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Abstract

Reconstructing a surface out of a three-dimensional set of points, which

is obtained by sampling an object's boundary, is done by generating an

arbitrary triangular mesh. Our approach is to obviate the computation of

such a mesh connectivity and to represent the object's surface only by the

point cloud.

We discuss how such a point cloud representation can be visualized

and present processing steps like coarsifying and smoothing, which are

important for dealing with the objects. Further we apply a multiresolution

method to point cloud representations and use this technique as well as

others for modelling purposes.

1 Introduction

In Computer Graphics surfaces of three-dimensional objects are represented by

triangular meshes in general. They are gained by evaluating a known mathemat-

ical description or by interpolating or approximating a given set of unorganized

points in the sense of surface reconstruction.

Many applications in manufacturing, medicine, geography, design, etc. re-

quire the scanning of rather complex three-dimensional objects (e.g. prototypes)

to (re-)incorporate them into a computer-based or computer-aided processing.

Thus, measuring techniques were evolved to easily produce a large amount of

points lying on the objects' surfaces. Such a point set representing the boundary

of a three-dimensional object we call a point cloud.

In the last decade various methods have been developed for generating tri-

angular meshes out of point clouds. In this paper we present an approach, that

avoids such a time-consuming generation and uses point cloud representations

instead. This reduces the time complexity as well as the storage complex-

ity. We discuss how point clouds can be visualized and be treated. Important

treatments are the reduction of the amount of data, the elimination of error

distortion, and the modi�cation and editing of the represented objects.

Therefore Section 3 is dedicated to visualization, Section 4 to smoothing,

Section 5 to multiresolution methods including reduction and re�nement, and

Section 6 to some modelling techniques. In Section 7 we discuss our approach

and compare it to the related work stated in Section 2.
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2 Related work

In the nineties in the �eld of surface reconstruction various approaches were

presented to generate triangular meshes out of point clouds. The algorithms

are based on spatial subdivision (e.g. [1, 2, 3, 5, 6, 9, 11, 15, 25]), distance

functions (e.g. [6, 15]), warping (e.g. [1]), and incremental surface-increase

(e.g. [4, 5, 11, 19]). A survey including other papers is given in [20].

To obtain a high accuracy and resistance against error distortion the mea-

suring techniques nowadays produce up to many millions of sampling points.

Thus the point clouds are downsampled before a surface reconstruction algo-

rithm is applied. For the data reduction some heuristics like grouping of points

are used [10, 24, 29, 31].

The results of the mesh generations are arbitrary triangular meshes. For

such meshes smoothing operators were developed in [7, 13, 16, 28] as well as

multiresolution methods in [14, 17]. The smoothing operators will be discussed

later, the multiresolution methods for arbitrary triangular meshes are similar

to our approach for point clouds. In [8] the authors propose multiresolution

analysis on arbitrary triangular meshes by remeshing the given meshes to obtain

meshes with subdivision connectivity.

Already in 1992 Szeliski and Tonnesen presented oriented particles [27].

These are point clouds, where each point has an orientation, compatible with

the normal direction of the represented surface. To force oriented particles to

group themselves into surface-like arrangements, they apply potential energies.

For rendering purposes they use axes, discs, or after triangular mesh generations

wireframes and shaded triangulations.

3 Visualization

Our �rst main task is to �nd a pleasant visualization for point cloud represen-

tations. Drawing only all the single points as done for particle animations of

�re, fog, water, etc. (cf. [22, 26]) does not lead to a plastic impression of the

three-dimensional object as illustrated in Figure 2(a). Raycasting gives better

results, but the point cloud has to be rather dense and for frame rates of 1-2

fps about one hour of preprocessing is required [12, 21].

Since a point cloud representation does not contain any faces or surfaces, we

must substitute the connectivity of triangular meshes by environments of each

point. To �nd an appropriate environment, which represents a small piece of the

object's surface, we assume that the nearest neighbours of a point contribute

to that environment. In fact we only assume that the sampling rate is high

enough, and in practice it is indeed. A proper sampling rate has a spatial

frequency greater than or equal to the frequencies of the sampled surface.

But de�ning the environment of a point p by its k-nearest neighbours is

not an optimal choice. In Figure 1(a) we give an example, where the k-nearest

neighbours cover only half the environment.

Therefore we select k neighbours, that are distributed all around p by in-

troducing an angle criterion. We compute the least squares best �tting plane P

of p and its neighbours, project the neighbours onto P , and sort the projected

neighbours around the projection of p in the plane P . Then we consider every
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neighbour qi and its successor qi+1 with respect to the sorting and claim that

the angle 6 qipqi+1 ful�ls the criterion, i.e. it must not exceed a certain limit,

e.g. �
2
(cf. Figure 1(b)).

(a)

p

(b)

1i+

iq
p

q

=)

Figure 1: Necessity of the angle criterion for choosing the neighbours of a point

p.

Using the sorting of the selected neighbours such an environment can easily

be visualized by a triangle fan. The whole point cloud is visualized by render-

ing all the triangle fans. Although the triangle fans do not form a coherent

triangular mesh, it has been our experience, that there are almost no visually

dangling parts.

To use Gouraud or Phong shading we associate with each point the normal of

the best �tting plane which has been computed above. A consistent orientation

of the normals can be computed with the minimal spanning tree described in

[15]. A result is shown is Figure 2(c) for k = 8.

Rendering discs or similar surface pieces instead of our triangle fans as

done in [27, 32] does not lead to a comparable well surface visualization, see

Figure 2(b). In [23] Rusinkiewicz and Levoy develop their QSplat approach

to overcome this problem. However, this approach needs a triangular mesh.

Moreover for best results they resort to antialiasing techniques which further

raise the time complexity of their method.

Compared to a triangular mesh our triangle fans consist overall of approxi-

mately k
2
times as many triangles. But eliminating duplicates of triangles leads

to a comparable number of triangles for rendering point clouds and meshes,

about 2:5n instead of 2n for k = 6.

4 Smoothing

Point clouds are gained by thoroughly scanning three-dimensional objects using

various measuring techniques. Thus, before applying the visualization methods

one has to overcome two major problems. On one hand the amount of data is

too large to can be dealt with and on the other hand a number of measuring

errors may occur leading to distortion. To eliminate such errors we apply a

local smoothing operator to the point clouds.

For triangular nets several smoothing operators are known. Kobbelt [16]

presents a discrete Laplacian smoothing operator that moves a single point p

to the centroid 1
k

Pk
i=1 qi of its 1-ring formed by the points q1; : : : ;qk. Hence

it is possible to apply the operator to arbitrary triangular meshes. Replacing

the 1-rings by the neighbourhoods we can apply it to point clouds, too.
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(a)

(b) (c)

Figure 2: (a) Plotting the points of a point cloud. (b) Drawing an accumulation

of pieces of the represented surface. (c) Our visualization of a point cloud

representation.

Kobbelt makes further investigations, but Taubin [28] argues that these

Laplacian smoothing operators cause shrinkage when applied to every vertex of

a mesh. From a signal processing examination Taubin concludes that Laplacian

smoothing without shrinkage is obtained by alternatively performing a smooth-

ing step with positive scale factor � and an un-shrinking step with negative

scale factor �. The factors ful�l the constraint �+ � > 0.

However, Guskov et al. [14] claim that the points p and q1; : : : ;qk should be

summed with coeÆcients, which do not only depend on the connectivity but also

on the geometry. In Figure 3 we demonstrate, how the smoothing operators with

connectivity-based coeÆcients try to make edge lengths as uniform as possible,

whereas including geometrical aspects allows smoothing without a�ecting the

triangle shapes. This is important for modelling purposes, especially when

colour or texture information is used.

Their smoothing operator gives a mesh with a minimal sum

E =
X

e

(D2
e)
2
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(a) (b) (c)

Figure 3: The Laplace-operator applied to a triangular mesh (a) changes the

triangle shapes (b), in contrast to our smoothing operator (c).

of squared second di�erences

D2
e =

X

x2fi;j;k;lg

ce;xpx

associated with an edge e and depending on the points of the adjacent triangles

(cf. Figure 4). The coeÆcients for the second order di�erence are given by

p

e

i

j

k

l

pp

p

Figure 4: The support of D2
e .

ce;i =
djk

AijkAlkj
Alkj ce;j = �

djk
AijkAlkj

Akil

ce;k = �
djk

AijkAlkj
Ajli ce;l =

djk
AijkAlkj

Aijk

where djk is the distance from pj to pk and Axyz is the signed area of the

triangle �xyz. With a consistent orientation of the triangles, one does not have

to take care about the sign of the areas and the coeÆcients sum up to zero. For

computing the coeÆcients ce;x, pl is rotated using e as a hinge until the four

points are coplanar. The associated smoothing operator is

pi :=
X

j

!ijpj

with

!ij = �

P
e ce;ice;jP
e c

2
e;i

;

where the numerator is summed over all edges e, whose associated rhombus (cf.

Figure 4) contains pi and pj , and the denominator is summed over all edges e,

that contribute to the neighbourhood (triangle fan) of pi.
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But the support of his operator includes points that have no connecting edge

with the to be smoothed point. Hence the support is too big for our purposes,

because it exceeds the environment covered by the neighbourhood.

So we developed a smoothing operator, that combines all the three impor-

tant features, i.e. its support is limited to the neighbourhood, it is non-shrinking,

and it includes geometrical aspects. By de�ning

5
4

pjpk
:=

X

x2fi;j;k;lg

cxpx

with coeÆcients

ci =
djk
dil
Alkj cj = �

djk
dil
Akil

ck = �
djk
dil
Ajli cl =

djk
dil
Aijk

and notations from above, we gain our smoothing operator

5
4p :=

kX

i=1

5
4

pqi
� p :

It does not yet ful�l the non-shrinkage criterion, but we can derive the equation

5
4p =

kX

i=1

iqi � p ;

kX

i=1

i = 1 :

Hence we can use the method of Taubin, which ensures non-shrinkage and

convergence. For smoothing p we iterate the two steps

p := p+ �54p

p := p+ �54p :

These equations can be rewritten as

p =
kX

i=1

!iqi (1)

where the coeÆcients !i depend on the coeÆcients ci and the factor � (or

�). Note that in the uniform case the 5
4-operator is equivalent to the Laplace-

operator.

In Figure 5 we apply our smoothing operator to the distorted object (a) for

k = 8 and gain the smooth point cloud representation (b).

5 Multiresolution

5.1 Reduction

After having eliminated error distortion the remaining major problem is to

handle the large number of points. In general the sampling rate is high to

obtain an oversampling, which is useful for error-estimation. Therefore the
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(a) (b)
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Figure 5: Error elimination by applying our smoothing operator.

sampled point cloud contains redundancy. This redundancy is eliminated by

deleting points, which give no further information about the object's shape. So

our aim is to provide every point pi with an information content M(pi) and to

gradually delete the point with the lowest entropy.

Certainly the entropy depends on the distances from a point to its neigh-

bours, because if two points are very close, one of them is supposed to be

redundant. But the information content shall also take into account other fea-

tures of the object's surface. For example for a planar region or a region of

constant curvature less points are needed than for a region of heavy changes in

curvature.

Following some ideas of Szeliski and Tonnesen [27] we de�ne M(p) so as to

reect the non-planarityMp, change of the normalsMc and the non-uniformity

Mu of this change. Let pj = p+dj for j = 1; : : : ; k be the neighbours of p and

let nj and n be the corresponding normal directions. Then

Md(p) :=
kX

j=1

d2j ;

where dj = kdjk2. Further, Mp(p) is given by the distances of the neighbours

from the tangent plane at p

Mp(p) :=
kX

j=1

(nt
dj)

2 ;

Mc(p) is given by

Mc(p) :=
kX

j=1

kn� njk
2
2 � d ;

where d = 1
k

Pk
j=1 d

2
j , and Mu(p) is de�ned as

Mu(p) :=
kX

j=1

((n+ nj)
t
dj)

2 :

Figure 6 illustrates the meaning. Note that di�erent from [27] these information
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(a)
p p j

n

d j (b)
p p j

n n j

d j

(c)
p p j

n n j

d j

Figure 6: Illustration of non-planarity (a), change of the normals (b), and non-

uniformity of this change (c).

contents are invariant under Euclidean transformations and scale uniformly for

all p under scaling.

Another important feature for an object's representation is the colour in-

formation. If the RGB-values of p and its neighbours pj are stored in c and cj

respectively, we de�ne

Mcolour(p) :=
kX

j=1

kc� cjk
2
2 d :

The information content M(p) is a weighted sum of its components,

M(p) := �dMd(p) + �pMp(p) + �cMc(p) + �uMu(p)

+�colourMcolour(p) :

Figure 7 shows an example, where the object shown in (a) is reduced to

42% by removing in (b) the points with the least values Md and in (c) with the

least information content M . Note that �ne details are lost in (b) but not in

(c), in particular look at the teeth.

The reduction of a point cloud containing colour information is shown in

Figure 8. A at shading is used to emphasize the changes in colour distribution,

when Mcolour is not used.

5.2 Detail information

In the last subsection we discussed how to eliminate redundancy by deleting

certain points. But for rendering an object in a scene, where the viewer is far

from the object, a lower resolution suÆces and even less points are needed. So

we delete further points, but need to store some detail information, because as

the viewer comes closer to the object, we need the higher resolutions again.

Such a level-of-detail control is also helpful for progressive transmission over

a network or for progressive uploading from a storage medium. A complex

object is displayed beginning with a low resolution and then progressively im-

proving the display as more detail is obtained.

For the level-of-detail control it suÆces to store global informations about

the deleted points. But applying multiresolution editing (cf. Section 6.1) the
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(a)

(b) (c)

Figure 7: Reducing a point cloud (a) only by considering distances (b) or by

considering surface features as well (c).

object's shape is changed on a low level of detail and the reinserted points shall

�t into this new shape. This requires a storage of local informations of a point

due to its neighbourhood.

When a point p is chosen to be deleted, we compute its optimal location

p
0 := p + 5

4p due to the smoothing operator 5
4 (cf. Section 4). p

0 depends

only on the neighbours q1; : : : ;qk and the coeÆcients !1; : : : ; !k of Equation 1

(� = 1). Then we store the distance vector d := p�p0 from the optimal location

p
0 to the actual location p (cf. Figure 9). d contains the detail information of

the deleted point p.

For reinserting the point p we again compute the optimal location p
0 by

applying our smoothing operator to the neighbours q1; : : : ;qk. By adding the

detail vector d to p
0 we get the original location of p, if the locations of the

neighbours remained unchanged.

If the neighbours were moved, the locations of p0 and �nally of p are a�ected

by this modi�cation. But if the whole neighbourhood was transformed, e.g. by a

rotation, the detail vector d shall be transformed, too (cf. Figure 10). Therefore

the detail vector has to be stored in a local frame. We do this by storing d

in relation to the least squares best �tting plane of the neighbours. When the

neighbours are transformed uniformly, the least squares best �tting plane is
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(a)

(b) (c)

Figure 8: Reducing a point cloud (a) to 50% with (c) and without (b) taking

care about the colour information.

q

q

q

q
q

p’

q
6 5

4

3
2

1

 d

p

Figure 9: Detail vector d.

modi�ed in the same way.

5.3 Re�nement

Even if there is no detail information it is possible to re�ne a point cloud. In our

experiments we used the information content of Subsection 5.1. To insert a point

we determine the point p with highest information content M(p), its neighbour

q with highest information content and take the predecessor or successor r of

q in the neighbour sorting of p again due to highest information content. The

point we insert is

s =
M(p)p+M(q)q+M(r)r

M(p) +M(q) +M(r)
:

Finally, s is moved along the surface normal by applying the smoothing operator

5
4. Figure 11 shows an example.
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Figure 10: Storing the detail vector in a local frame.

(a) (b)

Figure 11: Re�ning a point cloud, thus raising the number of points to 1000%

of the original amount.

6 Modelling

6.1 Interactive multiresolution modelling

After having developed a powerful tool for treating point clouds, namely the

multiresolution method, we apply this technique to interactive modelling. In

Figure 12 is illustrated how we proceed.

The original point cloud is visualized in Figure 12(a). The number of points

is reduced to 3% of the original amount. The reduced point cloud is shown

in Figure 12(b). Then we interactively edit the shape of the object. For the

�gured bunny we rotate the head by �
4
and stretch the snout and the tail, while

the ears are being shortened. As a result we gain the kangaroo-like animal

in Figure 12(c). Finally we re�ne the modi�ed point cloud by reinserting the

deleted points and adding the details up to the original level of detail. In Figure

12(d) the result is shown.

So what we do is to edit the global shape of the represented object, while

leaving the small details unchanged. This is because during the reduction the

small details are stored in the detail vectors. Hence they remain una�ected by

the interactive editing and are reinserted during the re�nement.
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(a) (d)

(b) (c)

+ *

)

Figure 12: Multiresolution editing.

6.2 Detail frequency spectrum

The detail vectors of the multiresolution methods introduced in Section 5 can

be used in another way. Since the spatial extent of the detail information is

given by the neighbourhood of the point, the extent increases while deleting

the points. Thus by taking this order, we get a frequency spectrum of the

detail information. The detail vectors of early deleted points are related to

small distances and high frequencies, whereas the detail vectors of lately deleted

points are related to large distances and low frequencies.

To this frequency spectrum we apply �ltering. A low pass �lter leaves all

the details unchanged up to a certain frequency and from then on sets all the

details to zero. A high pass �lter, which annihilates the coarsest details, does

not make sense, because it removes the basic informations about the object's

shape. More useful are stopband �lters, which annihilate details in a certain

range of the frequency spectrum.

In Figure 13 we give an example for low pass and stopband �ltering. Note

that using the low pass �lter the high-frequency details like the mountain ridges

and peaks vanish, whereas using the stopband �lter these �ne details remain but

some coarser characteristics get smoothed, which leads to the global attening

of the mountain landscape.

Low pass �lters provide a second facility for smoothing a point cloud. But

this signal processing approach o�ers even more modelling possibilities by �l-

tering certain frequencies. Nevertheless for smoothing huge amounts of error-

distorted data the smoothing operator de�ned in Section 4 should be preferred,

because it quickly eliminates the high-frequency distortion.
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(a) (b)

(c) (d)

Figure 13: Modelling a point cloud (a) by using a low pass �lter (b), a stopband

�lter (c), and enhancement (d).

Rather than annihilating the detail vectors they can also be multiplied by a

constant factor. Therefore instead of deleting some details they are enhanced.

In Figure 13(d), note how the features of the mountain landscape are intensi�ed.

6.3 Extended CSG

The idea of Constructive Solid Geometry is to use basic simple solids and some

modelling operations like union, intersection, and di�erence to construct more

complex solids. This approach is extended to objects of arbitrary shape in

[18]. The surfaces of objects are represented by meshes, on which the modelling

operations are carried out. This requires cutting o� and connecting meshes.

We transfer this idea to point clouds. We traverse the minimum spanning

tree from Section 3 of the �rst point cloud and consider every line pq from

a point p to its son q. For the line pq we look for intersections with the

neighbourhoods of all points of the second point cloud. Due to the existence

of such intersections, we propagate from p to its son q, whether the point q

should contribute to the resulting point cloud or not. We proceed analogously

for the second point cloud.

We assume that the sampling rate is that high, that the line pq does not

intersect twice the surface of the second object. This is necessary, because
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neighbourhoods may overlap and therefore we can not distinguish between an-

other intersection of the line with the second object's surface and a duplicate

of the already known intersection. Note that this assumption can always be

ful�lled by re�ning the point clouds.

The major problem using meshes is to connect the remaining parts and to

construct one single mesh, especially when topological constraints are to be

ful�lled. Using point clouds we have nothing to do but simply collecting the

desired points.

In Figure 14 is shown, how the object of a dragon (left) is united with

another head of a dragon (middle). Note that there are no points in the interior

[ =)

Figure 14: Union of two solids in point cloud representation.

of the resulting solid (right).

7 Discussion

Arbitrary surfaces are traditionally represented by piecewise polynomial func-

tions like splines. With the upcoming of subdivision algorithms a simpler rep-

resentation based on meshes became more important. We perform another step

of simpli�cation by introducing the point cloud representation. In this section

we discuss the advantages and disadvantages of point clouds in comparison with

triangular meshes.

Using triangular meshes for surface reconstruction, a mesh needs to be gen-

erated before the required operations like smoothing can be executed. Because

the original data contain too many points for a mesh generation, some heuristics

must be found to select some of them. Using point clouds allows to smooth the

data immediately. Thus the whole sample information is available. Afterwards

a reduction can be executed due to surface and colour features.

Various methods were developed for the triangular mesh generation. Most

of them use Delaunay tetrahedrizations, which have a time-complexity of O(n2)

for n points. In [30] it is shown that the computation of the k-nearest neighbours

can be done in O(n log n) by using a preprocessing step. Thus point clouds can

be visualized in O(n logn).

The pro�ts in time-complexity become clearer when we look at the overall

running times in table 1. For the chosen examples they are reduced from
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minutes to seconds.

method # points computer time

Delaunay tetrahedrization [19] 1248 SGI Indigo2 Extreme 45 s

2600 approx. 1 min

48921 approx. 133 min

Algorri, Schmitt [1] 45233 Sun Sparc Station 40 MHz 18 min 19 s

Bajaj et al. [3] 9223 SGI Indigo2 approx. 10 min

Edelsbrunner [9] 9600 SGI 50 MHz, MIPS R4000 approx. 39 min

10000 approx. 16 min

10088 approx. 26 min

15000 approx. 27 min

Hoppe et al. [15] 18224 20 MIPS Workstation 31 min 15 s

Mencl, M�uller [19] 1248 SGI Indigo2 Extreme approx. 2 min

2600 approx. 5 min

48921 approx. 193 min

Shimada [25] 1000 IBM RS/6000 approx. 40 s

point clouds visualization 47109 SGI Indigo2 Extreme 59 s

Sun Ultra30 20 s

PC with Athlon K7 800MHz 7 s

100001 24 s

160940 59 s

Table 1: Comparing the running times of triangular mesh generations to the

visualization of point clouds.

Newer approaches [4, 11] try to overcome the drawback of high costs for

mesh generation by making extra assumptions on the sampling rate. They

achieve lower running times at the expense of generality.

Another advantage in complexity occurs while storing an object in point

cloud representation, because no connectivity information has to be saved. Nev-

ertheless if an object needs to be visualized several times, it is reasonable to

store the neighbourhoods rather than recomputing them every time, which leads

to similar storing complexities for triangular meshes and point clouds.

In our experience visualizing a triangular mesh versus a point cloud with

our neighbourhoods leads to results with equal quality.

If the measuring techniques are not suÆciently reliable or the sampling rate

is too low, multiple sampling may help, i.e. the object is scanned more than

once and the samples have to be merged. For triangular meshes this causes a

complete remeshing, whereas for point clouds nothing has to be done but only

collecting the various samples in one point cloud.

A similar problem occurs, when measuring techniques such as range images

are used, which scan the object from di�erent viewpoints. Many merging steps

like the one shown in Figure 15 have to be executed. Again for triangular mesh

representations sophisticated analyses of the object's shape are required to know

exactly, where and how the samples can be merged (cf. Subsection 6.3). Nu-

merical problems may occur. For point clouds the points of the multiple range

images are simply stuck into one single point cloud. Due to calibration errors

we apply our smoothing operator to the regions, where the samples overlap.

If desired the overlapping region can be reduced. A result for point clouds is

shown on the right of Figure 15.

We conclude that having found a nice visualization method for point clouds,

whose quality is comparable with the one for triangular meshes, other tech-

niques of geometric modelling and design can be used and work very well. So
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Figure 15: Merging two partly overlapping samples to build one single point

cloud.

we spare the time-consuming triangular mesh generation and can apply our

smoothing operator and our reduction method directly to the numerous points

of sampled objects. We even recognise that some things become easier, when

topological constraints can be neglected.
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