism�

The example shows a parallel program computing prime numbers	 It seems silly to compute prime numbers this
way� but this example shows how to construct an arbitrary large pipeline of processes using recursion	 One can
think of two kinds of processes� a generator and several worker processes chained by channels	 The generator
produces odd numbers and sends them to the �rst worker �which has number �
	 Each worker process represents
a prime number	 It reads numbers from its input channel� where the �rst number is its prime number	 If a
read number is divisible by the worker�s own prime number� this number is not prime� hence it is discarded	
Otherwise it must be sent to the next worker process for further examination	 A negative number is interpreted
as the termination signal	 When the worker process is called two further processes are started	 One of them
checks the read numbers	 The other starts recursively the next worker� which waits for input of its prime
number or the termination signal� sent by the checking process �see �gure �
	

� Problems with channels

What kind of di�culties arise when designing a channel communication protocol� To answer this question� we
examine the behavior of Modula�P channels in detail	

�The idea for this example was taken from an Ada program� see� �An Ada Tasking Demo�� Dean W�Gonzalez� Ada letters�
Volume VIII� Nr� � � Sept�Okt 
���� page �� �



Modula�P � A Language for Parallel Programming � Implementation of its Channel Communication �

PROCESS MODULE producer

�nr � CARDINAL�

�� I�m producer �nr� ��

chn � defs	tDataChannel��

IMPORT defs�

PROCEDURE produce

�VAR data � defs	tData��

BEGIN 			 END produce�

VAR data � defs	tData�

BEGIN

LOOP

produce �data��

chn 
 data�

END�

END producer	

PROCESS MODULE consumer �chns � ARRAY OF defs	tDataChannel��

IMPORT defs� sysTime� netIO�

PROCEDURE consume �nr � CARDINAL� data � tData�� 			

VAR data � defs	tData� time � TIME�

BEGIN

LOOP

TIMER � time�

time �
 sysTime	plus�time� �� � sysTime	TicksPerSec��

ALT �� wait for messages from a producer or timeout ��

�i � � TO HIGH �chns� � chns �i� � data �

consume �i� data��

� TIMER � AFTER time � �� if time has passed ��

netIO	WriteString ��no results since �� sec���

netIO	WriteLn�

END�

END�

END consumer	

			 IMPORT producer� consumer� 			

PROCEDURE doit �chns � ARRAY OF defs	tDataChannel��

VAR i � CARDINAL�

BEGIN

FOR i �
 � TO HIGH �chns� DO OPEN �chns�i�� END� �� initialize channels ��

PAR �� execute producers and consumer in parallel ��

�i � � TO HIGH �chns�� producer �i� chns �i���

� consumer �chns��

END�

END doit�

Figure �� Producer � consumer with timeout message program example

MODULE p�prime�

FROM defs IMPORT IntChannel�

�� TYPE IntChannel 
 CHANNEL OF INTEGER ��

FROM netIO IMPORT ReadInt�

IMPORT worker�

VAR max� i� INTEGER� out � IntChannel�

BEGIN

netIO	ReadInt �max��

OPEN �out��

PAR

worker �out� �� start first worker ��

� �� test number generator ��

out 
 �� �� first prime number ��

FOR i�
� TO max BY � DO out 
 i END�

out 
 �� �� termination ��

END

END p�prime	

PROCESS MODULE worker �in � defs	IntChannel��

FROM defs IMPORT IntChannel�

FROM netIO IMPORT WriteInt� FROM net IMPORT left�

VAR out � IntChannel� prime� x � INTEGER�

BEGIN

in � prime�

IF prime � � THEN RETURN ELSE WriteInt�prime� END�

OPEN �out��

PAR

LOOP �� read numbers� �� terminates ��

in � x�

�� pass termination signal and terminate ��

IF x � � THEN out 
 ��� EXIT END�

IF x MOD prime � � THEN out 
 x� END�

END�

� worker �out� AT left�� �� start next worker ��

END�

END worker	

Figure �� The pipeline program example



Modula�P � A Language for Parallel Programming � Implementation of its Channel Communication �

Three �objects� are involved in communication� two processes �sender and receiver
 and the channel	 The
channel is opened by the parent process and then passed as parameter to the processes� when they are started in
a PAR statement	 The sender and receiver process may change while the channel exists� since it may be passed
to another process as parameter� and hence the �identi�cation� of the communication partner may change
between two communications	 Unfortunately� it is not always possible� to inform the other communication
partner about that change	 The problem is now how a message ��nds its way� form the sender to the receiver	

For instance� look at the program fragment in �gure �	 After the process Process� has communicated over
the channel ch this channel is used by the child process Process�	 After termination of this child process the
father Process� can use this channel again	 Both sender and receiver may change between to communications	

Parent process

VAR ch�CHANNEL OF � � �
���

OPEN �ch�	

PAR

Process� �ch�


 Process� �ch�

END	

Process� �ch�

���

LOOP

ch � x	
���

END

Process� �ch�

���

ch � y	

PAR

Process� �ch�

j � � �
END

ch � y	 ���

Process� �ch�

���

ch � z	
���

Figure �� Changing communication partners

A common solution is to leave forward references when a channel is passed to another process	 The message
uses these references to ��nd its way�	 But the �exibility of Modula�� causes some problems� e	g	 the process
decides after some time to use the channel �eld of a variant record and not the other �elds	 Hence before passing
it may be unknown whether the channel is really passed and used in the process� so no forward reference may
be stored	 Furthermore this method is very expensive� since a message must follow all forward references� while
there may be a shorter �way� from the sender to receiver	

� Channel agent protocol

An implementation for the changing communication partner problem would be to use a central instance for
each channel� a so�called agent �Ho�art ���� which is known to the sender and the receiver	 Before each com�
munication� the partners inform the agent about their current identi�cation	 The agent then propagates this
information to them	 For this protocol it is necessary that the identi�cation of the agent of a channel is known
by the processes using this channel	 The only invariant information on channels is that they have to be opened
before they are used	 Hence� the agent can be implemented by the runtime system of that processor on which
the channel was opened	 So� agents of di�erent channels may be distributed over the entire network depending
on the dynamic behaviour of a program	

The protocol is based on a simple set of signals� which may be sent asynchronously	 For each signal� the
receiver of the signal �the agent� the sender or receiver Modula�P process
 is known in before	

��� Communication without ALT

In detail a channel communication where the receiver doesn�t execute an ALT statement looks like shown in
�gure �	

Assume a sender arrives at its output operation �rst	 �Notice� it doesn�t matter which partner will reach
its communication statement �rst	


�	 The sender sends a signal SReady to the channel agent� containing its identi�cation	 Then it waits to
receive the partner�s identi�cation sent by the agent	

�	 When the receiver process has reached the corresponding input operation it sends RReady to the agent
containing its identi�cation	 Now it waits for the proper data from the sender	

�due to user interaction� procedure variables� variant records without tag �eld etc�



Modula�P � A Language for Parallel Programming � Implementation of its Channel Communication 


�

�

�

�

�	SendData�Data�RId


�	RReady�RId�AId


�	RIdent�RId�SId


�	SReady�SId�AId


ReciverSender

Agent

Figure �� Channel agent protocol

�	 After having both identi�cations the agent can pass the receiver identi�cation to the sender process with
RIdent and its work is done for this time	

�	 Having received the partner identi�cation the sender is able to transmit the data directly to the receiver
with SendData	

After the data exchange both processes may run independently again	 This procedure has to be done every
time a Modula�P channel communication takes place	

Since each of these signals are sent asynchronously� synchroneity �i	e	 blocking sender and receiver
 of
the entire message passing on the Modula�P level must be guaranteed in some way	 This is based on an
acknowledgement protocol	 Where the SendData message is interpreted to be the acknowledgement of the
RReady and RIdent message going from the receiver to the sender via the agent	

��� Execution of an ALT statement

Now we turn to the case of channel input guards contained in ALT statements	 During the time a receiver process
waits for a channel guard� the information that a sender is ready has to be passed to this receiver process	 It
can continue then� i	e	 select a sender for input and execute the corresponding alternative of the ALT statement	

Let�s have a more detailed look to the di�erent patterns of interaction between the ALT�receiver and any of
the senders�

a� The sender does not get not ready to send at all	

b� A sender gets ready� but it is not selected by the receiver	

c� A sender is ready and it is selected by the receiver	

The following protocol is performed now �see �gure 

�

�	 The receiver process informs all agents of the channels involved in the ALT statement that it executes
an ALT statements and waits for communication by sending the signal EnableS	 After that the receiver
process suspends itself	

�	 A sender process gets ready to send a message and sends SReady to the channel�s agent �as done before
	
Now it waits for a response from its agent� i	e	 for the RIdent message	 Steps � and � may take place in
any order	

�	 If the agent knows that there is a ready sender� it signals this by sending SReady	 The receiver ignores all
but the �rst SReady signals	

�	 The next step is to choose one ready sender out of the set of ready senders	 The channel agent of the
selected sender gets the SelectS signal� which initiates communication of the user data as shown before	
The receiver executes then the statements of the chosen alternative of the ALT statement	


	 All other agents get a DisableS signal� to inform that the receiver is no more waiting for communication	



Modula�P � A Language for Parallel Programming � Implementation of its Channel Communication �

�

��	 DisableS �RId � AId


�	 EnableS �RId � AId


Receiver

Agent

Sender

Figure 
a� Receiver is ready� but sender not	

�

�

�

�

�	DisableS�RId�AId


�	SReady�SId � RId


�	EnableS�RId � AId


�	 SReady �SId�AId


ReciverSender

Agent

Figure 
b� Receiver and sender are ready� but sender is not selected	

�

�

�

�

� �

�	SelectS�RId�AId



�	SReady�SId�RId


�	EnableS�RId�AId



	SendData�Data�RId


�	RIdent�RId�SId


�	SReady�SId�AId


ReciverSender

Agent

Figure 
c� Receiver and sender are ready� and sender is selected	

Figure 
� Channel agent protocol� executing ALT	



Modula�P � A Language for Parallel Programming � Implementation of its Channel Communication �

��
��
��
��
���

��
��
��
��
��
�

�

�

�Sender Receiver

�	 SendData �SId� Data � RId


�	 Ackn �RId � SId


�	 RReady �RId � PrevRId


Forwarding

Agent

�	 SendData �SId� Data � PrevRId


Figure �a� Receiver has changed since last communication

� Restricting the communication

Often the �forward� passing of the channels is su�cient� i	e	 in Process� of �gure � the communication marked
with ��
 is not allowed� since the parent processes reuse a channel� used by a child process before	 Guided by
the assumption that only channels are only passed forward� a more e�cient implementation for the changing
communication partner problem is possible�

A new kind of channel agent� called forwarding channel agent is used to forward a message addressed to the
process A to the new process A� �	 This agent is needed only at the �rst communication after a change of a
communication partner	 If the receiver doesn�t change� no agent is needed� since the sender knows the receiver�s
current identi�cation	 The forwarding of a messages is initiated by the receiver which knows that it has changed
�just by memorizing the identi�cation of the process which did the last communication
	

The case that the sender changes needs no special treatment� since in this protocol� the Modula�P commu�
nication is always initiated by the sender	 Initially before the very �rst communication� a forwarding channel
agent is used by sender and receiver� acting on the processor the channel was opened	

The protocol is called �adaptive forwarding protocol�� since the message is forwarded only when the receiver
changes� and then the sender is informed about the new receiver	

The programmer may pass the OPEN procedure additional parameters to specify that this protocol should
be used for communication	

The next two sections describe this idea with more details	

��� Communication without ALT

Assume the receiver changes� then the sender send its message to the forwarding channel agent of the receiver	
The receiver itself knows that it has changed since the last communication �since it has another identi�cation

and asks its forwarding agent to forward the data	 An acknowledgement signal must be sent to ensure the
blocking semantics of the Modula�P communication� together with this the identi�cation of the current sender
is sent �see �gure �a
	

Now assume that the receiver has not changed since the last communication� then the sender sends its
message directly to the current receiver �see �gure �b
	

��� Execution of an ALT statement

Now we turn to the case of channel input guards contained in ALT statements	 This is done very similar to
the complete channel agent protocol	 Assume that the receiver has changed� then the channel agent with the

�The process A passes the channel to A� and A� uses it for communication�



Modula�P � A Language for Parallel Programming � Implementation of its Channel Communication �

�

�

�	 Ackn �RId � SId


�	 SendData �SId� Data � PrevRId


ReceiverSender

Figure �b� Receiver has not changed since last communication

Figure �� Adaptive protocol� no ALT executed

identi�cation of the �previous receiver� is informed that the current receiver executes an ALT statement by
EnableS	 If a message has arrived �SendData at the channel agent� it informs the receiver about a sender is
ready using SReady	 After all senders are informed that the receiver has �nished its waiting �DisableS� one
ready sender is selected �SelectS
 and the message is forwarded and the Ackn signal is send to the sender	 Note�
the data are not allowed to be forwarded to the receiver� until the sender is selected� because� if it not selected�
and the receiver changes� the data are on the wrong processor	 If the sender has not changed� these actions are
then performed analogously without sending signals	

� MOPS� The Modula�P OPerating System

Some special problems arise implementing Modula�P on a distributed computer system	 First� several �local
and global
 processes may be executed on a single processor� and second global processes may be started on
di�erent processors	 The execution of several processes on a single processor �in a timeshared way
 may be
controlled by the hardware �e	g	 Transputer
 or some software	 Third a user should not be concerned how a
message �nd its way from the sender to the receiver in the network	 Last but not least� the distribution of
global processes as well as the remote start and termination of such processes have to be done automatically	
All these tasks are performed by the runtime system� called MOPS�

One main aim was to let MOPS work absolutely transparent	 It is an entirely distributed system running
on every processor of the network as processes independently from the user processes	 For e�ciency we haven�t
built up a layered communication model but used the abilities of transputer hardware� independent process
management� autonomous process scheduling on one transputer with own scheduling queues	 Programs with
MOPS run on di�erent transputer network con�gurations without any change in the source �les	 Furthermore�
no recompilation caused by changes in the network topology is necessary	

MOPS is implemented by several separate processes	 They run on high priority to satisfy the requests with
a higher priority than the user program� which runs at low priority	 MOPS consists of three parts �see �gure �
�

�	 The procedural interface	 User processes access MOPS by calling these procedures	 Calls to these proce�
dures are inserted into the produced code by the compiler	 These procedures are executed as part of the
user process and send MOPS messages to the other parts of MOPS	

�	 The Command Handler implements the channel agent protocols� distributes the local messages to the user
processes� passes external messages to the link handler� and does the other tasks� like starting global and
local processes� etc	

�	 The link handler is a set of separate processes� which deal with the physical external Transputer channels	
For each input and output link there is a separate process	 They have two main tasks� First� they accept
MOPS messages from user processes �which are produced by calling procedures from the MOPS interface

and second they forward messages which are not bound for this processor to the MOPS running on one
of its neighbor processors	



Modula�P � A Language for Parallel Programming � Implementation of its Channel Communication �

MOPS’s
on other
Trans-
puters

U
s
e
r

P
r
o
c
e
s
s
e
s

I
n
t
e
r
f
a
c
e

MOPS
Command
Handler

P
r
o
c
e
d
u
r
a
l

Low Priority

MOPS

Physical 
Links

Link
Handler

High Priority Processes

Figure �� Structure of MOPS

	 Future work

The Transputer version will be ported to new Transputers �T����
 and to a SPARC based processor network	
Analysis methods will be developed� which free the user from choosing the one or the other communication
protocol	 The more general question is� how to optimize explicit parallel programs	


 Summary

The programming language Modula�P and the development system MOCKA�P o�er a very powerful program�
ming environment for Transputer�based parallel computers	 The programmer gets a clear and intuitive model
of parallelism� which is soundly based on the theory of CSP	 As usual for modern programming languages�
Modula�P supports programming �in the small� as well as �in the large�� and frees the programmer from de�
tails allocating hardware resources	 The presented communication protocols show how powerful Modula�P�s
channels are	

Acknowledgements

Thanks to the students Markus Armbruster� Claas Hinrichs� Ralf Ho�art� Jens H�ubel� and J�urgen Richter who
did parts of the implementation	

References

�Hoare ��� C�A�R Hoare� Communicating Sequential Processes� International Series in Computer Science� Pren�
tice�Hall� Inc�� 	
���

�Ho�art 
	� Ralf Ho�art� �Ubersetzung einer parallelen Programmiersprache f�ur ein verteiltes Rechnersystem �
Modula�P auf Transputernetzwerken� Master�s thesis� Universit�at Karlsruhe� March 	

	�

�Vollmer �
� J�urgen Vollmer� Modula�P� a language for parallel programming� Proceedings of the First International
Modula�� Conference October ������ �	
	� Bled� Yugoslavia� pages 
��

� 	
�
�

�Vollmer et al 
�� J�urgen Vollmer and Ralf Ho�art� Modula�P� a language for parallel programming� de�nition and
implementation on a transputer network� In Proceedings of the �		� International Conference on
Computer Languages ICCL�	�� Oakland� California� pages ������ IEEE� IEEE Computer Society
Press� Los Alamitos� California� April 	

��

�Wirth ��� Niklaus Wirth� Programming in Modula��� Springer Verlag� Berlin� Heidelberg� New York� Tokyo�
third� corrected edition� 	
���


