ublished in the Proceedings of the 1992
International Conference on Computer Languages ICCL, Oakland, California, USA, pages 5464

Modula-P
A Language for Parallel Programming
Definition and Implementation on a Transputer Network*

Jurgen Vollmer

Ralf Hoffart

GMD Research Group at the University of Karlsruhef

Abstract

The programming language Modula-P extends Mo-
dula-2 with CSP (Communicating Sequential Pro-
cesses) based language consiructs, i.e. parallel pro-
cesses, synchronous message passing, and simultane-
ous waiting for events. The language and ils imple-
mentation on a Transpuler network is presented.

1 Introduction

Now that parallel computers with various architec-
tures have become increasingly available, the prob-
lem has arisen of how best to program such comput-
ers. There are at least two answers: either the com-
piler should automatically generate a parallel program
from the sequential program text, or the programmer
should make the parallelism explicit.

We have chosen the second approach, and use a
MIMD! machine model with a distributed memory
architecture. A corresponding computational model
is Hoare’s Communicating Sequential Processes (CSP)
[4], which provides a powerful framework for the de-
scription and analysis of parallel programs. We have
integrated CSP into the programming language Mo-
dula-2 [14]. The new language, called Modula-P [12],
its key design ideas, and some problems of its imple-
mentation on a network of Transputer processors are
presented.

2 Design Goals and Decisions

Why should one add more features to a good lan-
guage like Modula-2 7 As a matter of fact, each new
dialect of a language decreases the portability of pro-
grams to other machines which don’t support this spe-
cial dialect. On the other hand there are new (paral-
lel) computer architectures that offer special features
which should be supported by a language.

Based on some experience at our institute with the
occam language [6], we have discovered the following
requirements for a parallel language?:

*This research was supported in part by ESPRIT under ES-
PRIT project 5399 (COMPARE).

 Vincenz-Priefnitz-Strafie 1, D-7500 Karlsruhe 1

I Multiple Instruction Multiple Data

?Language with explicit constructs expressing parallelism.

e Concurrency should be based on a well founded
concept.

e Software engeneering aspects should be consid-
ered that is programming “in the large” should be
supported as well as programming “in the small”.

e The language should include a rich set of data and
program structuring mechanisms and modules.

e Existing sequential software should be reusable.

e A clear syntactic and semantic definition of what
a process 1s must be given.

e The program should be executable on different
kinds of network topologies without having to
change the program text.

e Explicit “process placement” should be possible
to increase execution speed, But correct execution
should not depend on it.

CSP has been considered as a good foundation of
concurrency for the MIMD architecture. Instead of
creating an entirely new language, Modula-2 is used
as sequential basis. To facilitate easier learning, the
syntax of the new constructs should be close to that
of Modula-2.

For this project there are three challenges:

1. The resulting language must be designed orthog-
onally to the base language, such that the design
goals are met.

2. An implementation of an appropriate Modula-P
runtime model on a single processor / Transputer
must be designed.

3. A communication system for a point-to-point con-
nected processor network must be designed and
implemented.

The next section mentions some other attempts to
integrate CSP into a language.

3 Languages based on CSP

There are several languages which are based on or
influenced by CSP. Experimental languages are for ex-
ample [15, 8]. Their goal was to solve shortcomings of
the first CSP proposal, they do not support any soft-
ware engeneering aspects.

occam [6] is an attempt to implement CSP on a dis-
tributed computer system, a Transputer network. It
1s an elegant and simple language. It has only limited

Modula-P — A Language for Parallel Programming — Definition and Implementation on Transputers 2

data structuring mechanisms; procedures can’t be re-
cursive, and the important concept of data abstraction
using modules 1s missing. Process distribution over
the network must be done on the top of the process
hierarchy.

A Pascal-based language for distributed program-

One solution to the problem is to forbid global vari-
ables inside modules and using parameters instead.
But this contradicts the information hiding principle,
because the data structure implementing the ADT is
now externally visible. Tt also contradicts the design
goal that the new language should be a superset of the

ming is Joyce [2]. A Joyce program defines concur-
rent agents which communicate through synchronous

basic language. Another solution is to introduce new
concepts of dealing with modules as done in the next

channels. Several agents may communicate over one
channel.

Tasks are used in Ada [1] to specify concurrency.
Task communication is based on the rendezvous con-
cept. One or more tasks perform an eniry call which
one receiving task (which defined that entry call) ac-
cepis.

Wirth [13] and Collado [3] implemented CSP-like
features in Modula-2, but without extending Modu-
la-2. They map processes onto Modula-2 coroutines.
Channels must be declared as variables. The type of
information transmitted over a channel is either fixed
(Wirth) (using a separate module for each informa-
tion type) or arbitrary (Collado) (using the “ARRAY
OF WORD” concept of Modula-2). Both languages
implement simultaneous waiting for input from sev-
eral channels by polling over the channels, a method
which is very expensive and hard to code. As a con-
sequence, these implementations receive little benefit
from running on a multi computer network.

4 Language Design Problems

A main problem of integrating concurrency into
languages like Modula-2 and Ada concerns their mod-
ularization concepts and notion of global variables.

The problem is illustrated by the following ex-
ample: Modula-2’s DEFINITION and IMPLEMENTATION
MODULEs are used to specify and implement an ab-
stract data type (ADT), e.g. stack with operations
pushfelem), etc. Let us assume that its implemen-
tation 13 based on a global array variable, declared 1n
the implementation module. In the “sequential” case,
each call to one of the procedures implementing an op-
eration uses the same stack by accessing the global ar-
ray variable. Now consider the “parallel” case, where
a program consists of several processes. Two usages
may be distinguished: first, each process needs its own
stack independently of all other processes, and second,
the processes want to communicate in a stack like fash-
ion.

The questions is whether 1t 1s possible to use the
original stack module. Unfortunately, the answer must
be “no”, since it is not clear from the program text
which usage is meant by the programmer.

More generally stated: what is the semantics of
global variables of modules in the presence of several
executed processes? Which process on which proces-
sor owns (i.e. provides storage for) the global variables
of a module? How are the global variables accessed
if the processes are executed on distributed memory
processors?

section for Modula-P.

5 The Language Modula-P
— Reference Manual—

Modula-P is a superset of Modula-2 [14], enriched
with language constructs based on the model of the
Commaunicating Sequential Processes (CSP) [4] for

writing parallel programs?®.

5.1 Language Overview

Modula-P knows the notion of processes which are
parallelly executed as components of the PAR state-
ment. Two kinds of processes are syntactically dis-
tinguished: local and global processes. Synchronous
communication between processes 1s done via typed
channels. Input and output statements are defined
for channels. Channels must be initialized by the par-
ents of the communicating processes using the stan-
dard procedure OPEN. Processes may wait for several
events simultaneously by means of an ALT statement.
Processes and alternatives may be replicated using
a replicator inside a PAR and ALT statement, respec-
tively. The language knows the notion of an abstract
clock (TIME), which may be read. Processes may de-
lay themselves. Global processes may be executed on
processors having no shared memory, while local ones
require access to shared variables. Messages between
processes running on different processors are passed
automatically through the underlying communication
network.

5.2 Processes

A processis a piece of executed program text; a pro-
cess declaration is a piece of program text which may
be executed as process. Parallel execution of processes
1s expressed by the PAR statement. The process exe-
cuting the PAR statement is called the parent process
of 1ts components, the child processes. Processes may
be either declared as local or global processes.

5.2.1 Local Processes

Local processes are specified by a statement sequence
as component of a PAR statement. Hence, several local
processes with the same parent share variables with
their parent process?. A local process declaration is

3The syntax is given in Backus-Naur-Form according to [14].
“Notice: The language doesn’t specify synchronized access
of variables.

Modula-P — A Language for Parallel Programming — Definition and Implementation on Transputers 3

allowed to contain neither a RETURN nor an EXIT state-
ment which 1s related to a LOOP outside of that local
process declaration.

A local process terminates if the last statement of
the statement sequence is executed.

5.2.2 Process Modules and Global Processes

A global process is declared in a PROCESS MODULE.
This is something like a Modula-2 program module.
The syntax of the process declarations is given in fig-
ure 2. A simple example of a process module is given
in figure 1. The following rules must be obeyed using
process modules and global processes:

A process module declaration may have value pa-
rameters. The types used in the formal parameter
list are either predefined types or are implicitly im-

memory. Global processes may be executed on pro-
cessors having no shared memory.

Modula-P supports two kinds of process place-
ments. Process placement does not affect the pro-
gram semantics, except for execution speed and con-
sequences thereof (e.g. race conditions).

1. The runtime system may distribute the execution
of processes using a default strategy.

2. The user gives a placement directive using AT
expression. The expression must be assignment
compatible with INTEGER. The meaning of this in-
teger value i1s determined by the runtime system.
The standard module net contains some functions
to compute this value.

5.3 The PAR Statement

ported; hence, this type identifier must be qualified.
These qualified identifiers are known only inside this
parameter list. A process module may import other
(process) modules. A process module is another com-
pilation unit.

The body of a process module is executed as a com-
ponent of the PAR statement. Syntactically this looks
like a procedure call with the name of the process mod-
ule and passing actual parameters which are evaluated
before the process starts its execution. The bodies
of any imported ordinary modules are executed each
time the process is started. This is done prior to the
execution of the body of the process module. A global
process terminates if the last statement of the process
module body is executed.

Each global process has its own instance of all
imported global variables. A global process has ac-
cess neither to variables of other global processes, nor
to those of the parent process. Interaction between
global processes 1s only possible using communication
over channels.

PROCESS MODULE p
(ch:m.channel; x:m.type; i:CARDINAL);
(* imports *)
(* local declarations *)
BEGIN
(* actions executed by that process *)
END p.

MODULE main;
IMPORT p, m;
BEGIN
PAR
| p(ch,x,i) (* execute global process *)
I ...
END
END main.

Figure 1. A process module stub

5.2.3 Distributed Processes Execution

Local processes must be executed together with their
parent process on processors which share a common

The PAR statement specifies the concurrent execu-

tion of its components.
PAR pi|---|p, END

The processes py, - - -, pp are executed in parallel. The
process executing this PAR statement is suspended
until all of its child processes py,-- -, p, have termi-
nated. The component p; may be either a statement
sequence or a call of a process module.

5.4 Communication

Channels are used for unidirectional, synchronous
communication between two concurrently executing
processes. The message goes in one direction from the
sender to the receiver. The term synchronous spec-
ifies that the process which reaches its communica-
tion statement first will wait until the second process
reaches the corresponding statement. Then the com-
munication takes place, i.e. the message is passed,
and both processes continue independently. A process
may either input or output to a specific channel, but
mixing these operations is not allowed (i.e. channels
are unidirectional).

Channels are treated in the same manner as Mo-
dula-2 variables i.e., they have a type and must be
declared. The base type of the channel may be any
other Modula-P type. A type and a variable declara-
tion looks like:

TYPE tChannel :

VAR channell : tChannel

VAR channel2 : CHANNEL OF BaseType

Before the first communication over a channel can
take place, the channel must be opened once with
the standard procedure OPEHN. This is usually done by
the parent process of the communication partners. A
channel remains opened as long as the opening process
continues to execute. Its signature is:

PROCEDURE OPEN (VAR channel: ChannelType)

For variables of type channel, input and output op-
erations are defined. The statement

channel ! expression
outputs the value computed by expression to channel.
The statement
channel ?

CHANNEL OF BaseType

variable

Modula-P — A Language for Parallel Programming — Definition and Implementation on Transputers 4

CompilationUnit = | ProcessModule.
LocalProcessDecl = StatementSequence.
ProcessModule = PROCESS MODULE ident [FormalParameters] '";" {import} block ident ".".
ParStatement = PAR Processes {"[|" Processes} END.
Processes = [[replicator] LocalProcessDecl [Placement] [";"]]
[[[replicator] GlobalProcess [Placement] [";"]]
GlobalProcess = ProcedureCall [";"].
Placement = AT expression.

Figure 2: Syntax of process declarations and the PAR statement

reads a value from channel and assigns it to variable.
The wariable and the expression must be assignment
compatible with the base type of the channel. A chan-
nel variable may be passed to a procedure or may be
assigned to other variables.

Any type of message may be passed over a CHANNEL
OF ANY®, using only the size of the message and the
address of the source / destination.

TYPE tCh = CHANNEL OF ANY

VAR chl : CHANNEL OF ANY

VAR ch2 : tCh

ch 7 dest_adr, size

ch ! grc_adr, size

dest_adr and src_adr are expressions which have to
be of type ADDRESS. src_adr gives the address of the
message to be send. dest_adr gives the memory ad-
dress where the received message should be stored.
size 1s an expression which must be assignment com-
patible to CARDINAL. size specifies the length of the
message in bytes. The message size of the sender and
receiver must match. The receiver process has to pro-
vide enough memory for storing the received message
before the communication takes place. This message
size may change from one communication to the next.
This form of the ! and ? statement is allowed only
for channels of type CHANNEL OF ANY. A CHANNEL OF
ANY may be used at any place, where a CHANNEL OF
BaseType may be used and the same rules apply.

TIMER is a special predefined channel from which
the actual system time may be read. TIMER need not
be opened. The base type of this TIMER channel is
the new scalar type TIME. Values of type TIME may
be compared to equality (=) and unequality (#).
The new standard module SysTime specifies further
operations for objects of type TIME.

A process may suspend itself from execution for some
time executing the delay statement:

TIMER ? AFTER expression
The process continues, if the system time is later the
the time specified by the ezpression (of type TIME).

5.5 The ALT Statement

The ALT statement may be used for simultaneous
waiting for several events. Events may be communica-
tion with other processes or time events. The syntactic
structure is:

5Notice: ANY is not a language type like WORD;
it is a keyword.

channel "7?" adr, size.
TIMER "?" designator.

type = | ChannelType | TIME.
ChannelType = CHANNEL OF BaseType

| CHANNEL OF ANY.
BaseType = type.
ChannelStatement = InputStatement

| TimerInputStatement

| DelayStatement

| OutputStatement.
InputStatement = channel "7" designator

I

TimerInputStatement

DelayStatement = TIMER "?" AFTER time.

time = expression.

OutputStatement = channel "!" expression
| channel "!" adr, size.

channel = designator.

adr = expression.

size = expression.

Figure 3: Syntax of the channel operations

ALT
guardy : stmis,
| guard, : stmis,

| guard, : stmis,
ELSE simisgo

END
The process executing the ALT statement is sus-
pended until one of the guards guardy, --- ,guard, is

ready. From the set of ready guards, one arbitrary
guard; 1s selected, and the corresponding statements
stmis; of the alternative are executed. There are three
types of guards: simple guards, channel guards, and
time guards. They look like:

bool_expression

bool_expression , channel ? variable

bool_expression , TIMER ? AFTER expression

The bool_expression may be omitted for channel and
time guards. The bool_expression will be evaluated
first if 1t 1s present; if it is omitted, 1t is assumed to
be TRUE. A guard is ready if the evaluation of the
bool_expression yields TRUE, and

e for the simple guard, no other condition is neces-
sary,

e for the channel guard, another process waits for
communication over channel,

e for the time guard, the actual system time is later
than the time specified by expression.

Modula-P — A Language for Parallel Programming — Definition and Implementation on Transputers 5

Before executing the statements of a selected chan-

Modula-P programs are “scalable” just by increasing

nel alternative, the communication over this channel

a constant (or a variable) which specifies the number

takes place. The ELSE part of the ALT statement
may be omitted. If it is present and none of the
bool_expressions 1s evaluated to TRUE the statements
stmitsg are executed. If the ELSE part is omitted and
none of the bool_expressions is evaluated to TRUE a
runtime error is raised.

5.6 Replicators

The components of a PAR or ALT statement may
be replicated. A replicated process component has the
form:

[ident : 1lower TO upperl p
(ORD(upper) - ORD(lower) + 1) processes are started
all executing p in parallel. Each process gets a unique
value of ident in the range [lower - - - upper], which is
accessed using ident.

Similarly a replicated alternative has the form:
[ident : 1lower TO upper] guard : stmts
(ORD(upper) - ORD(lower) 4+ 1) alternatives are set
up, waiting for the guards. Each alternative gets a
unique value of ident in the range [lower --- upper
]. Constraints for the use of the replicator variable
tdent are: The type of tdent must either an enumer-
ation, or an integer or cardinal type. The type of
lower and upper must be assignment compatible to
that of ident. The replicator variable ident 1s not
allowed to be a component of a structured variable,
nor may it be imported or a parameter of a proce-
dure. The replicator variable may be used inside of the
child process or the alternative only like a constant. If
(ORD(upper-bound) - ORD(lower_bound)+1)<0 then

no component (process or alternative) is created.

replicator = "[" ident ":" lower TO upper "]".
lower = expression.
upper = expression.

Figure 5: Syntax of the replicators

5.7 Other Extensions

Modula-P uses the other extensions of the Modula-
2system MOCKA it is based on. There are additional
long and short integer, cardinal and real types.

There i1s another module kind called FOREIGHN MO-
DULE, which is like a definition module, but the pro-
cedures specified there may be implemented in other
languages, for example assembler or C. A FOREIGN
MODULE has no Modula IMPLEMENTATION MODULE;only
constants, types and procedures may be declared.
Procedures declared there may be called like proce-
dures declared in a DEFINITION MODULE.

Modula-2 allows the assignment of priorities to pro-
gram modules; this is not supported by Modula-P.

6 Program Examples

This section presents some program stubs to give
an impression of the language. They show also, how

of channels / server processes to be used.
6.1 Simple Producer / Consumer

The program example in figure 6 shows a how a
simple producer, consumer problem may be expressed.
Three processes are started, two of them producing
data, and sending them over channels to the process
which gathers the information and gives them to one
consumer. The ALT statement is needed, because the
data must be given sequentially to the consumer (for
example a printer device). If the processes are too
slow, a message is printed, caused by the time guard.
Replication is used in the PAR and ALT statement.

MODULE prod_cons;
FROM netI0 IMPORT WriteString;
PROCEDURE produce (i:INTEGER):INTEGER;
PROCEDURE consume (value:INTEGER); ...
VAR chn : ARRAY[1..2] OF CHANNEL OF INTEGER;
VAR i, j, value:INTEGER; time:TIME;

BEGIN
OPEN (chn[1]); OPEN (chn[2]);

PAR
[i : 1 TO 2] LOOP chn[i] ! produce(i) END
| LooP
TIMER ? time;
ALT
[: 1TO 2]
chn[j] 7 value : consume (value)
| TIMER 7 AFTER time + 100 :
WriteString ("time out")
END
END
END

END prod_cons;
Figure 6: Program example producer / consumer

6.2 Pipeline Processing

The example in figure 7 shows a parallel program
that computes prime numbers. It seems silly to com-
pute prime numbers in this way, but this example
shows how to construct an arbitrary large pipeline
of processes using recursion. One can think of two
kinds of processes: a generator and several worker
processes chained by channels. The generator pro-
duces odd numbers and sends them to the first worker
(which has number 2). Each worker process repre-
sents a prime number. It reads numbers from its in-
put channel, where the first number is its prime num-
ber. If a number read is divisible by the worker’s own
prime number, this number 18 not prime; hence, it
is discarded. Otherwise it must be sent to the next
worker process for further examination. A negative
number is interpreted as the termination signal. When
the worker process is called two further processes are
started. One of them checks the numbers read. The
other recursively starts the next worker, which waits
for input of its prime number or the termination sig-
nal, sent by the checking process.

Modula-P — A Language for Parallel Programming — Definition and Implementation on Transputers

AltStatement = ALT alternative { "|'" alternative } [ELSE StatementSequence] END.
alternative = [[replicator] guard ":" StatementSequence].
guard = expression | [expression ","] InputStatement | [expression ","] DelayStatement.

Figure 4. Syntax o

f the ALT statement

MODULE p_prime;
FROM defs IMPORT IntChannel;

PROCE
FROM

33 MODULE worker (in :
defs IMPORT IntChannel;

defs.IntChannel);

(* TYPE IntChannel = CHANNEL OF INTEGER *) FROM netI0 IMPORT WriteInt; FROM net IMPORT left;
FROM netI0 IMPORT ReadInt; VAR out IntChannel; prime, x : INTEGER;

TMPORT worker; BEGIN

VAR max, i: INTEGER; out : IntChannel; in ? prime;

BEGIN IF
netI0.ReadInt (max); OPE
OPEN (out); PAR
PAR

gworker (out) (% start first worker *)
| (* test number generator #*)

out ! 2; (% first prime number *)
FOR i:=3 TO max BY 2 DO out ! i END;
out ! -1 (* termination *)
END |
END p_prime. END
END w

prime < O THEN RETURN ELSE WriteInt (prime) END;
N (out);

LOOP (* read numbers, -1 terminates *)
in 7 x;
(* pass termination signal and terminate *)
IF x < 0 THEN out ! -1; EXIT END;
IF x MOD prime # O THEN out ! x; END;
END;
worker (out) AT left() (* start next worker *)

orker;

Figure 7. The pipeline program example

7 The Standard Library

There 1s a set of standard modules supporting the
Modula-P language features. The important ones are:
the net module which provides information about the
computer network. Procedures like left, top, etc.®
allow the specification of a process topology indepen-
dently of the actual network topology”. The module
netIO0 offers procedural input / output facilities in the
well known fashion of the Modula-2 InOut module .
netI0 contains procedures for reading and writing to
the standard input/output devices, as well as to arbi-
trary files and windows. This may be done from each
process running on an arbitrary processor. Storage is
used to allocate and deallocate dynamic storage. The
SysTime module offers procedures to compare TIME
values and to compute out of TIME differences a real
time. The channels module specifies the kind of ad-
ditional information to be passed to a call to the OPEN
standard procedure. To implement critical regions,
simple boolean semaphores are offered by the Mutex
module. The TRANSPUTER module offers direct access
to some of the Transputer’s machine instructions. The
compiler recognizes this module, and inserts the in-
structions directly.

8 Assumptions for the Implementation

We have made the following assumptions about the
network for our runtime system. They are all fulfilled

81f there is such a neighbor processor these procedures re-
turn the number of that neighbor, otherwise another neighbor
number is returned.

7 A network of this topology may increase only the execution
speed.

by a Transputer based network: the network supports
only point-to-point communication. The number of
processors is known when a program starts. Fach pro-
cessor has a unique identifier. The number and identi-
fier don’t change during the program execution. The
communication among processors over their physical
channels is error-free, i.e. no messages are lost, du-
plicated or changed in any other way. All processors
are available during program execution, and don’t fail.
Hence, no fault detection is required. The topology of
the network is known when starting a program, and
doesn’t change during the program execution. The
hardware or software supports concurrent execution
of several processes on a single processor (this may
also be in a time-shared way).

9 Problems with Channels

Considering these assumptions, what difficulties
arise when designing a channel communication model?
To answer this question, we examine the behavior
of Modula-P channel in detail. It 1s usually not
known, on which processor global processes are exe-
cuted. Why does this influence a channel communi-
cation model? Since processes may have parameters
which are transmitted to the destination processor,
channels passed as parameters are affected also by the
distribution, when processes are started remotely (see
figure 8). But unlike the ability to notice when a pro-
cess has to migrate it is not possible to notice the
migration of channels. Moreover, channels are bound
neither to processors nor to processes. One channel
may be used by different processes successively, For
example(see figure 8), after a process has communi-

Modula-P — A Language for Parallel Programming — Definition and Implementation on Transputers 7

cated over a channel, this channel may be used by a
child process. After termination of this child process,
the parent can use this channel again. Since two part-
ners are involved in a channel communication, this
migration problem arises for both.

Hence, the usual solution leaving forward references
when a channel migrates can’t be used. So, another
solution has to be found.

PAR Process; {(ch) | Process, {(ch) END;

Process; Process, Processa
LOOP ch 7 y; ch 7 Z;
ch !t x; PAR :
: Processs(ch);
| -

END; END;
: ch 7 y;

Figure 8: Migrating channels

4. Having received the partner identification the
sender 1s able to transmit the data directly to the
receiver.

After the data exchange, both processes may again
run independently. This procedure has to be done
every time a channel communication takes place and
guarantees that the semantics (i.e. synchronicity) of
Modula-P channel communication is fulfilled.

1) RequsetToSend | agent ch

2) RequestToReceive
3) receiver adr -

(Ch,Pl)
Poren

sender 4) send data (ch,data) recerver
ch!x ch?y
P1 P2

Figure 9. Communication model using an agent

10 The Tasks of MOPS?®

Some special problems arise implementing Modu-
la-P on a distributed computer system. Since a pro-
grammer should not be aware of the implementation
of the channel communication in the network, the run-
time system, called MOPS, has to support this com-
munication transparently. Moreover, the distribution
of global processes and the remote start and termi-
nation of such processes must be done automatically.
The main task now is to design a model for communi-
cation over channels and starting processes.

10.1 Channel Agent Model

As a channel may migrate between any two com-
munications, one has to know the new sender and re-
ceiver location, respectively, before exchanging mes-
sages. The exchange of the current identifier of com-
munication partners is done using an agent. Qur way
1s to subdivide a channel communication into four
parts (see figure 9).

Assume a sender arrives at its output operation
first, but it doesn’t matter which partner reachs a
channel operation first.

1. The sender sends a message RequesiToSend to the
channel agent, containing its identification. Then
it waits to receive the partner identification send
by the agent.

2. When the receiver has reached the corresponding
input operation it sends RequesiToReceive to the
agent containing its identification. Now it waits
for the proper data from the sender.

3. After having both identifications the agent can
pass the receiver identification to the sender and
its work is done for this time.

8Modula-P Operating System

For this model, both communication partners must
know the identification of the agent of the channel be-
fore each Modula-P communication takes place. The
only requirement of channels is that they must be
opened before they are used. Hence, an agent for a
channel may reside on the processor where the channel
was opened. When opening a channel the processor
identifier is stored in the internal structure of the chan-
nel. If a channel migrates, this information migrates
too. As a side effect, agents of different channels may
be distributed over the entire network, depending on
the dynamics of a program.

Next we consider the case of a channel being used as
an input guard contained in an ALT statement. During
the time the receiver process waits for a channel guard,
the information that a sender is ready has to be passed
to this receiver process, so it can continue, i.e. select
a sender and execute the corresponding alternative.

The agent protocol for this case works as follows

(see figure 10):

1. The receiver process send the message Enable Chnl
to all agents of the channels involved in this ALT
statement. Then the receiver process suspends.

2. If a sender process now becomes ready to send a
message, it sends RequestToSend to its agent (see
above). Perhaps, the agent already received this
message.

3. If the agent knows that there is a ready sender
1t informs the receiver by sending SReadyForAlt.
The receiver is awakened and sends to all agents a
DisableChnl, which informs the agents to send no
more SReadyForAli. If there are more than one
SReadyForAlli messages present, they are ignored.

4. The next step is to choose one ready sender out
of the set of ready senders. Then, the message is
passed (as described above) and the statements
of the chosen alternative are executed.

Modula-P — A Language for Parallel Programming — Definition and Implementation on Transputers 8

agent for ch 1) EnableChnl
3] SReadyForAlt

4) DisableChnl
(ch,Pq,flag)
Poren A

2) RequestToSend

d receiver
sender ALT
, ch?y:.-.
ch!x END
P1 P2

Figure 10: Selective waiting using an agent

10.2 Starting of Processes

Starting and executing of local processes is mapped
onto the underlying system. Starting the execution of
a global process on an other processor is mapped onto
communication between the MOPS running on the
different processors. Several things have to be done
therefore:

1. If the user has not specified a placement, it has
to be decided where the global process should be
executed.

2. A message is send to the MOPS of that processor.

3. The parameters of the global process are sent to
that processor. A special treatment is needed
for open array parameters, since their size is not
known on compile time. Hence, the global process
first requests to receive them (via MOPS) before
the ordinary process statements are executed.

4. On the destination processor, the global process
1s executed similarly to a local one, except that
storage for the global variables must also be allo-
cated.

5. After termination, a message is sent back to the
parent process.

To decide on which processor a global process is
executed, two very simple strategies are currently im-
plemented. They do not use any load information of
the network. One strategy is to execute the processes
on the entire network, the other 1s to execute a process
only on its direct neighbor. The latter strategy reaches
after some time the same result as the first, but child
processes are executed at the direct neighbor.

10.3 Routing Messages through the Net-
work

Due to our assumptions, the network is connected
in a point-to-point fashion. Hence, communication
must be routed over other processors if the commu-
nication partners are not direct neighbors. Again it
is the task of MOPS to do this in a transparent way,
by exchanging routing-messages and the data between
the incarnations of MOPS running on different proces-
sors. This is done in a “store and forward” manner.

Since the network topology i1s known and fixed, a
static, deterministic router based on a shortest path

algorithm is used. The path information is computed
off-line before the execution of a program and is down
loaded to each processor while initializing the network.
So the routing information doesn’t change during ex-
ecution and making a decision is just a table lookup.
Since Transputers use synchronous links, no flow con-
trol has to be done. We omit congestion control for ef-
ficiency reasons, and use the entire processor memory
to store messages. Nevertheless, no deadlocks (wait-
ing for packets in a cyclic manner) can be produced
by MOPS itself. A more detailed discussion of routing
algorithms may be found e.g. in [10].

11 Implementation of MOPS

A main aim was to let MOPS work absolutely trans-
parently. It is an entirely distributed system running
on every processor of the network as processes inde-
pendently from the user processes. Agents are repre-
sented by MOPS and a channel data structure. Under
MOPS, programs can run on different Transputer net-
work configurations without any change in the source
file. Furthermore, no recompilation depending on the
network is necessary. A complete discussion of the
implementation is found in [11, 5].

11.1 The Transputer

For the implementation, the features offered by the
Transputer [7] are heavyly used. A Transputer sys-
tem consists of a number of interconnected Transput-
ers, each executing several processes. The Transputer
hardware offers a scheduler, which executes several
processes in a time shared manner on two priority lev-
els. Special instructions are used to start and termi-
nate processes. Each Transputer has four bidirectional
hardware links which are used to connect the Trans-
puters in a point-to-point way. It has instructions for
synchronous communication via physical channels be-
tween processes. A physical channel is either a word of
memory (memory channel), or the special address of
a hardware link (external channel, link). Instructions
for implementing the ALT statement. The “usual” in-
teger and floating point arithmetic operations.

11.2 Overall Structure of MOPS

MOPS consists of four parts (see figure 11):

1. MOPS has a procedural inierface and calls will
be inserted by the compiler. These procedures
construct commands packets which are passed to
the command handler.

2. The communication between Transputers, as well
as the routing of command packets, is done by
the router. The router 1s the only part which has
access to the links of Transputers.

3. A command handler which decodes the command
packets and implements so the agents. Also it
starts global processes. The command handler
may obtain command packets either a user pro-
cesses running on the own Transputer via the user
port or from the router.

Modula-P — A Language for Parallel Programming — Definition and Implementation on Transputers 9

4. Management of processor-global data. Since Mo-
dula-P doesn’t offer processor global data®, a sep-
arate handling has to be done, for example for
routing information.

of two processes, a link reader and an output proces-
sor. Packets comming from another Transputer are
received by the link readers. After reading a packet a
table lookup is made to decide what to do. If it’s for
the own Transputer the packet is directly passed to
the command processor otherwise is put to the appro-

U | mopPs | p
Router e calls e T
*1Command 11; /_ inserted r+s g
N e
Link_ —»{ handler o by tl.11e DN r
listener 1t compiier m
vt F
: other :
\Transputer, < \

| processor—global data

Figure 11: Structure of MOPS

When sending a packet from one Transputer to an-
other currently no packaging is done for large data
packets.

To reduce the overhead produced by MOPS no spe-
cial data structures with the exceptions of link buffers
are maintained.

All information about channels is held in the inter-
nal structure of a channel itself. A channel is uniquely
identified throughout the network by the address of
the variable used to open a channel together with the
corresponding Transputer identification.

The router processes are started initially, after the
program 1s loaded to the processor. They run on high
priority for two reasons, first forwarding of messages
should be fast and have more precedence than the user
program, which runs in the low priority mode. The
second reason is that accessing global data shared by
the LinkListeners (mainly the buffers) may be done
without any synchronization, because high priority
processes may not be descheduled, until they wait for
communication.

To pass information (command packets) from the
user program to the router, communication over
Transputer memory channels are used. This i1s the
only way a low level and a high level process may com-
municate without polling a certain data structure.

11.3 The Router

Now a closer look at the structure of the router is
given (see figure 12).

To pass messages a store and forward strategy is
used to decouple the reading from links and writing
to links. This avoids circular deadlocks while rout-
ing packets. Packets reaching the router may be pro-
duced on the own Transputer or come from another
one. For every link there’s a LinkGuardian consisting

?The MOCKA-P assembler offers access to processor global
data

priate output buffer. Then a new packet may be read
immediately. Processing the output buffers is done
by output processors using a FiFo strategy. Until a
buffer is empty a packet i1s taken from it and sent over
the corresponding link. When a buffer is empty the

process 18 cfnpped and 1s not restarted bhefore a new

packet 1s put to the buffer.

— Routing) —
Information P
1L A 0, Or,
e
nyo—fs (TITHY ef— U5
Pn d n
n Ps P
11;1 1; k ? (LT} u s u 1;
— T r—
s
/ \
from self to self
Transputer Transputer

Figure 12: Router

11.4 Executing Processes

For local processes, the execution is started using
the machine instructions the Transputer offers. Since
the parent process is suspended until all child pro-
cesses have terminated, it must be informed when this
has happened. Again, the Transputer offers instruc-
tions to do this.

To identify at runtime the code of a global process,
each process module receives a unique number during
linking. Using unique numbers has the advantage of
being independent of the code memory layout. So,
different implementations of a library can be linked
for different Transputers.

Due to the dynamics of Modula-P processes, the
code of entire program is kept on every Transputer.
Since the code is reentrant, each module is present
only once in the storage.

Since each global process has its own incarnation of
all imported global variables, a kind of “virtual mem-
ory” must be implemented. When a global process
1s started, memory for all variables accessed by the
process is allocated. After termination of the process,
the allocated storage is released again. The imported
variables of a global process may be a subset of all
declared global variables, since a global process may
import only a subset of all modules needed by the
entire program. The amount of memory needed for
a global process is determined when linking the en-
tire program. The needed memory is allocated as one

Modula-P — A Language for Parallel Programming — Definition and Implementation on Transputers 10

large block when starting a global process. Access to
the global variables is done now using a table, which
maps a module number to the address of of a subblock
in that block, which contains all global variables de-
clared in that module. This table must be computed
after the storage is allocated.

When a process is started, the process gets a piece
of workspace as runtime stack for storing local vari-
ables and parameters. If necessary this stack i1s ex-
tended, when a called procedure does not fit into the
current workspace piece. Such a piece is deallocated
after the procedure allocating it returns.

12 Some Benchmark Results

To get an idea of the efficiency of the implementa-
tion of MOPS we show some measurements taken with
our system (10Mbit/sec—T800 Transputer network).

We compared communication based solely on the
Transputer instructions in and out, on the agent
model and on the Transputer operating system
Helios™ [9]1%. Only communication is done by the
processes and processors.

The benchmarks use messages with sizes in the
range form 1 byte up to 10000 bytes. The messages
are send from a process P1 to a process P2 and then
back to P1. The times are read from the processor P1
1s executed on and divided by 2.

The results are shown in figure 13, 14, and 15.
MOPS A0 (A1 / A2) indicates that the agent is exe-
cuted on the same (a direct / indirect neighbor) pro-
cessor. The curve move instr shows how fast pure
memory copy works.

time Cusec)
A

1200 jjelios
1000F=—==--= PR

move instj

1 o 1bo 1doo 1dooco

Message Size (bytes)
Figure 13: Sender, receiver (and agent) on same

Transputer

If the message becomes longer, the pure commu-
nication time overrides the communication overhead
caused by the systems. Additionally, HELIOS breaks
large messages into smaller pieces. The resulting
pipeline effect speeds up HELIOS over pure Trans-
puter communication. The more powerful MOPS
communication scheme is often faster or even as fast
than HELIOS (e.g. 2-5 times for all running on the

10Gimilar C programs are used therefor.

time Cusec)

' 3
1 OOOO

S O0O0)

1 OO0

S5O0

1 OO
O

| o [gy SRR) S

1 10 1 OO 1 OO0 1 QOO0
Messagme Size (bytes)

Figure 14: Sender, receiver on direct neighbor Trans-
puter. Agent on the one of the partner processors.

titme (usaeac)
A

1 3OO0

1 OOOC

101016

1 OO0

1
1 10 1 OO0 1 OO0 10000
Messaze Sice (bytes)

Figure 15: Sender, receiver on indirect neighbor
Transputers. Agent on the one of the partner pro-
CEeSSors

same Transputer), but slower than the pure Trans-
puter instructions. A strong influence on the MOPS
times has the distance of the agent process to the part-
ners.

We compared Modula-P’s local Lo its global pro-
cesses by measuring the time needed to start and ter-
minate “empty” processes. With our scheduler the
overhead of starting a global processes is about a fac-
tor of seven to local ones. Notice, the global pro-
cesses are started on all processors contained in the
net. This overhead can be neglected if processes do
heavy computing which may be seen in diagram 16.
Except of very short programs all programs examined
using global processes are executed faster than the cor-
responding ones running just on one Transputer.

13 Optimizations

These measurements give hints which optimizations
should be performed: treat the case where both com-
munication parthers reside on the same processor in
a special way. Another optimization is to avoid the
agent requests. This is possible, if it is known that
the migration problem doesn’t arise. To decide the
applicability of these optimizations, data flow anal-
ysis or additional parameters to the OPEN procedure

Modula-P — A Language for Parallel Programming — Definition and Implementation on Transputers 11

uscc / process
A
4206 "busy"” local process

3800 I Ommene- Oemnmiens Ommemse (= p=
3400-]

3000
2600
2200

18006 . .
1400 busy’ global process

10006 —

e -\-_ "empty" global process
-

400
300

200
1004 empty"” local process

s0— -

T T T
4 10 20 50 100
Number of started processes

Figure 16: Cost starting local and global processes

may be used.

tuitive model of parallelism, which is soundly based on
the theory of CSP. As usual for modern programming
languages, Modula-P supports programming “in the
small” as well as “in the large”, and frees the program-
mer from details allocating hardware resources. Mea-
surements show that the system running on a Trans-
puter network is very fast.

Acknowledgements

Thanks to the students Markus Armbruster, Claas
Hinrichs, Jens Hubel, and Jurgen Richter who did
parts of the implementation.

References

[1] Ada. Reference Manual for the Ada programming lan-
guage (ANSI / MIL - STD 18154). 1983.

14 MOCKA-P

MOCKA-P'" is the name of Modula-P Transputer
development system [11]. Tt is based on the Modula-2
system MOCKA developed at GMD. The entire sys-
tem 1is written in Modula-2 and Modula-P and some
lines of Transputer assembly language. MOCKA-P
consists of the Modula-P compiler mpce, which gener-
ates T800 symbolic code. The assembler astra which
generates T800 binary code. It has a procedural inter-
face used by the code generator and a textual inter-
face for hand written assembler programs. The linker
litra links the binary object files and produces an ex-
ecutable Transputer program. FEzira initializes the
Transputer network, loads the executable code, and
performs all input / output to the host computer and
operating system (UNIX). Fztra runs on the host com-
puter and is active as long as the Transputer program
runs. Errors messages from the compiler are presented
together with the source text. An important role plays
MOPS, the Modula-P Operating System. Automatic
(re)compilation of all modules is controlled by Merlin.
The Modula-P debugger mpdb allows it to observe and
debug a program running on a network of Transputers.

The compiler, assembler, linker run as a cross sys-
tem on different UNIX platforms, while the Modula-P
program is executed on our Transputer board which
is plugged into a UNIX workstation.

15 Future Work

Future work mainly concerned with optimizing the
agent model, and porting it to the new Transputer
T9000. A non-Transputer based system is under de-
velopment.

16 Summary

The programming language Modula-P and the de-
velopment system MOCKA-P offer a very powerful
programming environment for Transputer-based par-
allel computers. The programmer gets a clear and in-

1 Modula-P Compiler KArlsruhe

[2] P. Brinch Hansen. Joyce language report. Software—
Practice and Ezperience, 19(6):553-578, June 1989.

[3] M. Collado, R. Morales, and J.J Moreno. A modula-2
implementation of csp. ACM SIGPLAN NOTICES,
pages 25-38, June 1987.

[4] C.A.R Hoare. Communicating Sequential Processes.
International Series in Computer Science. Prentice—
Hall, Inc., 1985.

[5] Ralf Hoffart. Ubersetzung einer parallelen Pro-
grammiersprache fiir ein verteiltes Rechnersystem —
Modula-P auf Transputernetzwerken. Master’s the-
sis, Universitat Karlsruhe, March 1991.

[6] INMOS, editor. occam Programming Manual. Pren-
tice—Hall, Inc., 1984.

[7] INMOS, editor. The Transputer instruction set - a
compiler writers’ guide. Prentice—Hall, Inc., 1988.

[8] Mehdi Jazayeri, Carlo Ghezzi, Dan Hoffman, David
Middleton, and Mark Smotherman. CSP/80 a lan-
guage for communication sequential processes. IEEE
Compcon, 1980.

[9] Perihelion, editor. The helios operating system. Pren-
tice-Hall, Inc., 1989. Perihelion Software Ltd.

[10] Andrew S. Tanenbaum. Computer Networks. Pren-
tice-Hall, Inc., 2nd edition, 1989.

[11] Jirgen Vollmer. Kommunizierende sequentielle Pro-
zesse in Modula-2; Entwurf und Implementierung
eines Transputer — Entwicklungssystems. Master’s
thesis, Universitat Karlsruhe, May 1989.

[12] Jurgen Vollmer. Modula-P, a language for parallel
programming. Proceedings of the First International
Modula-2 Conference October 11-13, 1989, Bled, Yu-
goslavia, pages 7579, 1989.

[13] Niklaus Wirth. Schemes for multiprogramming and
their implementation in modula-2 — revisions amd
amendments to modula-2. ETH Zirich, Institut fur
Informatik, 1984.

[14] Niklaus Wirth. Programming in Modula-2. Springer
Verlag, Berlin, Heidelberg, New York, Tokyo, third,
corrected edition, 1985.

[15] K.L. Wrench. CSP-i: An implementation of commu-

nicating sequential processes. Software—Practice and
Ezperience, 18(6):545-560, June 1988.

