Experiences with Gentle:

Efficient Compiler Construction Based On Logic Programming’
Jurgen Vollmer

June 7, 1991

GMD Research Group at the University of Karlsruhe,

Vincenz—PrieBnitz—Strafle 1, D-7500 Karlsruhe 1

email: vollmer@karlsruhe.gmd.de, Phone: +/49/721/6622-14

Abstract

Gentle [Schroer 89] is a compiler description language

Gentle

Compilation is often viewed as a process translating

in the tradition of two level grammars [Koster 71] and
logic programming [Warren 80]. It provides a com-
mon declarative notation for high level description

the source text into a sequence of intermediate lan-
guages, until the desired output is synthesized. These
intermediate languages may be viewed as terms, and

of analysis, transformation, and synthesis. Tmpera-
tive comstructs like global variables and dynamic ar-
rays, needed for efficient compiler construction, are
introduced as well. A tool has been implemented to
check the wellformedness of Gentle descriptions, and
to generate very fast (generation speed 260.000 lines
per minute) very efficient compilers (compilation speed
nearly 90.000 line per minute on Dec 3100 worksta-
tion). The language and a supporting tool were de-
signed and implemented by F.W. Schroer in 1989.

Logic Programming and Compiling
Using logic programming as a compiler—writing tool
has a long tradition. [Warren 80] shows how Prolog
may be used for this purpose and writes:

To summarize, Prolog has the following ad-
vantages as a compiler—writing tool:

1. Less time and effort is required.
2. There is less likelihood of error.
3. The resulting implementation is easier to

‘maintain’ and modify.

The practicability of Prolog for compiler writing “de-
pends on how efficiently Prolog itself 1s implemented”.
About the way this could be done [Warren 80] states:

It is likely that most of the improvement will
be attributable to a few relatively simple but
heavily used procedures (e.g. lexical analysis,
dictionary lookup), and so a mixed langnage
approach may be an attractive possibility. An
alternative view (which I favour) is to look for
more sophisticated ways of compiling special
types of Prolog procedure, guided probably by
extra pragmatic information provided by the
Prolog programmer.

The language Gentle, presented in this paper, uses both
ways to improve the execution speed of the generated
compiler. Gentle uses dynamic programming to over-
come restrictions imposed by this approach. This tech-
nique is not discussed here.

Ipublished in Proceedings of the Third International Sym-
posium on Programming Language Implementation and Logic
Programming — PLILP 1991, Springer 1991, Lecture Notes in
Computer Science Nr 528, pp 425-426

Gentle offers a simple and efficient way to transform
these terms. These transformations are described in a
declarative way using predicates. Besides the specifica-
tion of terms and rules transforming them, the concrete
syntax of the context free source language is declared
using the same declarative notation. Due to the special
nature of the task Horn logic as Genile’s foundation is
modified in several ways:

e (entle is a typed language. Term type declara-
tions are used to specify terms. Predicates have
a typed signature. The type of local variables
1s derived from the context in which they occur.
Global variables are declared explicitly together
with their types. For example:

-- term declaration

EXPR = const (INTEGER), var (IDENTIFIER),
binary (0P, EXPR, EXPR).

0P = plus, minus, mult, div.

-- external type declarations

"TYPE’ IDENTIFIER.

-- context free grammar predicate signatures

>TOKEN’ Identifier (-> IDENTIFIER).

"TOKEN’ PLUS.

"NONTERM’ Expression (-> EXPR).

-- term transformation predicate signatures

’ACTION’ CodeExpr (EXPR -> REGISTER).

>CONDITION’ get_meaning (IDENTIFIER->0BJECT).

-- local variables in a clause

CodeExpr (Expr -> ResultReg)

-- global variable / table declaration

"VAR’ INT Level.

>TABLE’ NODE_ATTRIBUTES Graph [NODE].

e The data flow inside the predicates is fixed. In
a clause, the parameters left form the arrow ->
are input parameters, those right of it are output
parameters,

o The notion of a variable is more like that of func-
tional languages.

e Several kinds of predicates are offered for different
jobs during compilation. The context free gram-
mar is specified using ’TOKEN’ and ’NONTERM’
predicates. A parser generator is used to generate



a parser out of the context free grammar specified

A compiler for a subset of a Pascal like language,

by the nonterm clauses.

called MiniLaz and with target processors M68k

Term transformation is specified by >ACTION’ and
>CONDITION’ predicates. Action and condition

and VAX. The Gentle specification consists of 896
lines for the front—end and 534 lines for the code

predicates transform their input terms into out-
put terms. Side effects (like writing to a file or a
global variable) may be caused by them. Action
predicates are used as an assertion a transforma-
tion must fulfill, while a condition predicate is used
to test terms for the given condition.

generator.

e In the ESPRIT project Rex a specification lan-
guage for time critical, distributed systems was
designed and is currently implemented.

e A compiler for a functional-logic language called
guarded term ML is currently under development.

-- a grammar clause
Expression (-> var (Id)) :
Identifier (-> Id).
Expression (-> binary (plus, Left, Right)) :
Expression (-> Left)
PLUS
Expression (-> Right).
-- an action clause
CodeExpr (const (N) -> ResultReg):
GetNewReg (-> ResultReg)
EmitCode (load_constant (N, ResultReg)).
-- a condition clause
Is8bit (N) :
LessEqual (-128, N) LessEqual (N, 127).

e Backtracking is restricted, such that once a tail of
a clause has been proven completely, all alterna-
tives for that clause are discarded.

The price one must pay is that the Gentle proof proce-
dure is not complete, but a more efficient implementa-
tion is possible. Our experience shows that the full
power of the Prolog backtracking mechanism is not
needed for compiler writing.

Compilers have to maintain global data, like symbol ta-
bles, or must deal with graphs, like basic block graphs,
used for optimization. For an efficient implementation
of these kinds of data, Gentle offers global variables
and global tables, which are something like dynamic
growing arrays in imperative languages.

-- creation of a new table entry

new (-> Node) : ’KEY’ NODE Node.

-- read / write access of a table entry
Graph [Root] -> node (Info, Succl, Succ2)
Graph [Root] <- node (Info, Succl, Succ2)

Access to procedures implemented in other languages
is possible. As a result Genile is a mixture of declar-
ative (backtracking, notation), functional (variables,
fixed data flow) and imperative (global data, exter-
nal procedures) features, which is well suited specifying
compilers at a very high level of abstraction.

Measurements
Several projects are implemented using Gentle. Some
of the important ones are:

e A program transformation tool for object oriented
languages, which translates 7Trellis programs to
C++. The specification consists of 6000 lines of
Gentle program and external C++ code for the
lexical analyzer.

As target processor a M68k 1s used.

e An industrial compiler for an object oriented lan-
guage.

e (entle itself is implemented with Gentle.

The followings table shows the generation speed of the
Gentle tool and the compilation speed of the generated
compiler. The times are measured on a Dec siation
3100 (MIPS processor) using the UNIX time command
(user time). The average of three runs is given. The
generated C programs are compiled using the optimiza-
tion capability of the C compiler.

For the Generation measurement, the Gentle tool gen-
erates itself. The specification consists of 3939 lines
of Gentle program and 405 line Gentle library. Out-
put are 4861 lines of C program, 1455 lines input for
the parser generator and 30 lines auxiliary input to
the scanner and parser generator. For the Compilation
measurement, the generated MiniLaz compiler com-
piles a 8055 line input program and generates a 58.718
lines of M68k assembler text.

time (sec) | lines per minute

Generation 1,0 260.640

Compilation 5,4 89.499
References

[Koster 71] C.H.A Koster. Affix grammars. In J.E.L
Peck, editor, ALGOL 68 Implementation,

pages 95-109. North Holland, 1971.

[Schroer 89] F.W. Schroer. Gentle. In J. Grosch, F.W.
Schroer, and W.M. Waite, editors, Three
Compiler Specification, GMD — Studien
Nr. 166, pages 31-36. GMD, Forschungs-

stelle an der Universitat Karlsruhe, Au-

gust 1989.
[Vollmer 91]

Jurgen Vollmer. A tutorial on gentle.
Arbeitsberichte der GMD Nr 508, GMD,
German National Research Center for
Computer Science, Vincenz—Prieinitz—
Strafle 1, D-7500 Karlsruhe-1, February

1991.

[Warren 80] David H.D. Warren. Logic programming
and compiler writing. Software—Practice

and Ezperience, 10:97-125, 1980.



