
The Compiler Construction System

GENTLE

� Manual and Tutorial �

J�urgen Vollmer

GMD Research Group at the University of Karlsruhe

Vincenz�Prie�nitz�Stra�e �� D���		 Karlsruhe �

email� vollmer�karlsruhe�gmd�de

Phone� �����	
����

��

August
�� ���

Revision �
�

Updated edition of Arbeitsberichte der GMD Nr� ���� Februar ����

�

Abstract

Gentle de�ned by F�W� Schr�oer �Schr�oer ��� is a compiler description language in the tradition of logic program	
ming �Clocksin et al �
� and two level grammars �Fisker et al ��
 Koster ��
 Watt �
�� It provides a common
notation for high level description of analysis
 transformation
 and synthesis� A tool has been implemented to
check the wellformedness of Gentle descriptions
 and to generate e�cient compilers� Gentle replaces a variety
of special purpose languages by a general calculus� Horn logic�
The language
 a programming environment
 and a tutorial are presented in this paper�

Contents

� Gentle Language Reference Manual �
��� Introduction �

��� A simple example �

����� Types
 terms
 and action predicates �

����� Grammar speci�cation
 token
 and nonterminal predicates � � � � � � � � � � � � � � � � � � �

��� Introduction of other Gentle constructs �
����� Global variables and condition predicates �
����� Dynamic global tables �
����� Escapes from Gentle� opaque types
 and external predicates � � � � � � � � � � � � � � � � � �

��
 How things work �
��� Syntax and semantics of Gentle �

����� Keywords
 identi�ers
 and name scopes �
����� Comments �
����� Modules ��
����
 Type declarations ��
����� Terms and pattern matching ��
����� Predicate signatures ��
����� Clauses ��
����� Literals ��
����� Local variables ��
������ Formal and actual parameters ��
������ Predicates ��
������ Global variables ��
������ Side e�ects in Gentle ��

��� Printing terms ��
��� The structure of a compiler speci�cation ��
��� Gentle versus Prolog ��

����� Prolog ��
����� The Gentle proof procedure ��
����� Optimized uni�cation ��

� The Gentle Programming Environment User Manual ��
��� Introduction ��
��� Directory structure of Gentle ��
��� How to get an executable compiler ��
��
 What �les are needed for a complete target speci�cation ��
��� The Make�le generator ��
��� The MAIN procedure ��
��� Executing the target system �

��� The scanner speci�cation �

��� The generated parser ��
���� Generated C code ��

������ Terms and pattern matching ��
������ Action and condition predicates ��

�

� CONTENTS

���� Writing your own external predicates ��
������ Printing of opaque values ��

���� The library ��
������ The IO module ��
������ The IDENTS module ��
������ The ERRORS module ��
�����
 The STRINGS module ��
������ The MATH module �

������ The BOOLEAN module ��
������ The ARRAYS module ��
������ The STATISTICS module ��

���� The example library ��

� Writing an Interpreter Using Gentle ��
��� Introduction �
�
��� HOC Language Reference Manual �
�

����� Expressions �
�
����� Statements and Control Flow �
�
����� Input and Output� read and print �
�
����
 Functions and Procedures �
�
����� Examples �
�

��� An integer expression interpreter
 Hoc�

����� The scanner �

����� The Gentle speci�cation �
�
����� Other work �
�
����
 Generating and running the Hoc� interpreter �
�

��
 A �oating point expression interpreter
 Hoc�
�
��
�� The scanner �
�
��
�� The Gentle speci�cation �
�

��� Using variables
 Hoc�
�
����� The scanner �
�
����� The Gentle speci�cation �
�
����� Other work ��

��� Standard procedures
 Hoc� ��
����� The Gentle speci�cation ��
����� Other work ��

��� Construct an intermediate language
 Hoc
 ��
����� The Gentle speci�cation ��
����� Other work �

��� Control �ow
 Hoc�a �

����� The scanner and parser ��
����� Interpretation of statements ��
����� Other work ��

��� Loops using cyclic graphs
 Hoc� ��
����� Other work ��

���� Procedures and functions
 Hoc� ��
������ The parser ��
������ Function and procedure call ��
������ Other work ��

A The Gentle Manual Page Entry ��

B The Hoc Manual Page Entry ��

C Syntax Summary ��

�

Preface

Gentle de�ned by F�W� Schr�oer �Schr�oer ��� is a compiler description language in the tradition of logic pro	
gramming and two level grammars� It provides a common notation for high level description of analysis

transformation
 and synthesis� Compilation is often viewed as a process translating the source text into a se	
quence of intermediate languages
 until the desired output is synthesized� These intermediate languages may be
viewed as terms
 and Gentle o�ers a simple and e�cient way to transform these terms �intermediate languages��
These transformations are described in a declarative way using predicates� Due to the special nature of the task
�describing compilers� Horn logic as Gentle�s foundation is modi�ed in several ways� Gentle is a typed language
and the data �ow inside the predicates is �xed� Several kinds of predicates are o�ered for di�erent jobs during
compilation� It is restricted compared to Prolog in its backtracking behaviour and its pattern matching rules�
Besides the speci�cation of terms and rules transforming them
 the concrete syntax of the context free source
languages is declared using the same declarative notation� This grammar speci�cation is used to generate a
parser for the language� Output of the system is generated by side e�ects caused by predicates�
A tool� has been implemented that checks the wellformedness of a Gentle speci�cation and generates very fast
compilers� The language Gentle and a supporting tool were designed and implemented by F�W� Schr�oer in
���� and published in �Schr�oer ���
 which is a comparison study of three compiler generation tools� Starting
from Schr�oer�s �rst implementation of a Gentle tool
 the Gentle programming environment using the scanner
generator rex �Grosch ��� the parser generator lalr �Vielsack ��� �instead of the initially used yacc� has been
implemented� It provides a library containing often used predicates� better error handling etc� has been
implemented� Measurements of the speed of Gentle and the generated programs are given in �Vollmer ��b��
The paper is structured in the following way� First in chapter � the Gentle language is presented� The next
chapter gives the user manual and a description of the library� Chapter � is a tutorial of Gentle implementing
a program interpreter� The appendix contains the UNIX manual page entry for the usage of the Gentle tool

and a Gentle syntax summary�
Finally
 I want to express my special thanks to FriWi Schr�oer�

�The current version of Gentle is� ��� August ��� 	���

Chapter �

Gentle Language Reference Manual

��� Introduction

The chapter is structured in the following way� First in section ��� a simple Gentle speci�cation is presented

which solves constant folding� Section ��� informally introduces the other languages constructs� Section ��

gives some general information� The next section de�nes Gentle� In section ��� it is shown how a typical target
speci�cation looks like� In section ��� Gentle is related to Prolog� The Gentle syntax is summarized in the
appendix C�

��� A simple example

����� Types� terms� and action predicates

This simple example shows the methods of Gentle to describe a term transformation
 which is the main point
of Gentle� The exercise is to fold constants
 i�e� to evaluate integer expressions during compilation as far as
possible� The example source language consists of binary integer expressions
 identi�ers for integer variables

and integer constants�
These integer expressions are represented as Gentle terms� In Gentle
 all terms are explicitly typed� Here the
type of those terms is called EXPR
 which may be either a constant
 an integer variable
 or a binary operation on
EXPR terms� The integer constants are represented by terms of type INT and identi�ers by terms of type IDENT

which are declared in the Gentle library� Terms of type OP denote the kind of the operation�

EXPR � const �INT�� �� integer constants

var �IDENT�� �� access of an integer variable

binary �OP� EXPR� EXPR��

OP � plus� minus� mult� div�

Terms are formed using functors
 terms and term variables in the usual way� The type of the term variable is
derived from its context�
The source expression a � � is represented by binary �plus� var �a�� const ����� In the terms const�N�
and binary �plus� X� Y�
 the term variables are N�X�Y� plus is just a term
 having no sub�terms� Such terms
are called constant terms� a
 � are constant terms of type IDENT and INT
 respectively�
The term transformation is speci�ed by predicates� As usual a predicate is de�ned as a disjunction of Horn
clauses� clause� � � �clausen� A clause has a head and a tail� The tail is a possibly empty list of literals� The
head and each literal may have input and output parameters
 partioned by the arrow symbol
 which specify the
data �ow of the parameters�

head�inputh �� outputh� 	 literal� �input� �� output��

� � �
literalm �inputm �� outputm��

Such a clause is an implication
 where the hypothesis is formed as a conjunction of tail literals
 and the conclusion
is given by the head� For each literal there must be a head of a clause with the same name� This implication

���� A SIMPLE EXAMPLE �

may be read as �if literal� is true and literal� is true � � �then that clause is true�� The entire predicate is
true
 if at least one of its clauses is true�
The process of term transformation may be viewed as the proof of a predicate� If a proof exists
 the input�output
relation holds
 or with other words� the input term is transformed to the output term�
The task of our example is to evaluate statically as much of an expression as possible� Input is an expression tree
�i�e� term�
 which should be transformed again into an expression tree �i�e� term�� For example� a � �� � ��

is represented as� binary �plus� var �a�� binary �plus� const���� const ����� should be transformed
to a�� or binary �plus� var �a�� const ����� The idea for solving this problem is �rst to fold the children
of the binary term and then to apply the operator to the folded child terms� The predicates below specify this�

ACTION
 fold �EXPR �� EXPR��

fold �const �N� �� const �N��	�

fold �var �X� �� var �X��	�

fold �binary �Op� E�� E�� �� Result�	

fold �E� �� R��

fold �E� �� R��

eval �binary �Op� R�� R�� �� Result��

ACTION
 eval �EXPR �� EXPR��

eval �binary �plus� const �N��� const �N��� �� const �N�
 N���	�

eval �binary �minus� const �N��� const �N��� �� const �N� � N���	�

eval �binary �mult� const �N��� const �N��� �� const �N� � N���	�

eval �binary �div� const �N��� const �N��� �� const �N� � N���	�

eval �E �� E�	�

Gentle keywords are �enclosed� by apostrophes to distinguish them from Gentle identi�ers� For each predicate
a signature is declared
 specifying the predicate name
 the type of input and output terms
 and the kind of the
predicate
 here action predicates� Both predicates have EXPR terms as input and output parameters� The fold

predicate speci�es some kind of recursion over terms� The �rst two fold clauses are the base of that recursion

and mean that constants and variables are not changed� The type of the term variables N and X derived from
the context are INT and IDENT respectively� Note that the tails of these clauses are empty� The third fold

clause folds the child terms E	� E
 of binary and passes the result terms as parameter to the eval predicate�
Which of the clauses is selected depends on the form of the input term� This selection is performed by matching
the actual and formal parameters of the predicate� For example if the input term of the eval predicate has the
form binary �plus� const �N	�� const �N
�� then the �rst eval clause is selected
 and the output term
has the form const �N	 � N
�� If the term has a form
 not so speci�c as given in the �rst four eval clauses

the last clause matches always
 because the term variable E matches with all kinds of EXPR terms�
For some term types
 the so called opaque types
 Gentle interprets the terms as integers
 and provides integer
arithmetic on them� In the term N	 � N
 above
 the fact that N	 and N
 are term variables of the opaque type
INT
 is derived from their context� Hence
 N	 � N
 is interpreted by Gentle as an integer expression with integer
variables� When this term is processed
 the integer value of N	 � N
 is computed and used as a constant term
of type INT�

����� Grammar speci�cation� token� and nonterminal predicates

Now the question arises
 how the terms are constructed initially
 or the other way round
 what is the input of
that constant folding program� As said before
 a Gentle speci�cation uses a context free grammar to describe
the input language of the target program� When a sentence of the input language is read �parsed�
 an internal
representation of the sentence is constructed� The context free grammar and the construction process are
speci�ed also using terms and predicates�
Two new kinds of predicates for specifying the grammar are introduced� token predicates and nonterminal
predicates� Both predicate kinds may have at most one output parameter and no input parameters� The tokens
are �produced� by a scanner implemented outside of Gentle
 hence there are no clauses for token predicates�
The clauses of the nonterminal predicate may be read as production rules of the context free grammar� When
such a production rule is reduced by the parser
 the action predicates following the tokens or nonterminals of
the production�s right hand side
 and the term construction of the output parameter are performed� For the
example above the grammar speci�cation looks like�

� CHAPTER �� GENTLE LANGUAGE REFERENCE MANUAL

TOKEN
 PLUS�

TOKEN
 MINUS�

TOKEN
 MULT�

TOKEN
 DIV�

TOKEN
 LEFTPAR�

TOKEN
 RIGHTPAR�

TOKEN
 NUMBER ��� INT��

TOKEN
 IDENTIFIER ��� IDENT��

NONTERM
 Root�

Root 	 Expr ��� E�

print�EXPR �E�

fold �E �� FoldedExpr�

print�EXPR �FoldedExpr��

NONTERM
 Expr ��� EXPR��

Expr ��� E� 	 Term ��� E� �

Expr ��� binary �plus� E�� E��� 	 Expr ��� E�� PLUS Term ��� E�� �

Expr ��� binary �minus� E�� E���	 Expr ��� E�� MINUS Term ��� E�� �

NONTERM
 Term ��� EXPR��

Term ��� E� 	 Factor ��� E� �

Term ��� binary �mult� E�� E��� 	 Term ��� E�� MULT Factor ��� E�� �

Term ��� binary �div� E�� E��� 	 Term ��� E�� DIV Factor ��� E�� �

NONTERM
 Factor ��� EXPR��

Factor ��� const�N��	 NUMBER ��� N� �

Factor ��� var�X�� 	 IDENTIFIER ��� X� �

Factor ��� E� 	 LEFTPAR Expr ��� E� RIGHTPAR �

Root is the root symbol of the context free grammar� The Root clause may be read as �parse an expression

print it
 fold it
 and print the folded expression�
 where the print EXPR predicate is de�ned at another place�

��� Introduction of other Gentle constructs

����� Global variables and condition predicates

First global variables and another kind of predicate are presented� Global variables make it easy to maintain
global information for example a list of all identi�ers
 used in a program� The following program fragment
de�nes such a list of identi�ers having type IDENTS�
Using �VAR� declares a global variable
 having the type IDENTS and name AllIdents� A value is assigned to a
global variable using the special predicate Variable �
 Term while the value is used by Variable
� Term or
writing the variable on a using position�
The action predicate Insert inserts an identi�er into that list
 only if it is not already contained in it� A
condition predicate is used to test a condition over terms it may fail
 or succeed� Action predicates are not
allowed to fail� If IsContained fails
 when called from the �rst Insert rule
 the second Insert rule is tried

which does the actual inserting� Or more general
 if in clause C of predicate P the call of a tail predicate P�
fails
 the entire clause C fails
 and the next clause of P is tried� If there is no next clause of P
 then P itself fails�

IDENTS � idl �IDENT� IDENTS�� nil �

VAR
 IDENTS AllIdents�

ACTION
 Insert �IDENTS� IDENT��

Insert �Ids� Id�	 IsContained �Id� AllIdents� �

Insert �Ids� Id�	 AllIdents �� idl �Id� Ids� �

CONDITION
 IsContained �IDENT� IDENTS��

IsContained �Id�� idl �Id�� Ids��	 Equal �Id�� Id�� �

���� INTRODUCTION OF OTHER GENTLE CONSTRUCTS �

�� When condition Equal succeeds� IsContained succeeds�

IsContained �Id�� idl �Id�� Ids��	 IsContained �Id�� Ids� �

�� When condition IsContained �of the tail� succeeds� IsContained succeeds�

�� If the empty list �nil� is reached� the predicate fails� because

�� there is no rule for that case�

����� Dynamic global tables

A generalization of global variables is the global table concept� A global table is something like an array in
common imperative languages
 except
 that space for entries is provided dynamically� Entries of the table are
accessed using a key�
This concept may be used to represent graphs with Gentle
 which is not possible using terms only� The following
example
 shows a graph marking algorithm to compute a minimal spanning tree for a graph and a given root
node� The graph is represented as a table of nodes
 each node is a tuple
 consisting of a mark �eld
 a �eld for
the information stored in the graph
 and a �eld for each successor� The number of successors of a node has a
�xed upper bound �in this example four�� The following program fragment shows the usage of the language
constructs�

NODEATTR �

node �Marked 	 BOOLEAN� �� true	 marks a node as visited

Info 	 INFO� �� user defined information

Succ� 	 NODE� Succ� 	 NODE� Succ� 	 NODE� Succ� 	 NODE��

nil �� represent the ��empty

 successor

�

TABLE
 NODEATTR Graph �NODE��

MST � �� terms constructing the minimal spanning tree

mst �Info 	 INFO� Succ� 	 MST� Succ� 	 MST� Succ� 	 MST� Succ� 	 MST��

nil

�

ACTION
 new ��� NODE��

�����������������������

new ��� Node� 	
KEY
 NODE Node�

ACTION
 define �NODE� INFO� NODE� NODE� NODE� NODE��

���

define �Node� Info� Succ�� Succ�� Succ�� Succ�� 	

Graph �Node� �� node �false� Info� Succ�� Succ�� Succ�� Succ��

�� the node is marked as �unvisited�� i�e� with the term �false�

�

ACTION
 ComputeMst �NODE �� MST��

����������������������������������

ComputeMst �nil �� nil�	 � �� this node is the empty node

ComputeMst �Root �� nil�	 �� this node is marked

Graph �Root� �� node �true� Info� Succ�� Succ�� Succ�� Succ��

�

ComputeMst �Root �� mst �Info� Mst�� Mst�� Mst�� Mst���	 �� this node is unmarked

Graph �Root� �� node �false� Info� Succ�� Succ�� Succ�� Succ��

Graph �Root� �� node �true� Info� Succ�� Succ�� Succ�� Succ��

�� mark this node and call �ComputeMst� for all children

ComputeMst �Succ� �� Mst��

ComputeMst �Succ� �� Mst��

ComputeMst �Succ� �� Mst��

ComputeMst �Succ� �� Mst��

� CHAPTER �� GENTLE LANGUAGE REFERENCE MANUAL

ComputeMst �Succ� �� Mst��

�

The global table Graph is declared using �TABLE�� The terms contained as table entries have the type NODEATTR�
Space for a new entry is created using the special �KEY� literal
 where the local variable Node holds the resulting
key
 which is used for accessing entries of the table� A table entry access is done in the same way as it is done
for global variables
 except that after the table name the key is given�

����� Escapes from Gentle� opaque types� and external predicates

Each programming language needs access to the underlying operating system
 for example performing input
and output� Some languages provide special language constructs
 others not� Gentle uses this second way�
Gentle o�ers so called external �action and condition� predicates
 which are implemented in another programming
language
 usually C� A Gentle speci�cation needs only to know the predicates signature�
Another escape is needed to use data entities
 like �oating point numbers
 unique identi�cations for program
identi�ers
 etc�
 which are not provided by Gentle� To solve this
 opaque types may be declared� The user has
to de�ne the meaning of opaque values
 by predicates dealing with them�
The Equal condition above is such an external predicate
 comparing two identi�ers
 which are opaque values�
The opaque values representing identi�ers are usually computed by the scanner�

��� How things work

This section gives some general information how the Gentle tool is used� As Gentle is used for the generation of
programs
 which analyse and transform texts �for example compilers
 interpreters
 text analysis� the input to the
generated program is a stream of tokens
 which is constructed by a scanner� Output or e�ect of the generated
program
 which is sometimes called the target program
 may be a �le containing assembler instructions
 or
interactively interpretation of the input
 or a transformed text �for examples see section ������
A Gentle speci�cation consists of mainly two parts� The accepted input language is speci�ed by a context free
grammar and rules are specifyed how the internal representation of that input should be transformed to produce
the desired output� The grammar rules are annotated in some way to construct that internal representation�
When the generated program is started
 �rst it parses the entire input and constructs the internal representation�
second the transformations are performed to produce the output
 starting with the actions speci�ed at the root
symbol of the grammar�
The parser is generated out of the grammar given in a Gentle speci�cation� For that purpose parser generators
like yacc or lalr �Vielsack ��� are used� The user of Gentle is not bothered with that� But the scanner must be
written by the user� Scanner generation tools like lex or rex �Grosch ��� may be used� Gentle produces several
kinds of output� input for scanner and parser generator tools and C programs� Compiling and linking them
together results in a program solving the speci�ed problem�
A Gentle speci�cations may be separated into several modules
 each contained in a separate �le� A library of
common used predicates exists �see section ������

��� Syntax and semantics of Gentle

This section de�nes the syntax and the static semantics of Gentle� The syntax is described in extended BNF��

�

construct meaning

�
 � is a non�keyword terminal symbol
��
 the part between the brackets is optional
��� the part between the parentheses is a unit
���� a nonempty sequence of ��s separated by ��s
�� any number of ��s
�� one or more ��s
�� � then �
�j� either � or �

���� SYNTAX AND SEMANTICS OF GENTLE �

����� Keywords� identi�ers� and name scopes

The following keywords are used by Gentle�

MODULE

TYPE

VAR

TABLE

TOKEN

NONTERM

ACTION

CONDITION

KEY

Notice
 the apostrophes surrounding the letters
 belong to the keyword�
Identi�ers are sequences of letters
 digits
 and the underscore character� The �rst character must be a letter�
Capital and lower case letters are considered distinct� Like Prolog Gentle distinguishes between identi�ers
starting with a capital letter and a lower case letter� As a summary� names
 whose �rst letter is a capital are�
type names and variable names� Names beginning with a lower case letter are� functor names� Names which
may start with both lower and upper case letters are� predicate names
 module names�

LargeIdent 		� � �A� � ��� � �Z� � �letter � digit�� �

SmallIdent 		� � �a� � ��� � �z� � �letter � digit�� �

Identifier 		� LargeIdent � SmallIdent �

letter 		� �A� � ��� � �Z� � �a� ��� �z� � ��� �

digit 		� ��� � ��� � ��� �

Examples�

isEqual match patterns �

Identi�ers and keywords are separated by blanks
 line breaks
 and the following special symbols�

�� �� 	 � � � � � � �� �� ��
 � � � � �

Gentle provides three di�erent global and several local name spaces� The names in one global space must be
unique in the entire Gentle speci�cation �i�e� in all used modules�� Names in a local name space must be unique
in that local name space� The actual meaning of an identi�er is derived from its context�
The following rules for names must be observed�

� All predicate names form a global name space�

� All global variables names form a global name space�

� All type names form a global name space�

� All functor names of one type declaration form a local name space for that type�

� All local variables of a clause form a local name space for that clause� Each local variable name space
must be disjoint to the global variable name space
 i�e� local variable names must be di�erent from all
other global variables names�

Identi�ers may be used
 before they are declared�

����� Comments

There are two kinds of comments in a Gentle speci�cation�

�� starts a single line comment and

�� starts a �� possibly nested �� comment� which may range

over several lines ��

�� CHAPTER �� GENTLE LANGUAGE REFERENCE MANUAL

����� Modules

A Gentle speci�cation may be separated into several modules� Each module is contained in a separate �le� There
are two restrictions� All tokens must be declared in the same module� the context free grammar must appear in
one module� All modules processed by the Gentle tool �see chapter �� form together the problem speci�cation�
An identi�er declared in one module is visible in in all other processed modules �in the corresponding name
space��
A Gentle module consists of declarations� predicate signatures
 and clauses�

Gentle�Spec 		�
MODULE
 Identifier ModuleBody �

ModuleBody 		� �Declaration � Signature � Clause �� �

����	 Type declarations

There are two groups of declarations� First the declaration of types of terms
 second the declaration of global
variables �see section ��������

Declaration 		� TermTypeDecl � OpaqueTypeDecl � GlobalVarDecl � GlobalTableDecl �

A type declaration has the form�

TermTypeDecl 		� Type ��� FunctorList ��� �

Type 		� LargeIdent�

FunctorList 		� � Functor � Functor ��� Arguments ��� � �� ��� �

Functor 		� SmallIdent�

Arguments 		� Argument �� ��� �

Argument 		� �LargeIdent �	� � Type �

Examples�

Expr � binary �OP� Left 	 EXPR� Right 	 EXPR�� const �INT�� var �IDENT��

OP � plus� minus� mult� div�

Type of Argument may be any other declared type� The functor identi�ers are local in a type declaration and
must be unique there� The LargeIdent in Argument is used only for documentation purposes� These rules
may be viewed as a context free grammar describing typed values
 which are called terms� Functors having no
arguments are called constant terms�
Another kind of values are opaque values
 whose types are declared using�

OpaqueTypeDecl 		�
TYPE
 Type ��� �

Examples�

TYPE
 IDENT � �� represent identifiers

TYPE
 INT � �� represent integers

TYPE
 STRING� �� represent strings�

Values of an opaque type are constant terms� For example the scanner returns a token which has an attribute
specifying the value of an integer or an identi�er�
The meaning and operations on opaque values are usually declared outside of Gentle� Gentle accepts integer
and string constants as values of opaque types� Strings are used in a C like style
 the escaping conventions of
C are recognized�

IntConst 		� digit
 �

StringConst 		� ��� Char � ��� �

Char 		� �any �escaped� character� except � and line break� �

Simple arithmetic ��
 	
 �
 �� may be done on opaque values� The user has to ensure �outside of Gentle� in
this case that the values represent entities
 for which these operations are de�ned� Gentle does not provide any
operations on string constants�

���� SYNTAX AND SEMANTICS OF GENTLE ��

Examples�

�Hello �t world �n� �� �t	 tab character� �n	 newline

�
 �� � X� �� X is an variable of type INT�

����� Terms and pattern matching

A simple term is constructed in the following way�

If f�T�� � � � � Tn� is a functor of type T� and X�� � � � � Xn are terms of types T�� � � � � Tn
 then
f�X�� � � � � Xn� is a term of type T�� A variable of type T� is also a term of type T� �the types
of variables are derived from the context
 i�e� the position in the term it occurs��

A term not containing variables is called a ground term�
Examples�

binary �plus �const ���� Y�� �� Y is a variable of type EXPR�

binary �plus �const ���� const ����� �� is a ground term

Pattern matching of two terms plays a central role in parameter passing� One of the terms is always a ground
term� The pattern matching process tries to make both terms equal
 by assigning corresponding subterms of
the ground term to variables of the other term� The pattern matching procedure may fail
 if it is impossible to
�nd such subterms� The corresponding terms are assigned to variables
 if the procedure succeeds�
The pattern matching algorithm is�

PROCEDURE match �s� t � terms� 	 BOOLEAN

�� Only t may contain variables� which have to be disjoint� s is a ground term�

IF t is a variable X
THEN X �� s� RETURN TRUE �� report success

END IF

IF s � f �s �� � � � � s n�� t � g �t �� � � � � t n� AND f and g denote the same functor symbol

THEN apply procedure match to the pairs �s i� t i�� � � i � n
IF the pattern matching succeeds for all i

THEN RETURN TRUE �� report success�

ELSE RETURN FALSE �� report failure�

END IF

ELSE RETURN FALSE �� report failure�

END IF

An example is� match�binary�plus�const����const�����binary�Op�E	�E
�� succeeds and plus is assigned
to Op	� const��� to E	 and const��� to E
�
match�const����binary�Op�E	�E
�� fails�

����
 Predicate signatures

While processing an input text
 the generated program has to do several jobs� tokens must be accepted
 the input
must be parsed using tokens
 an internal representation of the text must be constructed
 and transformed to
produce an output� For these di�erent jobs
 Gentle o�ers four kinds of predicates� token� nonterminal� action
and condition predicates� Logically they are all equivalent
 but they have di�erent side e�ects
 for example
controlling the parser�
The declaration of signatures for predicates is used to specify the kind of the predicate
 and allows type checking
on terms and variables�
The syntax of signatures is�

�� CHAPTER �� GENTLE LANGUAGE REFERENCE MANUAL

Signature 		�
TOKEN
 Identifier � OutArguments � ��� �

NONTERM
 Identifier � OutArguments � ��� �

ACTION
 Identifier � InOutArguments � ��� �

CONDITION
 Identifier � InOutArguments � ��� �

OutArguments 		� ��� ���� Arguments ��� �

InOutArguments 		� ��� � Arguments � ���� Arguments ��� �

Examples�

TOKEN
 IDENTIFIER ��� IDENT��

NONTERM
 Expr ��� EXPR��

ACTION
 fold �EXPR �� EXPR��

CONDITION
 Eq�Int �INT� INT��

Notice
 token and nonterminal predicates may have only output arguments� For token predicates the type of
these output arguments is usually an opaque type� The nonterminal predicate given �rst serves as a root symbol
of the context free grammar�

����� Clauses

The body of a predicate is formed by clauses� The syntax of a clause is�

Clause 		� Head �	� Tail ��� �

Head 		� HeadLiteral �

Tail 		� TailLiteral � �

HeadLiteral 		� Identifier � ��� FormalParameters ��� � �

Examples�

Expr ��� var �X�� 	 IDENTIFIER ��� X��

fold �var �X� �� var �X��	�

For each clause with head name p there must be a predicate signature with name p
 with the same input and
output parameter types as the head� A clause with head name h belongs to a predicate p
 if h and p denote the
same identi�er�

����� Literals

The right hand side of a clause consists of literals� A literal may be a predicate name and arguments for that
predicate or an operation on global variables and tables�

TailLiterals 		� TailLiteral � �

TailLiteral 		� Identifier � ��� ActualParameters ��� � �

GlobalVarRead � GlobalVarWrite �

GlobalTableNewEntry �

GlobalTableRead � GlobalTableWrite �

Examples�

fold �binary �plus� const���� const���� �� X�

fold �binary �plus� const���� const���� �� const �N��

����
 Local variables

Variables contained in terms of a clause are called local variables or just variables� A local variable is called to
be in an input position �output position� if it is contained in a term
 which is used as input �output� argument�
The following rules must be observed
 using variables in a clause�

� Local variables are single assignment variables� When processing the clause the variable is assigned a
value only once �it is said to be de�ned��

���� SYNTAX AND SEMANTICS OF GENTLE ��

� The value of a variable may be used at several places in a clause�

� A tail variable must be de�ned textually before it is used

� A local variable is de�ned
 if it is at an
� input position of the head
 or
� output position of a tail literal�

� A local variable is used
 if it is at an
� output position of the head
 or
� input position of a tail literal�

These two rules may be abbreviated by head�V ardef � V aruse� � tail�V aruse � V ardef ��
The syntax of local variables is�

LocalVariable 		� LargeIdent�

������ Formal and actual parameters

The syntactic form of parameters is�

FormalParameters 		� Parameters �

ActualParameters 		� Parameters �

Parameters 		� � InParameters � � ���� OutParameters � �

InParameters 		� Parameter �� ��� �

OutParameters 		� Parameter �� ��� �

Parameter 		� Term �

LocalVariable � GlobalVariable �

StringConst � IntConst �

Expression Operator Expression �

Term 		� Functor � ��� ArgumentList ��� � �

ArgumentList 		� Parameter �� ��� �

Expression 		� LocalVariable � GlobalVariable �

IntConst �

�Expression Operator Expression� �

Operator 		� �
� � ��� � ��� � ��� �

In Parameter global variables may be used but not de�ned �compare section �������

������ Predicates

As Gentle is used to describe and generate text processing programs
 there must be a way to specify the input
of the generated program
 i�e� the accepted language� This language is usually speci�ed by a context free
grammar� A scanner reads the text source �le and returns a stream of tokens
 which is used by a parser to
analyze the syntactic text structure� The token and nonterminal predicates are used to specify the grammar�
While parsing a text
 usually an internal representation of that text is build� The next step is to transform
this internal representation to analyze the text� The result of this step is the output of the target program� To
specify this analysis action predicates and condition predicates are used�
The evaluation of predicates may succeed or fail� The meaning and reaction on success or failure depends on
the predicate kind�

Token and nonterminal predicates

For token predicates only the signature is speci�ed
 i�e� there is no clause
 which belongs to a token predicate�
Nonterminal predicates must have at least one clause�
The token and nonterminal predicates describe a context free grammar� The nonterminal predicate names are
read as nonterminal symbols
 the token predicate names are read as terminal symbols of the grammar� The
clauses of the nonterminals are production rules of the grammar� The tail of a nonterminal clause may contain

�
 CHAPTER �� GENTLE LANGUAGE REFERENCE MANUAL

token
 nonterminal
 and action predicates
 the action predicates must follow the token and nonterminals� The
grammar speci�ed with the token and nonterminal predicates must ful�ll the LALR��� condition �Waite et al �
��
If this condition may not be met
 some exceptions are possible
 see section ����
From Gentle�s point of view
 token and nonterminal predicates may never fail
 because failure means there is
a syntactic error
 which is handled by the generated parser� In the error case an error message is emitted and
and the syntactic error is repaired� The selection of a nonterminal clause is done by the parser using a special
parsing algorithm�
Token and nonterminals may have no input parameters and may have several output parameters
 which may be
used to construct a term representation of the parsed input� If a nonterminal clause contains action predicates

these are evaluated
 if this clause was selected by the parser
 i�e� the parser reduced this grammar rule�

Action and condition predicates

If there is no clause for an action or condition signature
 this predicate is said to be external� The body of an
external predicate must be implemented outside of Gentle
 see section �����
Action and condition predicates are evaluated using the following strategy� The predicate signature and the
clauses belonging to the signature form a procedure� These procedures have an additional boolean result

signaling success or failure of the predicate� The evaluation of a predicate is then transformed to a procedure
call� A predicate procedure call is done in two steps
 involving pattern matching� Let predicate p have formal
parameters inf � outf be called with actual parameters ina� outa� The mapping of actual parameters to formal
parameters is done using pattern matching� The formal input parameters get their values assigned
 when a
clause of the predicate is evaluated �see below�� After the call of the procedure�s body the output parameters
are matched�

call�predicate � p� 	 BOOLEAN�

call�body p�

match �outf� outa��

IF call�body AND match has been successful

THEN RETURN TRUE �� report success

ELSE RETURN FALSE �� report failure

END IF

The body of a predicate procedure p is formed by the clauses c�c� � � � cn
 numbered in their textual order� The
clauses are evaluated in that order until the �rst succeeds� If this happens
 success is reported to the caller of
the body of p� If all clauses fail
 failure is reported� In a short term� clauses are connected by disjunction� Let
the clauses of p look like�

p �in� �� out�� 	 tail� �� clause c�

� � �

p �inn �� outn� 	 tailn �� clause cn

then the evaluation of the body is done by�

call�body � p� 	 BOOLEAN�

i 	� ��

LOOP

IF i � n �� no more clauses

THEN RETURN FALSE �� report failure

END IF�

evaluate�clause �ci�

IF this was successful

THEN RETURN TRUE �� report success

ELSE i 	� i
 � �� try next clause

END IF

���� SYNTAX AND SEMANTICS OF GENTLE ��

END LOOP

The next step is to show
 how the clause c with head p and tail p� � � � pm� is evaluated� First the formal and
actual input parameters are matched� If the matching fails
 the entire clause fails
 otherwise the predicate
procedure p� is called� If the call was successful
 the predicate procedure p� is called
 otherwise failure is
reported to the caller of the clause
 and so on� If the calls of all literal procedures have been successful
 success
is reported to the caller of the clause� In a short term� tail literals are connected by conjunction� More formally
the clause evaluation looks like�

evaluate�clause � c� 	 BOOLEAN�

match �ina� inf�

IF this matching fails

THEN RETURN FALSE �� report failure

END IF�

i 	� ��

LOOP

IF i � n �� no more tail literals

THEN RETURN TRUE �� report success

END IF�

call�predicate �pi��

IF this call was successful

THEN i 	� i
 � �� next tail literal

ELSE RETURN FALSE �� report failure

END IF

END LOOP

Two assumptions for the pattern matching are made here� �rst
 that the actual input term is a ground term
before calling the procedure and second that the formal output parameter on return from the call is a ground
term� These assumptions are ful�lled
 because the way variables may be used in a clause �see section ������

and the fact that terms constructed during parsing are ground terms�
Action and condition predicates di�er only in their behaviour in the case of failure� An action predicate is used
in situations
 where it is �obvious� that the term transformation may not fail� Hence an action predicate is not
allowed to fail
 because this failure points to a design error in the speci�cation� If it fails in spite of that
 the
target program aborts printing an error message�
Condition predicates are used for testing conditions a term may ful�ll or not
 and hence a condition predicate
may succeed or fail�

������ Global variables

To make it easier to write complex speci�cations or to deal with global information �for example a compiler�s
de�nition table�
 Gentle provides global variables and global tables�
A global variable is declared as�

GlobalVarDecls 		�
VAR
 Type GlobalVariable ���

GlobalVariables 		� LargeIdent�

Type may be any type� Global variables are accessed with�

GlobalVarRead 		� GlobalVariable ���� Parameter �

GlobalVarWrite 		� GlobalVariable ���� Parameter �

Examples�

�� CHAPTER �� GENTLE LANGUAGE REFERENCE MANUAL

VAR
 INT Counter�

Counter �� X

Counter �� X
�

VAR
 EXPR ExprVar�

ExprVar �� binary �X�Y�Z�

ExprVar �� binary �XX� YY� ZZ�

A global variable must get a value before � that value is read�
A generalization of global variables is the global table concept� A global table is something like an array in
conventional imperative programming languages
 except that the space for entries is reserved dynamically� The
entries of a global table are accessed using a key and the conventional bracket � � notation� A global table is
declared as�

GlobalTableDecl 		�
TABLE
 ��Type GlobalTable� �� ��� � ��� KeyType ����

GlobalTable 		� LargeIdent�

KeyType 		� LargeIdent�

The Type of the GlobalTable entries may be any declared type� KeyType is introduced as a new opaque type
and is used as type of the key of an entry in the table� The usual operations on opaque types are not allowed
for keys� Access of a global table entry is done with�

GlobalTableRead 		� GlobalTable ��� KeyVariable ��� ���� Parameter �

GlobalTableWrite 		� GlobalTable ��� KeyVariable ��� ���� Parameter �

KeyVariable 		� LocalVariable �

where KeyVariable is a local variable holding the key� Providing space for a new entry in all tables of the same
declaration is done with�

GlobalTableNewEntry 		�
KEY
 KeyType KeyVariable �

TABLE
 NODEATTR Graph� INT Count �NODE��

KEY
 NODE Node

Graph �Node� �� node �false� Info� Succ�� Succ�� Succ�� Succ��

Graph �Node� �� node �Mark� Info�� Succ��� Succ��� Succ��� Succ���

Count �Node� �� X

Count �Node� �� XX

KeyType must be an key type of a table declaration� KeyVariable is a local variable holding the key for a table
access� A global table entry must get a value before � that value is read�
The Parameter of a global read access and the KeyVariable of a �KEY� literal is said to be at output position

the Parameter of the global write access is at input position �see section �������
GlobalTableNewEntry
 the write access of global variables and tables is a special kind of action predicate
 which
never fails� The read access of global variables or tables is a special kind of condition predicate� The Parameter
is matched with the value stored in the global variable or table
 hence a read access may fail�

������ Side e�ects in Gentle

Logic predicates usually don�t have any side e�ects� But as Gentle allows the use of global variables
 tables

and the call of external predicates side e�ects are possible and sometimes desired� An example is �le input and
output or handling global data� Notice
 side e�ects of a clause are not �undone�
 when this clause fails

��� Printing terms

For testing a system it is often useful to visualize the structure of the terms involved� Gentle supports this
by generating action predicates
 which print a complete term onto the standard output device� To use this
predicates
 the signatures must be declared as follows�

�means a time relation
�means a time relation

���� THE STRUCTURE OF A COMPILER SPECIFICATION ��

ACTION
 print Type �Type ��

Type is the name of any declared type�
For example �see section ���� print EXPR �binary �plus� var �a�� const����� produces�

binary�

plus

var�

a

�

const�

�

�

�

While the printing procedures for term types may be generated
 those for opaque and types must be implemented
by the user
 because only the user knows their actual structure �see section ��������

��� The structure of a compiler speci	cation

This section introduces the structure of a typical target speci�cation� The basic idea is that compilation is
done in several passes� Terms act as interface between passes� They form the intermediate languages� The �rst
step is to read the input and parse it� While doing this
 the �rst intermediate representation of the input is
constructed� After parsing has �nished the term transformation is started� Each transformation step has input
and output parameters
 taking the input �i�e� one intermediate language� and transform it to the desired output
�i�e� another intermediate language�� The last step is the generation of some output
 for example writing a �le�
The following program segment gives an impression of such a speci�cation�

MODULE
 example

�� Define the intermediate languages

IR�� � ����� � ���� IR�n � ����� �

�� The root of all	

NONTERM
 ROOT�

ROOT 	 Parse ��� Ir���

Transform�� �Ir�� �� IR���

�����

Transform�n�� �Ir�n�� �� IR�n�

GenerateCode �IR�n�

�� The context free grammar

NONTERM
 Parse ��� IR��� ����

�� the transformations	

ACTION
 Transform�� �IR�� �� IR����

����

ACTION
 Transform�n�� �IR�n�� �� IR�n��

�� Producing some output

ACTION
 GenerateCode �IR�n�� ����

��
 Gentle versus Prolog

This section relates Gentle to Prolog
 which is based on Horn	logic theorem proving� A short introduction of
Horn	logic is given in �Clocksin et al �

 chapter ���
 a complete introduction into logic programming is found in
�Lloyd ���� Gentle is compared to Prolog�Clocksin et al �
�
 which is one implementation of Horn	logic� Gentle
di�ers from Prolog in four points�

�� Gentle restricts the usage of logical variables �see section �������

�� CHAPTER �� GENTLE LANGUAGE REFERENCE MANUAL

�� The data �ow inside of predicates is �xed� For each argument of a predicate its mode must be given
 i�e�
it is �xed
 whether an argument is an input or an output parameter �see section �������

�� The Gentle proof algorithm di�ers from that of Prolog �restricted backtracking��

� Due to these restrictions
 the uni�cation algorithm is optimized�

����� Prolog

A Prolog program is formed of variables
 terms
 literals
 and clauses�
A term is either a variable or a structure formed out of terms �i�e� f�t�� � � � � tn��
 where f is a functor symbol
and ti are terms� Constants are structures without any argument� A ground term is a term which contains no
variables�
A literal or predicate is a structure p�t�� � � � � tn�
 where p is a predicate symbol �which are disjoint from variables
and function symbols�
 and ti are terms� A literal may be negated�
A Prolog clause is a Horn clause
 i�e� is a disjunction of literals
 where at most one literal is positive� The
following notation is used�
Prolog clause notation may be read as�
�� a�� �a�� � � � � an� implication �a� is true if a� and � � �and an are true�� �a� � �a� � �a� � � � � � �an�
�� a�� �� a� is a fact
 i�e� is always true�
�� � �a�� � � � � an� question �goal�� �are a� and � � �and an true� ��a� � �a� � � � � � �an��

The left hand side of a clause �i�e� to the left from the �	� is called the head
 the right hand side the tail of the
clause�
A Prolog program consists of several implications and several facts� Executing a Prolog program means to state
a goal G and to prove that there is a substitution � such that ��G� is derivable from the program� � is called
an answer substitution�
A simple Prolog example is�

bachelor �X� 	� male �X�� unmarried �X�� an implication�

male �charly� 	� � a fact�

unmarried �charly� 	� �

	� bachelor �X�� the question� to be derived�

The resulting answer substitution is� X	charly�
A substitution � is a �nite set of the form fv��t�� � � � � vn�tng
 where each vi is a variable
 each ti is a term
distinct from vi and the variables v�� � � � � vn are distinct� Each element vi�ti is called a binding for vi� � is called
a ground substitution if all ti are ground terms� A substitution � is applied to a formula F
 if all occurrences of
the variable vi in F are simultaneously replaced by ti�
For a set S of literals
 a substitution � is called a uni�er for S
 if ��S� �i�e� � applied to S� has only one element�
A uni�er � for S is called the most general uni�er �mgu� for S
 if for each uni�er �
 there exists a substitution
� such that ��S� ! ����S���
A method to prove a goal w�r�t� a set of clauses is SLD resolution �Lloyd ���� A Prolog interpreter basically
consists of a SLD resolution proof procedure�

prolog prove �� �A�� � � � � Am� � �

 proves the goal �� �A�� � � � � Am�
 output is the answer substitution ��
G �! � ��A�� � � � � Am�
LOOP

search a clause H � �L�� � � � � Ln such that �� � mgu�H�A��
IF there exists no such clause
THEN ��! fg� RETURN FAILURE

 G can not be prooven�
ELSE G� �! ��� �L�� � � � � Ln� A�� � � � � Am�

 notice if n ! �
 then H is a fact�
prolog prove �G�� � ��

IF this succeeds
THEN � �! �� � �

RETURN SUCCESS

 G is prooven�
ELSE

 search a new clause
 i�e� backtrack

���� GENTLE VERSUS PROLOG ��

END IF
END IF

END LOOP

The clauses are tried in their textual order�

����� The Gentle proof procedure

Due to the restricted task of Gentle the full power of SLD resolution is not needed
 and as a result a more
e�cient implementation is possible� The price one must pay is that the Gentle proof algorithm is not complete

i�e� not all possible solutions are found�
The Gentle proof procedure di�ers in two points from the Prolog procedure� First not all predicates are allowed
to fail �see section �������� Second backtracking is restricted in the following way�
If in the prolog prove procedure the proof of a literal Ai� i � � fails
 backtracking is performed and a new clause
is tried� If this happens in gentle prove
 no backtracking is performed
 the proof of G fails� Backtracking is
done only if the proof of � �L�� � � � � Ln fails� That is
 once the tail of a clause has been prooven completely
 all
alternatives for that clause are discarded�

gentle prove �� �A�� � � � � Am� � �

 proves the goal �� �A�� � � � � Am�
 output is the answer substitution ��
G �! �� �A�� � � � � Am�
LOOP

search a clause H � �L�� � � � � Ln such that �� � mgu�H�A��
IF there exists no such clause
THEN ��! fg� RETURN FAILURE

 G can not be prooven�
ELSE G� �! ��� �L�� � � � � Ln�

gentle prove �G�� � ��
IF this succeeds
THEN G� �! �� � ��� �A�� � � � � Am�

gentle prove �G�� � ��
� �! �� � �� � �
RETURN success or failure of this�

ELSE

 search a new clause
 i�e� backtrack
END IF

END IF
END LOOP

The clauses are tried in their textual order�

����� Optimized uni�cation

Since the data �ow is restricted in Gentle a simpler uni�er may be computed� �It is no limitation to examine
the following with only one input and one output parameter�
Such an uni�er � for two Gentle terms P �Ih� Oh� and P �Ig � Og�
 can be de�ned as the composition of several
substitutions�

�fP �Ih� Oh�� P �Ig � Og�g ! �out��P ��in��CfP �Ih� Oh�� P �Ig � Ogg���� �����

where P �Ih� Oh� is the head of the selected clause
 and P �Ig � Og� the goal to be proven� I denotes the input
term and O the output term�
Since the tail literals are evaluated from left to right
 and all variables of the input term must be de�ned
 �C
denotes the substitution
 which has bindings for all variables of Ig � �in binds variables of the formal input
parameter to terms of the actual input term� �P is the substitution computed by the predicate P
 i�e� binds
the variables of the formal output parameter� �out de�nes the variables of the actual output parameter� These
substitutions are de�ned using the following equations�

�in�Ih� ! �C�Ig� �����

�� CHAPTER �� GENTLE LANGUAGE REFERENCE MANUAL

�out�Og� ! �P ��in�Oh�� �����

Notice
 the following statements are consequences of the data �ow and evaluation strategy rules of Gentle�

� Ig � Og� Ih� Oh are terms�

� Ig and Og have no common variables��

� Oh may use variables de�ned in Ih�

� fIg � Ogg and fIh� Ohg have no common variables��

� �C�Ig� is a ground term�

� �in�Ih� is a ground term�

� �in�Oh� is a term�

� �P ��in�Oh�� is a ground term�

Now it must be shown that � is a uni�er for fP �Ih� Oh�� P �Ig � Og�g� By a simple computation using the above
notices
 one sees that�

�fP �Ih� Oh�� P �Ig � Og�g ! fP ��C�Ih�� �out�Og��g
It is obvious
 that � is not a most general uni�er�
The substitution �in and �out as de�ned by equation ��� and equation ��� are computed by the pattern matching
procedure de�ned in section ����� �notice
 that one term must be ground for that procedure�� If the selected
clause C for P looks like�

P �Ih� Oh� � P��I�� O�� 	 	 	Pn�In� On�

�P is computed as�
�P ! �inp � �out� � 	 	 	 � �outn

I�e� �P summarizes all computed variable bindings�
If P �Ig � Og� is the j�th tail literal
 then

�C ! �inC � �out� � 	 	 	 � �outj��

�because the use � de�nition rules for local variables
�due to the scoping rules for local variables

Chapter �

The Gentle Programming Environment

User Manual

��� Introduction

The Gentle tool is used to produce an executable program
 which implements the speci�cation� This chapter
is the user manual for the Gentle programming environment� It is assumed
 that the reader knows the Gentle
language and its technical terms �see chapter ���
The usage and options of the commands used to start the Gentle system are described in the manual page
 see
appendix A
 or try the UNIX command man gentle�
Section ��� shows what must be done to get an executable compiler� Section ��
 presents the necessary �les and
explains their meaning� A make�le generator supports the UNIX make facility� it is described in section ����
Each program has a �main� procedure
 the one of Gentle is explained in section ���� Section ��� shows how
the executable target program must be called� Section ��� deals with the scanner speci�cation
 section ���
gives some notes on parsing and parsing con�icts� Section ���� gives the conventions of implementing your own
external predicates� The Gentle library is documented in section ����� Section ���� introduces the example
library�
The Gentle tool translates Gentle speci�cations into C programs and input for some program generators �scanner
and parser generator�� The Gentle environment uses some features of the UNIX operating system
 mainly the
make facility� For that reasons
 the terminology of C and UNIX is used in some places of this manual�

��� Directory structure of Gentle

The directory structure of the Gentle tool is�

directory names contents

gentle �GENTLE DIR must refer to this directory

bin shell scripts

lib Gentle library

examples example library

documentation

install shell scripts used to install Gentle
reuse the reuse libarary

tools�bin scanner ��� parser generator� etc�

tools�lib library used by scanner� parser etc�

c�src C sources of Gentle
spec Gentle sources of Gentle

��

�� CHAPTER �� THE GENTLE PROGRAMMING ENVIRONMENT USER MANUAL

��� How to get an executable compiler

The program generated out of a Gentle speci�cation is called the target system� target program or simply target�
To generate a target one may proceed as follows�

Install the Gentle system This is usually done once by the system manager� Read the Gentle installation
notes for that
 which are delivered with the distribution tape�

Set up the Gentle environment for your target by creating a directory in the �le system
 which should
contain the target system� Copy the makemake and MAIN�c �les from the Gentle library �short library�
into the target directory� This two �les are frames
 which must be �lled with speci�c target information�
If MAIN�c is not intended to be changed
 it is not neened to be copied�

Be sure
 that the UNIX environment variable GENTLE DIR contains the name of the directory
 where
the Gentle system is located�

Install the library by executing the makemake command�

Write the target speci	cation consisting of the Gentle �program� and the scanner speci�cation� The ex	
ample library of the Gentle system �see below� may be used to get an impression
 how things could look
like�

Generate the target
 Whenever a new Gentle module is created �i�e� a new �le containing a part of the
target speci�cation is introduced� the makemake command must be executed
 to produce a new make�le

which controls the generating process� The entire generation process is invoked just by executing the
UNIX make command �without giving parameters�� If this process is successful
 the target is �nished�

The UNIX make command is also used to minimize the needed regeneration and recompilation of the
target system
 if one or more of the input �les are changed�

If only a single Gentle module should be analyzed
 the g command may be used �see Gentle manual page��

Execute the target program

��� What 	les are needed for a complete target speci	cation

A complete speci�cation consists of a set of �les� Some of these �les must be completely written by the user

some must be adapted
 and some are used without modi�cations� Table ��� shows these �les and their meaning�

Filename meaning kind of manipulation
��g The modules of the Gentle speci�cation

i�e� the grammar of the input language

the de�nition of terms
 and rules for their
transformation�

Some must be written by the user
 some
are taken unchanged from the standard
library�

SCANNER�rex The scanner of the target system is gen	
erated using the scanner generator rex
�Grosch ���� This �le contains the scanner
speci�cation
 i�e� the input to rex�

Must be adapted by the user� Some scan	
ner speci�cations are contained in the li	
brary �see section �����

makemake To support an automatic generation and
�re�compilation process
 the UNIX make
command is used� Input to make �a
make�le� is generated by the makemake
command�

A frame of makemake is contained in the
library�

make�le Generated by makemake� No manipulation by the user needed�
MAIN�c The main program
 which triggers all ac	

tions of the target program�
A frame of MAIN�c is contained in the
library�

Table ���� Files needed for a complete speci�cation of a target

���� THE MAKEFILE GENERATOR ��

��� The Make	le generator

The UNIX make facility is a powerful tool for maintaining large software systems� It is used to process �i�e�
compile
 assemble
 link
 etc�� �les to produce the desired system� It is also used to do this job with less redoing
as possible� This minimal e�ort is obtained by de�ning dependencies of the �les and their processing� This
information is contained in a �le named make�le� For more information see the UNIX manuals��
The Gentle environment o�ers a make�le generator called makemake� makemake performs three tasks�

�� It installs the library at the �rst call�

�� Some user de�ned parameters are set for the target generation process�

�� It generates the actual make�le with the actual dependencies for the target�

makemake is implemented as a UNIX �Bourne� shell procedure� Table ��� shows the parameters
 which the user
must set� Notice that make uses the Bourne shell
 hence use only Bourne shell features�

Parameter name Meaning
NAME Name of the target system�
DEST The directory the target system is located� All �les needed for ex	

ecuting the target system are copied to the directory 	DEST	bin�
That place is assumed by the MAIN procedure �see section �����

CFLAGS The C compiler uses di�erent options for controlling the compi	
lation process� This options are speci�ed here� For example
O
for optimizing the code or
g for producing symbolic debugging
information�

CPPFLAGS This �ags control the behaviour of the cpp preprocessor of the
C compiler� The �ags are used to compile the Gentle library
with di�erent options �see section ������ Four conditional compi	
lation �ags are de�ned NR OF IDENT ATTR �see section �������
and USER DEFINE OPAQUE �see section �������
 Dialog
 and
IgnoreChar� For more information have a look into the makemake
�le�

USER SRCS The �les containing the implementation of external Gentle predi	
cates �used in the target speci�cation� must be speci�ed for compi	
lation using this variable� The implementation of external library
predicates
 and the system procedures are given by default�

OTHER PROGS If some other programs should be compiled and linked
 these pro	
grams are speci�ed using this variable� For example the Gentle
error handling programs Lister and Unlister �which inserts and
removes the error messages into a source �le� are managed in this
way�

Table ���� The makemake parameters�

��� The MAIN procedure

The �main� procedure of the target system �i�e� the procedure called �rst when starting the execution of the
target program� is contained in the �le MAIN�c �
Using this MAIN program
 the scanner may be tested separately
 using the conditional compilation feature of
the C language� This is done by compiling MAIN�c with the
DTST SCANNER option of the C compiler �
preprocessor� This option may be speci�ed in makemake as an additional CPPFLAGS parameter�

�or the GNU make manuals

�
 CHAPTER �� THE GENTLE PROGRAMMING ENVIRONMENT USER MANUAL

��� Executing the target system

The executable target program reads the command line to set some parameters� Its usage is�

target ��les ����

The �les ��� parameter specify the input �les for the target program� If no �le is given the standard input
device is used� If several �le names are passed as parameter
 the behaviour of the system depends on the EOF
�end	of	�le� speci�cation given in the scanner description�
Other options may be de�ned by the user�

��
 The scanner speci	cation

The scanner of the target system is generated using the scanner generator rex �Grosch ���� This section gives a
short introduction to the parts of the scanner
 which are needed by the rest of the target system� Please read
the rex manual for detailed information
The library contains some scanner speci�cations for many tokens
 for example
 identi�ers �C
 Ada and prolog
style�
 comments �C
 Ada
 Modula style�
 numbers �decimal
 hexa�decimal integers
 �xed and �oating point
real numbers�
 strings �C and Modula style�
 operators ����
 � � �
 ��!�
 � � ��� Handling of more than one input
�le is also provided� Positional information of the tokens is computed�
The Gentle system generates from the TOKEN predicates the �le g�TOKENS�h which
de�nes names for unique
token numbers� These names consist of the pre�x g and the name of the TOKEN predicate� These
de�ned
names may be used in the scanner speci�cation�
The scanner speci�cation has several parts�

EXPORT The things contained here are written to the C header �le of the generated scanner�

� include �g�SCANNER�TYPES�h�

� include �SYS�h�

extern void ErrorAttribute ��� �� �int Token� tScanAttribute �Attribute� ��

The C header �le g�SCANNER TYPES�h contains a generated type de�nition for the attributes �output
parameters� token may return� These attributes are usually Gentle opaque values and hence they are
implemented as pointer to some information� The de�nition �for tokens
 which have at most two output
parameters� looks like�

� include �Positions�h�

typedef struct �

tPosition Position�

long �attr��

long �attr��

 tScanAttribute�

The scanner computes the source position automatically� tPosition is the type of this information� The
opaque type POS declared in the library represents the positional information in a coded form�

The names of the attributes are prede�ned as attrnr
 where nr ranges from � to the maximal number of
attributes a token returns� attr	 denotes the �rst attribute of a �TOKEN� signature
 attr
 the second

etc�

The procedure ErrorAttribute is called
 if the parser repairs a syntactic error and inserts a token
 which
has attributes�

GLOBAL In the GLOBAL section procedures
 variables
 etc� used by the rest of the scanner are declared�
The header �les of used modules must be included�

���� THE SCANNER SPECIFICATION ��

GLOBAL �

�include �string�h�

�include �g�TOKENS�h�

�include �ERRORS�h�

�include �IDENTS�h�

�include �IO�h�

�include �SYS�h�

The parser �see section ���� does some error recovery and must hence know the de�ned �error� values of
the tokens having attributes� The procedure ErrorAttributes may look like�

�� procedure returning error attributes ��

�� input is a token� output is the

error

 attribute� ��

void ErrorAttributes �Token� Attribute�

�� we have maximal two attributes per token ��

int Token�

tScanAttribute �Attribute�

�

switch �Token� �

case g�IDENTIFIER 	 Attribute��attr� ��long��G�No�IDENT���see library module
IDENTS
��

Attribute��attr� � ��

break�

case g�NUMBER 	 Attribute��attr� � �long �� G�pool�alloc�sizeof�double���

�� allocate space for a floating number ��

��Attribute��attr�� � ����

Attribute��attr� � ��

break�

case g�STRINGCONST 	 Attribute��attr� � ��

Attribute��attr� � ��

break�

default 	 Attribute��attr� � ��

Attribute��attr� � ��

break�

LOCAL In the LOCAL part
 variables
 etc� are de�ned
 which are used in the statements of the RULEs�

char word ���!�� char strconst ���!�� register long length�

BEGIN Initialization of the scanner� If the �IDENTS� moudule is used
 it must be initialized here�

BEGIN �

G�IDENTS�init ���

CLOSE Finalization of the scanner
 is empty�

EOF Actions when the end of the input �le is reached� If more than one �le should be read as input
 the
following program fragment may be used �see the IO module from section ������

if �G�IO�MORE�FILES �� �� TRUE� �

�� start reading a new file ��

G�IO�CUR�IN � G�IO�NEXT�FILE ���

BeginFile �G�IO�NAME �G�IO�CUR�IN���

�� see library module
IO
 ��

�� CHAPTER �� THE GENTLE PROGRAMMING ENVIRONMENT USER MANUAL

If there is no more �le
 then the default action is to signal the parser the end�of��le condition�

DEFAULT This section deals with illegal characters�

DEFAULT �

�� if an illegal character is read� an error message is emitted ��

� long pos�

char word ���!��

g�GET�CUR�POS �"pos�� �� returns the current source position� in the coded form��

GetWord �word�� �� reads the illegal character ��

g�ERROR�TXT ��illegal character
#
�� word� pos��

DEFINE Abbreviations for sets or sequences of characters may be de�ned here� For example�

digit � ���� �

START De�nes states for the scanner
 see �Grosch ��
 page ��� �STD� is the default state�

RULES This part de�nes the regular expressions
 forming the tokens of the language� The TOKEN predicates
of the Gentle speci�cation are used to
de�ne unique numbers for the tokens� The de�nitions are contained
in the �le g�TOKENS�h� The
de�ned names are g token predicate name�
For example�

�STD� �	�� 	 � ��
TOKEN
 ASSIGN ��� POS�� ��

g�GET�CUR�POS �"Attribute�attr���

Attribute�attr� � �� �� only for initialization ��

return g�ASSIGN�

�STD� �
� 	 �return g�PLUS� ��
TOKEN
 PLUS� ��

�STD� �PROCEDURE� 	 �return g�PROCEDURE� ��
TOKEN
 PROCEDURE� ��

�� identifiers �Modula � style� ��

��
TOKEN
 IDENTIFIER ��� IDENT� POS�� ��

�STD� letter �letter � digit � � 	

�length � GetWord �word��

g�enter�IDENT�word� length� "�Attribute�attr����

�� see library module
IDENTS
 ��

g�GET�CUR�POS �"Attribute�attr���

return g�IDENTIFIER�

The token ASSIGN has the �coded� source position as attribute
 the token IDENTIFIER has two output
parameters� the identi�er and the position�

When the generated scanner is compiled using the C compiler
 don�t bother about the compiler warning state

ment not reached�
If the target system is used interactively
 i�e� may read its input form a keyboard
 the conditional compilation
�ag Dialog �see section ��� should be set� The e�ect is that when encountering a newline character another
blank charcater �this default may be also changed
 see IgnoreChar� is inserted
 to give the scanner the needed
look ahead symbol�

��
� THE GENERATED PARSER ��

��� The generated parser

The TOKEN and NONTERM predicates of a Gentle speci�cation are used to generate an LALR parser
�Waite et al �
�� The parser generator tool is lalr �Vielsack ���� This generated parser handles syntax er	
rors completely by repairing them� The attribute values of inserted tokens are computed by the procedure
ErrorAttributes as described in the scanner speci�cation �see section �����
If the speci�ed context free grammar has no LALR�con�icts
 the user is not bothered with details of that
tool� But there are two kinds of grammar con�icts �Waite et al �
�
 shift reduce �also called read
reduce� and
reduce reduce con�icts� The presence of con�icts is reported by the parser generator� The �le Debug contains
a detailed description of the con�ict and the default rules how it is solved� Parser generators usually give the
user a possibility to solve these con�icts using special �directives� in the grammar speci�cation� Gentle does
not have such �directives�� The other way solving grammar con�icts is to use the default rules of the parser
generator� That is the way Gentle does it�
lalr provides two default rules� �� shift�reduce con�icts are solved by shifting the token� �� reduce�reduce
con�icts are solved in the way
 that the textual �rst grammar rule is reduced �see �Vielsack ��
 page �����

���� Generated C code

This section gives an informal insight how the generated C �Kernighan et al ��� code looks like� The translation
of the grammar part to input for a parser generator is not described here� Table ��� shows how terms
 variables

action and condition predicates are implemented�

Gentle C
Terms Memory area in the heap� A term is accessed using a

pointer to that area�
Pattern matching Programmed if statements�
Local variables Local variables of procedures
 containing terms
 i�e�

pointers�
Global variables Global variables
 containing a terms
 i�e� pointers�
Global tables Memory areas on the heap� �KEY� allocates this area

and returns a pointer to it�
Action � condition
predicates

C functions returning a boolean value
 expressing suc	
cess or failure of the procedure call�

Clauses The clauses of a predicate form the body of the predicate
function�

Table ���� Mapping of Gentle onto C constructs

������ Terms and pattern matching

Each functor of a term type is mapped to a positive integer value� A term is implemented as a memory area
on the heap
 and referred by a pointer to that area� The area contains the functor�s name
 or more exactly
 its
number
 and for each argument a pointer to the argument term� Figure ��� shows how the term f�a�b� looks
like� The arguments of the terms are accessed using the C array notation
 which is actually pointer arithmetic�
For example
 the term above is referred by the address �long��T
 the �rst component �i�e� a� is referred to by
address �long��T�	�� For all constructed terms of a clause the storage is allocated once when the evaluation
of the clause starts� The variable B contains the base address of the returned memory area�
Remember that at least one of the two terms considered by the pattern matching must be a ground term
 this
term is stored already in the heap� The non	ground term is not constructed explicitly on the heap
 but its
functor numbers are compared with the corresponding functor numbers of the ground term� Pattern matching
is implemented using direct code for the partial evaluation of the standard top down matching algorithm� For
example
 testing whether the term stored at location T is a the term f�a�X� is done by the following code
fragment�

�� CHAPTER �� THE GENTLE PROGRAMMING ENVIRONMENT USER MANUAL

	 	 	 a�� b�� f�� � � 	 	 	

	� � � � �
 �

T

�

B

�

� �
�

� �
�

Figure ���� Term representation of f�a�b�

Pattern matching

if ���long �� T $� �� goto L�� If term addressed by T is not a f term� pattern doesn�t
match� Continue at location marked with label L��

if ���long �� T��� $� �� goto L�� If the �rst argument of the f term is not an a term� the
pattern doesn�t match�
The second argument of f is not checked� because it is a
term variable�

� � � Now the term speci�ed by T is matched to f�a�X��

L� 	 � � � Failure� the term does not match� Code for that case�

If this pattern matching fails
 the program continues at the failure label L	� Using the Gentle variable X
 is
translated to the access path �long ��T�
��

������ Action and condition predicates

All clauses of a predicate form the body of the predicate function� The predicate�s signature is translated to
the function head� Input parameter are passed by value
 output parameter by reference� The function returns
a boolean value
 to indicate the success or failure of the predicate�
Each clause is translated into a piece of code
 which has two �exit� points
 one for successful evaluation of the
clause and one for its failure� The �rst step of evaluating a clause is to match the actual with the formal input
parameters� If this was successful
 the predicates of the clause�s tail are called� Again
 when all calls has been
successful
 the output terms are constructed and the function is exited reporting success to the caller of this
predicate� If one of these steps fail
 a jump to the end of the clause�s code is performed� If there is another
clause
 this is tried
 otherwise failure is reported to the caller�
Calling a predicate is done in three steps� First
 the actual input parameter of the predicate to be called
are constructed� Second
 the predicate function is called and last but not least the actual and formal output
parameters has to be matched� If all these steps have been successful
 the predicate call was successful
 otherwise
a jump to the failure label of the clause containing this call is performed�

���� Writing your own external predicates

External predicates of Gentle are used as loop holes to escape from the Gentle language� These predicates are
implemented in another language
 for example C� One important usage of external predicates is �le input and
output�
The user may write his�her own external predicates� For doing this the following conventions must be observed�

Naming conventions� ACTION and CONDITION predicates are called as functions� The procedure name
is constructed by appending the predicate name to the pre�x g � Most other names �not generated from
a speci�cation� of the Gentle systems have the pre�x G

Parameter passing� Terms are represented as pointers to some entities� Input parameters are passed �as
usually in C� �call by value�
 i�e� the address of the term is passed� Output parameters are passed as �call
by reference�
 i�e� the address of the variable
 which is used to store the output is passed� The meaning

����� THE LIBRARY ��

of opaque values must be de�ned by the user� For example the opaque STRING type from the STRINGS
library �see below� is interpreted as char�
 while INT is interpreted as a number of type int�

Return values� Both ACTION and CONDITION predicates are implemented as functions returning a boolean
value
 coded as � for TRUE �success� and � for FALSE �failure�� ACTION predicates must always return
TRUE� CONDITION predicates may return both values� The values for TRUE and FALSE are de�ned
in the �les SYS�h� SYS�c contained in the library�

������ Printing of opaque values

For testing purposes Gentle o�ers the possibility to print terms onto the standard output device� The printing
routines for term types are generated by Gentle� For opaque types these routines may be generated or may be
written by the user� In the �rst case a magic unique number is printed
 in the latter case
 the user may print
the information represented by that opaque type� Which of these two ways is used
 is speci�ed in the makemake
generator
 using the CPPFLAGS parameter� Including
UUSER DEFINE OPAQUE into CPPFLAGS chooses
the �rst
 while
DUSER DEFINE OPAQUE the second way of printing� If the user wants to write print routines
for opaque types the procedure interface looks like�

g�print�indented�Type�x�n� int x� int n�

��
int x
 may be replaced by any other type� which has the same
sizeof
 as
int
� ��

This corresponds to the action predicate

ACTION
 print�indented�Type �Type� INT��

This procedure indents the printed entity n units �spaces�� x speci�es the opaque value� print Type ����� calls
this procedure with a zero indentation�
A concrete example is�

�include �SYS�h�

�� The routine prints STRING opaque values� ��

�� Used for
ACTION
 print�STRING �STRING�� ��

g�print�indented�STRING �x�n�

char �x�

int n�

fG�print�indent�n�� �� indent
n
 units ��

printf��%s�n��x�� �� print opaque value ��

return TRUE�

g

���� The library

The Gentle library contains Gentle modules
 various scanner speci�cations which may be copied and changed

frames of makemake and MAIN�c
 and some system programs�
This section introduces the Gentle predicates
 which are usually external predicates
 and their usage� The names
of the modules are� IO� IDENTS� ERRORS� STRINGS� MATH� BOOLEAN� ARRAYS� and STATISTICS�
If you have suggestions for library extensions
 send the sources to me
 they will be made availabe for other users
too�

�� CHAPTER �� THE GENTLE PROGRAMMING ENVIRONMENT USER MANUAL

������ The IO module

This module is used for handling �le input and output� The target program may read �write� its input �output�
from �to� several �les
 including standard input �output�� The �les are accessed one after the other
 i�e� at a
time only one �le may be read and one �le may be written�
The input works together with the SCANNER �see the scanner EOF section�� Files which should be read are
declared using the IO DECLARE routine
 which may be called from the MAIN program or from the Gentle
program� A �lename may be speci�ed for reading several times using IO DECLARE
 but it is read only once�
The �les are processed in their declaration order� The �	� character is used for input �output� from �to� standard
input �output� �
For writing a �le the actions shown below are used�
The IO module is de�ned as follows�

MODULE
 IO

��

� For output to a file	

� The output file may be opened with
io�open
� ��� means stdout�

� If
io�open
 is not called� then stdout is used�

� The output is buffered� its size �OutBufSize� specified in file
IO�c

� The buffer is written by a call of
put�nl
 or
put�bf
� if it is ��%

� filled� or if the file is
stdout
�

�
io�close
 flushes the buffer unconditionally�

�

��

ACTION
 io�open �STRING��

�� All output is written to that file�

�� If the file can
t be opened for writing� an error message

�� is written� and the program is aborted�

�� ��� means standard output

ACTION
 io�close�

�� If an outputfile is open�

�� then the buffer is flushed and the file is closed�

�� else nothing�

ACTION
 put�s �STRING�� �� writes a string�

ACTION
 put�s� �STRING�� �� writes a string� interpretes escaped char
s�

ACTION
 put�d �INT�� �� writes an integer as decimal�

ACTION
 put�x �INT�� �� writes an integer as hexadecimal�

ACTION
 put�r �REAL�� �� writes a real number�

�� using fprintf �f� �%lg�� �r��

ACTION
 put�sp �INT�� �� writes
n
 spaces�

ACTION
 put�nl� �� writes the new line character� and performs

��
put�bf
�

ACTION
 put�tab� �� writes the tab character�

ACTION
 put�qt� �� writes the �double� quote ��

ACTION
 put�str �STRING�� �� writes a string surrounded with

�� double quotes�

ACTION
 put�str� �STRING�� �� writes a string surrounded with

�� double quotes� interpretes escaped char
s�

ACTION
 put�ident �IDENT�� �� writes the textual representation of IDENT

ACTION
 put�pos �POS�� �� writes the position�

ACTION
 put�bf� �� if the file is �stdout�� then the buffer

�� is written to �stdout
�

�� if the file is not
stdout
 the buffer is

�� written� if it is ��% filled�

�� specifying input files	

ACTION
 IO�DECLARE �STRING�� �� specifies another source file for input�

ACTION
 IO�NAME �INT �� STRING��

�� Returns for a file number its string representation�

����� THE LIBRARY ��

�� The file number may be returned from ERRORS�

������ The IDENTS module

The IDENTS module provides general identi�er handling routines� The scanner usually accepts strings �se	
quences of characters� representing program identi�ers� The parser does not use the string representation of
these identi�ers but a unique integer value
 referring to that string� The enter IDENT action computes such a
unique number out of a character sequence
 using a hash function� The condition Eq IDENT is used for test	
ing identi�ers for equality� get IDENT name returns the characters of the identi�er� The unique �unknown�
identi�er is returned using get No IDENT� Somentimes one needs some kind of �new� identi�ers
 which are not
present in the analyzed program� Each call of generate IDENT returns such a new identi�er�
A special feature of this module is to handle additional attributes of identi�ers� The string representation
of an identi�er is one of them
 which is handled by default� Another attribute may be the meaning of the
identi�er in the analyzed program� Using this feature a simple de�nition table of identi�ers is manipulated
by predicates DEF IDENT ATTR and GET IDENT ATTR
 which are implemented in C but not declared by
default in Gentle� For an example usage of that see minilax and hoc from the example library�
If this feature is used
 the CPPFLAGS parameter of makemake must be set to

DNR OF IDENT ATTR�xx
 where xx is the number of additional attributes�
The IDENTS module is de�ned as follows�

MODULE
 IDENTS

TYPE
 IDENT�

�� general

ACTION
 enter�IDENT �STRING� INT �� IDENT��

�� define a STRING with INT characters as IDENT�

ACTION
 generate�IDENT ��� IDENT��

�� each call generates a new unique IDENT�

CONDITION
 Eq�IDENT �IDENT� IDENT��

�� succeeds iff the IDENT
s are equal�

CONDITION
 NotEq�IDENT �IDENT� IDENT��

�� succeeds iff the IDENT
s are not equal�

ACTION
 get�IDENT�name �IDENT �� STRING��

�� returns the textual representation of the IDENT�

ACTION
 get�No�IDENT ��� IDENT��

�� returns No�IDENT

ACTION
 print�IDENT �IDENT��

�� write id to stdout

�� To each identifier a number of attributes may be attached�

� To use this feature� the user has to define the following type and

� action�condition�

� The attributes are accessed by numbers�

� The maximal number of attributes must be defined when compiling the system�

� This is done by defining
NR�OF�IDENT�ATTR
 with that number�

� The attributes are accessed with numbers in the range ����NR�OF�IDENT�ATTR��

�
GET�IDENT�ATTR �Id� Nr �� Attr�
 fails� iff
DEF�IDENT�ATTR �Id� Nr� Attr�

� was not called before for that identifier and number� i�e� the identifer has

� no value for that attribute�

�

� IDENT�ATTR �

� some�user�defined�things

� �

� or define IDENT�ATTR as an opaque type�

�

�
ACTION
 DEF�IDENT�ATTR �IDENT� INT� IDENT�ATTR��

�
CONDITION
 GET�IDENT�ATTR �IDENT� INT �� IDENT�ATTR��

�

� Another type name may be used�

�� CHAPTER �� THE GENTLE PROGRAMMING ENVIRONMENT USER MANUAL

� A disadvantage of this method is� that all attributes must have the same

� type �IDENT�ATTR� � but all external C procedures are already implemented�

�

� Another way is	

� Declare types	

�

� IDENT�ATTR�� � ��� �

� IDENT�ATTR�� � ��� �

� ����

� IDENT�ATTR�n � ��� �

�

� Declare external predicates	

�

�
ACTION
 DEF�IDENT�ATTR�� �IDENT� IDENT�ATTR����

� ���

�
ACTION
 DEF�IDENT�ATTR�n �IDENT� IDENT�ATTR�n��

�
CONDITION
 GET�IDENT�ATTR�� �IDENT �� IDENT�ATTR����

� ���

�
CONDITION
 GET�IDENT�ATTR�n �IDENT �� IDENT�ATTR�n��

�

� and implement this external predicates in C as	

� �Remember� that all opaque values are mapped to
long
��

�

� BOOL g�DEF�IDENT�ATTR�� �ident� attr�

� G�IDENT ident� long attr�

� �

� return g�DEF�IDENT�ATTR �ident� �� attr��

�

�

� ����

�

� BOOL g�GET�IDENT�ATTR�� �ident� attr�

� G�IDENT ident� long �attr�

� �

� return g�GET�IDENT�ATTR �ident� �� attr��

�

�

� ����

�

��

������ The ERRORS module

This module manages error messages emitted by the generated program while analyzing its input� The scanner
computes for each token its position ��lename
 line
 and column number�� The predicate GET CUR POS returns
the position of the last token coded into an integer� The problem during parsing is that action predicates must
follow all nonterminal or token predicates
 and hence one can get �using this predicate� only the position of the
last token of that grammar rule� A better way is the introduction of a grammar rule POS as follows�

NONTERM
 POS ��� POS��

POS ��� P�	 GET�CUR�POS ��� P��

This nonterminal predicate may now be used before each token � nonterminal predicate to determine its position�
The Gentle system uses two programs Lister�c and Unlister�c which are used to merge �remove� the error
messages with �from� the source �le�
The ERROR module is de�ned as follows�

MODULE
 ERRORS

�� This functions are used to handle error messages emitted by the generated

� program�

� An error message consists of

����� THE LIBRARY ��

� � a position in the source file� where the error is raised

� � a message �string�

� � auxiliary information� like names of identifiers etc�

� The position of an error message is specified by a triple

� � file 	 the file containing the source

� � line number

� � column number

� Several source files may be handled� The error messages are written to

� files named
ERRORS��name of source file��ERRORS

� If the source file is unknown� the error message is written to
stderr
�

� The auxiliary information is merged into
message
� The position in the

� message string is specified as following	

� The character # specifies the position of strings�

� The character & specifies the position of identifiers�

��

TYPE
 POS� �� position in source file

CONDITION
 IS�ERROR�OCCURED�

�� Succeeds iff an error message was emitted before�

CONDITION
 NO�ERROR�OCCURED�

�� Succeeds iff no error message was emitted before�

ACTION
 GET�UNDEF�POS ��� POS��

�� Returns the undefined position� Also the integer � is allowed�

ACTION
 ERROR �STRING� POS��

�� Emits an error message�

ACTION
 ERROR�TXT �Msg 	 STRING� Txt	 STRING� POS��

�� Emits an error message and replaces
#
 in Msg by Txt�

ACTION
 ERROR�IDENT �STRING� IDENT� POS��

�� Emits an error message and replaces
&
 by the textual

�� representation of the IDENT�

ACTION
 ERR�CVT�TO�POS �File 	 INT� Line 	 INT� Col 	 INT �� POS��

�� Converts filenumber�line�col information into a postion�

ACTION
 ERR�CVT�FROM�POS �POS �� File 	 INT� Line 	 INT� Col 	 INT��

�� Converts a position into filenumber�line�col information�

ACTION
 GET�CUR�POS ��� POS��

�� Returns position of the current parsed token in the source text

CONDITION
 Eq�POS �Pos� 	 POS� Pos� 	 POS��

�� Checks� whether Pos� is equal to Pos �� �file� line and column�

ACTION
 print�POS �POS��

�� Write pos to stdout�

�� abnormal program termination

�� a message is written to
stderr
�
io�close
 is called and then

��
exit �n�
 or
abort��
 is called�

ACTION
 EXIT �STRING� INT��

ACTION
 ABORT �STRING��

�����	 The STRINGS module

Gentle de�nes a sequence of characters as a STRING
 in the sense of C strings� Gentle itself allows string
constants in a Gentle speci�cation�
The STRINGS module is de�ned as follows�

MODULE
 STRINGS

TYPE
 STRING�

ACTION
 STRING�concat �S� 	 STRING� S� 	 STRING �� S� 	 STRING��

�� S� 	� S� " S�

ACTION
 STRING�length �STRING �� INT��

ACTION
 STRING�norm �Str 	 STRING� Size	 INT �� STRING��

�
 CHAPTER �� THE GENTLE PROGRAMMING ENVIRONMENT USER MANUAL

�� makes
Str
 at least
Size
 characters long� by adding spaces�

�� The following conditions compare the characters of the two strings�

CONDITION
 Eq�STRING �Str� 	 STRING� Str� 	 STRING��

CONDITION
 NotEq�STRING �Str� 	 STRING� Str� 	 STRING��

�� Str� � ��� Str� in their lexicographic order

CONDITION
 Less�STRING �Str� 	 STRING� Str� 	 STRING��

CONDITION
 Greater�STRING �Str� 	 STRING� Str� 	 STRING��

ACTION
 print�STRING �STRING��

ACTION
 INT���STRING �INT �� STRING��

�� converts the integer value into decimal string representation

������ The MATH module

A Gentle speci�cation only supports simple integer arithmetic� Compiling or interpreting a program often
needs a more complex arithmetic� Gentle�s build in integer arithmetic is a signed �� bit arithmetic �on �� bit
machines�� The �oating point arithmetic supported by this module has double precision�
The module MATH is de�ned as follows�

MODULE
 MATH

�� The constants used as minimum and maximum values for short� int� and long

� integer values are defined in MATH�h

� Current values are	

� min�shortint � ���' ' bit signed integer

� max�shortint � ��(

� min�integer � ���(!' �! bit signed integer

� max�integer � ��(!(

� min�longint � �x'������� �� bit signed integer

� max�longint � �x(FFFFFFF

�

� The Gentle built�in arithmetic is a �� bit signed arithmetic�

� Real arithmetic is done with double precision�

��

TYPE
 INT�

TYPE
 REAL�

�� return the lower and upper bound of the given integer type

ACTION
 ShortIntMinMax ��� Min 	 INT� Max 	 INT��

ACTION
 IntMinMax ��� Min 	 INT� Max 	 INT��

ACTION
 LongMinMax ��� Min 	 INT� Max 	 INT��

�� succeeds� iff the constant fits into that range

CONDITION
 Is�ShortInt �INT��

CONDITION
 Is�Integer �INT��

CONDITION
 Is�LongInt �INT��

�� integer � real comparision

CONDITION
 Eq�Int �Op� 	 INT� Op� 	 INT�� �� Op� �� Op�

CONDITION
 NotEq�Int �Op� 	 INT� Op� 	 INT�� �� Op� $� Op�

CONDITION
 Less�Int �Op� 	 INT� Op� 	 INT�� �� Op� � Op�

CONDITION
 LessEq�Int �Op� 	 INT� Op� 	 INT�� �� Op� �� Op�

CONDITION
 Greater�Int �Op� 	 INT� Op� 	 INT�� �� Op� � Op�

CONDITION
 GreaterEq�Int �Op� 	 INT� Op� 	 INT�� �� Op� �� Op�

CONDITION
 Eq�Real �Op� 	 REAL� Op� 	 REAL�� �� Op� �� Op�

CONDITION
 NotEq�Real �Op� 	 REAL� Op� 	 REAL�� �� Op� $� Op�

CONDITION
 Less�Real �Op� 	 REAL� Op� 	 REAL�� �� Op� � Op�

����� THE LIBRARY ��

CONDITION
 LessEq�Real �Op� 	 REAL� Op� 	 REAL�� �� Op� �� Op�

CONDITION
 Greater�Real �Op� 	 REAL� Op� 	 REAL�� �� Op� � Op�

CONDITION
 GreaterEq�Real �Op� 	 REAL� Op� 	 REAL�� �� Op� �� Op�

�� This constant arithmetic checks operands and the result for over�underflow

�� Error messages are emitted and � � ��� is returned in that case�

�� Result 	� Op� �operand� Op�

ACTION
 Add�Int �POS� Op� 	 INT� Op�	 INT �� INT��

ACTION
 Sub�Int �POS� Op� 	 INT� Op�	 INT �� Result 	 INT��

ACTION
 Mult�Int �POS� Op� 	 INT� Op�	 INT �� Result 	 INT��

ACTION
 Mod�Int �POS� Op� 	 INT� Op�	 INT �� Result 	 INT��

ACTION
 Div�Int �POS� Op� 	 INT� Op�	 INT �� Result 	 INT��

ACTION
 Add�Real �POS� Op� 	 REAL� Op�	 REAL �� Result 	 REAL��

ACTION
 Sub�Real �POS� Op� 	 REAL� Op�	 REAL �� Result 	 REAL��

ACTION
 Mult�Real �POS� Op� 	 REAL� Op�	 REAL �� Result 	 REAL��

ACTION
 Div�Real �POS� Op� 	 REAL� Op�	 REAL �� Result 	 REAL��

ACTION
 Power�Real �POS� Op� 	 REAL� Op�	 REAL �� Result 	 REAL��

ACTION
 Zero�Real ��� REAL��

ACTION
 Cvt�Int�To�Real �POS� INT �� REAL��

ACTION
 Cvt�Real�To�Int �POS� REAL �� INT��

�� trigonometric functions

ACTION
 math�sin �POS� REAL �� REAL��

ACTION
 math�cos �POS� REAL �� REAL��

ACTION
 math�atan �POS� REAL �� REAL��

ACTION
 math�exp �POS� REAL �� REAL��

ACTION
 math�log �POS� REAL �� REAL��

ACTION
 math�log�� �POS� REAL �� REAL��

ACTION
 math�sqrt �POS� REAL �� REAL��

ACTION
 math�int �POS� REAL �� REAL��

ACTION
 math�abs �POS� REAL �� REAL��

�� common constants

ACTION
 math�PI�value ��� REAL�� �� Constant pi

ACTION
 math�E�value ��� REAL�� �� Base of natural logarithms

ACTION
 math�GAMMA�value ��� REAL�� �� Euler�Mascheroni constant

ACTION
 math�DEG�value ��� REAL�� �� Degrees per radian

ACTION
 math�PHI�value ��� REAL�� �� Golden Ratio

ACTION
 Align �INT� INT �� INT��

�� aligns a value to a given bound

�� Align �bound� src �� result� computes	

�� rem 	� src MOD bound�

�� IF rem � � THEN result 	� src ELSE result 	� src
 �bound � rem� END

�� printing objects of opaque types on to stdout�

ACTION
 print�INT �INT��

ACTION
 print�REAL �REAL��

�����
 The BOOLEAN module

The BOOLEAN de�nes the boolean values �true and false� and operation on these values�
The BOOLEAN module is de�ned as follows�

MODULE
 BOOLEAN

BOOLEAN �

true�

false

�� CHAPTER �� THE GENTLE PROGRAMMING ENVIRONMENT USER MANUAL

�

CONDITION
 is�true �BOOLEAN��

is�true �true� 	 �

CONDITION
 is�false �BOOLEAN��

is�false �false� 	 �

CONDITION
 Eq�BOOLEAN �BOOLEAN� BOOLEAN��

Eq�BOOLEAN �true� true� 	 �

Eq�BOOLEAN �false� false� 	 �

ACTION
 and �BOOLEAN� BOOLEAN �� BOOLEAN��

and �true� true �� true� 	 �

and �X� Y �� false� 	 �

ACTION
 or �BOOLEAN� BOOLEAN �� BOOLEAN��

or �false� false �� false� 	 �

or �X� Y �� true� 	 �

ACTION
 not �BOOLEAN �� BOOLEAN��

not �true �� false� 	 �

not �false �� true� 	 �

ACTION
 print�BOOLEAN �BOOLEAN��

������ The ARRAYS module

The ARRAYS o�ers �xed sized integer indexed arrays� The elements of the array are terms�
The ARRAYS module is de�ned as follows�

MODULE
 ARRAYS

��

� This module provides a general fixed size array data type�

� Its index type is �INT�� its element type may be any Gentle type�

�

� �ARRAY�new� 	 Creates a fixed size array� Its index range is

� ��Lower�bound� �� �Upper�bound���

� Element type may be any Gentle opaque or term type�

� �ARRAY�dispose� 	 Removes the �storage of the� array�

� Further use if the array may result in a program

� abortion�

� �ARRAY�assign� 	 �Array �Index� 	� Value�

� The �Value� is assigned to the �Array� element with

� the given �Index�� �Index� must be in the

� range �Lower�bound �� Upper�bound�� specified by

� �ARRAY�new� for this �Array�� Otherwise the program

� is aborted and an error message is emited�

� �ARRAY�get� 	 �Value 	� Array �Index��

� �Value� is value of the �Array� element with

� the given �Index� assigned� �Index� must be in the

� range �Lower�bound �� Upper�bound�� specified by

� �ARRAY�new� for this �Array�� Otherwise the program

� is aborted and an error message is emited�

�

� The user of this module has to declare the signatures of �ARRAY�assign� and

� �ARRAY�get� predicates using the its own element type�

� If several array types �i�e� with different element type� are needed� for

� each type predicate signatures for the assign and get operation �with

� different names� must be declared�

� The �ARRAY�assign� and �ARRAY�get� predicate are already implemented as

����� THE LIBRARY ��

� external predicates in C�

� If other names are used� a small C procedure must be written� to call

� �g�ARRAY�assign� and �g�ARRAY�get��

� For example	

�

� ELEM�� � ��� �

� ELEM�� � ��� �

�
ACTION
 assign�� �Array 	 ARRAY� Index 	 INT� Value 	 ELEM����

�
ACTION
 get�� �Array 	 ARRAY� Index 	 INT �� Value 	 ELEM����

�
ACTION
 assign�� �Array 	 ARRAY� Index 	 INT� Value 	 ELEM����

�
ACTION
 get�� �Array 	 ARRAY� Index 	 INT �� Value 	 ELEM����

�

� and implement this external predicates in C as	

�

� �include �ARRAY�h�

� �include �SYS�h�

�

� BOOL g�assign�� �Array� Index� Value�

� int Index�

� tARRAY Array�

� long Value�

� �

� g�ARRAY�assign �Array� Index� Value��

� return TRUE�

�

�

� BOOL g�get�� �Array� Index� Value�

� int Index�

� tARRAY Array�

� long �Value�

� �

� g�ARRAY�assign �Array� Index� Value��

� return TRUE�

�

�

� and the same for �g�assign��� and �g�get���

�

� If the ��DUSER�DEFINE�OPAQUE� option is set in the �makemake� command�

� printing of an ARRAY is possible by declaring �
ACTION
 print�ARRAY �ARRAY��

� �as usual for all types��

� The lower bound and upper bound and all array elements are printed�

� The default case for printing array elements is to print their �address��

� The user may specify another print routine for the elements� by assigning

� the C pointer to function variable

� BOOL ��G�print�indented�ARRAY�ELEMENT� ��

� the printing routine �see files �ARRAYS�h� and �ARRAYS�c���

� This assignment may be done e�g� in �MAIN�c�

�

��

TYPE
 ARRAY�

ACTION
 ARRAY�new �Lower�bound 	 INT� Upper�bound 	 INT �� Array 	 ARRAY��

ACTION
 ARRAY�dispose �Array 	 ARRAY��

��

� ELEMENT �

� some�user�defined�things

� �

� or define ELEMENT as an opaque type�

�� CHAPTER �� THE GENTLE PROGRAMMING ENVIRONMENT USER MANUAL

� Another type name then ELEMENT may be used�

�

�
ACTION
 ARRAY�assign �Array 	 ARRAY� Index 	 INT� Value 	 ELEMENT��

�
ACTION
 ARRAY�get �Array 	 ARRAY� Index 	 INT �� Value 	 ELEMENT��

��

������ The STATISTICS module

The STATISTICS module collects information about the UNIX process running the target program� This
information �user time
 memory requirements
 page faults
 etc�� is printed to the standard output device�
The STATISTICS module is de�ned as follows�

MODULE
 STATISTICS

�� Collects and prints information about used times� used storage� page faults�

� etc� of the current UNIX process to standard output�

� To start the meassurement� call
STATISTICS�init
�

� To print the information� call
STATISTICS�show �Message�
� the
Message

� is printed before�
STATISTICS�show
 may be called several times after the

� last
STATISTICS�init
 call�

� The output looks like	

�

� show statistics	 message

� Wed Nov �� �'	�'	�� ����

�

� Real time	 ���'� sec

� User time	 ��''� sec

� System time	 ����� sec

� MemorySize	 ������� Kb

� Major page faults	 �

� Minor page faults	 �!

� Times swapped out	 �

� File Inputs	 �

� File Outputs	 �

� Signals	 �

� Wait for I�O	 ��

��

ACTION
 STATISTICS�init�

ACTION
 STATISTICS�show �Message 	 STRING��

���� The example library

Together with the Gentle system a set of several examples is distributed� Some are small toys
 some
are complete compilers
 interpreters
 and text analyzers� These examples are contained in the directory
�GENTLE DIR	examples�

glint Analyses Gentle programs and extracts information out of a Gentle speci�cation� �Speci�ed grammar in
BNF notation
 cross	reference listing
 warnings
 etc��

hoc Hoc �Kernighan et al ��� is a simple programmable interpreter for �oating point expressions� It has C�style
control �ow
 function de�nition and the usual numerical built	in functions such as cosine and logarithm�

minilax The programming language MiniLAX �Mini LAnguage eXample� is a Pascal relative� To be more
speci�c
 it is a subset of the example language LAX used in the text book �Waite et al �
�� MiniLAX
contains a carefully selected set of language concepts relevant for compiler construction� types
 type
coercion
 overloaded operators
 arrays
 procedures with reference and value parameters
 nested scopes� A
compiler for MiniLAX and target processor MC ����� �Motorola� is speci�ed�

tpnet Shows how TABLE�s may be used to represent graphs� The program is used to specify a network of
Transputers and computes the minimal spanning connection tree
 which may be used to down load code
to a Transputer net�

����� THE EXAMPLE LIBRARY ��

simple A compiler for a simple language
 having only assignments and expressions and a simple idealized
processor �bsp��� Simple constant folding �bsp���

Chapter �

Writing an Interpreter Using Gentle

��� Introduction

This chapter presents the development of a more complex Gentle system
 than the examples given in the language
reference manual� The goal of this tutorial is the speci�cation of an interpreter for Hoc� Hoc �Kernighan et al ���
is an interactive language for �oating point arithmetic� It has C�style control �ow
 function de�nition
 and the
usual numerical built�in functions such as cosine and logarithm�
The way this tutorial proceeds is analogous to that presented in �Kernighan et al ���� The interpreter is devel	
oped in eight steps
 starting with a simple integer expression interpreter
 going over to �oating point arithmetic
and control �ow constructs to the complete Hoc interpreter� Each step adds new di�culties and solutions� On
this way most of the written speci�cation of earlier steps may be reused�
First the Hoc language is de�ned in section ���� A �rst impression of a Gentle speci�cation gives section ���
by implementing a simple integer expression interpreter �hoc��� The �rst real step towards Hoc is presented in
section ��

 where the complete �oating point arithmetic interpreter is speci�ed �hoc��� The next two sections
add variables and the standard functions to the interpreter �hoc�
 hoc��� Hoc
 in section ��� changes the
interpreter signi�cantly
 by introducing two�pass interpreting
 i�e� �rst construct an intermediate representation
of the program and then interprete it� Section ��� includes control �ow constructs
 like conditionals and loops�
Section ��� changes the interpretation of loops from recursion into a loop over cyclic graphs� The complete Hoc
interpreter is given in section ���� �hoc���
Together with the Gentle system
 an example library is distributed� This library contains in the directory
�GENTLE DIR	example	hoc all steps of this development� The steps are named hoc� � � � hoc� and the inter	
preters for the sub�languages are contained in subdirectories with that names�
An executable Hoc interpreter is contained in the example library distributed together with Gentle� For its
usage refer to the manual pages �i�e� try man hoc��

��� HOC Language Reference Manual

Hoc � An Interactive Language For Floating Point Arithmetic�

Brian Kernighan
Rob Pike

Hoc is a simple programmable interpreter for �oating point expressions� It has C�style control �ow

function de�nition and the usual numerical built�in functions such as cosine and logarithm�

����� Expressions

Hoc � is an expression language
 much like C� although there are several control��ow statements
 most statements
such as assignments are expressions whose value is disregarded� For example
 the assignment operator ! assigns

�published in �Kernighan et al ��

�some minor changes of the Gentle implementation are marked with y

�

���� HOC LANGUAGE REFERENCE MANUAL
�

the value of its right operand to its left operand
 and yields the value
 so multiple assignments work� The
expression grammer is�

expr	 number

� variable

� � expr �

� expr binop expr

� unop expr

� function � arguments � �

Numbers are �oating point� The input format is that recognized by scanf ���� digits
 decimal point
 digits
 e or
E
 signed exponent� At least one digit or decimal point must be present� the other components are optional�
Variable names are formed from a letter followed by a string of letters and numbers�� binop refers to binary
operators such as addition or logical comparision� unop refers to the two negation operators
 � � �logical
negation
 �not�� and �	� �arithmetic negation
 sign change�� Table ��� lists the operators�

) exponentation �FORTRAN ���� right associative

$ � �unary� logical and arithmetic negation

� multiplication� division

 � addition� subtraction

� �� relational operators	 greater� greater or equal

� �� less� less or equal

�� $� equal� not equal �all the same preceedence�

"" logical AND �both operands always evaluated�

�� logical OR �both operands always evaluated�

� assignment� right associative

Table ���� Operators
 in decreasing order of precedence

Functions
 as decribed later
 may be de�ned by the user� Function arguments are expressions separated by
commas� There are also a number of built�in functions
 all of which take a single argument
 described in
Table ����

abs �x� jxj
 absolute value of x
atan �x� arc tangent of x
cos �x� cos �x�
 cosine of x
exp �x� ex
 exponential of x
int �x� interger part of x
 truncated towards zero
log �x� log �x� logarithm base e of x
log	� �x� log �x� logarithm base �� of x
sin �x� sin �x�
 sine of x
sqrt �x�

p
x� x���

Table ���� Built	in Functions

Logical expressions have values ��� �true� and ��� �false�� As in C
 any non�zero value is taken to be true� As
always the case with �oating point numbers
 equality comparisons are inherently suspect�
Hoc also has a few built�in constants
 shown in Table ����

�and the �underscore� character y

� CHAPTER �� WRITING AN INTERPRETER USING GENTLE

����� Statements and Control Flow

Hoc statements have the following grammer�

stmt	 expr

� variable � expr

� procedure � arglist �

� while � expr � stmt

� if � expr � stmt

� if � expr � stmt else stmt

� f stmtlist g
� print expr�list

� return optional��expr �

stmtlist	 �nothing�

� stmtlist stmt �

An assignment is parsed by default as a statement rather than an expression
 so assignments typed interactively
do not print their value�
Note that semicolons are not special to Hoc � statements are terminated by newlines�

This causes some peculiar behaviour� The following are legal if statements�

if �x � �� print �y� else print �z�

if �x � ��

print �y�

else

print �z�

In the second example
 the braces are mandatory� the newline after the if would terminate the statement and
produce a syntax error were brace omitted�
The syntax and semantics of Hoc control �ow facilities are bassically the same as in C� The while and the if
statements are just as in C
 except there are no break or continue statements�

����� Input and Output� read and print

The input function read
 like the other built�ins
 takes a single argument� Unlike the built�ins
 though
 the
argument is not an expression� it is the name of a variable� The next number �as de�ned above� is read from
the standard input and assigned to the named variable� The return value of read is � �true� if a variable was
read
 and � �false� if read encountered end of �le or an error�
Output is generated with the print statement� The arguments to print are a comma separated list of expressions
and strings in double quotes
 as in C� Newlines must be supplied� they are never provided automatically by
print�
Note that read is a special built�in function
 and therefore takes a single parenthesized argument
 while print is
a statement that takes a comma�separated unparenthesized list�

�All chacraters after �� up to the end of the line are treates as comment� y

DEG �(����((�����'����'(!'� �'���� degrees per radian

E ��(�'�'�'�'����������! e� base of natural logarithms

GAMMA ���((���!!�������'!�!� �� Euler�Mascheroni constant

PHI ��!�'����''(��'��'�'�� �
p
� � ���
� the golden ratio

PI ��������!���'�(����'�! �� circular transcendental number

Table ���� Built	in Constants

���� HOC LANGUAGE REFERENCE MANUAL
�

while �read �x��

print �value is �� x� ��n�

����	 Functions and Procedures

Functions and procedures are distinct in Hoc
 although they are de�ned by the same mechanism� This distinc	
tion is simply for run�time checking� it is an error for a procedure to return a value
 and for a function not to
return one�
The de�nition syntax is�

function	 func name �� stmt �

procedure	 proc name �� stmt �

name may be the name of any variable � built�in functions are excluded� The de�nition
 up to the opening
brace or statement
 must be on one line
 as with the if statement above�
Unlike C
 the body of a function or procedure may be any statement
 not necessarily a compound �brace	
enclosed� statement� Since semicolons have no meaning in Hoc
 a null procedure body is formed by an empty
pair of braces�
Functions and procedures may take arguments
 separated by commas
 when invoked� Arguments are referred to
as in the shell� 	� refers to the third ��	indexed� argument� They are passed by value and within functions are
semantically equivalent to variables� It is an error to refer to an argument numbered greater than the number
of arguments passed to the routine� The error checking is done dynamically
 however
 so a routine may have
variable numbers of arguments if initial arguments a�ect the number of arguments to be referenced �as in C�s
printf��
Functions and procedures may recurse
 but the stack has limited depth �about a hundred calls��� The following
shows a Hoc de�nition of Ackermann�s function�

func ackermann ��

if �#� �� �� return #�
�

if �#� �� �� return ackermann �#���� ��

return ackermann �#���� ackermann �#�� #�����

ackermann �����

��

ackermann �����

!�

ackermann �����

���

����� Examples

Stirling�s formula�

n� � p

n ��n�e��n�� � �

��n
�

func stirling ��

return sqrt���#��PI� � �#��E�)#����
 ������#���

stirling ����

�!�'!'��(

stirling ����

�����''�'e
�'

Factorial function
 n �

�In the Gentle implementation� this is limited only by the amount of memory available y�

 CHAPTER �� WRITING AN INTERPRETER USING GENTLE

func fac� ��

if �#� �� �� return � else return #� � fac �#����

Ratio of factorial to Stirling approximation�

i � �

while ��i � i
�� �� ���

print i� � �� fac �i� � stirling �i�� ��n�

�� ��������'

�� �������!�

�� ���������

�� ���������

�� �������!!

�� ��������!

�! ��������'

�(���������

�' ���������

�� ���������

�� �������'�

��� An integer expression interpreter
 Hoc�

The �rst language reads integer expressions with �
 � 	 operations from a �le and computes the result� The
built�in integer arithmetic of the Gentle system is used to compute the result
 while parsing proceeds� An
expression is terminated by the newline character� The operators are left associative�

����� The scanner

The used scanner generator rex and its input syntax is given in �Grosch ����
The scanner speci�cation is contained in �le SCANNER�rex � Since only integer numbers are processed
 only
the NUMBER token has a single attribute� The error attribute computing procedure looks like�

�� procedure returning error attributes ��

void ErrorAttribute �Token� Attribute�

int Token�

tScanAttribute �Attribute�

�

switch �Token� �

case g�NUMBER 	 Attribute��attr� � �� break�

default 	 Attribute��attr� � �� break�

The syntax of the description of the regular expressions is de�ned in �Grosch ���� Now the regular expressions
for the tokens must be de�ned�

RULES

�� new line character ��

�STD� �n 	 � yyEol ���� return g�NL�

�� integer numbers ��

�STD� ����
 	 �GetWord �word��

sscanf �word� �%d�� "Attribute�attr���

�� sscanf converts numbers contained in a

sequence of characters into a numerical

value� It is contained in the C library

���� AN INTEGER EXPRESSION INTERPRETER� HOC�
�

��

return g�NUMBER�

�� operators ��

�STD� �
� 	 �return g�PLUS�

�STD� ��� 	 �return g�MINUS�

�STD� ��� 	 �return g�MULT�

�STD� ��� 	 �return g�DIV�

�STD� ��� 	 �return g�LEFTPAR�

�STD� ��� 	 �return g�RIGHTPAR�

The procedure yyEol must be called in the rule for the new line token
 to compute the line and column
information correctly
 see �Grosch ����

����� The Gentle speci�cation

The Gentle speci�cation for this language is contained in �le hoc� inter�g and is given by�

MODULE
 hoc��inter

��

�� Tokens

��

TOKEN
 NL�

TOKEN
 PLUS�

TOKEN
 MINUS�

TOKEN
 MULT�

TOKEN
 DIV�

TOKEN
 LEFTPAR�

TOKEN
 RIGHTPAR�

TOKEN
 NUMBER ��� INT��

��

�� Grammar

��

NONTERM
 ROOT�

���������������

ROOT 	 List �

NONTERM
 List�

���������������

List 	 �

List 	 List NL�

List 	 List Expr ��� Val� NL

put�s� ����t�� put�d �Val� put�s� ����n�� �

��

�� Expression Grammar

��

NONTERM
 Expr ��� INT��

������������������������

Expr ��� I�	 SimpleExpr ��� I� �

NONTERM
 SimpleExpr ��� INT��

������������������������������

SimpleExpr ��� I� 	 Term ��� I� �

SimpleExpr ��� I�
 I��	 SimpleExpr ��� I�� PLUS Term ��� I�� �

SimpleExpr ��� I� � I��	 SimpleExpr ��� I�� MINUS Term ��� I�� �

NONTERM
 Term ��� INT��

������������������������

Term ��� I� 	 Unary ��� I� �

� CHAPTER �� WRITING AN INTERPRETER USING GENTLE

Term ��� I� � I��	 Term ��� I�� MULT Unary ��� I�� �

Term ��� I� � I��	 Term ��� I�� DIV Unary ��� I�� �

NONTERM
 Unary ��� INT��

�������������������������

Unary ��� I� 	 Factor ��� I� �

Unary ��� ��I�	 MINUS Factor ��� I� �

NONTERM
 Factor ��� INT��

�������������������������

Factor ��� I�	 NUMBER ��� I� �

Factor ��� I�	 LEFTPAR Expr ��� I� RIGHTPAR �

The put action predicates are de�ned in the IO library and write strings and integers to the standard output
device�

����� Other work

The make�le generator makemake must be parameterized as follows� NAME�HOC�
 DEST��destination
directory�
 the
DUSER DEFINE OPAQUE �ag must be set in CPPFLAGS�

����	 Generating and running the Hoc� interpreter

After writing all these speci�cations and modifying the given programs and UNIX shell scripts
 two steps are
needed to generate the Hoc� interpreter� First
 the make�le must be generated using the makemake command
�see section ����� Second the make process must be started by the make command� After make has �nished

the interpreter may started�

makemake RETURN key

GENTLE DIR � �usr�local�lib�gentle

make RETURN key

cc �c �I�usr�local�lib�gentle�reuse �DUSER�DEFINE�OPAQUE

�DNR�OF�IDENT�ATTR�� aux�c

�usr�local�lib�gentle�bin�gentle �noedit grammar�g BOOLEAN�g ERRORS�g IDENTS�g

IO�g MATH�g STATISTICS�g STRINGS�g aux�g calc�g exec�g grammar�g obj�g

Gentle	 ��� ����'���

Changed	 g�cfg

Changed	 g�grammar�c

Changed	 g�tokens�h

�usr�local�lib�gentle�bin�make�scanner

Warning	 in start state STD the default action may be triggered by	

lot more of information

g�HOC� RETURN key

�
 � RETURN key

�

Control�D key� terminates the interpreter

#

��
� A FLOATING POINT EXPRESSION INTERPRETER� HOC�
�

��� A �oating point expression interpreter
 Hoc�

The �rst step towards Hoc is the interpretation of �oating point expressions� Relational
 logical operators
and the exponentiation operator are added� The �boolean� values are represented as �oating point numbers

where FALSE is coded as ��� and each other value codes TRUE �usually ����� The language allows Ada style
comments� All characters after

 up to the end of the line are treated as comment�
Because the Gentle language does not support �oating point computations
 this must be done by external
predicates
 which are de�ned in the library module MATH�

��	�� The scanner

The ErrorAttribute procedure must be changed in the NUMBER case
 since the attribute type has been changed
from int to double �see section ����� The new operators must be added
 too� Only the regular expression for
comments and �oating point numbers will be given here�

�� single line comments �Ada � style� ��

�STD� ���� ANY � �n 	� �yyEol ���� return g�NL�

�� real numbers ��

�STD� digit
 �

�STD� digit
 ��� digit � ���E���e�� �
�� * digit
� * 	

	 �GetWord �word��

Attribute�attr� � �double ��G�pool�alloc �sizeof �double���

sscanf �word� �%lf�� Attribute�attr���

return g�NUMBER�

��	�� The Gentle speci�cation

The grammar has changed to re�ect the more complex precedence rules of the various operators� The actual
computations of values is done during parsing
 using the predicates de�ned in the MATH library� Some grammar
rules �contained in �le grammar�g� are�

NONTERM
 Expr ��� REAL��

�������������������������

Expr ��� R�	 E� ��� R� �

NONTERM
 E� ��� REAL�� �� or

�����������������������

E� ��� R�	 E� ��� R� �

E� ��� R�	 E� ��� R�� OR E� ��� R��

Calc� �or� R�� R� �� R� �

NONTERM
 E� ��� REAL�� �� and

�����������������������

E� ��� R�	 E� ��� R� �

E� ��� R�	 E� ��� R�� AND E� ��� R��

Calc� �and� R�� R� �� R� �

NONTERM
 E� ��� REAL�� �� �� ��� �� ��� ��� $�

�����������������������

E� ��� R�	 E� ��� R� �

E� ��� R�	 E� ��� R�� RELOP ��� Op� E� ��� R��

Calc� �Op� R�� R� �� R� �

NONTERM
 RELOP ��� OPERAND��

�����������������������������

RELOP ��� less� 	 LESS�

�����

� CHAPTER �� WRITING AN INTERPRETER USING GENTLE

The predicates implementing the calculations are contained in module calc� The ��� REAL predicates are de�ned
in module MATH�

�� often used values

VAR
 REAL Zero�

VAR
 REAL One�

����

OPERAND � plus� minus� ����� �

ACTION
 Calc� �OPERAND� REAL� REAL �� REAL��

���

�� computes binary expressions

�� The value � is used for the �undefined� position�

Calc� �plus� Arg�� Arg� �� Res�	 Add�Real ��� Arg�� Arg� �� Res��

Calc� �minus� Arg�� Arg� �� Res�	 Sub�Real ��� Arg�� Arg� �� Res��

Calc� �mult� Arg�� Arg� �� Res�	 Mult�Real ��� Arg�� Arg� �� Res��

Calc� �div� Arg�� Arg� �� Res�	 Div�Real ��� Arg�� Arg� �� Res��

Calc� �power� Arg�� Arg� �� Res�	 Power�Real ��� Arg�� Arg� �� Res��

�� �e� AND e�� is true ������ iff �e� $� ��� and e� $� ����

Calc� �and� Arg�� Arg� �� One� 	

NotEq�Real �Zero� Arg��

NotEq�Real �Zero� Arg��

�

Calc� �and� Arg�� Arg� �� Zero� 	�

�����

The global variables Zero and One must be initialized before they are used� The right place for such a kind of
initialization is before parsing starts� This is done by introducing a nonterminal predicate INIT
 which accepts
nothing
 but just calls the action predicate init
which does the actual initializations�

NONTERM
 ROOT� �� the first nonterm

ROOT	 INIT Parse ������ ���� �

NONTERM
 INIT�

INIT 	 init �

ACTION
 init�

init 	 CvtIntToReal ��� � �� Z�

Zero �� Z

CvtIntToReal ��� � �� O�

One �� O

���� �

��� Using variables
 Hoc�

This section shows
 how Hoc variables may be implemented� A variable is declared when a value is assigned� It
is an error to use undeclared variables� A variable may be assigned more than once�
The problem
 which must be solved here
 is that a mapping from identi�ers to values must be de�ned �
implemented� Compiler writers call this mapping a symbol or de�nition table� The simplest �and fastest�
solution is to use the possibility to attach several attributes to identi�ers
 which is o�ered by the IDENTS
library�

����� The scanner

A regular expression for identi�ers must be speci�ed� The number of attributes a single token has does not
change and is again one� The ErrorAttribute procedure must be extended �see section �����

���� USING VARIABLES� HOC�
�

�� identifiers �Hoc � Modula � style� ��

�STD� letter �letter � digit� � 	

�length � GetWord �word��

g�enter�IDENT�word� length� "�Attribute�attr����

return g�IDENTIFIER�

����� The Gentle speci�cation

Objects

The new feature of hoc� is the notion of an �object�� Each identi�er �i�e� variable� has an additional attribute

specifying this object �i�e� �oating point value�� The library module IDENTS o�ers manipulation of such
identi�er attributes using the predicates DEF IDENT ATTR and GET IDENT ATTR� These predicates are not de�ned
in IDENTS
 because the kind �type� of the objects is de�ned by the user of the library� GET IDENT ATTR is a
condition predicate
 which succeeds only if the attribute was de�ned before�

ACTION
 DEF�IDENT�ATTR �IDENT� INT� OBJECT�� �� external

CONDITION
 GET�IDENT�ATTR �IDENT� INT �� OBJECT�� �� external

Three predicates are de�ned dealing with objects� DefMeaning
 which de�nes a meaning of an identi�er� The
other steps of the development of Hoc will add more objects
 and hence it is checked
 that only unde�ned identi	
�ers get a variable meaning and only for identi�ers denoting variables the value may be rede�ned� GetMeaning
succeeds only if the identi�er has a de�ned meaning
 and returns in that case the object� GetValue returns the
value of a variable
 if it is de�ned� If an error occurs in a Hoc program an error message is printed and usually
the value ��� is returned�

OBJECT �

variable �REAL� �� each variable has a value

�

ACTION
 DefMeaning �IDENT� OBJECT��

������������������������������������

�� Associates an object with an identifier�

�� Only variable identifiers may get a new value�

DefMeaning �Id� variable �NewValue��	

GetMeaning �Id �� variable �OldValue��

�� checks� whether
Id
 is already declared as avariable� since

�� only variable objects are allowed to be redefined�

DEF�IDENT�ATTR �Id� �� variable �NewValue���

DefMeaning �Id� Obj�	 DEF�IDENT�ATTR �Id� �� Obj��

�� Now
Id
 is an undeclared identifier�

CONDITION
 GetMeaning �IDENT �� OBJECT��

���

GetMeaning �Id �� Obj�	 GET�IDENT�ATTR �Id� � �� Obj� �

ACTION
 GetValue �IDENT �� REAL��

����������������������������������

GetValue �Id �� Value�	 GetMeaning �Id �� variable �Value�� �

GetValue �Id �� Zero�	 ERROR�IDENT ��
&
 is not a variable�� Id� �� �

�� Zero is a global variable� holding the value ���

These de�nitions are contained in module obj� The last clause shows the handling of errors using predicates
contained in the ERRORS module� Because we don�t include positional information the �unde�ned� position
denoted by � is used�

�� CHAPTER �� WRITING AN INTERPRETER USING GENTLE

The grammar part

New tokens and nonterminal rules for identi�ers and assignments are added� The de�nition of a variable is done
by assignment
 a variable is used in an expression� Assignments have a result �as in C� and hence may occur in
two contexts� �rst at �top level� and second inside of expressions�

List 	

List IDENTIFIER ��� Id� ASSIGN Expr ��� Val� NL

DefMeaning �Id� variable �Val�� �

Expr ��� R�	

IDENTIFIER ��� Id� ASSIGN Expr ��� R�

DefMeaning �Id� variable �R�� �

E(��� R�	

IDENTIFIER ��� Id�

GetValue �Id �� R� �

The fact that assignment occurs in two contexts causes a �read � reduce� or �shift � reduce� called con�ict�
The lalr parser generator emits the following information in the �le Debug and o�ers a default resolution of
that situation
 namely to shift
 which is in our case the desired resolution� The dotted lines show the derivation
trees which cause the con�ict� For more information see �Vielsack ����

State ��

g�ROOT End�of�Tokens

g�INIT g�List

�������	

	

g�List g�Expr g�NL

	

g�IDENTIFIER g�ASSIGN g�Expr

	����������

	

reduce g�Expr �� g�IDENTIFIER g�ASSIGN g�Expr� �g�NL *

g�ROOT End�of�Tokens

g�INIT g�List

g�List g�IDENTIFIER g�ASSIGN g�Expr g�NL

	����������

	

read g�List �� g�List g�IDENTIFIER g�ASSIGN g�Expr�g�NL *

ignored g�Expr �� g�IDENTIFIER g�ASSIGN g�Expr� �g�NL

retained g�List �� g�List g�IDENTIFIER g�ASSIGN g�Expr�g�NL

����� Other work

The makemake �les must be adapted accordingly using the new system name �HOC��� Besides that
 it
must be speci�ed in makemake
 that one attribute is attached to identi�ers� This is done by including

DNR OF IDENT ATTR�	 in the CPPFLAGS parameter�

��� Standard procedures
 Hoc�

In Hoc� standard procedures �like sin� cos� � � �� and prede�ned constants �like 	� �� � � �� are included� Two ways
exist to implement this� First
 introducing new tokens representing the prede�ned names and handle these
tokens in a special way or second
 declaring the names like other identi�ers and treat the prede�ned functions
as ordinary functions and constants as variables� We choose the second way�

���� STANDARD PROCEDURES� HOC� ��

��
�� The Gentle speci�cation

The Gentle speci�cation changes mainly in three points� The grammar must be changed to re�ect the structure
of standard function calls� New objects must be de�ned
 representing the prede�ned functions and constants�
Last but not least
 the evaluation of function calls must be implemented�

The grammar

The change in the grammar is very small� The grammar rule�

E(��� R�	

IDENTIFIER ��� Id� LEFTPAR Expr ��� Arg� RIGHTPAR

EvalFunction �Id� Arg �� R�

�

must be added to the nonterminal E��

Objects

Each standard function is a new object and hence the object type looks like�

OBJECT �

variable �REAL�� �� each variable has a value

�� built�in functions

func�sin� func�cos� func�atan� func�exp� func�log� func�log���

func�sqrt� func�int� func�abs �

A new clause for the DefMeaning predicate must be speci�ed
 which checks that a standard function is not
rede�ned�

DefMeaning �Id� Obj�	

GetMeaning �Id �� Func�

IsBuiltInFunc �Func�

ERROR�IDENT ��
&
 is already declared as built�in function���Id� �� �

CONDITION
 IsBuiltInFunc �OBJECT��

�����������������������������������

IsBuiltInFunc �func�sin�	 �

IsBuiltInFunc �func�cos�	 �

IsBuiltInFunc �func�atan�	 �

�����

Prede�ned constants are implemented as ordinary variables� �A bug �or feature""� is that prede�ned constants
may get a new value�� The meaning of the prede�ned identi�ers must be declared in the init predicate�
The enter IDENT action predicate from the IDENTS module declares the identi�ers
 DefMeaning declares the
meaning of that identi�er�

�� enter predefined names �constants�functions�

enter�IDENT ��sin�� � �� Sin� DefMeaning �Sin� func�sin�

enter�IDENT ��cos�� � �� Cos� DefMeaning �Cos� func�cos�

����

math�PI�value ��� Pi�val�

math�E�value ��� E�val�

����

enter�IDENT ��PI�� � �� Pi� DefMeaning �Pi� variable �Pi�val��

enter�IDENT ��E�� � �� E� DefMeaning �E� variable �E�val��

����

�� CHAPTER �� WRITING AN INTERPRETER USING GENTLE

Evaluation of function calls

The function application is implemented by the EvalFunction predicate� It checks that the identi�er is de�ned�
The EvalFunc predicate checks that the object is a standard procedure� The EvalBuiltInFunc applies the
function to the passed value�

ACTION
 EvalFunction �IDENT� REAL �� REAL��

��

�� checks� that
IDENT
 is a function name and returns the value of
f�x�

EvalFunction �Id� Val �� R�	

GetMeaning �Id �� Object�

EvalFunc �Id� Object� Val�� R� �

EvalFunction �Id� Val �� Zero�	

ERROR�IDENT ��undeclared identifier
&
 �� Id� �� �

ACTION
 EvalFunc �IDENT� OBJECT� REAL �� REAL��

��

EvalFunc �Id� Func� Arg �� R�	

IsBuiltInFunc �Func�

EvalBuiltInFunc �Func� Arg �� R� �

EvalFunc �Id� Obj� Arg �� Zero�	

ERROR�IDENT ��
&
 is not declared as function�� Id� �� �

ACTION
 EvalBuiltInFunc �OBJECT� REAL �� REAL��

��

EvalBuiltInFunc �func�sin� Arg �� R�	 math�sin ��� Arg �� R��

EvalBuiltInFunc �func�cos� Arg �� R�	 math�cos ��� Arg �� R��

����

��
�� Other work

The makemake �les must be adapted accordingly
 using the new name of the system �HOC���

��� Construct an intermediate language
 Hoc�

The language of hoc� is not changed in comparision to hoc� but the implementation is changed signi�cantly� The
main point is that the parser constructs an intermediate representation for expressions
 instead of evaluating
them directly� After an expression is parsed
 the expression tree is traversed and evaluated� The previous
evaluation routines are reused�

����� The Gentle speci�cation

First the representation of expressions is de�ned using terms�

TREE �

const �REAL��

ident �IDENT��

unary �OPERAND� TREE��

binary �OPERAND� TREE� TREE��

assign �IDENT� TREE��

func�call �IDENT� TREE� �

The evaluation predicate for expression trees has a TREE as input and returns the result as a REAL� The idea is
�rst to evaluate the sub�expressions of a tree node �expression� and then apply the operation on the results� It
uses the predicates
 de�ned in the earlier versions of Hoc and looks like�

ACTION
 Evaluate �TREE �� REAL��

���������������������������������

Evaluate �const �R� �� R� 	 �

Evaluate �ident �Id� �� R�	

���� CONSTRUCT AN INTERMEDIATE LANGUAGE� HOC
 ��

GetValue �Id �� R� �

Evaluate �unary �Op� T� �� R�	

Evaluate �T �� Arg�

Calc� �Op� Arg �� R� �

Evaluate �binary �Op� T�� T�� �� R�	

Evaluate �T� �� Left� Evaluate �T� �� Right�

Calc� �Op� Left� Right �� R� �

Evaluate �func�call �Id� Args� �� R�	

EvalFunction �Id� Args �� R� �

Evaluate �assign �Id� T� �� Arg�	

Evaluate �T �� Arg�

DefMeaning �Id� variable �Arg�� �

The EvalFunction predicate must also be modi�ed
 because now the function argument is a TREE instead of a
REAL value�

ACTION
 EvalFunction �IDENT� TREE �� REAL��

��

EvalFunction �Id� Arg �� R�	

GetMeaning �Id �� Object�

Evaluate �Arg �� Val�

�� execute function code

EvalFunc �Id� Object� Val�� R� �

The EvalFunc and EvalBuiltInFunc predicates are not changed
 the function argument is evaluated before
they are called�

The grammar

The grammar speci�cation must be modi�ed by changing the result parameter of the nonterminal rules� The
List nonterminal is extended by the action
 which calls the evaluation of the parsed expression�

List 	

List Expr ��� T� NL

print�Expression �T�

Evaluate �T �� Val�

put�s� ����t��

put�r �Val�

put�s� ����n�� �

Only some grammar rules are shown as representative for the modi�cations needed�

NONTERM
 Expr ��� TREE�� �� assign

�������������������������

Expr ��� T�	 E� ��� T� �

Expr ��� assign �Id� T��	 IDENTIFIER ��� Id� ASSIGN Expr ��� T� �

NONTERM
 E� ��� TREE�� �� or

�����������������������

E� ��� T�	 E� ��� T� �

E� ��� binary �or� T�� T���	 E� ��� T�� OR E� ��� T�� �

NONTERM
 E� ��� TREE�� �� and

�����������������������

E� ��� T�	 E� ��� T� �

E� ��� binary �and� T�� T���	 E� ��� T�� AND E� ��� T�� �

NONTERM
 E(��� TREE�� �� numbers� var�access� func�call

�����������������������

E(��� const �R��	 NUMBER ��� R� �

E(��� ident �Id��	 IDENTIFIER ��� Id� �

E(��� T�	 LEFTPAR Expr ��� T� RIGHTPAR �

�
 CHAPTER �� WRITING AN INTERPRETER USING GENTLE

E(��� func�call �Id� Arg��	

IDENTIFIER ��� Id� LEFTPAR Expr ��� Arg� RIGHTPAR �

����� Other work

The makemake �les must be adapted accordingly
 using the new name of the system �HOC���
For testing purposes it is sometimes useful to print terms� One way doing this is to print it always
 or to print it
only if a command line parameter is read
 when the program is started� The second possibility is taken
 which
also shows
 how the MAIN program must be changed to to this� The actual printing of term is performed by
the generated predicates print Type
 where Type is a type name of the term�
A new external predicate is introduced to check whether the command line option
print was given� This
predicate is implemented in �le aux�c
 and hence aux�o must be assigned to the OBJS parameter of makemake�
Calling the hoc� program with the
print command line option prints the expression tree onto the standard
output device� A variable print option holding the values � or � if the option was given or not is used� In the
MAIN�c �le
 the loop scanning the command line looks like�

while �i � argc� �

if �strcmp �argv�i�� ��print�� �� �� � �� new ��

print�option � �� �� new ��

 else �� new ��

�g�IO�DECLARE�argv�i��� inputs

�

i

�

The �les aux�g and aux�c look like�

MODULE
 aux

CONDITION
 is�print�Option�set�

�� succeeds� iff hoc was called with
�print
 option�

The implementation of this external predicate is contained in �le aux�c and looks like�

�include �SYS�h�

�include �stdio�h�

long print�option � �� �� boolean flag� used to store whether the
�print
 option is set ��

�� implementation of
CONDITION
 is�print�Option�set
 ��

BOOL g�is�print�Option�set ��

� return �print�option �� �� * TRUE 	 FALSE�

The predicate print Expression uses the �by Gentle� generated term printing predicate print TREE and is
de�ned as�

ACTION
 print�Expression �TREE��

���������������������������������

�� prints the expression on
stdout
� if hoc is called with ��print� option

print�Expression �T�	

is�print�Option�set

print�TREE �T�

�

print�Expression �T� 	 �

ACTION
 print�TREE �TREE��

���������������������������

�� generated output routine�

��
 Control �ow
 Hoc�a

This section adds if� while statements and statement sequences to hoc�� Again the statements are represented
as terms
 forming a list of statements� This list is then interpreted� The list de�nition looks like��

�The speci�cation of the interpretation of statement is contained in �le exec�g

���� CONTROL FLOW� HOC�A ��

STMT �

stmts �STMTS��

assign �IDENT� TREE��

if �TREE� STMT� STMT��

while �TREE� STMT��

print �TREE��

prints �STRING��

null� �� for empty else part of an if�stmt

�� a list of statements is formed as STMTS

STMTS �

s �STMT� STMTS��

nil �

����� The scanner and parser

The scanner must be extended for the new keywords� The parser must get new rules for accepting the state	
ments� Our implementation raises a read�reduce �dangling else� and a reduce�reduce con�ict� They are solved
automatically by the parser generator lalr in the default way
 i�e� for the read�reduce con�ict
 the production
reading the token is selected and for the reduce�reduce con�ict the textual �rst grammar rule is selected �see
�Vielsack �����
A critical point is the list of statements� If one constructs the term
 the list is constructed in reverse order�
This could be avoided using right recursion over the statement list
 but the drawback of right recursion is that
the interactive mode of parsing the input is no more possible �because for right recursion
 the entire text must
be present�� The method used here is to build it in the �right� order by appending a new statement at the end
of the list�

ACTION
 Append�STMTS �STMTS� STMT �� STMTS��

���

�� appends a statement to a statement list

Append�STMTS �nil� S �� s�S� nil�� 	 �

Append�STMTS �s�S�� L��� S� �� s�S�� L���	

Append�STMTS �L�� S� �� L��

�

NONTERM
 StmtList ��� STMTS��

�����������������������������

StmtList ��� nil� 	 �

StmtList ��� S�	

StmtList ��� S� NL

�

StmtList ��� L��	

StmtList ��� L� Stmt ��� S� NL

Append�STMTS �L� S �� L��

�

Stmt ��� while �T� S��	

WHILE Condition ��� T� Stmt ��� S�

�

The �top level� rule initiating the entire process is speci�ed now as�

List 	

List Stmt ��� S� NL

print�Statements �S�

Execute �S�

�

�� CHAPTER �� WRITING AN INTERPRETER USING GENTLE

����� Interpretation of statements

The interpretation of the assignment statement and statement list are quite obivous� For the if statement the
conditional expression is evaluated and then the corresponding statement is executed� This is done by two
clauses for the if statement
 the �rst evaluates the conditional expression and tests for TRUE� If the condition
predicate NotEq Real succeeds
 the then part statements are executed� If this condition predicate fails
 the next
clause is tried
 which executes the else statement� The conditional expression must not be evaluated again�
The while statement is transformed to�

if Condition then �Body � � while � Condition � Body

and then interpreted� If the conditional expression evaluates to FALSE �i�e� ���� the interpretation of the loop
is �nished� Notice� this kind of interpretation creates a new statement list for each iteration of the loop� The
entire Execute predicate�

ACTION
 Execute �STMT��

������������������������

Execute �stmts �L��	

ExecList �L�

�

Execute �assign �Id� T��	

Evaluate �T �� Arg�

DefMeaning �Id� variable �Arg��

�

Execute �if �Cond� ThenStmt� ElseStmt��	

Evaluate �Cond �� CondVal�

NotEq�Real �Zero� CondVal�

Execute �ThenStmt�

�

Execute �if �Cond� ThenStmt� ElseStmt��	

Execute �ElseStmt�

�

Execute �while �Cond� Body��	

Evaluate �Cond �� CondVal�

NotEq�Real �Zero� CondVal�

Execute �stmts �s�Body� s�while �Cond� Body�� nil����

�

Execute �while �Cond� Body�� 	 � �� if Cond evaluates to false

Execute �print �T��	

Evaluate �T �� R�

put�r �R�

�

Execute �prints �Str��	

put�s� �Str�

�

Execute �null� 	 �

ACTION
 ExecList �STMTS��

��������������������������

�� Executes a list of statements�

ExecList �nil� 	 �

ExecList �s�S�L��	

Execute �S�

ExecList �L�

�

The print and prints statements are inserted to have a uniform handling of printing values and strings� These
two features are fully implemented in hoc��

����� Other work

The makemake �les must be adapted accordingly
 using the new name of the system �HOC�a��

��
� LOOPS USING CYCLIC GRAPHS� HOC� ��

For printing statements new routines are written
 because the generated print STMT predicate would print
them as trees
 which is awful to read� The implemented routines start each statement on a new line
 without
indentation �see �le exec�g��

��� Loops using cyclic graphs
 Hoc�

Another way implementing loops is to use jumps to some point of a statement list� The while loop may be
translated to�

label �lab�� if Condition then � Body � goto �lab�

Where label �lab� marks the start of the loop
 goto �lab� performs the jump
 lab is a unique name of the
label� Using terms only
 it is impossible to implement this kind of loop interpretation
 because the goto �lab�

statement refers to �another place� in the same term
 i�e� needs a cyclic graph�
A method to simulate such cyclic graphs with terms is presented now� The idea is to use the global table
feature of Gentle� The entries of the table Continue are statement lists
 representing the body of a loop� The
goto statement uses a table key of type LABEL for accessing the entries in the table� Whenever a goto �lab�

statement is interpreted
 the statement list is taken from the Continue table using the lab as key for it� This
statement list is then interpreted�
The following program shows the needed changes� In the STMT term the while must be replaced
 the grammar
must be changed in the �while� rule� An extra predicate WhileCode is needed
 because global variables and
tables are not allowed in nonterminal clauses� When translating a loop
 a goto statement is appended to the
instructions forming the initial loop body� This instruction sequence is then stored in the Continuate table�
When interpreting the goto instruction
 the instructions stored in the table are retrieved and interpreted� The
label is used only for documentation purposes
 when printing the statement list�

STMT �

������

stmts �STMTS��

assign �IDENT� TREE��

if �TREE� STMT� STMT��

label �LABEL��

goto �LABEL��

print �TREE��

prints �STRING��

proc�call �IDENT� TREES��

return�

return�val �TREE��

null �� for empty else part of an if�stmt

�

Stmt ��� S��	

WHILE Condition ��� T� Stmt ��� S�

WhileCode �T� S �� S��

�

TABLE
 STMT Continue �LABEL��

ACTION
 WhileCode �TREE� STMT �� STMT��

��

WhileCode �Cond� Body �� S�	

KEY
 LABEL Lab

Append�STMTS �s�Body� nil�� goto �Lab� �� NewBody�

Append�STMTS �s�label�Lab��nil�� if�Cond� stmts�NewBody��null� �� Loop�

Continue �Lab� �� stmts �Loop�

Continue �Lab� �� S

�

Execute �label �Lab�� 	 �

�� CHAPTER �� WRITING AN INTERPRETER USING GENTLE

Execute �goto �Lab��	

Continue �Lab� �� Next

Execute �Next�

�

��
�� Other work

The makemake �les must be adapted accordingly
 using the new name of the system �HOC���

���� Procedures and functions
 Hoc�

Now the last step is reached on the way to Hoc� Function and procedure declarations
 function and procedure
call
 parameter passing
 reading values from the keyboard and printing them on the terminal are added to the
language�
Functions and procedures are new objects
 having their body as additional information
 OBJECT is extended by

�� function or procedure

function �STMT�

procedure �STMT�

The DefMeaning andGetMeaning are modi�ed re�ecting this new objects� New statements are introduced�

proc�call �IDENT� TREES�

return �� return from procedure

return�val �TREE� �� returning a value from function call

Parameters are represented as an expression list�

TREES � t �TREE� TREES�� nil �

The expression term type EXPR is extended to represent function calls and formal parameters� The scanner is
modi�ed to accept formal parameters
 the attribute attached to them is their number coded as an integer�

func�call �IDENT� TREES�

formalparam �INT�

������ The parser

The grammar rules for function and procedure declarations are�

NONTERM
 Def�

��������������

Def 	

FUNC IDENTIFIER ��� Id� LEFTPAR RIGHTPAR Stmt ��� Body�

DefMeaning �Id� function �stmts �s�Body� s�return� nil�����

�

Def 	

PROC IDENTIFIER ��� Id� LEFTPAR RIGHTPAR Stmt ��� Body�

DefMeaning �Id� procedure �stmts �s�Body� s�return� nil�����

�

The return is appended
 for the case that the user forgets it in functions
 and because in procedures no explicit
return is needed�
The grammar rules for function and procedure call are obvious�

����� PROCEDURES AND FUNCTIONS� HOC� ��

������ Function and procedure call

For the interpretation of a procedure or function call the following things must be done�

� Get the statements implementing the procedure � function �using predicate GetMeaning��

� Evaluate the actual parameters �using predicate Evaluate List��

� Since nested function calls are possible
 the parameters must be passed on a parameter stack �using global
variable ParamStack�� The parameter stack is implemented as a list of values
 the value are accessed
using their positional number in the list� The parameters for standard functions are passed with the same
method�

� Interprete the body of the function � procedure �using the predicates EvalFunction and ExecProc�� The
formal parameters get their values from the parameter stack� It is checked
 that there are enough actual
parameters passed� A return or return val statement stops the execution of the rest of a statement list
of the procedure containing it� Dealing with that information �that a return occurred� is done by using
the global variable ReturnOccured� A return or return val statement sets it to true
 after �nishing a
procedure call it is set to false� Function results are returned using the global variable FunctionResult�

� Remove the actual parameters from the parameter stack�

� Check that a function call has returned a value
 and that a procedure call hasn�t done it�

The important modi�cations to call a function or procedure are�

����

Execute �proc�call �Id� Args��	

ExecuteProc �Id� Args�

�

Execute �return� 	

ReturnOccured �� true

�

Execute �return�val �T��	

Evaluate �T �� R�

FunctionResult �� R

FunctionResult�IsReturned �� true

ReturnOccured �� true

�

����

Evaluate �func�call �Id� Args� �� R�	

EvalFunction �Id� Args �� R�

�

Evaluate �formalparam �Nr� �� R�	 �� evaluation of expressions

GetParam �ParamStack� Nr �� R�

�

The interpretation of function � procedure bodies�

ACTION
 ExecList �STMTS��

��������������������������

�� Executes a list of statements� If a return � return�val statement is

�� executed� the rest of the statement list is skipped�

ExecList �nil� 	 �

ExecList �s�S�L��	

Execute �S�

Is�NoReturnOccured

ExecList �L�

�

ExecList �s�S�L�� 	 �

����

ACTION
 ExecuteProc �IDENT� TREES��

������������������������������������

�� CHAPTER �� WRITING AN INTERPRETER USING GENTLE

�� Checks� that
IDENT
 is a procedure or function

�� and executes the corresponding statements

ExecuteProc �Id� Args�	

GetMeaning �Id �� procedure �Body��

EvaluateList �Args �� Values�

�� push passed arguments onto the parameter stack

ParamStack �� Ps

ParamStack �� ps�Values� Ps�

�� execute procedure code

FunctionResult�IsReturned �� false

Execute �Body�

CheckNoResultIsReturned �Id�

ReturnOccured �� false

�� pop parameter stack

ParamStack �� Ps

�

ExecuteProc �Id� Args�	

GetMeaning �Id �� function �Body��

EvalFunction �Id� Args �� R�

put�s� ����t��

put�r �R�

put�s� ����n��

put�bf

�

ExecuteProc �Id� Args�	

ERROR�IDENT ��
&
 is not declared as procedure � function�� Id� ��

�

����

ACTION
 EvalFunction �IDENT� TREES �� REAL��

���

�� checks� that
IDENT
 is a function name and returns the value of
f�x�

EvalFunction �Id� Args �� R�	

GetMeaning �Id �� Object�

EvaluateList �Args �� Values�

�� push passed arguments onto the parameter stack

ParamStack �� Ps

ParamStack �� ps�Values� Ps�

�� execute function code

EvalFunc �Id� Object �� R�

�� pop parameter stack

ParamStack �� Ps

�

EvalFunction �Id� Args �� Zero�	

ERROR�IDENT ��undeclared identifier
&
 �� Id� ��

�

ACTION
 EvalFunc �IDENT� OBJECT �� REAL��

��

EvalFunc �Id� function �Body� �� Result�	

FunctionResult�IsReturned �� false

Execute �Body�

FunctionResult �� Result

CheckResultIsReturned �Id�

ReturnOccured �� false

�

EvalFunc �Id� Func �� R�	

IsBuiltInFunc �Func�

GetParam �ParamStack� � �� Arg�

EvalBuiltInFunc �Func� Arg �� R�

�

����� PROCEDURES AND FUNCTIONS� HOC� ��

EvalFunc �Id� Obj �� Zero�	

ERROR�IDENT ��
&
 is not declared as function�� Id� ��

�

Handling parameters�

PARAMSTACK �

ps �TREES� PARAMSTACK��

nil �

VAR
 PARAMSTACK ParamStack�

ACTION
 GetParam �PARAMSTACK� INT �� REAL��

���

�� Returns value of the actual parameter
n
 of the current called func�proc�

�� If n � number of passed parameters� an error message is emitted�

GetParam �nil� Nr �� Zero�	

ERROR ��formal parameter access not inside of a procedure or

function���� �

GetParam �ps �T� S�� Nr �� Val�	

SearchParam �T� Nr� � �� Val�

�

ACTION
 SearchParam �TREES� INT� INT �� REAL��

���

�� If Nr �� CurNr� then the parameter with number
Nr
 is found and returned�

�� If Nr � CurNr� the next element of the tree list is tried �with CurNr

�� incremented by one�

�� If there is no more element in the tree list� an error message is emitted�

SearchParam �nil� Nr� CurNr �� Zero�	

ERROR ��too less parameters passed����

�

SearchParam �t�const �Val�� Trees�� Nr� CurNr �� Val�	

Eq�Int �Nr� CurNr�

�

SearchParam �t�const �X�� Trees�� Nr� CurNr �� Val�	

SearchParam �Trees� Nr� CurNr
� �� Val�

�

������ Other work

Since Hoc has the read statement
 it must be possible to read numbers from the terminal� Do not confuse this
reading with the job
 the scanner does� read reads a number during interpretation of a Hoc program
 not while
the program is parsed�
The �les aux�g and aux�c are extended by �

BOOL � true� false �

CONDITION
 read�real ��� REAL��

�� reads from
stdin
 a character sequence

�� succeeds if it is a real number

�� fails if it is not a real number or EOF

���

�� implementation of
CONDITION
 read�real ��� REAL�
 ��

BOOL g�read�real �r�

double ��r�

�

char line ������

�r��double�� G�pool�alloc �sizeof�double���

switch �scanf ��%lf�� �r�� �

�� CHAPTER �� WRITING AN INTERPRETER USING GENTLE

case EOF 	 ��r����� return FALSE�

case � 	 ��r����� scanf ��%s�� line�� return FALSE�

default 	 return TRUE�

The makemake �les must be adapted accordingly
 using the new name of the system �HOC���

Appendix A

The Gentle Manual Page Entry

NAME
g
 g	all
 gentle
 gtags
 glint 	 Compiler description language and compiler generation tool

SYNOPSIS
g �
noedit j
nolist� name
g
all �
noedit j
nolist�
gentle �
noedit j
nolist� name � � �
gtags

glint �
nolist� name � � �

DESCRIPTION
Gentle is a compiler speci�cation language
 which may used for other text manipulation purposes too�
The language is based on Horn logic�

Gentle is also a tool for generating an executable program �compiler� for that speci�cation� Output of
the Gentle system is a set of C programs and input to a scanner and parser generator
 which must be
compiled and linked together to get the desired compiler�

Commands
Before using any of the commands below
 the environment variable GENTLE DIR must be set to
the directory containing the Gentle system
 which is usually

GENTLE DIR � 	usr	local	lib	gentle

The commands are contained in 	GENTLE DIR	bin
 they denote�
g name analyses the speci�cation contained in �le name
g� All other �les �
g in the

current directory are also visited
 but only for the Gentle speci�cation name
output is generated�

g
all analyses all Gentle speci�cations �i�e� all �les �
g of the current directory�

and produces output for them�

gentle name � � � analyses all given speci�cations� Only for the �rst speci�cation output is
generated�

gtags Supports the tags feature of the vi editor� All global visible Gentle iden	
ti�ers
 de�ned in the Gentle speci�cations contained in �les of the current
directory are inserted into the tags �le� When editing a Gentle speci�cation
using the vi editor
 pressing the ctrl � key searches the de�nition of the word

and the cursor is positioned to that point� The �� �two single quotes� or ctrl
� �control and tilde� keys return to the original position
 if the de�nition
was contained in the same �le or in another �le�

glint name � � � Analyses the gentle speci�cation contained in the speci�ed �les and prints
to the standard output device an alphabeticaly sorted cross reference listing
of identifers
 the context free grammar �in Bachus	Naur	Form�
 as well as
errors
 and warnings�

��

�
 APPENDIX A� THE GENTLE MANUAL PAGE ENTRY

Error handling
If an error was detected during analysis of a speci�cation
 the textual error message and the source �le
are shown together in the editor vi� The error messages are positioned below the lines containing the
errors� Using the v key in the command modus of vi positions the cursor to the next line containing
an error� This �le may be edited
 the error messages are removed after leaving the editor�

OPTIONS

noedit If this option is present
 no editor is called� If it is not present
 the editor vi is opened with

the given �rst name

nolist Implies the option
noedit� If this option is given
 the error handling procedure is not

encountered �i�e� the error messages are not shown together with the source text�� The
error messages �if any� are written to �les ERRORS
name
ERRORS
 where name is the
�lename of the Gentle module containing the errors�

FILES
name
g Gentle speci�cation�
SCANNER
rex Speci�cation of the scanner using rex�
MAIN
c The main procedure of the generated system�
name The generated system� name must be speci�ed in the makemake

make�le generator�
makemake Is the Gentle make�le generator�
make	le The generated make�le�
tags Produced by gtags�
ERRORS
name
ERRORS Contains error generated by the Gentle system
 where name is the

�lename of the Gentle module containing the errors�
LISTING
name
LISTING The �le contining the merged source and error messages�
g
� Files generated by the Gentle tool�
g
name
c C source �le for Gentle module name�
g
TOKENS
h Token speci�cation�
g
TOKEN STRINGS
h Used for error handling�
g
cfg Input �context free grammer
 etc�� for yacc�
g
PARSER
lalr Input �context free grammer
 etc�� for lalr�
Debug Debugging information generated by the parser generator�
g
SCANNER
� The generated scanner�
g
PARSER
� The generated parser�
g
SCANNER TYPES
h� Generated type de�nitions for the scanner�
g
PARSER TYPES
h� Generated type de�nitions for the parser�

VERSION
The current version is ���
 August ��
 ����

SEE ALSO
rex �Grosch ���
 lalr �Vielsack ��
 Grosch ���
 vi
�Schr�oer ��� �Vollmer ��a� �Vollmer ��b�
This manual�
The �le 	GENTLE DIR	documentation	CHANGES contains a description of the changes of the system
and language�

Appendix B

The Hoc Manual Page Entry

NAME
hoc 	 interactive �oating point language

SYNOPSIS
hoc � �le � � � �

DESCRIPTION
Hoc interpretes a simple language for �oating point arithmetic
 at about the level of BASIC
 with C	like
syntax and function and procedures with arguments and recursion�

The named �les are read and interpreted in order� If no �le is given or if �le is
 �dash� Hoc interprets the
standard input�

Hoc input consists of expressions and statements� Expressions are evaluated and their results are reported�
Statements
 typically assignments and function or procedure de�nitions
 produce no output unless they
explicitly call print�

SEE ALSO
Hoc � An Interactive Language for Floating Point Arithmetic by Brian Kernighan and Rob Pike�

bas ���
 bc ��� and dc ����

BUGS
The treatment of newlines is not exactly user	friendly�
In interactive mode
 two newline characters must be given to let the system report a result of an expression�

��

Appendix C

Syntax Summary

LargeIdent 		� � �A� � ��� � �Z� � �letter � digit�� �

SmallIdent 		� � �a� � ��� � �z� � �letter � digit�� �

Identifier 		� LargeIdent � SmallIdent �

letter 		� �A� � ��� � �Z� � �a� ��� �z� � ��� �

digit 		� ��� � ��� � ��� �

�� starts a single line comment and

�� starts a �� possibly nested �� comment� which may range

over several lines ��

Gentle�Spec 		�
MODULE
 Identifier ModuleBody �

ModuleBody 		� �Declaration � Signature � Clause �� �

Declaration 		� TermTypeDecl � OpaqueTypeDecl � GlobalVarDecl � GlobalTableDecl �

TermTypeDecl 		� Type ��� FunctorList ��� �

Type 		� LargeIdent�

FunctorList 		� � Functor � Functor ��� Arguments ��� � �� ��� �

Functor 		� SmallIdent�

Arguments 		� Argument �� ��� �

Argument 		� �LargeIdent �	� � Type �

OpaqueTypeDecl 		�
TYPE
 Type ��� �

IntConst 		� digit
 �

StringConst 		� ��� Char � ��� �

Char 		� �any �escaped� character� except � and line break� �

Signature 		�
TOKEN
 Identifier � OutArguments � ��� �

NONTERM
 Identifier � OutArguments � ��� �

ACTION
 Identifier � InOutArguments � ��� �

CONDITION
 Identifier � InOutArguments � ��� �

OutArguments 		� ��� ���� Arguments ��� �

InOutArguments 		� ��� � Arguments � ���� Arguments ��� �

Clause 		� Head �	� Tail ��� �

Head 		� HeadLiteral �

Tail 		� TailLiteral � �

HeadLiteral 		� Identifier � ��� FormalParameters ��� � �

TailLiterals 		� TailLiteral � �

TailLiteral 		� Identifier � ��� ActualParameters ��� � �

GlobalVarRead � GlobalVarWrite �

GlobalTableNewEntry �

GlobalTableRead � GlobalTableWrite �

LocalVariable 		� LargeIdent�

��

��

FormalParameters 		� Parameters �

ActualParameters 		� Parameters �

Parameters 		� � InParameters � � ���� OutParameters � �

InParameters 		� Parameter �� ��� �

OutParameters 		� Parameter �� ��� �

Parameter 		� Term �

LocalVariable � GlobalVariable �

StringConst � IntConst �

Expression Operator Expression �

Term 		� Functor � ��� ArgumentList ��� � �

ArgumentList 		� Parameter �� ��� �

Expression 		� LocalVariable � GlobalVariable �

IntConst �

�Expression Operator Expression� �

Operator 		� �
� � ��� � ��� � ��� �

GlobalVarDecls 		�
VAR
 Type GlobalVariable ���

GlobalVariables 		� LargeIdent�

GlobalVarRead 		� GlobalVariable ���� Parameter �

GlobalVarWrite 		� GlobalVariable ���� Parameter �

GlobalTableDecl 		�
TABLE
 ��Type GlobalTable� �� ��� � ��� KeyType ����

GlobalTable 		� LargeIdent�

KeyType 		� LargeIdent�

GlobalTableRead 		� GlobalTable ��� KeyVariable ��� ���� Parameter �

GlobalTableWrite 		� GlobalTable ��� KeyVariable ��� ���� Parameter �

KeyVariable 		� LocalVariable �

GlobalTableNewEntry 		�
KEY
 KeyType KeyVariable �

Bibliography

�Clocksin et al �
� W�F� Clocksin and C�S� Mellish� Programming in Prolog� Springer Verlag
 Heidelberg
 New
York
 � edition
 ���
�

�Fisker et al ��� R�G� Fisker
 C�H�A� Koster
 C�H� Lindesy
 B�J� Mailloux
 L�G�L�T� Meertens
 J�E�L� Peck

Sintzho� M�
 and Wijngaarden A� Revised report on the algorithmic language ALGOL ���
Acta Informatica
 pages �����
 �����

�Grosch ��� Josef Grosch� Rex � a scanner generator� Technical report
 GMD Forschungsstelle an der
Universit�at Karlsruhe
 �����

�Grosch ��� Josef Grosch� Lalr � a generator for e�cient parsers� Software�Practice and Experience

����������������
 November �����

�Kernighan et al ��� Brian W� Kernighan and Dennis M� Ritchie� The C Programming Language� Prentice	Hall

Inc�
 �����

�Kernighan et al ��� Brian W� Kernighan and Rob Pike� The UNIX Programming Environment� Software Series�
Prentice	Hall
 Inc�
 �����

�Koster ��� C�H�A Koster� A�x grammars� In J�E�L Peck
 editor
 ALGOL �� Implementation
 pages
������� North Holland
 Amsterdam
 NL
 �����

�Lloyd ��� W� Lloyd
 J� Foundations of Logic Programming� Springer Verlag
 Heidelberg
 New York

second
 extended edition
 �����

�Schr�oer ��� F�W� Schr�oer� Gentle� In J� Grosch
 F�W� Schr�oer
 and W�M� Waite
 editors
 Three
Compiler Speci�cations
 GMD � Studien Nr� ���
 pages ������ GMD Forschungsstelle an
der Universit�at Karlsruhe
 August �����

�Vielsack ��� Bertram Vielsack� The parser generators lalr and ell� Technical report
 GMD Forschungs	
stelle an der Universit�at Karlsruhe
 �����

�Vollmer ��a� J�urgen Vollmer� The compiler construction system GENTLE � manual and tutorial� GMD
� Bericht ���
 GMD Forschungsstelle an der Universit�at Karlsruhe
 February ����� Note�
GENTLE was de�ned by F�W� Schr�oer in� Three Compiler Speci�cations
 GMD � Studien
Nr� ���
 �����

�Vollmer ��b� J�urgen Vollmer� Experiences with Gentle� E�cient compiler construction based on logic
programming� In J� Maluszynski and M� Wirsing
 editors
 Proceedings of the Third Inter

national Symposium on Programming Language Implementation and Logic Programming �
PLILP ����
 volume ��� of Lecture Notes in Computer Science
 pages
���
��� Springer
Verlag
 Heidelberg
 New York
 August ����� Note� GENTLE was de�ned by F�W� Schr�oer
in� Three Compiler Speci�cations
 GMD � Studien Nr� ���
 �����

�Waite et al �
� William M� Waite and Gerhard Goos� Compiler Construction� Springer Verlag
 Heidelberg

New York
 ���
�

�Watt �
� D�A� Watt� Analysis Oriented Two Level Grammers� PhD thesis
 Glasgow
 ���
�

��

