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Abstract

For �nite element methods (FEMs) a{posteriori error estimates that base on

the evaluation of the variational equation regarding higher order approxima-

tions are a very successful concept proposed by various authors. This thesis

presents a very general framework for this kind of a{posteriori error estimates

for non{linear variational problems on Banach spaces. The error estimates

consider the errors arising from the FEM approximation, numerical integra-

tion and termination of the iterative solver. By balancing the discretization

and termination error an optimal stopping criterion for the non{linear solver

of the discrete variational equation is constituted. The new projecting a{

posteriori error estimate is derived from the general framework. It reuses

the sti�ness matrix assembled during the iteration procedure. Therefore the

projecting error estimate is cost{e�ectively computable and can be easily

implemented into an existing code. Moreover it can be used for most FEM

applications without any adapting to the treated variational problem. The

abstract formulation is applied to a model problem to illustrate the applica-

tion in the scope of the FEM. It turns out that the quality of the discussed

type of error estimates is mainly in
uenced by the smoothness of the sought

solution. Various practical examples demonstrate that the projecting error

estimate works successfully for a wide range of FEM applications.

1



2



Contents

1 Introduction 5

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 A-Posteriori Error Estimate . . . . . . . . . . . . . . . . . . . 7

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 The Abstract Variational Problem 14

2.1 The Well{Posed Variational Problem . . . . . . . . . . . . . . 15

2.2 The Discretization . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 A{Posteriori Error Estimate . . . . . . . . . . . . . . . . . . . 24

2.4 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . 44

3 The Nonlinear Neumann Problem 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Product Spaces . . . . . . . . . . . . . . . . . . . . . . 50

3.2.3 Basic Error Estimates . . . . . . . . . . . . . . . . . . 50

3.3 The Variational Problem . . . . . . . . . . . . . . . . . . . . . 54

3.4 The Finite Element Space . . . . . . . . . . . . . . . . . . . . 60

3.5 The Finite Element Discretization . . . . . . . . . . . . . . . . 70

3



3.6 The Projecting Error Estimate . . . . . . . . . . . . . . . . . . 76

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Examples 93

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 The VECFEM Program Package . . . . . . . . . . . . . . . . 93

4.3 Common Terms . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Example 1: The Model Problem . . . . . . . . . . . . . . . . . 98

4.5 Example 2: Singularities . . . . . . . . . . . . . . . . . . . . . 103

4.6 Example 3: Structural Analysis . . . . . . . . . . . . . . . . . 108

4.7 Example 4: Navier-Stokes Equations . . . . . . . . . . . . . . 110

5 Conclusions 119

Bibliography 120

A List of Notations 128

B Lists of De�nitions, Theorems and Figures 132

4



Chapter 1

Introduction

1.1 Background

The �nite element method (FEM) is the most popular method to calculate

approximative solutions of partial di�erential equations (PDEs). FEMs are

successfully used in a lot of practical applications, e.g. in heat transfer anal-

ysis, see Bathe [17], in structural analysis, see Zienkiewicz [68], and in 
uid

dynamics, see Chung [23]. Moreover a well-developed mathematical analysis

is known for a lot of FEM applications, e.g. see Brezzi [21], Ciarlet [24, 25],

Girault [37], Fluegge [36].

To get an impression of what we are speaking, let us look at a simple model

problem on a bounded domain 
 � IR
n
, see Quarteroni [52]. It is the linear

Neumann boundary value problem

�r(aru) + bu = f in 


@u

@n
= 0 on @
 :

(1.1)

The material functions a and b have an upper bound C and positive lower

bound c.

The weak solution u of this boundary value problem is given by the cor-

responding variational problem on the Hilbert space V := H1
(
): �nd a

solution u 2 V with

< v; F (u) >= 0 for all v 2 V (1.2)

where the residual operator F is de�ned by

< v; F (u) >:=

Z



�
a(rv)(ru) + (bu� f)v

�
dx for all u; v 2 V : (1.3)
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The strong formulation (1.1) is transformed to the weak formulation (1.2)

by multiplying the strong formulation with a so{called test function v, inte-

grating the resulting equation over the domain and using partial integration

to move one r{operator in the term r(aru) to the test function v. The

arising boundary integrals are removed by inserting the boundary condition

@u
@n

= 0. It is assumed that the involved functions are smooth enough to

execute this procedure. However, in the �nal formulation (1.2) less restric-

tive requirements on the involved functions regarding their smoothness are

needed to formulate the problem correctly as well as to prove the existency of

a solution. This is the reason why in some applications the weak formulation

is preferred to the strong formulation (e.g. if the material functions have

jumps).

Since the material functions a and b have an upper and a positive lower

bound the operator F de�ned by equation (1.3) is V -elliptic. Therefore the

variational problem (1.2) has exactly one solution u 2 V .

The variational problem (1.2) cannot be solved by a computer since V has

not a �nite dimension. It has to be discretized by reducing the variational

problem to a �nite dimensional subspace Vh of the space V :

Th denotes a triangulation of the domain 
 with mesh size h, which is a

subdivision of the domain 
 into so-called elements T 2 Th (e.g. triangles)

of maximal diameter h. The triangulation Th has to ful�l speci�c properties.
For a �xed order k the set Vh is the vector space of all piecewise polynomials

of maximal order k:

Vh := fvh 2 V j for all T 2 Th : vhjT 2 Pkg : (1.4)

Pk denotes the space of all polynomials on IR
n
of maximal order k. The �nite

element discretization of the variational problem (1.2) is to �nd the discrete

solution uh 2 Vh with

< vh; F (uh) >= 0 for all vh 2 Vh : (1.5)

By using a suitable basis of Vh this discrete variational problem is equivalent

to a system of linear equations. The coe�cient matrix, called sti�ness matrix,

is extremely sparse, see Schwarz [57]. It can be shown that the linear system

has an unique solution. For mesh size h! 0 the calculated discrete solutions

uh converge to the unknown solution u. The convergence order depends on

the smoothness of the solution u and the used polynomial degree k.
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1.2 A-Posteriori Error Estimate

'Has the returned discrete solution uh a su�cient accuracy ?' That is just the

point for the user who has to solve the variational problem (1.2). He wishes to

get an estimate of the approximation error in addition to the returned discrete

solution uh. By a so-called a-posteriori error estimate an approximative

distribution of the true error

eh := u� uh (1.6)

is calculated after the discrete solution uh has been determined (here it is

assumed that the discretized variational problem (1.5) is solved exactly).

Naturally the additional costs to get this error estimate should be as low as

possible compared to the costs for the calculation of the discrete solution uh.

The error estimate allows the user to assess the quality of the result and, if it

is necessary, to start an adaptive re�nement procedure to improve the FEM

mesh Th until a desired accuracy is obtained, see Zienkiewicz [71].

Following the assessments of the participants at the FEM'50-conference 'Fifty

Years Anniversary of the Courant Element' at Jyv�askyla, Finland, 1993, the

a-posteriori error estimate and adaptive approaches for non{linear and non{

elliptic problems are the most outstanding problems in the �nite elements

today, see Babu�ska [5].

A full a-posteriori error estimate has to consider all sources of errors in the

FEM algorithms. Namely these are the following �ve error sources:

� Interpolation error: The admissible solution as well as the test functions

are only selected from the space of piecewise polynomials Vh.

� Integration error: On a computer the residual functional F can only

be approximatively evaluated by a numerical quadrature scheme.

� Stopping error: If the discrete variational problem (1.5) is solved iter-

atively (e.g. by conjugate gradient methods or in the case of a non{

linear problem by the Newton-Raphson method) a stopping criterion

terminates the iteration. Therefore the returned approximation is not

exactly equal to discrete solution uh.

� Domain representation error: In general the triangulation Th is not

an exact representation of the domain 
, especially if its boundary is

curved.

7



� Dirichlet condition interpolation error: Instead of a Neumann bound-

ary condition a Dirichlet boundary condition 'uj�D = uD' may be pre-

scribed on a boundary portion �D � @
. The Dirichlet boundary

condition is replaced by an interpolation condition for piecewise poly-

nomials.

In practice the triangulation Th and the data for the interpolation of the

Dirichlet condition are produced by a mesh generator, e.g. by I{DEAS [44].

Therefore the actual error of the domain representation and the error of

the interpolation of the Dirichlet conditions are unknown for a �nite element

solver. As there is this lack in the input data their in
uence cannot be covered

in the a{posteriori error estimate. This is the reason why these errors are

not considered explicitly in the following discussions although their in
uence

on the quality of the solution approximation can be signi�cant.

An a{posteriori error estimate �h 2 V is called equivalent to the true error

eh de�ned by equation (1.6), if there is a value Q > 0, called an e�ectivity

index, with
1

Q
� lim inf

h!0+
�h � lim sup

h!0+

�h � Q (1.7)

where it is

�h :=
k�hk
kehk : (1.8)

This notation was introduced by Babu�ska [6]. Actually the condition (1.7)

expresses that the true error eh and the error estimate �h have exactly the

same convergence order if the mesh size h decreases to zero. The quality of

the error estimate depends on the value of the e�ectivity index Q.

Naturally the used norm has a fundamental in
uence on the e�ectivity index.

By using the problem depending energy norm instead of the H1
-norm some

authors prove that inequality (1.7) holds for their error estimate even with

Q = 1. Such a{posteriori error estimates are called asymptotically exact as

they represent the exact error level for h! 0. However, the use of an energy

norm is questionable since a conclusion from the energy norm to theH1
-norm

can be very risky even if the condition number of the problem is very large.

The situation becomes much more complicated if non{linear problems are

considered as there is no canonical energy norm. Some concepts regarding

energy norms for non{linear problems are presented by Bank [14, 15].
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The a{posteriori error estimates currently used can be subdivided into three

classes, see Babu�ska [13], Verfuerth [62, 63, 64] and Zhu [67]:

� The methods in the �rst class are called averaging methods, see Zien-

kiewcz [70, 72, 73], Ainsworth [3], Duran [33]. They are probably the

most popular error estimates for FEMs in the engineering sciences. The

basic idea is the construction of a higher order approximation Guh of

the gradient ruh. Essentially the error is estimated by Guh�ruh. In
general the reliability and robustness of the estimate depends on the

FEM mesh, see Babu�ska [11].

� The second class contains the interpolation error estimates, see Demkow-

icz [30] and Johnson [45]. In general these estimates do not work very

reliably and give poor results.

� The estimates in the third class are called residual error estimates since

they essentially base on the evaluation of the residual operator F for

the calculated discrete solution uh.

Since the techniques of the residual estimate are those, which are the most


exible and stable, more details are presented.

The most famous residual error estimate has been introduced by Babu�ska-

Miller in 1978, see Babu�ska [10]. It gives an estimate of the discretization

error on every element. It bases on the weighted sum of the residual in the

strong formulation of the PDE (1.1) and the jumps of the derivatives of the

discrete solution uh over the element boundaries. The estimate is very easy

and inexpensive. Its crucial point is setting of the values for the weights

adapted to the problem. Moreover the evaluation of the strong formulation

for the discrete solution uh can be very complicated if only the weak for-

mulation is given, the problem is non{linear or higher order polynomials are

used. There are a lot of publications on the Babu�ska-Miller error estimate,

see e.g. Bornemann [18], Verfuerth [62, 63], Kunert [46].

A more 
exible approach than the Babu�ska-Miller error estimate is the solu-

tion of the error equation

Z



�
a(rv)(reh) + bveh

�
dx = � < v; F (uh) > for all v 2 V (1.9)

for the sought error eh. The error equation is set up by inserting the ex-

act solution u = eh + uh obtained from equation (1.6) into the variational

problem (1.2). By solving the error equation (1.9) the error on the level of
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equation expressed by the residual F (uh) is shifted to the level of the solution

represented by the error eh 2 V . Unfortunately the error equation (1.9) is a

variational problem in the space V like the original problem (1.2). Therefore

the error equation (1.9) has to be solved approximatively, too.

Regarding the evaluation of the residual function F (uh) two types can be

distinguished:

� The �rst type is called strong residual estimate, since it goes back to

the strong formulation (1.1) of the underlying boundary value problem

when building up the right hand side of the error equation. On every

element two residuals occur in the right hand side: One is the residual

from the evaluation of the PDE at the interior of the element. The other

residual is the jump of the normal derivative of the discrete solution uh
on the contact faces to the neighboring elements, see Babu�ska [9, 10],

Bank [16], Verfuerth [61].

� The second type is called weak residual estimate since these estimates

evaluate the residual for the calculated discrete solution uh in the weak

formulation (1.2), see Zienkiewicz [69], Liu [47], Bank [15], Deufel-

hard [31].

The approximative solution of the error equation (1.9) has to be as inexpen-

sive as possible. Since the mounting and solution of many small, independent

variational problems (namely one small system for every element or node)

seems to be more inexpensive than the solution of one large problem, the use

of domain decomposition methods is appropriate. A very popular method is

the localization, i.e. the approximative solution of the error equation in the

neighborhood of elements or nodes, e.g. by using a suitable subspace of the

space V . Typically special polynomials of higher order than for the discrete

solution uh are used for the construction of such subspaces. Babu�ska [10]

suggested to solve a local Dirichlet problem on the neighboring elements of

every node. Bank [16] inspected local Neumann problems on every element

(for the Stokes equations see Verfuerth [61]).

Another concept is the application of the hierarchical FEM, see Yseren-

tant [66]. Here the error equation is solved in a larger space

Vh+ := Vh � V c
h (1.10)

where V c
h is spanned by re�ning elements or by higher order polynomials. If

the solution is smooth enough a better approximation than the discrete so-

lution uh can be calculated from the larger space Vh+. Typically hierarchical
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bases are used to construct the space V c
h , see Zienkiewicz [69]. Expecting

that there are only little changes in the components in the space Vh the error

equation (1.9) is only solved in the space V c
h instead of the total space Vh+,

see Bank [15]. In some cases the computational costs can be reduced by

approximating the sti�ness matrix by a diagonal matrix, see Deufelhard [31],

or by localization which can be done by using bubble-shaped basis functions

over the elements, see Liu [47]. Actually there is a relationship between the

localization and hierarchical methods, see Bornemann [18], Verfuerth [63].

All these error estimates are designed for special variational problems or

PDEs and mostly the analysis is only made for the special model problem,

e.g. for the Neumann boundary value problem (1.1). The application to a

speci�c problem requires additional development e�ort by the user especially

as it has to be ensured that the error estimate is well-de�ned by the discrete

error equation. By way of contrast a program package like VECFEM [38]

which is designed to be applied to a large class of variational problems needs a

more general a{posteriori error estimate concept. It must suit to a wide range

of applications, even if there is another, better error estimate for a speci�c

application. Especially such an a{posteriori error estimate concept has to

consider non{linear variational problems which are typical for non{standard

FEM applications. In addition it should be embedded into the solution pro-

cedure of the non{linear, discrete variational problem, see Schoenauer [56, 55]

for �nite di�erence methods.

1.3 Outline

In the following a new a-posteriori error estimate is presented. This estimate

can be applied to a large class of non{linear variational problems without

any problem speci�c modi�cations. It meets the essential requirements of

an a{posteriori error estimate for a general purpose program package like

VECFEM. The class of applications includes the variational problems in the

heat transfer analysis (e.g. the model problem (1.1)), structural analysis and


uid dynamics.

The new a{posteriori error estimate uses the idea of the hierarchical error

estimate concept, though the error equation is solved in the original approxi-

mation space Vh. Therefore this new error estimate is called projecting error

estimate. Since the error estimate is computed in the space Vh it is ensured

that the error estimate is always well-de�ned. Moreover the sti�ness matrix

of the calculation for the discrete solution uh can be reused, which saves the
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mounting of a new sti�ness matrix and, if a direct solution method is used,

the calculating of a new LU-decomposition. Only a new right hand side has

to be mounted.

This thesis has three parts: The second chapter re
ects on so{called well{

posed non{linear variational problems on a Banach space, see De�nition 1.

The discussion considers that on a computer the linear functional F can

only be evaluated approximatively (e.g. by numerical integration) and that

the discrete variational problem has to be solved iteratively (e.g. by the

Newton-Raphson method). In Theorem 2 the non{linear version of the fa-

mous Lemma of Strang [59] gives an estimate of the error eh arising from

the interpolation, integration and stopping error. Basing on the extension

Vh+ of the original approximation space Vh (see equation (1.10)) a class of

a{posteriori error estimates is introduced. They consider the relevant error

sources mentioned above. In Theorem 4 a criterion is established when the

investigated error estimates are equivalent to the true error in the sense of

inequality (1.7). Bounds for the e�ectivity index are given. From this very

general framework the new a{posteriori error estimate technique, called pro-

jecting error estimate, is derived and its relationship to hierarchical error

estimates is discussed. The second important result of the second chapter

is the introduction of an optimal stopping criterion for the iterative solver

of the discrete variational problem. Theorem 3 shows that the criterion is

optimal in the sense that the solution approximations calculated with this

stopping criterion converge to the unknown solution u with the same con-

vergence order as the exact discrete solution uh of the discrete variational

problem (1.5).

The third chapter demonstrates how to apply the projecting error estimate

to the FEM for the non{linear version of the introduced model problem (1.1).

The space V c
h in extension (1.10) is constructed by higher order polynomials.

The propositions of the general framework are veri�ed. The well{known

analysis of Ciarlet [24] for the FEM on linear problems is quoted and modi�ed

for non{linear problems and the projecting error estimate. In Theorem 14

it is shown that the projecting error estimate for the FEM is equivalent to

the true error in the sense of inequality (1.7) if the sought solution is smooth

enough. The validity of the results for other variational problems than the

model problem is discussed.

In the fourth chapter the practical behavior of the projecting error esti-

mate is investigated for some applications. For the tests a modi�cation of

the VECFEM program package [38] is used. At �rst a special case of the

model problem is presented to con�rm the estimate for the e�ectivity index

12



which has been given in the third chapter of the thesis. A second example

demonstrates the behavior if the sought solution has a singularity. The third

example is an application from the structural analysis. The last example

shows the use of the projecting error estimate for mixed FEM problems by

solving the Navier-Stokes equations.
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Chapter 2

The Abstract Variational

Problem

For a function f : V ! W and any K � V it is set

f [K] := ff(v)jv 2 Kg: (2.1)

The function f jK : K !W de�ned by

f jK(v) := f(v) for all v 2 K (2.2)

denotes the restriction of f to K. For a second function g : X ! Y with

f [V ] � X the function g � f : V ! Y de�ned by

g � f(v) := g(f(v)) for all v 2 V (2.3)

denotes the chain of f and g. The mapping IV : V ! V de�ned by

IV (v) := v for all v 2 V (2.4)

denotes the identity operator on V . Mostly the index V will be omitted.

For functions f; g : V ! IR the following convention is used when suprema

and in�ma of ratios are computed:

sup

u2V

f(u)

g(u)
:= sup

u2V ;g(u)6=0

f(u)

g(u)

inf
u2V

f(u)

g(u)
:= inf

u2V ;g(u)6=0

f(u)

g(u)
:

(2.5)

14



Let be (V; k:kV ) and (W; k:kW ) Banach spaces. The vector space of all linear

and continuous operators L : V ! W de�ned by u ! Lu is denoted by

L(V;W ). With the norm

kLkL(V;W ) := sup

v2V

kLvkW
kvkV

(2.6)

the vector space L(V;W ) is a Banach space. If L 2 L(V;W ) ful�lls the

following three conditions

1. Lv 6= 0 for all 0 6= v 2 V
2. W = L[V ]

3. L�1 2 L(W;V )
(2.7)

where L�1 :W ! V is de�ned by L�1 �L = IV , then the operator L is called

an isomorphism. It is

1

kL�1kL(W;V )

= inf
v2V

kLvkW
kvkV : (2.8)

The operator L�1 is called the inverse operator of L. The dual space V �
of

V de�ned by

V �
:= L(V; IR) (2.9)

denotes the vector space of all continuous, linear functionals on V . It is a

Banach space. The duality mapping < :; : >: V � V � ! IR de�ned by

< v; F >:= Fv for all v 2 V and all F 2 V �
(2.10)

gives the value of the linear functional F 2 V �
for the element v 2 V . By

equation (2.6) the norm of F 2 V �
is given by

kFkV � = sup

v2V

< v; F >

kvk : (2.11)

2.1 The Well{Posed Variational Problem

Let be (V; k:k) a Banach space and F : K ! V �
a �xed operator on K � V

with values in V �
de�ned by u! F (u). F may be non{linear. The following

problem, called a variational problem, is investigated: �nd a solution u 2 K

with

F (u) = 0 : (2.12)
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Since F (u) is in the dual space of V this equation actually means to �nd an

u 2 K with

< v; F (u) >= 0 for all v 2 V : (2.13)

Problems of this type arise from the weak formulation of boundary value

problems (e.g. see the introduced model problem (1.2), Chapter 3 of this the-

sis, Quarteroni [52]), minimizing problems and saddle{point problems (e.g.

see Brezzi [21]). As pointed out in the introduced model problem (1.2) the

evaluation of the term < v; F (u) > can require the calculation of integrals,

see equation (1.3).

If F is an a�ne operator on K := V , i.e. there is an linear operator L 2
L(V; V �

) and f 2 V �
with

F (u) = Lu� f ; (2.14)

the variational problem (2.12) is a linear problem. The equation (2.13) can

be written as

< v; Lu >=< v; f > for all v 2 V : (2.15)

The functional f is called the right hand side of the linear variational prob-

lem (2.12). If the linear operator L is an isomorphism the variational prob-

lem (2.15) has the unique solution u = L�1f . From the de�nition (2.6) of

kLkL(V;V �) and equation (2.8) for the calculation of kL�1kL(V �;V ) the operator

F ful�lls the following condition for all u1; u2 2 V :

1

kL�1kL(V �;V )

ku1 � u2k
(2:8)

� kF (u1)� F (u2)kV �

(2:14)
= kL[u1 � u2]kV �

(2:6)

� kLkL(V;V �)ku1 � u2k :

(2.16)

Therefore an estimate of the following type holds for all u1; u2 2 K:

Dminku1 � u2k � kF (u1)� F (u2)kV � � Dmaxku1 � u2k ; (2.17)

where Dmin and Dmax are real positive constants with

Dmin :=
1

kL�1kL(V �;V )

Dmax := kLkL(V;V �) :

(2.18)

The right estimate in inequality (2.17) ensures that a small perturbation of

u1 by u1 � u2 e�ects a small change on the image F (u1). Moreover the left
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estimate in inequality (2.17) expresses that F (u1) and F (u2) with a small

distance are produced by u1 and u2 with a small distance. This type of

problems are called well{posed. As this property is essential in the discussions

of this thesis it is noticed in the following de�nition:

De�nition 1 The operator F : K ! V � is called well{posed with condition

number D2 if for all u1; u2 2 K:

1

D
ku1 � u2k � kF (u1)� F (u2)kV � � Dku1 � u2k : (2.19)

Remark 1: The condition number in the sense of De�nition 1 is not unique.

Remark 2: If F : K ! V �
is well{posed with condition number D2

and

f 2 V �
then Ff : K ! V �

de�ned by

< v; Ff(u) >:=< v; F (u) > + < v; f > for all u 2 K; v 2 V (2.20)

is well{posed with condition number D2
. f is called an additional load. In

this sense the linear functional f occurring in an a�ne operator de�ned by

equation (2.14) is an additional load.

If condition (2.17) holds the operator F is well{posed with condition number

max(D�2
min; D

2
max). Especially the a�ne operator F de�ned by equation (2.14)

is well{posed with condition number

max(kL�1kL(V �;V ); kLkL(V;V �))
2 : (2.21)

The feature 'well{posed' ensures that the solution of the variational prob-

lem (2.12) is unique in K. However, it is not guaranteed that a solution

exists. The following theorem gives an easy criterion for the existence of a

solution, if V is a Hilbert space. It is quoted from the theory of monotone

operators, see Brezis [20]:

Theorem 1 (Brezis, 1973) Let V be a Hilbert space, F : V ! V � and

D > 0 a constant with

kF (u1)� F (u2)kV � � Dku1 � u2k (2.22)

and
1

D
ku1 � u2k2 �< u1 � u2; F (u1)� F (u2) > (2.23)

for all u1; u2 2 V . Then the operator F is well{posed with condition number

D2 and the variational problem (2.12) has exactly one solution u 2 V .
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Proof : see Brezis [20]:

By the Riesz representation theorem it is V = V �
and

< v; v >= kvk2 for all v 2 V ; (2.24)

see Heuser [43]. From the conditions (2.22) and (2.23) it is obvious, that F

is well{posed with condition number D2
. To show the existence of a solution

the operator � : V ! V is de�ned by

�(u) = u� 1

D3
F (u) (2.25)

for all u 2 V . It is shown that � is a contracting operator on V :

For all u1; u2 2 V it is

k�(u1)� �(u2)k2
(2:25)+(2:24)

= < u1 � u2 � 1

D3
(F (u1)� F (u2));

u1 � u2 � 1

D3
(F (u1)� F (u2)) >

= ku1 � u2k2 � 2

D3
< u1 � u2; F (u1)� F (u2) > +

1

D6
kF (u1)� F (u2)k2

(2:22)+(2:23)

� (1� 2

D3

1

D
+

D2

D6
)ku1 � u2k2

= (1� 1

D4
)ku1 � u2k2 :

(2.26)

By Banach's �xed point theorem, see Heuser [43], the contracting operator

� has a �xed point u:

u = �(u) = u� 1

D3
F (u) : (2.27)

Therefore it is F (u) = 0, thus u is a solution of the variational problem (2.12).

This proves the theorem �
Remark 1: In the framework of monotone operators the operator F is called

strictly monotone if condition (2.23) holds.

Remark 2: If the operator F is an a�ne operator de�ned by equation (2.14)

the condition (2.23) is equivalent to the condition

1

D
kvk2 �< v; Lv > for all v 2 V : (2.28)
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If L 2 L(V; V �
) ful�lls this condition the linear operator L is called V-

elliptic (or coercive). From the well{known Lax{Milgram{Lemma which is

the linear version of Theorem 1 a V-elliptic linear operator L 2 L(V; V �
) is

an isomorphism, see Brezzi [21]. Especially the problem (2.15) has an unique

solution for all right hand sides f 2 V �
.

2.2 The Discretization

The variational problem (2.12) cannot be solved with a computer but an

approximation of the exact solution can be calculated by discretization:

Let Vh be a �nite dimensional subspace of the space V and Kh a subset of

the set Vh \ K. The index h is interpreted as a real number which refers

to a mesh size, see Section 3.4. The space Vh is spanned by a suitable basis

'h = f'hi gi=1;dh � Vh e.g. in the �nite element method by using a nodal

basis, see Zienkiewicz [68].

The original problem (2.12) is now solved in in the �nite dimensional space

Vh instead of the total space V : �nd a discrete solution uh 2 Kh with

< vh; F (uh) >= 0 for all vh 2 Vh : (2.29)

In general a computer cannot exactly evaluate the real value < vh; F (uh) >

as numerical integration has to be used to calculate the involved integrals,

see Section 3.5. Therefore it has to be assumed that only an approximation

Fh : Kh ! V �
h of the operator F is known. Keep in mind that the discrete

operator Fh does not have to be de�ned on the space V and and the set K.

Actually the following discrete variational problem is solved for the sought

discrete solution uh 2 Kh:

Fh(uh) = 0 : (2.30)

As Fh(uh) 2 V �
h the discrete variational problem means to �nd uh 2 Kh with

< vh; Fh(uh) >= 0 for all vh 2 Vh : (2.31)

Theorem 1 applied to the discrete operator Fh in the space Vh gives a criterion

for the existence of the discrete solution uh.

To solve the discrete variational problem (2.30) on a computer the discrete

solution uh is represented in the basis 'h by

uh =
dhX
i=1

uh;i'
h
i (2.32)
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where (uh;i)i=1;dh 2 IR
dh
. As every element in Vh can be represented by the

basis 'h problem (2.31) is equivalent to �nd a vector (uh;i)i=1;dh 2 IR
dh

with

< 'hj ; Fh(
dhX
i=1

uh;i'
h
i ) >= 0 for all j = 1; : : : ; dh : (2.33)

This is a system of dh non{linear equations for the dh coe�cients (uh;i)i=1;dh

in the representation (2.32) of the sought discrete solution uh.

Starting from an initial guess u
(0)
h 2 Kh a sequence of approximations (u

(k)
h )

k2IN

is calculated by using their representations by the selected basis 'h:

u
(k)
h =

dhX
i=1

u
(k)
h;i'

h
i (2.34)

with (u
(k)
h;i )i=1;dh 2 IR

dh
for all k 2 IN0. The di�erence u

(k)
h � u

(k�1)
h of two

sequential approximations, called the k-th correction, is given by

u
(k)
h � u

(k�1)
h =

dhX
i=1

(u
(k)
h;i � u

(k�1)
h;i )'hi =

dhX
i=1

�u
(k)
i 'hi (2.35)

where (�u
(k)
i )i=1;dh 2 IR

dh
for all k 2 IN. The correction is calculated from

the following system of dh linear equation:

dhX
i=1

< 'hj ; L
(k�1)
h 'hi > �u

(k)
i = � < 'hj ; Fh(u

(k�1)
h ) >

for all j = 1; : : : ; dh

(2.36)

where L
(k�1)
h 2 L(Vh; V �

h ) is a suitable isomorphism. If the discrete operator

Fh is smooth, the isomorphism L
(k�1)
h can be set to the derivative DFh of

the discrete operator Fh at the (k � 1){th approximation u
(k�1)
h . Then the

iteration (2.36) corresponds with the Newton{Raphson method which is a

very e�cient method for solving non{linear equations, see Stoer [58]. If V is

a Hilbert space, one can set L
(k�1)
h = 
IVh with a suitable real value 
 2 IR.

That is the method of successive approximation. The proof of Theorem 1

shows that 
 := 1
D3
h

ensures convergence if D2
h denotes the condition number

of Fh.

However, the dh � dh coe�cient matrix

< 'h; L
(k�1)
h 'h >:= (< 'hj ; L

(k�1)
h 'hi >)j;i=1;dh (2.37)
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which is called the sti�ness matrix and the right hand side vector

< 'h; Fh(u
(k�1)
h ) >:= (< 'hj ; Fh(u

(k�1)
h ) >)j=1;dh ; (2.38)

called the iteration defect, have to be assembled. The iteration defect has

to be evaluated for the current (k � 1){th approximation u
(k�1)
h in every

iteration step using the basis representation (2.34) for the approximation

u
(k�1)
h . If the isomorphism L

(k�1)
h (e.g. when using the modi�ed Newton{

Raphson method or the method of successive approximation) is not changed

during the iteration the sti�ness matrix has to be assembled only at the

beginning but in general a new sti�ness matrix has to be assembled in every

iteration step.

If the representation (2.35) of the correction u
(k)
h � u

(k�1)
h is used and it is

considered that every element in the space Vh can be represented by the basis

'h it turns out that the linear system (2.36) is equivalent to the equation

< vh; L
(k�1)
h [u

(k)
h � u

(k�1)
h ] >= � < vh; Fh(u

(k�1)
h ) > for all vh 2 Vh : (2.39)

Since L
(k�1)
h [u

(k)
h �u(k�1)h ] and Fh(u

(k�1)
h ) are in the dual space V �

h that means

L
(k�1)
h [u

(k)
h � u

(k�1)
h ] = �Fh(u(k�1)h ) : (2.40)

Therefore the iteration procedure (2.36) to solve the discrete variational prob-

lem (2.30) can be written down as

u
(k)
h := u

(k�1)
h � (L

(k�1)
h )

�1Fh(u
(k�1)
h ) (2.41)

for all k 2 IN where u
(0)
h 2 Kh is an initial guess and for all k 2 IN the linear

operators L
(k�1)
h are suitable isomorphisms.

The iteration procedure (2.41) is terminated by a suitable stopping criterion.

Therefore the discrete variational problem (2.30) is not exactly solved, but

an approximation ûh 2 Kh of discrete solution uh is computed. Especially

the iteration defect Fh(ûh) is not equal to zero. What is the quality of

the calculated approximation ûh compared to the sought solution u ? The

well{known Lemma of Strang [59] gives an estimate for a linear variational

problem. The following theorem is the non{linear version of this lemma:
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Theorem 2 (Grosz) Let be F : K ! V � well{posed with condition number

D2, u 2 K with F (u) = 0, Vh � V , Kh � K \ Vh and Fh : Kh ! V �
h

well{posed with condition number D2
h. Then for all ûh 2 Kh and vh 2 Kh

the following inequality holds:

ku� ûhk � DhkFh(ûh)kV �

h

+ (1 +DDh)kvh � uk
+ DhkFh(vh)� F (vh)kV �

h
:

(2.42)

Proof: Let be ûh; vh 2 Kh � K. Using the fact that the discrete operator

Fh is well{posed it is:

kûh � uk � kûh � vhk+ kvh � uk
� DhkFh(ûh)� Fh(vh)kV �

h
+ kvh � uk

� DhkFh(ûh)kV �

h
+DhkFh(vh)kV �

h
+ kvh � uk :

(2.43)

Further estimates for the value kFh(vh)kV �

h
are obtained by the fact that

F (u) = 0:

kFh(vh)kV �

h
= kFh(vh)� F (u)kV �

h

� kFh(vh)� F (vh)kV �

h
+ kF (vh)� F (u)kV �

h

� kFh(vh)� F (vh)kV �

h
+ kF (vh)� F (u)kV � :

(2.44)

In the last estimate the fact is used that for allG 2 V �
it is kGkV �

h
� kGkV � as

Vh � V . Since the operator F is well{posed it turns out from inequality (2.44)

that

kFh(vh)kV �

h
� kFh(vh)� F (vh)kV �

h
+Dkvh � uk : (2.45)

After this estimate was inserted into inequality (2.43) the inequality of the

theorem was proved �
The �rst term on the right hand side of inequality (2.42) is called the stop-

ping error or synonymously the termination error since it considers that the

discrete variational problem (2.30) is solved by an iterative method. The sec-

ond term considers the error which is produced by the reduction of the space

V to the �nite dimensional subspace Vh. It is called the interpolation error.

The third term considers the error from the approximation of the operator

F by the discrete operator Fh by numerical integration. Therefore this term

is called the integration error.

In the following the behavior of the discretization is analyzed if the 'mesh

size h goes to zero'. This means that a family of �nite dimensional subspaces

(Vh)h2H of the space V is given where the set H � IR+ has the unique
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accumulation point 0. To simplify the following formulations '(Vh)h>0' is

written instead of (Vh)h2H. Moreover it is written

h! 0 (2.46)

to express that a condition holds for every sequence of mesh sizes in the index

set H which converge to zero.

In this notation the following corollary is a direct consequence of Theorem 2

when it is assumed that the discrete problem is solved exactly. The problem

of a suitable stopping criterion will be discussed below in Theorem 3.

Corollary 1 Let F : K ! V � be well{posed with condition number D2, u

an element of the set K with F (u) = 0 and (Vh)h>0 be a family of �nite

dimensional subspaces of the space V . For every h > 0 let be

Ihu 2 Kh � Vh \K (2.47)

with Ihu ! u for h ! 0 at least of order p1 > 0, i.e. there is a constant

C1 > 0 with

ku� Ihuk � C1h
p1 for all h > 0 : (2.48)

For all h > 0 let Fh : Kh ! V �
h be a well{posed operator on Kh with condition

number D2 and Fh ! F at Ihu for h ! 0 at least of order p2, i.e. there is

a constant C2 > 0 with

kFh(Ihu)� F (Ihu)kV �

h
� C2h

p2 for all h > 0 : (2.49)

If uh 2 Kh with Fh(uh) = 0 then uh ! u for h ! 0 at least of order

min(p1; p2), i.e. there is a constant C3 > 0 with

ku� uhk � C3h
min(p1;p2) for all h > 0 : (2.50)

Proof: The corollary is a direct conclusion from Theorem 2. Essential is

the fact that the condition number Dh = D does not depend on h and no

termination error (i.e. Fh(uh) = 0) occurs �
The assumptions of Corollary 1 state a consistency condition for the approx-

imation space Vh. If any element Ihu with properties (2.48) and (2.49) is

found then by Corollary 1 the solutions of the discrete variational problems

in the spaces Vh converge to the sought solution. Estimation (2.48) describes

the approximation properties of the sets (Kh)h>0 for the elements in the set

K. The property (2.49) shows the approximation properties of the discrete
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operators (Fh)h>0 for the operator F . In the �nite element application the

operator Ih is an interpolation operator in the space Vh.

Remark : In practice Theorem 2 as well as Corollary 1 are not suitable

to give an estimate of the error u � ûh. The reason is that the condition

numbers of the involved operators as well as the constants C1 and C2 in the

inequalities (2.48) and (2.49) are unknown. In the �nite element application

there are some ideas to estimate the values for C1 by higher order interpo-

lation, see Demkowicz [30] and Johnson [45], but the computed bounds are

not reliable and overestimate the true error dramatically.

In the next section a very general technique is presented how the discretiza-

tion error u� ûh can be estimated reliablely. Since the estimate is calculated

after the discrete variational problem (2.30) has been solved the technique is

called a-posteriori error estimate.

2.3 A{Posteriori Error Estimate

If an approximative solution ûh 2 Kh of the discrete variational problem (2.30)

is computed the true error

eh := u� ûh (2.51)

cannot be determined since naturally the sought solution u is unknown. Yet

an approximation of the true error, called an a{posteriori error estimate, can

be computed. In Theorem 4 an error estimate (more exactly a family of error

estimates) will be introduced and a criterion is proposed to check when the

error estimate represents the true error well.

The main handicap to get the true eh is that a computer cannot represent

the space V . It seems to be a good idea to expand the space Vh to a space

Vh+ � V in a suitable way and to calculate a second better discrete solution

uh+ from this greater vector space Vh+, see Zienkiewicz [69], Deufelhard [31],

Bank [15], Bornemann [18]. If the approximation uh+ is actually a better

approximation of the exact solution u then one can expect that

�h+ := uh+ � ûh (2.52)

is a good a{posteriori error estimate. More exactly this works as described

in the following:

Let Vh+ � V be a �nite dimensional subspace of the space V with Vh � Vh+
and let Fh+ : Kh+ ! V �

h+ be an operator on Kh+ with Kh � Kh+ � Vh+\K.
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uh+ 2 Kh+ denotes the solution of the discrete variational problem

Fh+(uh+) = 0 : (2.53)

The situation that the discrete solution uh+ is actually a better approxima-

tion of the solution u than the discrete solution uh is characterized by the

following de�nition where the elements uh, uh+ and u are not necessaryly the

solutions of variational problems, see Bank [15].

De�nition 2 (Bank 1993) Let be u 2 V and for all h > 0 uh; uh+ 2 Vh
and rh � 0 with

ku� uh+k � rhku� uhk : (2.54)

Then (uh; uh+)h>0 is called saturated for the element u if there is a constant

r0 2 IR with

0 � lim sup

h!0

rh � r0 < 1 : (2.55)

The value r0 is called a saturation bound.

Essential in this de�nition is the condition r0 < 1 which ensures that at least

for a small mesh size h the discrete solution uh+ gives a better approximation

of the solution u than the discrete solution uh. By using the notations of

Corollary 1 the set of pairs (uh; uh+)h>0 is saturated for the solution u with

saturation bound r0 = 0 if for h ! 0 the discrete solutions uh converge to

the solution u with maximal order p and the approximations uh+ converge

to the solution u at least of order q with q > p.

Before the a{posteriori error estimate is investigated the question of an opti-

mal stopping criterion for the iterative solver of the discrete variational prob-

lem (2.30) is answered: For a given approximation ûh of the discrete solution

uh the norm of the discrete operator Fh+(ûh) can be evaluated to involve it

into a stopping criterion. Using heuristical arguments the stopping criterion

given in the following theorem has been introduced by Schoenauer [56, 55]

for the �nite di�erence method and by Grosz [39] for �nite element methods.

The idea is to stop the iteration if the stopping error is in the order of the

(estimated) discretization error. Actually the stopping criterion produces ap-

proximations ûh that have the same convergence order to the sought solution

u like the exact discrete solutions uh.

Theorem 3 (Grosz) Let be Vh � Vh+ � V , Kh � Kh+ \ Vh, Kh+ � Vh+ \
K, Fh+ : Kh+ ! V �

h+ and Fh : Kh ! V �
h well{posed operators with condition

number D2, uh 2 Kh with Fh(uh) = 0 and uh+ 2 Kh+ with Fh+(uh+) = 0. If
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(uh; uh+)h>0 is saturated for the element u 2 V with saturation bound r0 and

for all h > 0 ûh 2 Kh ful�lls the stopping criterion:

kFh(ûh)kV �

h
� �kFh+(ûh)kV �

h+
(2.56)

with �xed 0 � � < �0 :=
1
D2 min(

1�r0
2r0

; 1), then it is

lim sup

h!0

ku� ûhk
ku� uhk �

1 + r0D
2�

1�D2�
: (2.57)

Especially the approximations uh and ûh have the same convergence order to

the element u for h ! 0. In addition (ûh; uh+)h>0 is also saturated for the

element u with saturation bound

r̂0 := r0
1 +D2�

1� r0D2�
< 1 : (2.58)

Proof: First estimation (2.57) is proved: Since the discrete operator Fh is

well{posed with condition number D2
and Fh(uh) = 0 it is

kûh � uhk � DkFh(ûh)� Fh(uh)kV �

h

= DkFh(ûh)kV �

h
:

(2.59)

By inserting the stopping criterion (2.56) and using Fh+(uh+) = 0 one gets

kûh � uhk � DkFh(ûh)kV �

h

(2:56)

� D�kFh+(ûh)kV �

h+

= D�kFh+(ûh)� Fh+(uh+)kV �

h+

� D2�kûh � uh+k :

(2.60)

In the last estimation the fact is used that the discrete operator Fh+ is well{

posed with condition number D2
. The approximation uh is introduced into

the right hand side by using the triangle inequality:

kûh � uhk � D2�(kûh � uhk+ kuh � uh+k) : (2.61)

As it is D2� < 1 this inequality is solved for kûh � uhk:

kûh � uhk � D2�

1�D2�
kuh � uh+k : (2.62)

After the element u was put into the right hand side the de�nition of the

factor rh by inequality (2.54) in De�nition 2 is inserted:

kûh � uhk � D2�

1�D2�
(kuh � uk+ ku� uh+k)

(2:54)

� D2�
1 + rh

1�D2�
kuh � uk :

(2.63)
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Since it is lim suph!0 rh � r0 inequality (2.57) is veri�ed.

To show that the set (ûh; uh+)h>0 is saturated for the element u an estimation

of type (2.54) with the approximation ûh instead of the approximation uh
and an appropriate factor rh (denoted by r̂h) has to be established: Starting

from kuh � uk inequality (2.60) is used to obtain:

kuh � uk � kuh � ûhk+ kûh � uk
(2:60)

� D2�kûh � uh+k+ kûh � uk :
(2.64)

By inserting the element u into the �rst term of the right hand side it is

kuh � uk � D2�(kûh � uk+ ku� uh+k) + kûh � uk
(2:54)

� (1 +D2�)kûh � uk+ rhD
2�kuh � uk :

(2.65)

As it is rhD
2� < 1 at least for a small mesh size h this can be solved for

kuh � uk to get the estimation:

kuh � uk � 1 +D2�

1� rhD2�
kûh � uk : (2.66)

This inequality is inserted into the de�nition (2.54) of the factor rh and it

turns out that

ku� uh+k
(2:54)

� rhku� uhk
(2:66)

� rh
1 +D2�

1� rhD2�
kûh � uk :

(2.67)

Therefore it is for all small mesh sizes h > 0

ku� uh+k � r̂hku� ûhk (2.68)

with

r̂h := rh
1 +D2�

1� rhD2�
: (2.69)

If lim suph!0 of (r̂h)h>0 is calculated it turns out that

lim sup

h!0

r̂h � r̂0 := r0
1 +D2�

1� r0D2�
(2.70)

as it is r0D
2� < 1. It remains to show that r̂0 < 1:

As it has been assumed that � < �0 it is

D2� < D2�0 � 1� r0

2r0
: (2.71)
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Therefore the following estimations hold:

r̂0 = r0
1 +D2�

1� r0D2�

< r0
1 +

1�r0
2r0

1� r0
1�r0
2r0

=

2r0 + 1� r0

2� (1� r0)
= 1 :

(2.72)

This proves the theorem �
The iteration procedure (2.41) for the solution of the variational problem

Fh(uh) = 0 should be terminated after the k-th iteration step if the condi-

tion (2.56) given in Theorem 3 holds for ûh := u
(k)
h . To check this criterion

the value kFh+(u(k)h )kV �

ĥ+
has to be calculated or estimated in every iteration

step. In spite of the additional e�ort the use of the stopping criterion saves

much computing time, see Example 2 and Example 4 in Chapter 4. The

stopping criterion (2.56) is optimal in the sense that the returned approxi-

mations (ûh)h>0 have the same convergence order to the sought solution u

like the exact calculated discrete solutions (uh)h>0. The reason is that if the

stopping criterion is ful�lled for the �rst time during the iteration procedure

the discretization error starts to dominate the termination error. It is empha-

sized that the factor � can be very small as the condition number D of the

discrete operators Fh and Fh+ can be very large. However a lot of tests have

shown that � = 0:075 is a suitable selection for a large class of applications

although the factor � should be smaller when following Theorem 3.

Remark 1: The stopping criterion (2.56) can be replaced by

kFh(ûh)kV �

h
� �kFh+(ûh)kV �

ĥ+
(2.73)

where V
ĥ+ can be any subspace of Vh+. Actually this condition is stronger

than the original criterion (2.56) but sometimes it is simpler and cheaper to

be checked.

Remark 2: In the propositions of Theorem 3 it has been assumed that

Fh and Fh+ are well{posed with same condition number D. This is not

a restriction as the condition number D can be set to max(D1; D2) if the

discrete operator Fh is well{posed with condition number D1 and the discrete

operator Fh+ is well{posed with condition number D2. However, the discrete

operators Fh and Fh+ should have a condition number which is very close
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to the condition number of the operator F as they are its approximation.

Therefore it can be assumed that the operators Fh, Fh+ and F are well{

posed with a common condition number D (that is independent of the mesh

size h!).

To assess the quality of an a{posteriori error estimate the following criterion

was introduced by Babu�ska [6]:

De�nition 3 (Babu�ska 1992) Let be (ûh)h>0 � V a set of approximations

of the element u 2 V . The subset (�h)h>0 of V is called equivalent to the true

error if there is a constant Q > 0 with

1

Q
� lim inf

h!0+
�h � lim sup

h!0+

�h � Q (2.74)

where it is

�h :=
k�hk

ku� ûhk : (2.75)

The constant Q is called an e�ectivity index.

Remark: If the set of error estimates (�h)h>0 is equivalent to the true error

this means that they have exactly the same asymptotic behavior for h ! 0

like the exact error eh = u� ûh. If the levels of the error estimates are correct

depends on the value of the e�ectivity index Q. The error estimates become

more fuzzy if the value of the e�ectivity index Q increases. In the case that

one can set Q = 1 the error estimates (�h)h>0 represent the correct level of

the true error for h! 0. Such estimates are called asymptotically exact.

The following lemma con�rms that the expansion of the space Vh is a suc-

cessful approach to estimate the error of the calculated approximation. It

is essential that the expansion Vh+ is large enough which is covered by

(uh; uh+)h>0 being saturated. The following lemma is important for the fur-

ther discussions:

Lemma 1 (Grosz) Let be Vh � Vh+ � V , Kh � Kh+ \ Vh, Fh+ : Kh+ !
V �
h+ and Fh : Kh ! V �

h well{posed operators with condition number D2,

uh 2 Kh with Fh(uh) = 0, uh+ 2 Kh+ with Fh+(uh+) = 0 for all h > 0 and

(uh; uh+)h>0 saturated for u 2 V . If for all h > 0 ûh 2 Kh ful�lls the stopping

criterion (2.56) in Theorem 3 the set (�h+)h>0 de�ned by

�h+ := uh+ � ûh (2.76)
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for all h > 0 is equivalent to the true error in the sense of De�nition 3. More

precisely it is

1� r̂0 � lim inf
h!0

k�h+k
kehk � lim sup

h!0

k�h+k
kehk � 1 + r̂0 (2.77)

where for all h > 0 eh := u � ûh denotes the exact error. The constant

0 � r̂0 < 1 is de�ned by equation (2.58) in Theorem 3.

Proof: Because of the triangle inequality it is

kehk (2:51)
= ku� ûhk
� ku� uh+k+ kuh+ � ûhk
� r̂hku� ûhk+ k�h+k
= r̂hkehk+ k�h+k

(2.78)

where the factor r̂h is de�ned by equation (2.69) in the proof of Theorem 3.

Moreover the following estimation holds:

k�h+k (2:76)
= kûh � uh+k
� kûh � uk+ ku� uh+k
� (1 + r̂h)kehk :

(2.79)

By combining both estimates (2.78) and (2.79) one gets

(1� r̂h)kehk � k�h+k � (1 + r̂h)kehk (2.80)

which proves the lemma �
The lemma states that the error estimate �h+ de�ned by equation (2.76) is

a reliable a{posteriori error estimate. Yet the calculation of the error esti-

mate �h+ requires the solution of the non{linear, discrete variational equa-

tion (2.53) in the expansion Vh+ to get the better discrete solution uh+.

Similar to the solution of the discrete variational problem (2.30) for the dis-

crete solution uh this has to be done by using an iterative method which is

analogously to iteration procedure (2.41). Certainly ûh 2 Kh � Kh+ is a

good initial guess for this iteration procedure. Then one iteration step will

be enough to calculate an approximation ûh+ 2 Vh+ of the better discrete

solution uh+ with a su�cient accuracy. The approximation

�Ih := ûh+ � ûh (2.81)

of the error estimate �h+ will be equivalent to the true error in the sense

of De�nition 2. The equation determining the error estimate �Ih is obtained

readily from the formula of the iteration procedure (2.40):

Lh+�
I
h = Lh+[ûh+ � ûh] = �Fh+(ûh) : (2.82)
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Lh+ 2 L(Vh+; V �
h+) is a suitable isomorphism. This error equation is a linear,

discrete variational problem in the expansion Vh+: �nd error estimate �Ih 2
Vh+ with

< vh+; Lh+�
I
h >= � < vh+; Fh+(ûh) > for all vh+ 2 Vh+ : (2.83)

The calculation of the error estimate �Ih requires the mounting of a new sti�-

ness matrix. As in practice the dimension of the expansion Vh+ is twice the

dimension of the space Vh the dimension of this sti�ness matrix is twice the

dimension of the sti�ness matrix used in an iteration procedure (2.41) to

calculate the discrete solution uh. Therefore the mounting of the coe�cient

matrix for the error equation (2.83) requires at least the fourfold computa-

tional e�ort. To face the question how these costs can be reduced a more

general concept is introduced to calculate a{posteriori error estimates for the

approximation ûh basing on an error equation of type (2.83).

Assume there is a space V�h � V where an isomorphism L�h 2 L(V�h; V �
�h
)

is known. The inverse of L�h should be easily computable. Moreover it is

assumed that there is an operator Jh+ 2 L(V�h; Vh+) which joins every element

in the space V�h with an element in the expansion Vh+. An a{posteriori error

estimate ��h 2 V�h is de�ned by

< v�h; L�h��h >= � < Jh+v�h; Fh+(ûh) > for all v�h 2 V�h : (2.84)

Depending on the selection of the space V�h and the joining operator Jh+

various error estimates are de�ned, see below.

The new error equation (2.84) is deduced from the error equation (2.83):

When it is set �Ih := Jh+��h and vh+ := Jh+v�h with ��h; v�h 2 V�h the error

equation (2.83) is transformed to

< Jh+v�h; Lh+Jh+��h >= � < Jh+v�h; Fh+(ûh) > for all v�h 2 V�h : (2.85)

A new linear operator L�h 2 L(V�h; V �
�h
) de�ned by

< v�h; L�hw�h >=< Jh+v�h; Lh+Jh+w�h > for all v�h; w�h 2 V�h (2.86)

is introduced. After using the de�nition of the linear operator L�h the equa-

tion (2.85) was moved to the error equation (2.84). Keep in mind that the

linear operator L�h is not necessarily an isomorphism if the linear operator

Lh+ is one. This depends strictly on the used joining operator Jh+.

In general, the error equation (2.85) is not equivalent to the starting error

equation (2.83) as the dimension of the space V�h can be lower than the
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dimension of the expansion Vh+. Therefore a loss of information takes place

when going from the error equation (2.83) to the equation (2.85) de�ning the

error estimate ��h. However, it has to be assumed that L�h is an isomorphism.

Moreover it will turn out that under certain circumstances one gets over the

loss of information, i.e. the error estimate ��h is still equivalent to the true

error in the sense of De�nition 3.

There are three interesting selections for the space V�h basing on the splitting

Vh+ = Vh � V c
h (2.87)

with Vh \ V c
h = f0g:

� At �rst one can set V�h := Vh+, Jh+ := IVh+ and L�h := Lh+. Then

the error estimate (2.84) is equal to the error estimate �Ih de�ned by

equation (2.83). This is called the in
ating a-posteriori error estimate.

But still the target to reduce the computational costs for the error

estimate is not reached. But if it is assumed that the components of

the better discrete solution uh+ belonging to the space Vh are close to

the discrete solution uh so it is su�cient to look only to the components

in the space V c
h .

� This is the idea for the hierarchical error estimate (denoted by �Hh ).

Here V�h := V c
h , Jh+ := IV�h and L�h := Lch 2 L(V c

h ; (V
c
h )

�
) are set.

The base 'h is extended by additional basis elements ('h+j )j=dh+1;dh+

spanning the space V c
h . For the calculation of the error estimate the

sti�ness matrix

(< 'h+j ; Lch'
h+
i >)i;j=dh+1;dh+ (2.88)

and the defect

(< 'h+j ; Fh+(ûh) >)j=dh+1;dh+ (2.89)

have to be mounted. The operator Lch has to be a suitable isomorphism

and should be selected in a way that the inverse of its sti�ness matrix

can be easily calculated. Common selections use a lumped matrix, the

reduction of the matrix (2.88) to its main diagonal elements in com-

bination with hierarchical bases, e.g. see Zienkiewicz [69], Bank [15],

Deufelhard [31], or the solution of element-by-element problems, see

Liu [47]. Although this error estimate works very well for a wide range

of applications, there is no general method for the selection of the linear

operator Lch. The essential problem is that it has to be an isomorphism.

� The new error estimate is called the projecting error estimate (denoted

by �Ph ). It bases on the idea of projecting the error equation (2.83) back
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to the space Vh where the solution approximation ûh is calculated. This

is achieved by setting V�h := Vh and Jh+ to an interpolation operator

into Vh+, for more details see Section 3.6. Then one can set L�h := L
(k�1)
h

which has been used to calculate the returned approximation ûh = u
(k)
h ,

see iteration procedure (2.41). The pro�t is that the sti�ness matrix

and, if a direct solution method for the solution of the systems of linear

equations is used, its LU-decomposition or other manipulations of the

sti�ness matrix (e.g. reordering, ILU-factorization for preconditioning)

are reused for the a-posteriori error estimate. Only the new defect

< Jh+'
h; Fh+(ûh) >:= (< Jh+'

h
j ; Fh+(ûh) >)j=1;dh (2.90)

has to be mounted.

Returning to the general point of view it is obvious that the error estimate

de�ned by error equation (2.84) is not a good estimate if the range of Jh+ is a

subset of the space Vh, i.e. Jh+[V�h] � Vh. As no contribution out of the space

Vh is involved only the error from the termination of the iteration procedure

and the integration error is considered. To insert the interpolation error the

range of Jh+ has to be large enough. Here it is assumed that the range of

Jh+ contains all components that are added to the space Vh to construct the

expansion Vh+, i.e. it holds

V c
h � Jh+[V�h] : (2.91)

In the following a more handy formulation of this condition is used which

says that a right hand side inverse J�h 2 L(V c
h ; V�h) of Jh+ on the space V c

h

exists:

Jh+J�hv
c
h = vch for all v

c
h 2 V c

h : (2.92)

The conditions (2.91) and (2.92) are equivalent. For the in
ating and the

hierarchical error estimate the involved joining operator has the required

property (2.92) because of the de�nition of the method. For the construction

of the projecting error estimate this property has to be considered when

selecting Jh+.

The following Lemma 2 and Lemma 4 intend to prove an estimation of the

type

qhk�h+k � k��hk � Qhk�h+k (2.93)

for the a{posteriori error estimate ��h de�ned by equation (2.84) where the

element �h+ is de�ned by equation (2.76). The positive values qh and Qh

depend on the mesh size h. By combining this estimation with the results of

Lemma 1 it is proved in Theorem 4 that an a{posteriori error estimate ��h is

equivalent to the true error in the sense of De�nition 3.
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Lemma 2 (Grosz) Let Fh+ : Kh+ ! V �
h+ be well{posed with condition

number D2
h+, ûh; uh+ 2 Kh+ with Fh+(uh+) = 0, L�h 2 L(V�h; V �

�h
) and

Jh+ 2 L(V�h; Vh+). Then for the error estimate ��h de�ned by equation (2.84)

the following estimate holds with �h+ = uh+ � ûh:

k��hk � Dh+kJh+kL(V�h;Vh+)kL�1�h
kL(V �

�h
;V�h)

k�h+k : (2.94)

Proof: With Fh+(uh+) = 0 and Jh+[V�h] � Vh+ one gets from the de�ni-

tion (2.84) of error estimate ��h:

< v�h; L�h��h >
(2:84)
= � < Jh+v�h; Fh+(ûh) >

= < Jh+v�h; Fh+(uh+)� Fh+(ûh) >

� kJh+kL(V�h;Vh+)kv�hkkFh+(uh+)� Fh+(ûh)kV �

h+

� Dh+kJh+kL(V�h;Vh+)kv�hkkuh+ � ûhk
(2:76)
= Dh+kJh+kL(V�h;Vh+)kv�hkk�h+k

(2.95)

for all v�h 2 V�h. From the the de�nition of the norm kL�1�h
kL(V �

�h
;V�h)

it is

k��hk
(2:8)

� kL�1�h
kL(V �

�h
;V�h)

kL�h��hkV �

(2:11)

� kL�1�h
kL(V �

�h
;V�h)

sup

v�h2V�h

< v�h; L�h��h >

kv�hk
:

(2.96)

After inserting estimation (2.95) into estimation (2.96) the inequality of the

lemma has been proved �
Unfortunately the techniques in the proof of Lemma 2 cannot be applied to

obtain a value for qh in the objected estimation (2.93) since in general it

cannot be assumed that Vh+ � Jh+[V�h]. More re�ned tools have to be used

by following the techniques from the analysis of two-level iteration methods,

see Eijkhout [34]. In the following the angular distance between the spaces Vh
and V c

h is important. It is measured by the de
ection �h in the Pythagorean

equation for the spaces Vh and V
c
h :

Lemma 3 Let Vh and V
c
h be �nite dimensional subspaces of V with Vh\V c

h =

f0g. Then for the de
ection �h in the Pythagorean equation for the spaces

Vh and V c
h the following relation holds:

1 � �2h := sup

vh2Vh;v
c
h
2V c

h

kvhk2 + kvchk2
kvh + vchk2

<1 : (2.97)
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Proof: With vh = 0 one gets �h � 1. To show that �h 2 IR contradiction is

used:

If �h =1 there are sequences (v
(n)
h )

n2IN
2 V INh and (w

(n)
h )

n2IN
2 (V c

h )
IN

with

0 < kv(n)h + w
(n)
h k2 � 1

n
(kv(n)h k2 + kw(n)

h k2) (2.98)

for all n 2 IN. With 
n := max(kv(n)h k; kw(n)
h k) it is set

~v
(n)
h :=

1


n
v
(n)
h and ~w

(n)
h :=

1


n
w

(n)
h (2.99)

for all n 2 IN. Then

max(k~v(n)h k; k ~w(n)
h k) = 1 (2.100)

holds for all n 2 IN.

Since the spaces Vh and V
c
h have �nite dimensions and the sequence ((~v

(n)
h ; ~w

(n)
h ))

n2IN

is bounded there is a subsequence of the sequence ((~v
(n)
h ; ~w

(n)
h ))

n2IN
which con-

verges to an element (~vh; ~wh) 2 Vh � V c
h . For simpli�cation this subsequence

is also denoted by ((~v
(n)
h ; ~w

(n)
h ))

n2IN
. By using inequality (2.98) one obtains

that

k~v(n)h + ~w
(n)
h k2 (2:99)

= kv
(n)
h


n
+

w
(n)
h


n
k2

(2:98)

� 1

n

1


2n
(kv(n)h k2 + kw(n)

h k2)

� 2

n
:

(2.101)

By taking limn!1 on this estimate the result is that ~vh = � ~wh. Therefore it

has to be ~vh; ~wh 2 Vh \ V c
h = f0g and consequently ~vh = ~wh = 0. But from

equation (2.100) it has to be

max(k~vhk; k ~whk) = 1 : (2.102)

This is a contradiction and therefore �h has to be �nite �
Remark: If V is a Hilbert space with scalar product < :; : > the de
ection

�h has a geometrical interpretation: The value


h := sup

vh2Vh;v
c
h
2V c

h

< vh; v
c
h >

kvhkkvchk
< 1 (2.103)

is the cosine of the angle between the spaces Vh and V
c
h (The proof for 
h < 1

is similar to the proof of Lemma 3). The constant 
h plays an important role

in the multilevel theory, see Eijkhout [34]. There is a relation of 
h to �h:
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For all vh 2 Vh and vch 2 V c
h it is

kvhk2 + kvchk2
kvh + vchk2

=

kvhk2 + kvchk2
kvhk2 + kvchk2 + 2 < vh; v

c
h >

(2:103)

� kvhk2 + kvchk2
kvhk2 + kvchk2 � 2
hkvchk kvhk

� 1

1� 
h
:

(2.104)

In the last estimation the fact is used that

2kvchk kvhk = kvhk2 + kvchk2 � (kvhk � kvchk)2
� kvhk2 + kvchk2 :

(2.105)

By taking the supreme value over vh 2 Vh and vch 2 V c
h in inequality (2.104) it

is shown that �h � 1p
1�
h

. Moreover 
h is actually a maximum. By inserting

the location of the maximum it can be proved that even

�h =
1p

1� 
h
(2.106)

holds. If the spaces Vh and V
c
h are orthogonal it is �h = 1.

Lemma 4 (Grosz) Let Fh+ : Kh+ ! V �
h+ be well{posed with condition

number D2
h+, ûh; uh+ 2 Kh+ with Fh+(uh+) = 0 and L�h 2 L(V�h; V �

�h
). More-

over let be Vh+ = Vh�V c
h with Vh \V c

h = f0g and Jh+ 2 L(V�h; Vh+) with left

hand side inverse J�h 2 L(V c
h ; V�h) on the space V c

h de�ned by equation (2.92).

Then the error estimate ��h de�ned by equation (2.84) ful�lls the following

estimate with �h+ = uh+ � ûh:

k�h+k2 � D2
h+�

2
h(kFh+(ûh)k2V �

h
+ kL�hk2L(V�h;V �

�h
)kJ�hk2L(V c

h
;V�h)

k��hk2) (2.107)

where �h is the de
ection in the Pythagorean equation for the spaces Vh and

V c
h de�ned by equation (2.97).

Proof: For every element vh+ 2 Vh+ one gets from splitting (2.87)

vh+ = vh + vch (2.108)

with vh 2 Vh and vch 2 V c
h . It is

vch = Jh+J�hv
c
h (2.109)
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because of the condition (2.92) for the joining operator Jh+ and its right

hand side inverse J�h. By involving the de�nition (2.84) of the error estimate

��h one obtains:

< vh+; Fh+(ûh) >
(2:108)
= < vh; Fh+(ûh) > + < vch; Fh+(ûh) >

(2:109)
= < vh; Fh+(ûh) > + < Jh+J�hv

c
h; Fh+(ûh) >

(2:84)
= < vh; Fh+(ûh) > + < J�hv

c
h; L�h��h >

� kvhk kFh+(ûh)kV �

h
+

kvchk kL�hkL(V�h;V �

�h
) kJ�hkL(V c

h
;V�h)

k��hk :

(2.110)

Taking the Cauchy{Schwartz inequality it turns out that

< vh+; Fh+(ûh) >

�
q
kvhk2 + kvchk2q
kFh+(ûh)k2V �

h
+ kL�hk2L(V�h;V �

�h
)kJ�hk2L(V c

h
;V�h)

k��hk2
(2:97)

� �hkvh + vchkqkFh+(ûh)k2V �

h
+ kL�hk2L(V�h;V �

�h
)kJ�hk2L(V c

h
;V�h)

k��hk2
(2:108)
= �hkvh+kqkFh+(ûh)k2V �

h
+ kL�hk2L(V�h;V �

�h
)kJ�hk2L(V c

h
;V�h)

k��hk2

(2.111)

by using the de�nition (2.97) of the de
ection �h. From the fact that

the discrete operator Fh+ is well{posed with condition number Dh+ and

Fh+(uh+) = 0 the following estimations hold:

k�h+k (2:76)
= kuh+ � ûhk
� Dh+kFh+(uh+)� Fh+(ûh)kV �

h+

= Dh+kFh+(ûh)kV �

h+

(2:11)
= Dh+ sup

vh+2Vh+

< vh+; Fh+(ûh) >

kvh+k :

(2.112)

After inserting estimation (2.111) the lemma has been proved �
Remark: If kFh+(ûh)kV �

h
= 0 Lemma 4 actually establishes an estimation

for qh in the wanted inequality (2.93). Even if there is no termination error

(i.e ûh = uh) the term kFh+(ûh)kV �

h
does not vanish. The reason is that in

the practical implementation it cannot be expected that Fh(uh) = Fh+(uh)jVh
holds, i.e. in general the discrete operator Fh+ is not a continuation of the

operator Fh from the space Vh to its expansion Vh+. However, it has to be
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requested that the distance of the discrete operators Fh(uh) and Fh+(uh)jVh
is small enough compared to the approximation error ku � uhk, see condi-

tion (2.113) below.

By gathering the results of this section the main theorem of this chapter is

stated:

Theorem 4 (Grosz) Let u 2 V be a given element in the Banach space V .

� Let for all h > 0 Vh � V be a �nite dimensional subspace of the space

V , Kh � Vh, Fh : Kh ! V �
h well{posed with condition number D2 and

uh 2 Kh with Fh(uh) = 0 and uh ! u for h! 0.

� Let for all h > 0 Vh+ � V be a �nite dimensional subspace of the space

V and Kh+ � Vh+ with Vh � Vh+ and Kh � Kh+. Let Fh+ : Kh+ ! V �
h+

be well{posed with condition number D2 with

kFh+(uh)� Fh(uh)kV �

h
� shku� uhk (2.113)

and limh!0 sh = 0. Moreover let (uh; uh+)h>0 be saturated for the solu-

tion u with saturation bound 0 � r0 < 1 in sense of De�nition 2.

� Let for all h > 0 V�h � V and L�h 2 L(V�h; V �
�h
) be an isomorphism with

lim suph!0 kL�hkL(V�h;V �

�h
) � L and lim suph!0 kL�1�h

kL(V �

�h
;V�h)

� L.

� Let for all h > 0 be

Vh+ = Vh � V c
h (2.114)

with Vh \ V c
h = f0g and

sup

vh2Vh;v
c
h
2V c

h

kvhk2 + kvchk2
kvh + vchk2

� �2 (2.115)

for �xed � 2 IR+. In addition let be J�h 2 L(V c
h ; V�h) and Jh+ 2

L(V�h; Vh+) with

Jh+J�hv
c
h = vch for all vch 2 V c

h ; (2.116)

lim suph!0 kJh+kL(V�h;Vh+) � P and lim suph!0 kJ�hkL(V c
h
;V�h)

� P .

If ûh 2 Kh ful�lls the stopping criterion

kFh(ûh)kV �

h
� �kFh+(ûh)kJh+[V�h]� (2.117)

38



with 0 � � < �0 :=
1
D2 min(

1�r0
2r0

; 1
�D2 ) then also ûh ! u for h ! 0 and the

a-posteriori error estimate ��h 2 V�h de�ned by

< v�h; L�h��h >= � < Jh+v�h; Fh+(ûh) > for all v�h 2 V�h (2.118)

is equivalent to the true error eh := u� ûh in the sense of De�nition 3.

Proof: Since kFh+(ûh)kJh+[V�h]� � kFh+(ûh)kV �

h+
and the factor � used in

stopping criterion (2.117) is less than
1
D2 min(

1�r0
2r0

; 1) (it is �D2 � 1 !) the

stopping criterion (2.56) in the propositions of Theorem 3 holds. Therefore

Theorem 3 shows that the approximations ûh converge to the element u for

h! 0.

First the existence of an upper bound for the ratio

�h :=
k��hk
kehk (2.119)

is proved when h! 0. From inequality (2.94) in Lemma 2 one obtains

lim sup

h!0

k��hk
k�h+k � C (2.120)

with

C := D L P (2.121)

and the error estimate �h+ de�ned by equation (2.76) in Lemma 1. Moreover

by Lemma 1 the inequality (2.77)

lim sup

h!0

k�h+k
kehk � 1 + r̂0 (2.122)

with the factor r̂0 de�ned by equation (2.58) holds. Therefore an upper

bound for the ratio �h turns out from

lim sup

h!0

�h
(2:119)
= lim sup

h!0

k�h+k
kehk � k��hkk�h+k

(2:122)+(2:120)

� (1 + r̂0) � C :

(2.123)

To �nd a lower bound for the ratio �h Lemma 4 is used but an estimate for

the norm kFh+(ûh)kV �

h
is needed:

Using the condition (2.113) and the fact that the discrete operators Fh+ and

Fh are well{posed it is

kFh+(ûh)kV �

h
= kFh+(ûh)� Fh(uh)kV �

h

� kFh+(ûh)� Fh+(uh)kV �

h+
+

kFh+(uh)� Fh(uh)kV �

h

Dkûh � uhk+ kFh+(uh)� Fh(uh)kV �

h
:

(2.124)
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To get further estimates the de�nition of the factor sh by inequality (2.113)

is inserted:

kFh+(ûh)kV �

h

(2:113)

� Dkûh � uhk+ shku� uhk
� Dkûh � uhk+ sh(ku� ûhk+ kûh � uhk)
= (D + sh)kûh � uhk+ shkehk
� (D + sh)DkFh(ûh)� Fh(uh)kV �

h
+ shkehk

= (D + sh)DkFh(ûh)kV �

h
+ shkehk :

(2.125)

Using stopping criterion (2.117) and Fh+(uh+) = 0 further estimates can be

made:

kFh+(ûh)kV �

h

(2:117)

� �(D + sh)DkFh+(ûh)kV �

h+
+ shkehk

= �(D + sh)DkFh+(ûh)� Fh+(uh+)kV �

h+
+ shkehk

� �(D + sh)D
2kûh � uh+k+ shkehk

(2:76)
= �(D + sh)D

2k�h+k+ shkehk :

(2.126)

Inserting this estimate into the inequality (2.107) of Lemma 4 one gets

k�h+k2 � D2�2
�
[�(D + sh)D

2k�h+k+ shkehk]2 + C2
h�

2k��hk2
�

(2.127)

where it is set

Ch := DkL�hkL(V�h;V �

�h
)kJ�hkL(V c

h
;V�h)

: (2.128)

By solving this inequality for the ratio
k��hk

k�h+k
it is

1

C2
h�

2
(1�D2�2[�(D + sh)D

2
+ sh

kehk
k�h+k ]

2
) � k��hk2

k�h+k2 : (2.129)

Since it is assumed that limh!0 sh = 0, the ratio
kehk
k�h+k

is bounded by Lemma 1

and it is � < 1
�D4 the left hand side of inequality (2.129) is positive for a small

mesh size h. By Lemma 1 it is

lim inf
h!0

k�h+k
kehk � 1� r̂0 > 0

lim inf
h!0

kehk
k�h+k �

1

1 + r̂0
> 0

(2.130)

and therefore it turns out from inequality (2.129) that

lim inf
h!0

�h = lim inf
h!0

k�h+k
kehk � k��hkk�h+k

(2:130)+(2:129)

� (1� r̂0) � 1
C�

p
1�D8�2�2

(2.131)
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with the constant C de�ned by equation (2.121). The lower bound has a

positive, real value since it is � < 1
�D4 .

After combining the inequalities (2.123) and (2.129) it has been proved that

(1� r̂0) � 1
C�

p
1�D8�2�2

(2:131)

� lim inf
h!0

�h �

lim sup

h!0

�h
(2:123)

� (1 + r̂0) � C :
(2.132)

So the inequality (2.74) for the error estimate ��h has been veri�ed. There-

fore the error estimate ��h is equivalent to the true error eh in the sense of

De�nition 3 �
Remark: If in the condition (2.113) it is

lim sup

h!0

sh = s0 > 0 (2.133)

the results of Theorem 4 are still valid with another constant �0 but the limit

s0 has to be small enough.

The proof has explicitly constructed an e�ectivity index of the a{posteriori

error estimate ��h. The following corollary of Theorem 4 notes this result for

an exactly solved, discrete variational problem (2.30):

Corollary 2 (Grosz) Under the assumptions of Theorem 4 with � = 0 it

is
1� r0

�DLP
� lim inf

h!0

k��hk
kehk � lim sup

h!0

k��hk
kehk � (1 + r0)DLP : (2.134)

An e�ectivity index in the sense of De�nition 3 is given by �DLP
1�r0

.

Proof: The inequality (2.134) is a direct consequence of inequality (2.132).

An e�ectivity index is obtained from the fact that � � 1 and 1+ r0 � 1
1�r0

�
Iterative methods, e.g. conjugate gradient methods, do not solve the linear

equation (2.118) exactly. A poor accuracy is su�cient to ensure that the

approximation �̂�h of the the error estimate ��h is equivalent to the true error:

Corollary 3 (Grosz) Under the assumptions of Theorem 4 let for all h > 0

be �̂�h 2 Vĥ de�ned by

< v�h; L�h�̂�h >= � < Jh+v�h; Fh+(ûh) > + < v�h; d�h >

for all v�h 2 V�h (2.135)
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with d�h 2 V �
�h
. Then there is a constant �0 > 0 independent of the mesh size

h that for all �0 > � � 0 the following statement holds: If for all h > 0

kd�hkV �

�h
� �kFh+(ûh)kJh+[V�h]� (2.136)

the a-posteriori error estimate �̂�h is equivalent to the true error.

Proof: From the de�nitions of the error estimates �̂�h and ��h it is

< v�h; d�h >
(2:135)
= < v�h; L�h�̂�h > + < Jh+v�h; Fh+(ûh) >

(2:118)
= < v�h; L�h[�̂�h � ��h] >

(2.137)

for all v�h 2 V�h. By using the triangle inequality and condition (2.136) it is���k�̂�hk � k��hk
��� � k�̂�h � ��hk

(2:137)

� kL�1�h
kL(V�h;V �

�h
)kd�hkV �

�h

(2:136)

� �kL�1�h
kL(V�h;V �

�h
)kFh+(ûh)kJh+[V�h]�

� �kL�1�h
kL(V�h;V �

�h
)kFh+(ûh)kV �

h+
:

(2.138)

With Fh+(uh+) = 0 and the fact that the discrete operator Fh+ is well{posed

further estimates can be made:���k�̂�hk � k��hk
��� � �kL�1�h

kL(V�h;V �

�h
)kFh+(ûh)kV �

h+

� �kL�1�h
kL(V�h;V �

�h
)kFh+(ûh)� Fh+(uh+)kV �

h+

� �DkL�1�h
kL(V�h;V �

�h
)kûh � uh+k

� �DkL�1�h
kL(V�h;V �

�h
)(kûh � uk+ ku� uh+k)

(2:69)

� �DkL�1�h
kL(V�h;V �

�h
)(1 + r̂h)kehk

(2.139)

where r̂h � 1 is de�ned by equation (2.69) in the proof of Theorem 3. This

establishes that �����k�̂�hkkehk �
k��hk
kehk

����� � C� (2.140)

with

C := 2DL > 0 (2.141)

independent of the factor � and the mesh size h.

As the error estimate ��h is equivalent to the true error in the sense of De�-

nition 3 there is a constant Q > 0 with

1

Q
� lim inf

h!0+

k��hk
kehk � lim sup

h!0+

k��hk
kehk � Q : (2.142)
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Therefore the lower estimates

lim inf
h!0+

k�̂�hk
kehk

� lim inf
h!0+

"k��hk
kehk

�
�����k�̂�hkkehk

� k��hk
kehk

�����
#

(2:142)+(2:140)

� 1

Q
� C�

(2.143)

and the upper estimates

lim sup

h!0+

k�̂�hk
kehk � lim sup

h!0+

"k��hk
kehk +

�����k�̂�hkkehk �
k��hk
kehk

�����
#

(2:142)+(2:140)

� Q + C�

(2.144)

can be made. When one selects 0 � � < �0 :=
1
CQ

the inequalities (2.143)

and (2.144) can be combined to

0 <
1

Q
� C�

(2:143)

� lim inf
h!0+

k�̂�hk
kehk

� lim sup

h!0+

k�̂�hk
kehk

(2:144)

� Q+

1

Q
: (2.145)

That proves that the a{posteriori error estimate �̂�h is equivalent to the true

error in the sense of De�nition 3 if the factor � is small enough �
The linear functional d�h 2 V �

�h
occuring in equation (2.135) is the defect

arising from the inexact solution of the error equation (2.136) de�ning the

a{posteriori error estimate ��h. The criterion (2.136) can be used as a stop-

ping criterion for iterative linear solvers, e.g. see LINSOL [65], where d�h
is interpreted as the residual of the current approximation in the iteration

procedure.

Remark 1: The value for �0 can be very small since C de�ned by equa-

tion (2.141) can be very large. However, a lot of tests have shown that for

the most problems � = 10
�4

delivers reliable error estimates though Corol-

lary 3 determines a smaller value � .

Remark 2: The results of this section are also valid if the very popular

problem dependent energy norm is used instead of the canonical norm in the

Banach space V . In this case D=L=1 and then the e�ectivity index is closer

to 1. However, the factor � in the e�ectivity index produced by the reduction

of the expansion Vh+ does not vanish. It is the price which has to be paid to

reduce the computational e�ort for the error estimates.
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2.4 Discussion and Summary

Roughly spoken Corollary 2 shows that the e�ectivity index
�DLP

1�r0
for the

error estimate ��h depends on the de
ection � in the Pythagorean equation

in spaces Vh and the expansion V c
h , the condition number P 2

of the joining

operator Jh+, the condition number D2
of the operator F and the condition

number L2
of the isomorphism L�h. In most of the cases it is L � D especially

if Newton type methods are used. The uncertainty in the a{posteriori error

estimate grows with the increase of the condition numbers and �.

If a hierarchical a-posteriori error estimate is used the e�ectivity index is

equal to
�D2

1�r0
since P = 1. That is the reason why the quality of a hierar-

chical estimate is better than the quality of the projecting error estimate.

Using the in
ating a{posteriori error estimate it is additionally � = 1 and

the best e�ectivity index
D2

1�r0
of the three discussed types of error estimates

can be expected. The costs for the better quality are additional computa-

tional e�ort. A more detailed comparison of the projecting a{posteriori error

estimate especially to the hierarchical error estimate is given in Section 3.7.

In the next chapter Theorem 4 is applied to the new projecting a{posteriori

error estimate in the range of the �nite element discretization of non{linear

boundary value problems on a domain 
. The space Vh is a space of piecewise

polynomials of order k and the expansion Vh+ a space of polynomials of

order 2k. The discrete operators Fh and Fh+ are constructed by numerical

integration schemes which exactly integrate polynomials of degree 2k�2 and

4k�1. The construction ensures that the condition (2.113) with limh!0 sh =

0 holds. The joining operators Jh+ and J�h are polynomial interpolation

operators. The isomorphism L�h is a linearization of Fh, e.g. its Frechet

derivative.

The proof that the discrete operators Fh and Fh+ are well{posed is relatively

simple. On the other hand it is more di�cult to prove that the condition num-

bers, the norms kJh+kL(V�h;Vh+), kJ�hkL(V c
h
;V�h)

, kL�hkL(V�h;V �

�h
) and kL�1�h

kL(V �

�h
;V�h)

and the de
ection � in the Pythagorean equation for the spaces Vh and V c
h

have upper bounds independent of the mesh size h. Fortunately this proof can

be given for a problem type with a wide scope of applications (for instance,

like in the next chapter for the non{linear Neumann problem) independent of

the domain 
 and additional loads (see Remark 1 to De�nition 1). However,

the most crucial condition is that (uh; uh+)h>0 has to be saturated for the

sought solution u. It will come out that this is related to the smoothness of

the solution u which is typically determined by the shape of the domain 
 and

additional loads. This aspect is investigated by Example 2, see Section 4.5.
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Chapter 3

The Nonlinear Neumann

Problem

3.1 Introduction

In this chapter the abstract theory developed in the previous Chapter 2 is

applied to the �nite element method (FEM) for a model problem namely for

a class of non{linear boundary value problems on a polygonal shaped do-

main. More general formulations of the FEM especially for other boundary

value problems are for instance presented in the books of Zienkiewicz [68],

Quarteroni [52] and Ciarlet [25]. Naturally this chapter has not the tar-

get to introduce the FEM but to show the principles and crucial points of

the projecting error estimate in the range of FEMs. The essential result is

Theorem 14 which is the FEM formulation of Theorem 4 for the project-

ing a{posteriori error estimate. Roughly spoken Theorem 14 says that the

projecting error estimate is equivalent to the true error in the sense of De�ni-

tion 3 if the solution is smooth enough. To verify the properties of Theorem 4

the analysis follows closely the well{known linear theory of the FEM for ellip-

tic problems given by Ciarlet [25] but some modi�cations have to be done to

consider non{linear problems and the projecting error estimate. Extensions

to other FEM applications are sketched.
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3.2 Notations

For any dimension n 2 IN and every vector x = (xi)i=1;n 2 IR
n
the real value

jxj :=
vuut nX

i=1

x2i (3.1)

denotes the Euclidean norm of x.

For any matrix B 2 IR
n�n

the determinant of the matrix B is denoted by

det(B). The real value jBj de�ned by

jBj := sup

x2IR
n

jBxj
jxj (3.2)

denotes the norm of the matrix B. There is a constant C > 0 that it is

jbijj � CjBj for all 1 � i; j � n (3.3)

for all matrices B = (bij)i;j=1;n 2 IR
n
. The constant C depends only on the

dimension n.

For any vector x 2 IR
n
and � > 0

S(x; �) := fy 2 IR
n j jy � xj < �g (3.4)

denotes the ball of radius � with center x.

For any set K � IR
n cl(K) denotes the closure of the set K, int(K) is the

open kernel and @K is the boundary of the set K. If the set K is bounded

and it is int(K) 6= ; the diameter of the set K is denoted by

hK := inf
K�S(x;�)

� (3.5)

and the diameter of the biggest ball contained in the set K is denoted by

�K := sup

S(x;�)�K

� (3.6)

(see Figure 3.1). These values are used in the following lemma, which will

be fundamental in the analysis of the FEM:

Lemma 5 Let be K � IR
n bounded with int(K) 6= ;. Then there is a con-

stant C > 0 depending on the set K with

jBj � C h	[K] (3.7)
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h

ρ

K

K

K

Figure 3.1: The diameter of the set K and the radius of the biggest ball in

the set K.

and

jB�1j � C
1

�	[K]

(3.8)

for all a�ne transformation 	 : IR
n ! IR

n de�ned by

	x := Bx + b for all x 2 IR
n

(3.9)

with b 2 IR
n, B 2 IR

n�n and det(B) 6= 0. The value h	[K] denotes the

diameter of the set 	[K] de�ned by equation (3.5) and the value �	[K] denotes

the diameter of the biggest ball in the set 	[K] de�ned by equation (3.6).

Proof: See Ciarlet [27] �
Remark: The inverse transformation 	

�1
of the transformation 	 de�ned

by equation (3.9) is given by

	
�1x = B�1

(x� b) for all x 2 IR
n : (3.10)

3.2.1 Sobolev Spaces

In this chapter some Sobolev spaces are used, see Adams [2]: Let n 2 f1; 2; 3g
be a spatial dimension, m 2 IN0 and 1 � q � 1. In addition 
 � IR

n
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denotes a domain, i.e. 
 is a bounded, open and connected subset of the real

Euclidean space IR
n
with a Lipschitz{continuous boundary.

For a multi{index � = (�1; : : : ; �n) 2 IN
n
0 it is set

j�j :=
nX
i=1

�i : (3.11)

For all functions v : 
! IR and all multi{indices � = (�1; : : : ; �n) 2 IN
n
0 the

function

D�v :=
@j�jv

@�1x1@�2x2 � � �@�nxn
(3.12)

denotes the �-th partial derivative of the function v being taken in the sense

of distributions. The Sobolev space Wm;q
(
) is de�ned by

Wm;q
(
) := fv : 
! IR j

Z


jD�vjq dx <1; � 2 IN

n
0 ; j�j � mg (3.13)

if q <1 and by

Wm;1
(
) := fv : 
! IR j ess sup

x2

jD�v(x)j <1; � 2 IN

n
0 ; j�j � mg (3.14)

if q =1, where `ess sup` denotes the essential supreme. The Sobolev space

Wm;q
(
) is the set of all functions on the domain 
 whose derivatives up

to order m have a �nite integral of their q-th power (have a �nite essential

supreme if q =1). On the space Wm;q
(
) the semi-norm

jvjm;q;
 :=

8>><
>>:

(

X
j�j=m

Z


jD�vjq dx) 1q if q <1

sup

j�j=m

(ess sup

x2

jD�v(x)j) if q =1

(3.15)

and the norm

kvkm;q;
 :=

8>><
>>:

(

mX
k=0

jvjqk;q;
)
1

q if q <1
sup

0�k�m
jvjk;1;
 if q =1

(3.16)

are used. For all m 2 IN0 and all 1 � q � 1 the space (Wm;q
(
); k:km;q;
) is

a Banach space. Since the case q = 2 is of special interest it is usual to drop

the index expressing q = 2. Therefore the notations

Hm
(
) := Wm;2

(
)

k:km;
 := k:km;2;


j:jm;
 := j:jm;2;


(3.17)
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for all m 2 IN0 are used. The space (H
m
(
); k:km;
) is a Hilbert space for all

m 2 IN0. Keep in mind that for all 1 � q � 1 the following identities hold:

j:j0;q;
 = k:k0;q;

j:j0;
 = k:k0;
 : (3.18)

For all m 2 IN0 the set Cm
(
) denotes the vector space of the real valued

and m-times continuously di�erentiable functions on the domain 
. It is

Cm
(
) � Wm;1

(
). The norm of the space Cm
(
) is the k:km;1;
-norm of

the Sobolev space Wm;1
(
). Later the following embedding theorem will be

used, see Adams [2]:

Theorem 5 For all 1 � q � 1, m 2 IN0 and s >
n
q
it is

Wm+s;q
(
) � Cm

(cl(
)) � Wm;1
(
) : (3.19)

Proof: See Adams [2] �
Estimates for the modi�cation of the Sobolev norm are needed if the domain

is transformed by an a�ne transformation, see Ciarlet [27]. In the following

theorem as well as in the further terms it is set 1=1 := 0.

Theorem 6 Let be 1 � q � 1, m 2 IN0. There is a constant C > 0

depending on the domain 
 with the following property: For all a�ne trans-

formations 	 : IR
n ! IR

n de�ned by

	x := Bx + b for all x 2 IR
n

(3.20)

with B 2 IR
n�n, b 2 IR

n and det(B) 6= 0 hold: If v 2 Wm;q
(	[
]) then

v �	 2 Wm;q
(
) and it is

jv �	jm;q;
 � CjBjmjdet(B)j� 1

q jvjm;q;	[
] : (3.21)

If v 2 Wm;q
(
) then v �	�1 2 Wm;q

(	[
]) and it is

jv �	�1jm;q;	[
] � CjB�1jmjdet(B)j 1q jvjm;q;
 : (3.22)

Proof: See Ciarlet [27] �
Remark: For the norm in the space H0

(
) a stronger result than inequali-

ties (3.21) and (3.22) can be proved. By applying the substitution rule one

obtains for all functions v 2 H0
(
) and all a�ne transformations 	 de�ned

by equation (3.20):

jdet(B)j � jv �	j20;
 = jvj20;	[
] : (3.23)

49



3.2.2 Product Spaces

Let d 2 IN, 1 � q � 1, m 2 IN0 and T be a �nite family of pairwise disjoint

domains in IR
n
. The product space Wm;q

(T )d is de�ned by

Wm;q
(T )d := f(vi)i=1;dj vijT 2 Wm;q

(T ); T 2 T ; i = 1; : : : ; dg (3.24)

It is the space of all IR
d
-valued functions on the set

S T whose components

belong to the Sobolev space Wm;q
(T ) for all sets T 2 T . The semi-norm

jvjm;q;T :=

8>><
>>:

(

X
1�i�d;T2T

jvijqm;q;T )
1

q if q <1
max

1�i�d;T2T
jvijm;1;T if q =1

(3.25)

and the norm

kvkm;q;T :=

8>><
>>:

(

mX
k=0

jvjqk;q;T )
1

q if q <1
max
0�k�m

jvjk;1;T if q =1
(3.26)

for all functions v = (vi)i=1;d 2 Wm;q
(T )d are used. The vector space

Wm;q
(T )d with the norm k:km;q;T is a Banach space. The notations and

properties of the Sobolev spaces are extended to the product spaces (espe-

cially the embedding Theorem 5).

For d = 1 it is set Wm;q
(T ) := Wm;q

(T )1. If the family T has a single

element, e.g. T = f
g, it is set
Wm;q

(
)
d
:= Wm;q

(f
g)d and k:km;q;
 := k:km;q;f
g : (3.27)

The notations that were introduced in the previous Chapter 2 are adopted

in this chapter. Especially the upper index
0�0 of Banach spaces denotes still

the dual space (e.g. the space H1
(
)

�
is the dual space of H1

(
)). The

lower index of norms indicates Sobolev space norms or norms for operator

spaces de�ned by equation (2.6). They cannot be mixed up as the types of

the indices are di�erent.

3.2.3 Basic Error Estimates

Now two theorems are quoted that are essential to prove the convergence

order of �nite element approximations. They base on the famous Bramble-

Hilbert-Lemma, see Bramble [19].
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(0,1,0)

0 1 (0,0) (1,0)

(0,1) (0,0,1)

(0,0,0) (1,0,0)

Figure 3.2: The 1-simplex, 2-simplex and 3-simplex.

The set T 0 � IR
n
denotes the n-simplex de�ned by

T 0
:=

8>>>>><
>>>>>:

[0; 1] if n = 1

f(x01; x02)jx01; x02 � 0; x01 + x02 � 1g if n = 2

f(x01; x02; x03)jx01; x02; x03 � 0; if n = 3

x01 + x02 + x03 � 1g

: (3.28)

The n-simplexes are plotted in Figure 3.2. In the following locations and

coordinates which are in the n-simplex T 0
are marked with the upper index

0. The intersections of the n-simplex T 0
with the hyperspaces

x0k = 0 (3.29)

for all spatial directions k = 1; : : : ; n and

nX
i=1

x0i = 1 (3.30)

are called the n+1 faces of the n-simplex T 0
. In the following the n-simplex

T 0
and its interior int(T 0

) are not distinguished.

The set Pk denotes the space of all polynomials on the set IR
n
with maximal

order k. In case of n = 3 it is

Pk := spanfxk11 xk22 xk33 jk1; k2; k3 2 IN0 and k1 + k2 + k3 � kg : (3.31)
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Figure 3.3: The local degrees of freedom for order 3 on the 2-simplex.

The set X0;k
:= fx0;ki gi=1;dk � T 0

de�ned by

X0;k
:=

8>>>>>>>>>>><
>>>>>>>>>>>:

fk1
k
jk1 2 IN0; k1 � kg if n = 1

f(k1
k
;
k2

k
)jk1; k2 2 IN0; k1 + k2 � kg if n = 2

f(k1
k
;
k2

k
;
k3

k
)jk1; k2; k3 2 IN0; if n = 3

k1 + k2 + k3 � kg

(3.32)

denotes the set of the local degrees of freedom of order k, see Figure 3.3. A

polynomial of order k is uniquely de�ned by its values at the local degrees of

freedom, see Nicolaides [48].

The linear operator Ik : C0
(T 0

)! Pk de�ned by v ! Ikv for all v 2 C0
(T 0

),

where Ikv 2 Pk is the unique solution of the Lagrangean interpolation prob-

lem

Ikv(x0;ki ) = v(x
0;k
i ) for all i = 1; : : : ; dk ; (3.33)

is called the local interpolation operator of order k. Taking Theorem 5 the

local interpolation operator Ik is de�ned on the space Wm;q
(T 0

) � C0
(T 0

)

if m > n
q
.

The next theorem gives an estimate of the interpolation error, see Ciarlet [27]:

52



Theorem 7 (Ciarlet 1972) Let 1 � q � 1 and Ik be the local interpola-

tion operator of order k > n

q
� 1. There is a constant C > 0 with

jv � Ikvjm;q;T 0 � C jvjk+1;q;T 0 (3.34)

for all functions v 2 W k+1;q
(T 0

) and all 0 � m � k.

Proof: See Ciarlet [27] �
A numerical quadrature schemeQl

: C0
(T 0

)! IR on the n-simplex T 0
de�ned

by

Ql
(') :=

qlX
i=1

!
0;l
i '(y

0;l
i ) (3.35)

for all ' 2 C0
(T 0

) approximates the integral

R
T 0 ' dx0 by the �nite sum

Ql
('). The positive values f!0;l

i gi=1;ql � IR+ are called integration weights

and the points fy0;li gi=1;ql � T 0
are called integration nodes.

De�nition 4 The quadrature scheme Ql
: C0

(T 0
) ! IR is called exact of

order l if

Ql
(p) =

Z
T 0

p dx0 for all p 2 Pl : (3.36)

In the following the upper index l of a quadrature scheme Ql
indicates that

quadrature scheme Ql
is exact of order l in the sense of this de�nition. Keep

in mind that in this de�nition as well as in the following the quadrature

scheme Ql
may exactly integrate polynomials with higher order than l and

may also be the exact integration operator.

On the 1-simplex the well{known Gaussian quadrature scheme is the opti-

mal quadrature scheme since it uses the minimal number m of integration

nodes to construct a quadrature scheme that is exact of order 2m � 1, see

Davis [28]. For the 2-simplex and 3-simplex the construction of optimal

quadrature schemes takes more e�ort, e.g. see Guessab [41]. Di�culties

arise from the requirements that the integration weights have to be positive

and the location of the integration nodes should ful�l some symmetry prop-

erties. When implemented on a computer the product scheme of Gaussian

quadrature schemes on the unit cube [0; 1]n is transformed into the simplex

by changing the variables, see Zienkiewicz [68]. Since the transformation is

not a�ne there is a loss of accuracy. Moreover the integration nodes are

not symmetrically spaced in the simplex. In spite of this these quadrature

schemes are very popular since they are very easy to implement.
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If Ql
: C0

(T 0
) ! IR is a given quadrature scheme its error functional El

:

C0
(T 0

)! IR is de�ned by

El
(') :=

Z
T 0

' dx0 �Ql
(') (3.37)

for all functions ' 2 C0
(T 0

). It is obvious that the quadrature scheme Ql

de�ned by equation (3.35) is a continuous, linear functional on C0
(T 0

), i.e.

Ql 2 C0
(T 0

)
�
. Therefore it is also El 2 C0

(T 0
)
�
. Taking Theorem 5 the

linear functionals Ql
and El

are de�ned on the Sobolev space W k;1
(T 0

) for

all k � 1. Keep in mind that El
(p) = 0 for all p 2 Pl if and only if the

quadrature scheme Ql
is exact of order l in the sense of De�nition 4.

Analogously to the estimate of the interpolation error in Theorem 7 there is

an estimate of the error by a quadrature scheme, see Ciarlet [26]:

Theorem 8 (Ciarlet 1972) Let be El 2 C0
(T 0

)
� with El

(p) = 0 for all

p 2 Pl and k 2 IN with l � k � 1. Then there is a real value C > 0 with

jEl
(f � p)j � C(jf jl�k+1;1;T 0jpj1;T 0 + jf jl�k+2;1;T 0jpj0;T 0) (3.38)

and

jEl
(f � @p

@x0i
)j � Cjf jl�k+2;1;T 0jpj1;T 0 (3.39)

for all functions f 2 W k;1
(T 0

), all polynomials p 2 Pk and all spatial direc-

tions i = 1; : : : ; n.

Proof: See Ciarlet [26] �
Remark: In Lemma 5, Theorem 6, Theorem 7 and Theorem 8 the values of

the constants C are unknown.

3.3 The Variational Problem

This section introduces a class of variational problems arising from the non{

linear version of the model boundary value problem (1.1) presented in the

introducing Chapter 1. It will be veri�ed that these variational problems are

well{posed in the sense of De�nition 1.

In the rest of this chapter n 2 f1; 2; 3g denotes the spatial dimension and


 � IR
n
denotes a �xed domain.
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To get simpler formulas the following notation is introduced: For all functions

u 2 W 1;q
(
) (1 � q � 1) the vector valued function u; denotes the function

of n+ 1 components created by the function u and its spatial derivatives:

u; := (u;i)i=1;n+1 := (u; (
@u

@xj
)j=1;n) : (3.40)

It is u; 2 W 0;q
(
)

n+1
with

ju;j0;q;
 = ku;k0;q;
 = kuk1;q;
 and

ju;j0;
 = ku;k0;
 = kuk1;
 if q = 2

(3.41)

where the product space W 0;q
(
)

n+1
and its norm are de�ned by equa-

tions (3.24) and (3.26).

De�nition 5 (Grosz) Let be G : 
 � IR
n+1 ! IR

n+1. The function G is

called uniform positive de�nite with positivity bound D > 0, if

� for all vectors � 2 IR
n+1 the function G(�; :) : 
 ! IR

n+1 de�ned by

x! G(�; x) for all x 2 
 belongs to H0
(
)

n+1

� for all vectors x 2 
 the function G(:; x) : IRn+1 ! IR
n+1 de�ned by

� ! G(�; x) for all � 2 IR
n+1 belongs to C1

(IR
n+1

)
n+1 and the estimates

� � @G(�; x)� � Dj�jj�j (3.42)

and
1

D
j�j2 � � � @G(�; x)� (3.43)

hold for all x 2 
 and all �; �; � 2 IR
n+1. In both inequalities (3.42)

and (3.43) the real (n + 1)� (n + 1) matrix

@G(�; x) = (@jGi(�; x))i;j=1;n+1 := (

@Gi

@�j
(�; x))i;j=1;n+1 (3.44)

denotes the Jacobi{matrix of the function G with respect to the �rst

n+1 variables � at the location (�; x) for all x 2 
 and � = (�i)i=1;n+1.

The mapping F : H1
(
)�H1

(
)! IR de�ned by

< v; F (u) >:=

Z


v; �G(u;; :) dx (3.45)

for all u; v 2 H1
(
) is called the operator generated by the kernel G.
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In the equations (3.42), (3.43) and (3.45)

� � � :=
n+1X
i=1

�i�i (3.46)

denotes the scalar product of the vectors � = (�i)i=1;n+1 and � = (�i)i=1;n+1

in IR
n+1

and

@G(�; x)� := (

n+1X
j=1

@jGi(�; x)�j)i=1;n+1 (3.47)

denotes the matrix-vector product of the Jacobi matrix of the function G

with the vector � = (�i)i=1;n+1 2 IR
n+1

.

Remark 1: The positivity bound D is not unique. Every constant greater

than D can be used as well.

Remark 2: The operator F de�ned by equation (1.3) in the introducing

Chapter 1 is generated by the kernel

G(�; x) := (b(x)�1 � f(x); a(x)�2; : : : ; a(x)�n+1) (3.48)

for all x 2 
 and � = (�i)i=1;n+1 2 IR
n+1

. The kernel G is uniform positive

de�nite with positivity bound

D := max(C;
1

c
) (3.49)

if a; b; f 2 H0
(
) and C � a(x) � c > 0 and C � b(x) � c > 0 for all x 2 
.

In the following the �nite element approximation of the solution u 2 H1
(
)

of the non{linear variational problem

< v; F (u) >= 0 for all v 2 H1
(
) (3.50)

is discussed when the operator F is generated by a uniform positive de�nite

kernel G. This variational problem is produced by the weak formulation

of the homogeneous Neumann boundary value problem, see Quarteroni [52]:

�nd a solution u : 
! IR

G1(u;(x); x)�
nX
i=1

@Gi+1(u;(x); x)

@xi
= 0 for all x 2 


nX
i=1

ni(x)Gi+1(u;(x); x) = 0 for all x 2 @
 :

(3.51)

The mapping x ! (ni(x))i=1;n denotes the outer unit �eld of the boundary

@
 of the domain 
. The second condition prescribes that the normal com-

ponent of the vector �eld (G2; : : : ; Gn+1) for the sought solution u has to
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vanish at the boundary of the domain 
. It is a boundary condition of the

Neumann type.

The �rst equation is a partial di�erential equation for the sought, scalar

function u. By using the chain rule (it is assumed that the function u and

the kernel G are smooth enough) this equation is equal to

G1 �
nX
i=1

@Gi+1

@xi
�

nX
i=1

@1Gi+1

@u

@xi
�

nX
i;j=1

@j+1Gi+1

@2u

@xi@xj
= 0 (3.52)

where the argument (u;(x); x) of the kernel G is dropped. As it follows from

condition (3.43) that @i+1Gi+1 > 0 for all spatial directions i = 1; : : : ; n

the partial di�erential equation (3.52) has the order two. As the matrix

(@i+1Gi+1)i;j=1;n is even positive de�nite the partial di�erential equation has

the characteristics of an elliptic di�erential equation.

By modifying slightly De�nition 5 and the following discussion systems of

nc coupled Neumann boundary value problems for the sought solution u 2
H1

(
)
nc
can be considered. The value nc 2 IN denotes the number of compo-

nents of the solution. Mainly a summation over the solution components has

to be added in the proofs. Especially the kernel G is now a IR
(n+1)�nc

{valued

function, more exactly G : IR
(n+1)�nc � 
 ! IR

(n+1)�nc
. Other important

modi�cations are the consideration of non{homogeneous Neumann bound-

ary conditions, which are introduced by additional boundary integrals in the

de�nition of the operator F . Moreover Dirichlet boundary conditions can

be introduced by restricting the generated operator F to a suitable subspace

of the Sobolev space H1
(
), see Quarteroni [52], or by using Lagrangean

multiplier, see Babu�ska [4]. It has to be pointed out that the same results

as for the model problem can be veri�ed for these modi�cations by using the

well{known techniques of the analysis of FEMs for the corresponding linear

variational problems.

At �rst it has to be guaranteed that the operator generated by an uniform

positive de�nite kernel G is well{posed and the variational problem (3.50)

has exactly one solution:

Theorem 9 (Grosz) Let G be uniform positive de�nite with positivity bound

D and F the operator generated by the kernel G de�ned by equation (3.45).

Then it holds:

� For all �xed functions u 2 H1
(
) the linear functional F (u) : H1

(
)!
IR de�ned by v !< v; F (u) > for all v 2 H1

(
) belongs to the dual

space H1
(
)

� of the Sobolev space H1
(
).
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� The operator F : H1
(
) ! H1

(
)
� de�ned by u ! F (u) for all u 2

H1
(
) is well{posed with condition number D2.

� The variational problem (3.50) has exactly one solution u 2 H1
(
).

Proof: Let be u1; u2; w 2 H1
(
). It is for all x 2 
:

w;(x) � [G(u1;(x); x)�G(u2;(x); x)]

=

Z 1

0
w;(x) � @G(t � u1;(x) + (1� t) � u2;(x); x)

[u1;(x)� u2;(x)]dt

� Dju1;(x)� u2;(x)jjw;(x)j

(3.53)

where in the last estimation the condition (3.42) of De�nition 5 is used.

By setting u1 := u and u2 := 0 it follows from inequality (3.53) that

w;(x) �G(u;(x); x) � w;(x) �G(0; x) +Dju;(x)j jw;(x)j
� jw;(x)j (jG(0; x)j+Dju;(x)j) (3.54)

for all x 2 
. After this inequality has been integrated over the domain 


the following estimates can be made

< w; F (u) >
(3:45)
=

Z


w; �G(u;; :) dx

(3:54)

�
Z


jw;j (jG(0; :)j+Dju;j) dx

� jw;j0;
 (jG(0; :)j0;
 +Dju;j0;
)
(3.55)

where in the last estimate the Cauchy-Schwartz-inequality in the Hilbert

space H0
(
) is used. As from equation (3.41) it is jw;j0;
 = kwk1;
 it can be

shown that the norm of F (u) is bounded:

kF (u)kH1(
)�
(2:11)
= sup

w2H1(
)

< w; F (u) >

kwk1;

(3:55)

� jG(0; :)j0;
 +Dkuk1;
 :
(3.56)

This proves that the functional F (u) belongs to the dual space H1
(
)

�
.

To prove the second and third claim of the theorem the propositions of The-

orem 1 are veri�ed for the operator F in the Hilbert space H1
(
):
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By integrating the inequality (3.53) over the domain 
 and using the Cauchy-

Schwartz inequality in the Hilbert space H0
(
) one gets

< w; F (u1)� F (u2) >

(3:45)
=

Z


w; � [G(u1;; :)�G(u2;; :)]dx

(3:53)

� D

Z


ju1; � u2;jjw;jdx

� Dju1; � u2;j0;
jw;j0;

(3:41)
= Dku1 � u2k1;
kwk1;
 :

(3.57)

So condition (2.22) of Theorem 1 has been proved:

kF (u1)� F (u2)kH1(
)� � Dku1 � u2k1;
 : (3.58)

If u1; u2 2 H1
(
) it is for all x 2 


[u1;(x)� u2;(x)] � [G(u1;(x); x)�G(u2;(x); x)]

=

Z 1

0
[u1;(x)� u2;(x)] � @G(t � u1;(x) + (1� t) � u2;(x); x)

[u1;(x)� u2;(x)]dt

� 1
D
ju1;(x)� u2;(x)j2

(3.59)

where in the last estimation the condition (3.43) of De�nition 5 is used. By

integrating over the domain 
 it is

< u1 � u2; F (u1)� F (u2) >

(3:45)
=

Z


[u1; � u2;] � [G(u1;; :)�G(u2;; :)]dx

(3:59)

� 1
D

Z


ju1; � u2;j2dx

=
1
D
ju1; � u2;j20;


(3:41)
=

1
D
ku1 � u2k21;
 :

(3.60)

This veri�es condition (2.23) of Theorem 1. From this theorem one obtains

that the operator F is well{posed with condition number D2
and the varia-

tional problem (3.50) has exactly one solution �
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Figure 3.4: Example of a triangulation of a 2-dimensional domain.

3.4 The Finite Element Space

This section deals with the construction of the approximation space Vh �
H1

(
) of the �nite element method (FEM). The construction bases on a

subdivision of the domain 
 into small subdomains, called elements. Essen-

tial results of this section are two theorems on the approximation properties

of the �nite element space basing on the application of Theorem 7 and Theo-

rem 8. Here only simplex elements of a �xed polynomial order are considered.

More general approaches are presented in Ciarlet [25].

The starting point is the triangulation of the domain 
, see Figure 3.4:

De�nition 6 The family Th of subsets of IRn is called a triangulation of the

domain 
, if the following conditions hold:

1. The family Th is a subdivision of the domain 
: cl(
) =
S
T2Th cl(T )

2. The elements are disjoint: for all T1; T2 2 Th: int(T1) \ int(T2) = ;
3. The elements have an a�ne representation: for all T 2 Th there is a

transformation 	T : T 0 ! T de�ned by

	Tx
0
:= BTx

0
+ bT (3.61)
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for all x0 2 T 0 with BT 2 IR
n�n, det(BT ) 6= 0 and bT 2 IR

n. T 0 denotes

the n-simplex de�ned by equation (3.28).

4. The elements are adjacent: any face of any T1 2 Th is either a subset

of the boundary @
 of the domain 
 or it is a face of an other T2 2 Th.
The faces of T 2 Th are the ranges of the faces of the n-simplex T 0

mapped by its parametrical representation 	T .

T 2 Th is called element. The a�ne transformation 	T de�ned by equa-

tion (3.61) is called the parametrical representation of the element T . The

value

h := max
T2Th

hT (3.62)

names the mesh size of the triangulation Th and the value

�h := sup

T2Th

hT

�T
(3.63)

names its mesh quality, where the values hT and �T denote the diameter of

element T and the diameter of the biggest ball in the element T de�ned by

equations (3.5) and (3.6), see Figure 3.1.

Remark: In any case it is �h � 1 and h � h
. Taking Lemma 5 (with

K = T 0
) the mesh quality �h is mainly the maximal condition number of

the matrices BT over all elements T in the triangulation Th. Keep in mind

that for the one dimensional case n = 1 it is hT = �T for all elements T and

therefore it is always �h = 1.

There are a lot of powerful program packages to generate triangulations of

a given domain, e.g. see I{DEAS [44], PATRAN [50]. Figure 3.5 shows

the subdivision of the 2-dimensional unit circle by I{DEAS. This example

demonstrates that a triangulation in the sense of De�nition 6 exists only for

polygonal domains. If the boundary of the domain is curved the subdivision

can only be an approximation of the domain. To improve the approximation

of the boundary curved elements can be used. In the following discussion

curved triangulations are not considered but the results can be adapted to

the more general situation especially when using isoparametrical elements,

see Ciarlet [25].

The behavior of a family of triangulations with mesh sizes having the unique

accumulation point zero is analyzed. The notation with respect of the index

h for the space Vh introduced in Chapter 2 is adopted to the family of tri-

angulations (Th)h>0. Analogously to the n-simplex T 0
the element T and its

interior is not distinguished.
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Figure 3.5: Triangulation of the unit circle by I{DEAS (h � :15, �h � 4).

For a triangulation Th and order k 2 IN the space

V h;k
:= fv 2 C0

(cl(
))j for all T 2 Th : vjT �	�1
T 2 Pkg (3.64)

is called the �nite element space of order k by the triangulation Th. As the
transformations 	

�1
T are a�ne transformations the function vjT � 	�1

T is a

polynomial of order k if and only if the function vjT is a polynomial of order k.

Therefore the space V h;k
is the set of all continuous functions on the domain


 which are piecewise polynomials of order k. The following lemma ensures

that the space V h;k
suites when discretizing the variational problem (3.50):

Lemma 6 For any triangulation Th of the domain 
 and k 2 IN it is

V h;k � H1
(
) : (3.65)

Proof: See Ciarlet [25] �
In addition to an approximation space Vh an approximation for the integral

in the functional equation (3.50) has to be introduced as the integral cannot

be evaluated on a computer. If a local quadrature scheme Ql
on the n-

simplex is given this scheme can be extended to a quadrature scheme over
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the domain 
 in the following way: For any function ' 2 C0
(cl(
)) it is by

the substitution rule:Z


' dx =

X
T2Th

Z
	T [T 0]

' dx

=

X
T2Th

jdet(BT )j
Z
T 0

' �	T dx
0 :

(3.66)

Therefore a quadrature scheme Qh;Ql

approximating the integral

R

 ' dx is

introduced by the quadrature scheme Ql
on the n-simplex T 0

by setting

Qh;Ql

(') :=
X
T2Th

jdet(BT )jQl
(' �	T ) (3.67)

for all functions ' 2 C0
(cl(
)).

The discrete variational problem which is solved to get an approximative

solution for the variational problem (3.50) is now: �nd a discrete solution

uh 2 V h;k
with

Qh;Ql

(vh; �G(uh;; :)) = 0 for all vh 2 V h;k : (3.68)

It has to be veri�ed that the FEM approximations uh converge to the sought

solution u if the mesh size h goes to zero. A corresponding result can be

obtained from Corollary 1 in the previous Chapter 2. Therefore now the

propositions (2.48) and (2.49) of Corollary 1 have to be veri�ed where the

global interpolation operator Ih;k in the space V h;k
(see below) is used for

the operator Ih:
The set of the global degrees of freedom for order k by the triangulation Th
denoted by

Xh;k
:= f	Tx

0;k
i jT 2 Th; x0;ki 2 X0;kg (3.69)

are the images of the local degrees of freedom X0;k
de�ned by equation (3.32)

under the parametrical representations of the elements in the triangulation

Th. The number of points in the set of the global degrees of freedom Xh;k

is denoted by the integer value dh;k. The global degrees of freedom are

enumerated from 1 to dh;k:

Xh;k
= fxh;ki gi=1;dh;k : (3.70)

For all elements T 2 Th the key list �h;k(T ) 2 IN
dk

joins the local degrees of

freedomX0;k
in the n-simplex T 0

to those global degrees of freedom belonging

to element T . Exactly the list �h;k(T ) is de�ned by

	Tx
0;k
j = x

h;k

�
h;k
j

(T )
(3.71)
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for all j = 1; : : : ; dk, i.e. the number �
h;k
j (T ) is the id number of the point as-

signed to the j-th local degree of freedom via the parametrical representation

	T of element T .

In practical implementations the �h;k-list is used to gather values given at

the global degrees of freedom for the local degrees of freedom. The following

lemma shows that an interpolation problem in the space V h;k
at the global

degrees of freedom can be broken into many interpolation problems in the

space of polynomials Pk at the n-simplex T 0
by using the �h;k-list:

Lemma 7 Let Th be a triangulation, k 2 IN and fvigi=1;dh;k 2 IR
dh;k . Then

the global interpolation problem

vh(x
h;k
i ) = vi for i = 1; : : : ; dh;k (3.72)

at the global degrees of freedom has exactly one solution vh 2 V h;k. For all

elements T 2 Th the restriction vhjT of the function vh onto the element T

is given by

vhjT := vT �	�1
T (3.73)

where the polynomial vT 2 Pk is the unique solution of the interpolation

problem

vT (x
0;k
j ) = v

�
h;k

j
(T )

for all j = 1; : : : ; dk (3.74)

on n-simplex T 0.

Proof: see Nicolaides [49]. In the proof the location of the local degrees of

freedom as de�ned in equation (3.32) is essential to ensure that the function

vh de�ned by the equations (3.73) and (3.74) belongs to the space V h;k �
The linear operator Ih;k : C0

(cl(
)) ! V h;k
de�ned by the unique solution

Ih;kv 2 V h;k
of the global interpolation problem

Ih;kv(xh;ki ) = v(x
h;k
i ) for i = 1; : : : ; dh;k (3.75)

for all v 2 C0
(cl(
)) is called the global interpolation operator of order k

by the triangulation Th. From Lemma 7 and the de�nition of the local

interpolation operator Ik in equation (3.33) the global interpolation operator
can be represented in the following manner:

(Ih;kv) �	T = Ik(v �	T ) on T
0

(3.76)

for all functions v 2 C0
(cl(
)) and all elements T 2 Th. This property

shows the fundamental localization principle of the �nite element method: A
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property on the domain 
 is restricted to an element of a given triangulation

and then transformed to the n-simplex where handling is easier.

The next theorem is another, very typical application of this principle. It

gives an error estimate of the global interpolation operator which is an ex-

tension of the local version in Theorem 7, see Ciarlet [27]:

Theorem 10 (Ciarlet 1972) Let be 1 � q � 1 and k > n

q
�1. Then there

is a constant C > 0 with

jv � Ih;kvjm;q;
 � C �mh h
k�m+1jvjk+1;q;
 (3.77)

for all triangulations Th with mesh quality �h, all functions v 2 W k+1;q
(
)

and all 0 � m � k.

Proof: The proof is given in Ciarlet [27] but to show the so{called 'scaling

argument' that is a standard argument in the FEM analysis the proof is

presented here:

Let be v 2 W k+1;q
(
) and T 2 Th. The parametrical representation of the

element T denoted by 	T is de�ned by equation (3.61).

By applying Theorem 6 (with 
 := T 0
) and Lemma 5 (with K := T 0

) it is

jv � Ih;kvjm;q;T = j(v � Ih;kv) �	T �	�1
T jm;q;T

(3:22)+(3:8)

� C1�
�m
T jdet(BT )j

1

q

j(v � Ih;kv) �	T jm;q;T 0 :

(3.78)

After using the local representation (3.76) of the global interpolation operator

Ih;k one can pro�t from the error estimate of the local interpolation operator

Ik in Theorem 7:

j(v � Ih;kv) �	T jm;q;T 0

(3:76)
= j(v �	T )� Ik(v �	T )jm;q;T 0

(3:34)

� C2jv �	T jk+1;q;T 0 :
(3.79)

Theorem 7 can be applied since the function v � 	T belongs to the Sobolev

space W k+1;q
(T 0

) by Theorem 6. More over it holds

jv �	T jk+1;q;T 0

(3:21)+(3:7)

� C3h
k+1
T jdet(BT )j�

1

q jvjk+1;q;T : (3.80)
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By combining estimates (3.78), (3.79) and (3.80) it comes out that

jv � Ih;kvjm;q;T

(3:78)

� C1�
�m
T jdet(BT )j

1

q j(v � Ih;kv) �	T jm;q;T 0

(3:79)

� C4�
�m
T jdet(BT )j

1

q jv �	T jk+1;q;T 0

(3:80)

� C5�
�m
T hk+1

T jvjk+1;q;T

(3:63)

� C5�
m
h h

k+1�m
T jvjk+1;q;T

(3.81)

where in the last estimation the de�nition (3.63) of the mesh quality �h is

inserted. By summing over all elements T 2 Th (when q =1 the
P

T2Th
has

to be replaced by ess sup

T2Th

) one obtains

jv � Ih;kvjqm;q;
 =

X
T2Th

jv � Ih;kvjqm;q;T

(3:81)

� X
T2Th

C6�
q�m
h h

q(k+1�m)
T jvjqk+1;q;T

(3:62)

� C6h
q(k�m+1)�

q�m
h jvjqk+1;q;
 :

(3.82)

In the last estimation the de�nition (3.62) of mesh size h is used. So the

theorem is proved �
If Theorem 10 is applied for m = 0; 1 and q = 2 it turns out that for all

functions u 2 Hk+1
(
) the interpolation Ih;ku converges to the function u

with convergence order k when the step size h goes to zero. Therefore, if the

function u is smooth enough, the functions Ihu := Ih;ku ful�lls the propo-

sition (2.48) of the Corollary 1 which will be used to prove the convergence

of the discrete solution uh of the discrete variational problem (3.68) to the

sought solution u of variational problem (3.50). It remains to prove that the

discrete variational problem converges to the original problem in the sense

of proposition (2.49) of Corollary 1.

For a given quadrature scheme Qh;Ql

de�ned by equation (3.67) the error

functional Qh;El

: C0
(cl(
))! IR is de�ned by

Qh;El

(') :=

Z


' dx�Qh;Ql

(') (3.83)

for all ' 2 C0
(cl(
)). By using the local error functional El

de�ned by

equation (3.37) the error functional Qh;El

can be written as

Qh;El

(') =
X
T2Th

jdet(BT )jEl
(' �	T ) (3.84)
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for all functions ' 2 C0
(cl(
)). Since the local error functional El

is a

continuous, linear functional on the space C0
(T 0

) the error functional Qh;El

is also continuous on the space C0
(cl(
)), i.e. Qh;El 2 C0

(cl(
))�.

The following theorem is the global version of Theorem 8, see Ciarlet [26]. It

is pointed out that the local error functional El
may be any continuous, linear

functional on the space C0
(T 0

). It does not need to be the error functional

of a quadrature scheme on the n-simplex T 0
.

Theorem 11 (Ciarlet 1972) Let be l � k � 1 and El 2 C0
(T 0

)
� with

El
(p) = 0 for all p 2 Pl. Then there is a constant C > 0 so that for all

triangulations Th of the domain 
 with mesh quality �h the linear functional

Qh;El

: C0
(cl(
))! IR de�ned by

Qh;El

(') :=
X
T2Th

jdet(BT )jEl
(' �	T ) (3.85)

for all ' 2 C0
(cl(
)) belongs to the dual space C0

(cl(
))�. Moreover for

all functions vh 2 V h;k and f 2 W l�k+2;1
(Th) the following estimates hold

(i = 1; : : : ; n):

jQh;El

(f � vh)j � Chl�k+2
max(jf jl�k+1;1;Th; jf jl�k+2;1;Th)kvhk1;
 (3.86)

and

jQh;El

(f � @vh
@xi

)j � C �hh
l�k+2jf jl�k+2;1;Thjvhj1;
 : (3.87)

Proof: The proof can be found in Ciarlet [26]. Here only the proof for in-

equality (3.87) is presented to show the 'scaling argument' used for quadra-

ture schemes since it is not standard to consider the integration errors in the

FEM analysis.

Let be vh 2 V h;k
, f 2 W l�k+2;1

(Th) and i 2 f1; : : : ; ng. From the de�nition

of the error functional Qh;El

by equation (3.85) it is

jQh;El

(f � @vh
@xi

)j � X
T2Th

jdet(BT )j jEl
((f � @vh

@xi
) �	T )j

=

X
T2Th

jdet(BT )j jEl
((f �	T ) � (@vh

@xi
�	T ))j :

(3.88)

Now let T 2 Th be �xed. Then it is

pT := vh �	T 2 Pk : (3.89)
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By Theorem 6 (with q := 2 and m := 1) and Lemma 5 the inequality

jpT j1;T 0 � C1hT jdet(BT )j� 1

2 jvhj1;T (3.90)

holds. In addition let be

fT := f �	T 2 W l�k+2;1
(T 0

) : (3.91)

Again by using Theorem 6 (with q :=1 and m := l � k + 2) and Lemma 5

the following inequality holds:

jfT jl�k+2;1;T 0 � C2h
l�k+2
T jf jl�k+2;1;T : (3.92)

If it is B�1
T = (�Tij)i;j=1;n it results from Lemma 5 that

j�Tijj
(3:3)

� C3jB�1
T j

(3:7)

� C4�
�1
T (3.93)

for all i; j = 1; : : : ; n. In addition it is by the chain rule

@vh

@xi
(	Tx

0
) =

nX
j=1

�Tij
@pT

@x0j
(x0) for all x0 2 T 0 : (3.94)

Using this equation and the fact that the local error functional El
is linear

the following estimates can be made:

jEl
((f �	T ) � (@vh

@xi
�	T ))j

(3:94)

�
nX
j=1

j�TijjjEl
(fT � @pT

@x0j
)j

(3:93)

�
nX
j=1

C4�
�1
T jEl

(fT � @pT
@x0j

)j :
(3.95)

Theorem 8 is applied to the term jEl
(fT � @pT@x0

j

)j to get

jEl
((f �	T ) � (@vh

@xi
�	T ))j

(3:39)

�
nX
j=1

C5�
�1
T jfT jl�k+2;1;T 0jpT j1;T 0

(3:90)+(3:92)

� C5�
�1
T hl�k+2

T jf jl�k+2;1;T hT jdet(BT )j� 1

2 jvhj1;T :

(3.96)

When inserting this estimate into estimate (3.88) the consequence is

jQh;El

(f � @vh
@xi

)j

� X
T2Th

C5h
l�k+2
T jf jl�k+2;1;T

hT

�T
jdet(BT )j 12 jvhj1;T

� C5�hh
l�k+2jf jl�k+2;1;Th

X
T2Th

jdet(BT )j 12 jvhj1;T

(3.97)
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where in the last estimate the de�nition (3.63) of the mesh quality �h is used.

A further estimate is done by applying the Cauchy-Schwartz inequality for

sums:

jQh;El

(f � @vh
@xi

)j � C5�hh
l�k+2jf jl�k+2;1;ThsX

T2Th

jdet(BT )j
sX

T2Th

jvhj21;T :
(3.98)

As the volume vol(
) of the domain 
 is given by

vol(
) =
X
T2Th

jdet(BT )j (3.99)

and it is X
T2Th

jvhj21;T = jvhj21;
 (3.100)

inequality (3.98) can be written as

jQh;El

(f � @vh
@xi

)j � C5�hh
l�k+2jf jl�k+2;1;Th

q
vol(
)jvhj1;
 : (3.101)

By setting C := C5

q
vol(
) inequality (3.87) is proved.

The proof for inequality (3.86) is analogous to the proof of inequality (3.87).

As it is obvious from the de�nition (3.85) that Qh;El 2 C0
(
)

�
the theorem

is proved �
Theorem 11 shows that the discrete variational problem (3.68) converges

to the original problem (3.50) for h ! 0 if a quadrature scheme on the n-

simplex T 0
with an accuracy greater than k�2 is used (assuming the function

x ! G(uh;(x); x) on the domain 
 is smooth enough and its derivatives up

to order l � k + 2 are bounded for h! 0, see Lemma 9).

Remark 1: In the proofs of Theorem 10 and Theorem 11 it was essential

that the parametrical representations of the elements are a�ne transforma-

tions. The proofs for non{linear parametrical representations are much more

di�cult but the results are essentially the same, see Ciarlet [25].

Remark 2: The actual values of the constants C occurring in the esti-

mates (3.77), (3.86) and (3.87) are unknown as only the existence but not

the values of the corresponding constants in the underlying Theorem 7 and

Theorem 8 are known.
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3.5 The Finite Element Discretization

Theorem 10 shows that for a function u on the domain 
 there are elements

in the spaces V h;k
, namely Ih;ku, which converge to the function u if the mesh

size h goes to zero. Moreover Theorem 11 ensures that the approximation of

the integrals by numerical integration converges to the integral if the mesh

size goes to zero. Both hold if the involved functions are smooth enough and

the quadrature scheme is exact of order k�1 in the sense of De�nition 4. From
this point of view the discrete variational problem (3.68) has the potential

to deliver approximative solutions converging to the sought solution if the

mesh size decreases.

To con�rm this expectation it has to be proven that the discrete variational

problem (3.68) has an unique solution and that the involved operator is

well{posed with a condition number independent of the mesh size. Then the

convergence of the FEM approximations results from Corollary 1.

The next lemma is essential to obtain condition numbers independent of the

mesh size, see Ciarlet [26]:

Lemma 8 Let Q2k�2 be a quadrature scheme that is exact of order 2k � 2

in the sense of De�nition 4. Then a real constant C > 0 exists with

1

C
kuhk21;
 � Qh;Q2k�2

(juh;j2) � Ckuhk21;
 (3.102)

for all triangulations Th of the domain 
 and all functions uh 2 V h;k.

Proof: See Ciarlet [26]. First it is shown that the mapping p!
q
Q2k�2

(jp;j2)
de�nes a norm on the �nite dimensional space Pk. Therefore inequality (3.102)

holds for all polynomials of order k on the n-simplex T 0
. Using the scaling ar-

gument in the proof of Theorem 11 the inequality is shifted from polynomial

space Pk to the space V
h;k �

The following theorem which is the discrete version of Theorem 9 guarantees

the existence of the FEM approximation uh 2 V h;k
. More important for the

discussions in this thesis is the result that the involved discrete operator is

well{posed with a condition number that is independent of the mesh size:

Theorem 12 (Grosz) Let k � 1 and Q2k�2 be a quadrature scheme on the

n-simplex T 0 which is exact of order 2k�2 in the sense of De�nition 4. Then

there is a constant C > 0 so that for all uniform positive de�nite kernels G
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with positivity bound D, all triangulations Th of the domain 
 and all spaces

Vh � V h;k the operator Fh : Vh ! V �
h de�ned by

< vh; Fh(uh) >:= Qh;Q2k�2

(vh; �G(uh;; :)) (3.103)

for all vh; uh 2 Vh is well{posed with condition number D2 �C. Moreover the

variational problem

< vh; Fh(uh) >= 0 for all vh 2 Vh (3.104)

has exactly one solution uh 2 Vh.

Proof: The proof resembles the proof of Theorem 9 but some modi�cations

have to be introduced to verify the propositions of Theorem 1 in the Hilbert

space Vh � V h;k � H1
(
).

Analogously to inequality (3.57) in the proof of Theorem 9 it is for all func-

tions wh; u1h; u2h 2 Vh � V h;k
:

< wh; Fh(u1h)� Fh(u2h) >

= Qh;Q2k�2

(wh; � [G(u1h;; :)�G(u2h;; :)])
(3:53)

� D
q
Qh;Q2k�2

(ju1h; � v2h;j2)
q
Qh;Q2k�2

(jwh;j2)
(3:102)

� C Dku1h � u2hk1;
kwhk1;


(3.105)

where in the last estimate Lemma 8 is applied. So it has been shown that

for all functions u1h; u2h 2 Vh:

kFh(u1h)� Fh(u2h)kV �

h
� C Dku1h � u2hk1;
 : (3.106)

To prove the condition (2.23) the estimate (3.60) in the proof of Theorem 9

is slightly changed: For all functions u1h; u2h 2 Vh it is
< u1h � u2h; Fh(u1h)� Fh(u2h) >

= Qh;Q2k�2

([u1h; � u2h;] � [G(u1h;; :)�G(u2h;; :)])
(3:59)

� 1

D
Qh;Q2k�2

(ju1h; � u2h;j2)
(3:102)

� 1

CD
ku1h � u2hk21;
 :

(3.107)

In the last estimate Lemma 8 is used again. As the assumptions of Theorem 1

were veri�ed in the Hilbert space Vh the theorem is proved �
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By applying this Theorem 12 to the uniform positive de�nite mapping

(�; x)! � � @G(uh;(x); x) := (

n+1X
j=1

�j@jGi(uh;(x); x))i=1;n+1 (3.108)

for all x 2 
 and � = (�j)j=1;n+1 2 IR
n+1

with positivity bound D (the

function uh; 2 V h;k
is �xed) the following corollary is derived:

Corollary 4 With the propositions of Theorem 12 there is a constant C > 0,

so that for all uniform positive de�nite kernels G with positivity bound D,

all triangulations Th of the domain 
, all �xed functions uh 2 V h;k and all

subspaces Vh � V h;k the linear operator DFh(uh) : Vh ! V �
h de�ned by

< vh; DFh(uh)wh >= Qh;Q2k�2

(vh; � @G(uh;; :)wh;) (3.109)

for all vh; wh 2 Vh is an isomorphism in L(Vh; V �
h ) with

kDFh(uh)kL(Vh;V �

h
) � D � C

kDFh(uh)�1kL(V �

h
;Vh) � D � C :

(3.110)

Remark: This Corollary 4 is the classical existence theorem for the �nite

element approximation of linear variational problems, see Strang [60].

The propositions of Corollary 1 are veri�ed to prove the convergence of the

FEM approximations to the sought solution u. For this the next lemma is

important:

Lemma 9 (Grosz) Let be l + 2 � k > 0, El 2 C0
(T 0

)
� with El

(p) = 0 for

all p 2 Pl, G 2 C l�k+2
(IR

n+1 � cl(
))n+1 and M > 0 �xed. Then there is a

real constant C > 0 with

sup

vh2V h;k

1

kvhk1;

jQh;El

(vh; �G(u;; :))j � C�hh
l�k+2

(3.111)

for all triangulations Th of the domain 
 with mesh quality �h and all func-

tions u 2 C l�k+3
(Th) with kukl�k+3;1;Th �M .

Proof: Let Th be a triangulation of the domain 
 and u 2 C l�k+3
(Th) with

kukl�k+3;1;Th �M : (3.112)

Theorem 11 is applied to the terms of the sum on the left hand side of

the inequality (3.111). It remains to prove that for a �xed component i 2
f1; : : : ; n+ 1g the function f : 
! IR de�ned by

f(x) = Gi(u;(x); x) for all x 2 
 (3.113)
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belongs to the Sobolev space W l�k+2;1
(Th) and kfkl�k+2;1;Th � C1 with a

constant C1 > 0 that may depend on the value M but must be independent

of the function u.

Let be � 2 IN
n
0 with j�j � l � k + 2 and

d� := card(f� 2 IN
nj j�j � j�j+ 1g) (3.114)

where card(Z) denotes the number of elements in the set Z. Then there is a

function g� 2 C l�k+2�j�j
(cl(
)� IR

d�
) with

D�f(x) = g�(x; (D
�u(x))

�2IN
n

0 ;j�j�j�j+1
) (3.115)

for all x 2 
. This can be easily proved by using induction over j�j and the

chain rule.

Since for all multi{indices � with j�j � l�k+2 the function g� is continuous

on the compact set cl(
)� [�M;M ]
d�

it exists the constant

C2 := max
j�j�l�k+2

jg�j0;1;cl(
)�[�M;M ]d� : (3.116)

For all elements T 2 Th it is D�f jT 2 C0
(T ) as g� 2 C0

((cl(
) � IR
d�
) and

u 2 C1
(Th). Moreover it is

jD�f j0;1;T

(3:115)
= jg�(x; (D�u(x))

�2IN
n

0 ;j�j�j�j+1
)j0;1;T

(3:116)

� C2 (3.117)

since for all multi{indices � 2 IN
n
0 with j�j � j�j+1 � l�k+3 and all x 2 T

the estimate

jD�u(x)j � kukl�k+3;1;Th �M (3.118)

holds. It is proved that f 2 W l�k+2;1
(Th) with kfkl�k+2;1;Th � C2 where

the constant C2 depends on the bound M and the kernel G.

Therefore the lemma is proved by Theorem 11 �
Now the convergence of the �nite element approximations which are the

solution of the discrete variational problems (3.104) to the solution of the

variational problem (3.50) for decreasing mesh sizes h is proved. It is the

non{linear version of the famous result of Zlamal [74] for linear variational

problems and the result of Ciarlet [26] considering in addition the integration

error.

Theorem 13 (Grosz) Let l � k � 1, F : H1
(
)! H1

(
)
� be the operator

generated by the uniform positive kernel G 2 C l
(IR

n+1 � cl(
))n+1 and u 2
W k+1;1

(
) be the unique solution of the variational problem

< v; F (u) >:=

Z


v; �G(u;; :) dx = 0 (3.119)
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for all v 2 H1
(
). In addition let (Th)h>0 be a family of triangulations of

the domain 
 with bounded mesh quality �h � �, Vh be a subspace of H1
(
)

with V h;k � Vh � V h;l and Q2l�2 be a quadrature scheme on the n-simplex

T 0 which is exact of order 2l � 2 in the sense of De�nition 4.

Then the discrete variational problem

< vh; Fh(uh) >:= Qh;Q2l�2

(vh; �G(uh;; :)) = 0 (3.120)

for all vh 2 Vh has exactly one solution uh 2 Vh. Moreover there is a constant

C > 0 independent of the mesh size h with

ku� uhk1;
 � Chk (3.121)

for all h > 0, i.e (uh)h>0 converges to the solution u with minimal order k.

Proof: The propositions of Corollary 1 are veri�ed for Kh := Vh and Ih :=
Ih;k: By Theorem 12 the operator Fh : Vh ! V �

h de�ned by

< vh; Fh(uh) >:= Qh;Q2l�2

(vh; �G(uh;; :)) (3.122)

for all vh; uh 2 Vh is well{posed with a condition number which is independent
of the mesh size. Moreover the discrete variational problem (3.120) has

exactly one solution uh 2 Vh. From Theorem 10 (for m := 0; 1 and q := 2) it

is

ku� Ih;kuk1;

(3:77)

� C1h
k
q
h2 + �2hjujk+1;


� C2h
kjujk+1;1;


(3.123)

as h � h
 and �h � �. That is proposition (2.48) of Corollary 1.

To verify proposition (2.49) Theorem 10 (for m := 0; : : : ; k and q := 1) is

used again and one gets

kIh;kukl+1;1;Th = kIh;kukk;1;Th

� kukk;1;
 + ku� Ih;kukk;1;Th
(3:77)

� kukk;1;
 + C3 max
0�m�k

�mh h
k�m+1jujk+1;1;


� C4kukk+1;1;
 =:M

(3.124)

since all terms �mh h
k�m+1

are bounded for all 0 � m � k and all mesh sizes

h � h
.

The linear functional E2l�2 2 C0
(T 0

)
�
de�ned by

E2l�2
(') :=

Z
T 0

' dx0 �Q2l�2
(') (3.125)
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for all ' 2 C0
(T 0

) has the property

E2l�2
(p) = 0 for all p 2 P2l�2 (3.126)

as the quadrature schemeQ2l�2
is exact of order 2l�2. Lemma 9 for l := 2l�2

and M de�ned by inequality (3.124) shows that

kF (Ih;ku)� Fh(Ih;ku)kV �

h

(3:120)+(3:125)
= sup

vh2Vh

1

kvhk1;

jQh;E2l�2

(vh; �G([Ih;ku];; :))j

� sup

vh2V h;l

1

kvhk1;

jQh;E2l�2

(vh; �G([Ih;ku];; :))j
(3:111)

� C5h
l

(3.127)

with a constant C5 > 0 which is independent of the mesh size h. After using

Corollary 1 the lemma has been proved �
Remark 1: In the propositions of Theorem 13 it has been assumed that

the solution u belongs to the Sobolev space W k+1;1
(
) to guarantee that

the values kIh;kukl+1;1;Th are bounded independently of the mesh size h,

see inequality (3.124). For linear problems it is su�cient to have that u 2
Hk+1

(
), see Ciarlet [26]. That can be achieved by the smoothness of the

kernel G, see Grisvard [51].

Remark 2: Even if the �nite element space V h;k0 � V h;l
with k0 > k is used

to construct approximations of the solution u (i.e. piecewise polynomials of

higher order than k are used) but u 62 W k`+1
no better convergence order

than k can be achieved, see also Example 2 in Section 4.5.

Theorem 13 states: By using piecewise linear polynomial FEM approxima-

tions and a quadrature scheme which is exact for polynomials with constant

values the FEM approximations converge to the sought solution u of order one

if u 2 W 2;1
(
). If even u 2 W 3;1

(
) and piecewise quadratic polynomials

together with a quadrature scheme that is exact for quadratical polynomials

are used the FEM approximations converge with order two. Even after all

used estimates have been gathered the constant C in inequality (3.121) is

unknown as it contains constants whose values cannot be computed. More-

over the true error would be highly overestimated as some rough estimates

are applied. Therefore it is necessary to have an a{posteriori error estimate

to get an acceptable estimate for the true error.

In the next section the projecting error estimate introduced in Section 2.3

is applied to the FEM in the scope of the variational problem (3.119). The
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Figure 3.6: The subdivision of the n-simplex for the global re�nement.

result of Theorem 13 that the FEM approximation by higher order polyno-

mials has a higher convergence order shows how the expansion Vh+ has to

be selected namely by adding higher order polynomials to the space Vh to

obtain that (uh; uh+)h>0 is saturated for the sought solution u in the sense

of De�nition 2.

3.6 The Projecting Error Estimate

A special kind of triangulation Th which is produced by a global re�nement

of a given triangulation T2h is introduced as follows:

The n-simplex T 0
is subdivided into 2

n
subsets T 0

1 ; : : : ; T
0
2n as it is shown in

Figure 3.6. The set

T0 := fT 0
i gi=1;2n (3.128)

is a triangulation of the n-simplex T 0
. For all i = 1; : : : ; 2n the subelement

T 0
i has an a�ne representation 	T 0

i
: T 0 ! T 0

i de�ned by

	T 0
i
x := BT 0

i
x+ bT 0

i
for all x 2 T 0

(3.129)

where it is bT 0
i
2 IR

n
and BT 0

i
2 IR

n�n
with det(BT 0

i
) 6= 0.

This subdivision of the n-simplex creates a new triangulation out of a given

triangulation:

De�nition 7 Let be T2h a given triangulation of mesh size 2h. Then

Th := f(	T2 �	T 0
i
)[T 0

] j i = 1; : : : ; 2n and T2 2 T2hg (3.130)

is called the global re�ned triangulation of the triangulation T2h of mesh size

h. The triangulation T2h is called the coarse mesh and the triangulation Th
is called the �ne mesh.
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Figure 3.7: The parametrical representations 	T of a re�ned element T2.

It becomes clear that the family Th is again a triangulation. The parametrical

representation 	T of an element T 2 Th is given by

	T = 	T2 �	T 0
i

(3.131)

for any T2 2 T2h and any i 2 f1; : : : ; 2ng, see Figure 3.7.
For the following discussions it is useful to introduce some additional spaces:

The set Sk de�ned by

Sk := fs 2 C0
(T 0

)j for all i = 1; : : : ; 2n : sjT 0
i
2 Pkg (3.132)

denotes the space of all continuous function on the n-simplex T 0
which are

polynomials of order k on the subelements in T0. The space

Sh;k := fv 2 C0
(cl(
))j for all T 2 Th : vjT �	�1

T 2 Skg (3.133)

is the set of all continuous and piecewise Sk{functions on the domain 
. As

the functions in the space Sk are piecewise polynomials the space Sh;k is not

a new space but it is the space of piecewise polynomials of order k on the

�ne mesh.
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Lemma 10

V h;k
= S2h;k : (3.134)

Proof: By De�nition 7 of the global re�ned triangulation Th of the coarse

mesh T2h the function vh belongs to space V h;k
if and only if for all elements

T2 2 T2h in the coarse mesh and all subelements i = 1; : : : ; 2n

vh �	T2 �	T 0
i
2 Pk : (3.135)

As all the parametric representations 	T 0
1
; : : : ;	T 0

2n
are a�ne transformations

this holds if and only if

vh �	T2 2 Sk (3.136)

for all elements T2 2 T2h. This exactly means that vh 2 S2h;k
. So the lemma

has been proved �
Lemma 10 allows to use the space V h;k

de�ned on the �ne mesh Th as a space
basing on the coarse grid T2h.
As discussed in the foregoing section an approximation uh of the sought solu-

tion u is computed from the space Vh := V h;k
by using piecewise polynomials

of order k on the �ne mesh. The space Vh+ involved in the de�nition for

the a{posteriori error estimate introduced in Section 2.3 is the expansion of

the space Vh in such a way that the space V 2h;2k
becomes a subspace of the

expansion Vh+, i.e. the space Vh+ contains piecewise polynomials of order

2k on the coarse mesh. The approach is motivated by the fact that a better

approximation of the solution u from piecewise polynomials of higher order

than k can be expected.

Lemma 12 will show that it is su�cient for the construction of the expansion

Vh+ by equation (2.92) to add

V c
h := V

2h;2k
0 := fvh+ 2 V 2h;2k j I2h;kvh+ = 0g (3.137)

to the space V h;k
to achieve that the space V 2h;2k

is a subset of expansion

Vh+. The space V
2h;2k
0 is the set of all piecewise polynomials of order 2k on

the coarse mesh that vanish at the global degrees of freedom of order k on

the same mesh.

At �rst Lemma 12 is proved for polynomials on the n-simplex T 0
:

Lemma 11 Let be

P2k 0 := fp 2 P2k j Ikp = 0g (3.138)
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the space of all polynomials of order 2k that vanish at the local degrees of

freedom of order k. Then the following identities hold:

Pk = P2k \ Sk (3.139)

and

P2k � P2k 0 � Sk � S2k (3.140)

with P2k 0 \ Sk = f0g.

Proof: The equation (3.139) is obvious.

To prove inclusion (3.140) it has to be shown that P2k 0 \ Sk = f0g: Let be
p 2 P2k \ Sk with Ikp = 0. From equation (3.139) it is p 2 Pk and therefore

it is p = Ikp = 0. Hence it is actually P2k 0 \ Sk = f0g.
In addition for any p 2 P2k the function Ikp belongs to Pk � Sk and it is

q := p� Ikp 2 P2k (3.141)

with Ikq = 0. Therefore it has been veri�ed that the polynomial p = q+Ikp
is in the space P2k 0�Sk. The second inclusion of inclusion (3.140) is evident.

So the lemma has been proved �
Now the proof of the following lemma becomes very simple:

Lemma 12 With the space V 2h;2k
0 de�ned by equation (3.137) it is

V 2h;2k � V
2h;2k
0 � V h;k � V h;2k

(3.142)

where it is V 2h;2k
0 \ V h;k

= f0g.

Proof: By using Lemma 10 inclusion (3.142) can be reformulated to

V 2h;2k � V
2h;2k
0 � S2h;k � S2h;2k : (3.143)

Moreover property (3.76) allows to break o� the global interpolation operator

I2h;k into the local interpolation operator Ik on the n-simplex T 0
. Then the

statements of the lemma are shifted to the n-simplex by the parametrical

representations of the elements in the coarse mesh T2h. The e�ort now is to

prove that

P2k � P2k 0 � Sk � S2k : (3.144)

As this is exactly equation (3.140) in Lemma 11 the lemma is proved �
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It has to be shown that the norm of the global interpolation operators I2h;2k
and Ih;k which will play the rule of the joining operator Jh+ and its right

hand side inverse J�h have a norm that is independent of the mesh size h. To

do so the quotient space technique is used, see Heuser [43]:

For any function v 2 H1
(T 0

) the set

[v] := fv + c jc 2 IRg (3.145)

contains all functions in the Sobolev space H1
(T 0

) which di�er from the

function v by a constant. By introducing vector addition and scalar multi-

plication in a canonical manner the quotient space

H1
(T 0

)=IR := f[v] j v 2 H1
(T 0

)g (3.146)

is a vector space. Moreover it is a Banch space when using the norm de�ned

by

k[v]k1;T 0 := jvj1;T 0 (3.147)

for all v 2 H1
(T 0

). For any subset Z � H1
(T 0

) it is set

Z=IR := f[v] j v 2 Zg � H1
(T 0

)=IR : (3.148)

It is evident that the global interpolation operators I2h;2k and Ih;k are contin-
uous on the �nite dimensional space V h;2k

. Moreover there are upper bounds

for their norms that are independent of the mesh size:

Lemma 13 Let be k � 1. Then there is a constant C > 0 with

kI2h;2kuh+k1;
 � C�hkuh+k1;

kIh;kuh+k1;
 � C�hkuh+k1;
 (3.149)

for all triangulations Th with mesh quality �h and all functions uh+ 2 V h;2k.

Proof: Since the space S2k has a �nite dimension there is a constant C1 > 0

depending on the n-simplex and the order k with

jI2kpj0;T 0 � C1jpj0;T 0 (3.150)

for all functions p 2 S2k. The linear operator [I2k] : S2k=IR ! H1
(T 0

)=IR is

de�ned by

[p]! [I2k][p] := [I2kp] (3.151)

for all [p] 2 S2k=IR. This de�nition is senseful as I2k[IR] � IR. Since the

quotient space S2k=IR is �nite dimensional there is a constant C2 > 0 with

k[I2k][p]k1;T 0 � C2k[p]k1;T 0 (3.152)
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for all [p] 2 S2k=IR. Then it holds for all functions p 2 S2k:

jI2kpj1;T 0

(3:147)
= k[I2kp]k1;T 0

(3:151)
= k[I2k][p]k1;T 0

(3:152)

� C2k[p]k1;T 0

(3:147)
= C2jpj1;T 0 :

(3.153)

Inequality (3.149) is now shown by the scaling argument used in the proof

of Theorem 10:

Let be uh+ 2 V h;2k
= S2h;2k

. As for all elements T 2 T2h it is uh+ �	T 2 S2k
the inequalities (3.150) and (3.153) can be used in the following manner

(m = 0; 1):

jI2h;2kuh+j2m;


=

X
T2T2h

jI2h;2kuh+j2m;T

(3:22)+(3:8)

� C3

X
T2T2h

��mT jdet(BT )j jI2k(uh+ �	T )j2m;T 0

(3:150)or(3:153)

� C4

X
T2T2h

��mT jdet(BT )j juh+ �	T j2m;T 0

(3:21)+(3:7)

� C5

X
T2T2h

hmT �
�m
T juh+j2m;T

� C5�
m
h kuh+k2m;


� C5�hkuh+k21;
 :

(3.154)

By combining the both cases m = 1 and m = 0 the �rst estimate in inequal-

ity (3.149) is proved.

To prove the second estimate the same proof like for the �rst estimate can be

used but the space of piecewise polynomials S2k is replaced by the polyno-

mial space P2k, the global interpolation operator I2h;2k by the interpolation

operator Ih;k and the coarse mesh T2h by the �ne mesh Th �
The next lemma con�rms the proposition (2.115) of Theorem 4 with a de-


ection � in the Pythagorean equation that is independent of the mesh size.

In the range of multilevel methods Eijkhout [34] has shown a similar result

with a more di�cult proof but for a more general situation.

Lemma 14 Let be k � 1. Then there is a constant C > 0 with

kvhk21;
 + kvh+k21;
 � C�2hkvh + vh+k21;
 (3.155)
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for all triangulations Th with mesh quality �h, all functions vh 2 V h;k and

vh+ 2 V
2h;2k
0 .

Proof: It is known from Lemma 11 that

Sk \ P2k 0 = f0g : (3.156)

Therefore by Lemma 3 there is a constant C1 > 0 with

jpj20;T 0 + jsj20;T 0 � C1jp+ sj20;T 0 (3.157)

for all functions s 2 Sk and all polynomials p 2 P2k 0. From equation (3.156)

it is

Sk=IR \ P2k 0=IR = f[0]g (3.158)

and so, again by Lemma 3, there is C2 > 0 with

jpj21;T 0 + jsj21;T 0

(3:147)
= k[p]k21;T 0 + k[s]k21;T 0

(2:97)

� C2k[p+ s]k21;T 0

(3:147)
= C2jp+ sj21;T 0

(3.159)

for all functions s 2 Sk and all polynomials p 2 P2k 0. Using the scaling

argument in the proof of Lemma 13 the inequalities (3.157) and (3.159) are

shifted from the space Sk to the space V h;k
and from the space P2k 0 to the

space V
2h;2k
0 via the triangulation T2h. So the estimate of the lemma has been

proved �
The following theorem is the main result of this chapter. It introduces the

projecting a{posteriori error estimate to the FEM.

Theorem 14 (Grosz) Let be k � 1, G 2 C2k
(�IRn+1�cl(
))n+1 be uniform

positive de�nite with positivity bound D and let be Q2k�1 and Q4k�2 quadra-

ture schemes on the n-simplex T 0 exact of order 2k � 1 and 4k � 2 in the

sense of De�nition 4. Let u 2 W k+2;1
(
) be the solution of the variational

problem

< v; F (u) >:=

Z


v; �G(u;; :) dx = 0 (3.160)

for all v 2 H1
(
). Let (T2h)h>0 be a family of triangulations of the domain


 with global re�ned triangulations (Th)h>0 and bounded mesh quality �h �
�. Let for all mesh sizes h > 0 uh 2 V h;k be the solution of the discrete

variational problem

Qh;Q2k�1

(vh; �G(uh;; :)) = 0 (3.161)
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for all vh 2 V h;k and let be C1 > 0 with

kuhkk;1;Th � C1 (3.162)

for all mesh sizes h > 0.

If uh ! u for h ! 0 with maximal order k, e.g. there is constant C2 > 0

with

C2h
k � ku� uhk1;
 for all h > 0 (3.163)

then the projecting a{posteriori error estimate �Ph 2 V h;k de�ned by the dis-

crete linear variational problem

Qh;Q2k�1

(vh; � @G(u0h;; :)�Ph;) = �Qh;Q4k�2

([I2h;2kvh]; �G(uh;; :)) (3.164)

for all vh 2 V h;k is equivalent to the true error eh := u� uh in the sense of

De�nition 3, where u0h is an arbitrary function in V h;k. More exactly there

is a constant C > 0 which depends only on the order k and the quadrature

schemes with

1

C�3D4
� lim inf

h!0+

k�Ph k
kehk � lim sup

h!0+

k�Ph k
kehk � C�2D4 : (3.165)

Therefore an e�ectivity index is given by the value C�3D4
= max(C�3D4; C�2D4

).

Proof: It has to be veri�ed that the propositions of Theorem 4 in the Banach

space V := H1
(
) with � = 0 hold if it is set

Vh := V�h := V h;k

Vh+ := V c
h � V h;k � V h;2k

with

V c
h := V

2h;2k
0

(3.166)

where the space V
2h;2k
0 is de�ned by equation (3.137). By Theorem 12 the

discrete operator Fh : Vh ! V �
h de�ned by uh ! Fh(uh) for all uh 2 Vh with

< vh; Fh(uh) >:= Qh;Q2k�1

(vh; �G(uh;; :)) (3.167)

for all vh 2 Vh is well{posed with condition number D2 � C3. Again by The-

orem 12 the discrete operator Fh+ : Vh+ ! V �
h+ de�ned by uh+ ! Fh+(uh+)

for all uh+ 2 Vh+ with

< vh+; Fh+(uh+) >:= Qh;Q4k�2

(vh+; �G(uh+;; :)) (3.168)

for all vh+ 2 Vh+ is well{posed with condition numberD2 �C4. Moreover there

is a solution uh+ 2 Vh+ with Fh+(uh+) = 0. Theorem 12 can be applied as

83



Vh+ � V h;2k
and the quadrature scheme Q4k�2

is exact of order 2 � (2k)� 2.

The constants C3 and C4 are independent of the mesh size and the mesh

quality �h.

It has to be proved that (uh; uh+)h>0 is saturated for the solution u in the

sense of De�nition 2. If it can be shown that

ku� uh+k1;
 � C5h
k+1

for all h > 0 : (3.169)

Then condition (2.54) holds with rh := C5C
�1
2 h because of assumption (3.163).

Therefore (uh; uh+)h>0 is saturated for the solution u with saturation bound

0.

To verify estimate (3.169) Theorem 13 cannot be applied directly since the

approximation space for the better solution uh+ and the quadrature scheme

for the de�nition of the operator Fh+ base on di�erent triangulations. But

it is possible to use a slight modi�cation:

By Lemma 10 for m := 0; 1 and q := 2 there is C6 > 0 with

ku� I2h;k+1uk1;
 � C6h
k+1

for all h > 0 (3.170)

(analogously to estimate (3.123)). In addition one obtains analogously to

estimate (3.124) that I2h;k+1u 2 W k+2;1
(Th) with

kI2h;k+1uk2k+1;1;Th � kI2h;k+1ukk+1;1;Th � C7 (3.171)

where C7 > 0 is a constant independent of h. The error functional E4k�2
:

C0
(T 0

)! IR de�ned by

E4k�2
(') :=

Z
T 0

' dx0 �Q4k�2
(') (3.172)

for all ' 2 C0
(T 0

) is equal to zero for all polynomials of order 4k�2. Taking

Lemma 9 for l := 4k � 2 and k := k + 1 one gets

kF (I2h;k+1u)� Fh+(I2h;k+1u)kV �

h+

� sup

vh+2V h;2k

1

kvh+k1;
 jQ
h;E4k�2

(vh; �G((I2h;k+1u);; :))j
(3:111)

� C8h
2k

(3.173)

for all mesh sizes h > 0 with a constant C8 > 0 which is independent of the

mesh size h. Since it is

I2h;k+1u 2 V 2h;k+1 � Vh+ (3.174)
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and the estimates (3.170) and (3.173) hold the inequality (3.169) is proved

by Corollary 1.

As next proposition (2.113) of Theorem 4 is veri�ed: The error functional

E2k�1 2 C0
(T 0

)
�
de�ned by

E2k�1
(') := Q4k�2

(')�Q2k�1
(') (3.175)

for all ' 2 C0
(T 0

) is equal to zero for all polynomials of order 2k� 1. Using

proposition (3.163) it is

kuhkk+2;1;Th = kuhkk;1;Th � C1 (3.176)

for all mesh sizes h > 0. Especially the discrete solution uh belongs to the

Sobolev space W k+2;1
(Th). Lemma 9 is applied for l := 2k � 1 and k := k

to obtain

kFh+(uh)� Fh(uh)kV �

h

= sup

vh2Vh

1

kvhk1;
 jQ
h;E2k�2

(vh; �G(uh;; :))j
(3:111)

� C9h
k+1

(3.177)

with a constant C9 > 0 which is independent of the mesh size h. Applying

proposition (3.163) the condition (2.113) holds with sh := C9C
�1
2 h. Actually

it is limh!0 sh = 0.

Corollary 4 shows that for any uh 2 V h;k
the linear operator L�h := DFh(uh) :

Vh ! V �
h de�ned by

< vh; DFh(uh)wh >= Qh;Q2k�1

(vh; � @G(u0h;; :)wh;) (3.178)

for all vh; wh 2 V�h = Vh = V h;k
is an isomorphism from the space Vh to its

dual space V �
h with

kL�hkL(V�h;V �

�h
) � C10D

kL�1�h
kL(V �

�h
;V�h)

� C10D
(3.179)

where C10 > 0 is a constant. It is independent of the mesh size h and the

mesh quality �h.

Taking Lemma 14 a bound for the de
ection in the Pythagorean equation

de�ned by inequality (2.115) is given by � = C11 � �. The constant C11 > 0

is independent of the mesh size and the mesh quality.

The operators

J�h := Ih;kjV c
h

Jh+ := I2h;2kjV�h
(3.180)
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ful�l the condition J�h[V
c
h ] � V h;k

= V�h and by Lemma 12 the condition

Jh+[V�h] � V 2h;2k � Vh+. Therefore it is J�h 2 L(V c
h ; V�h) and Jh+ 2 L(V�h; Vh+).

Moreover Lemma 13 turns out that

kJ�hkL(V c
h
;V�h)

� C12�

kJh+kL(V�h;Vh+) � C12� :
(3.181)

The constant C12 > 0 is independent of the mesh size and the mesh quality.

Since the global interpolation operators Ih;k and I2h;2k use the same global

degrees of freedom X2h;2k
= Xh;k

(see equation (3.69)) it is

I2h;2k � (Ih;kjV 2h;2k) = IV 2h;2k : (3.182)

Since it is V c
h � V 2h;2k

the proposition (2.116) of Theorem 4 holds, too.

As all propositions of Theorem 4 and Corollary 2 have been veri�ed the

theorem has been proved �
Theorem 14 establishes that the projecting a{posteriori error estimate based

on higher order approximation on a coarser mesh is equivalent to the true

error in the sense of De�nition 3 if the kernel G and the sought solution u

are smooth enough. To calculate the projecting error estimate from equa-

tion (3.164) the variational problem (3.160) has to be evaluated with a

quadrature scheme of higher exactness than used for the calculation of the

discrete solution uh of the discrete variational problem (3.161). It is not

necessary to assemble a new sti�ness matrix as the sti�ness matrix in equa-

tion (3.164) is the same like the sti�ness matrix in the Newton-Raphson

iteration to calculate the discrete solution uh 2 Vh.
Remark 1: To simplify the formulation of the Theorem 14 it is assumed that

the discrete variational problem (3.161) is solved exactly. Certainly Theo-

rem 14 holds for the more general situation if the stopping criterion (2.56)

with su�ciently small factor � is used when solving the discrete variational

problem (3.161). Naturally the bounds for the e�ectivity index are di�erent.

Remark 2: It has to be pointed out that the quadrature scheme Q2k�1

used for the calculation of the discrete solution uh is exact for polynomials

of order 2k � 1 although it is su�cient that it is exact of order 2k � 2 to

get a convergence of order k. The greater exactness is necessary to ensure

that condition (2.113) holds with limh!0 sh = 0 (see also the remark to

Theorem 4). However, it is possible to use a quadrature scheme of exactness

2k�2 to mount the sti�ness matrix in the equation (3.164) when calculating

the projecting error estimate.

Remark 3: It is essential to build the expansion of the space V h;k
by piece-

wise polynomials of order 2k on the coarse mesh as it is then X2h;2k
= Xh;k

,
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i.e. the global degrees of freedom for order 2k on the coarse mesh are the

same like the degrees of freedom for order k on the �ne mesh. This condition

is fundamental to prove equation (3.182) and proposition (2.116). The order

of the polynomials has to be doubled to get a reliable projecting a{posteriori

error estimate. If the order k is large this increases extremely the computa-

tional e�ort when mounting the right hand side for the linear system de�ning

the error estimate as the kernel G has to be evaluated at plenty of quadrature

nodes. Moreover stability problems can appear.

Remark 4: To prove that (uh; uh+)h>0 is saturated for the solution u it

is essential that u 2 W k+2;1
(
). If the solution u is not belonging to the

Sobolev space W k+2;1
(
) there is the danger that the saturation bound is

positive or even the situation occurs that (uh; uh+)h>0 is not saturated for the

solution u. Example 2 in Section 4.5 illustrates that under these conditions

the error estimate becomes fuzzy.

Remark 5: The propositions (3.163) and (3.162) have a very technical

character. In practice both conditions are mostly ful�lled. Mainly propo-

sition (3.163) says that the solution u is not a polynomial of order k. A

handy criterion has been given by Babu�ska [7]. Condition (3.162) can be

shown from u 2 W k+2;1
(
) if the kernel G meets additional requirements.

3.7 Discussion

In this section the results of this chapter are compared with well{known

a{posteriori error estimates. To simplify the presentation the discussion is

restricted to the model problem (1.2) considered in the introducing Chapter 1

for the two dimensional case and the FEM approximation by piecewise linear

polynomials V h;1
. Moreover it is assumed that all integrals are computed

exactly, i.e. the error from the numerical integration is ignored. As shown in

Chapter 1, see equation (1.9), the error eh := u�uh is given by the variational
problem

Z



�
a(rv)(reh) + bveh

�
dx =

�
Z



�
a(rv)(ruh) + (buh � f)v

�
dx for all v 2 H1

(
) :
(3.183)

The right hand side of this error equation de�nes the residual of the discrete

solution uh which is a linear functional on the space H1
(
). One possibility

to interpret some a{posteriori error estimates is the approach to estimate the

norm of this residual functional, see Verfuerth [64]. An alternative view, that
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Figure 3.8: The edge bubble function [hE on edge E on the �ne mesh Th.

is followed here, is the approximative solution of the error equation (3.183).

The error estimates vary in the selection of the used approximation space

and the method to solve the discretized error equation.

For the assumptions made here the error equation (3.164) de�ning the pro-

jecting error estimate �Ph 2 V h;1
is the following:Z




�
a(rvh)(r�Ph ) + bv�Ph

�
dx =

�
Z



�
a(r[I2h;2vh])(ruh) + (buh � f)[I2h;2vh]

�
dx

(3.184)

for all vh 2 V h;1
. It is obvious that the residual functional for the discrete

solution uh is only evaluated for the space I2h;2[V h;1
] = V 2h;2

, i.e. for the

space of piecewise quadratic functions on the coarse grid, instead of the

whole space H1
(
). On the other hand the error equation is not solved in

V 2h;2
but is interpolated to the space of piecewise linear functions on the �ne

mesh. This can be interpreted as a reduction step in a multi{level procedure

going from a quadratic to a linear approximation. The di�erence to standard

multi{level methods is that the global degrees of freedom are kept which has

the e�ect that high frequencies can be represented as well on the lower level

as on the higher level.

A similar idea can be found in the hierarchical error estimate technique, see

Zienkiewicz [69], Deufelhard [31], Bank [15]. Here Deufelhard's representa-

tion is quoted:

The error equation (3.183) is solved on the space

V H
h+ := V h;1 � V H

h with V H
h := spanf[hEgE2Eh (3.185)
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where Eh denotes the set of the edges of the elements in the triangulation Th.
The function [hE is the edge bubble function for the edge E 2 Eh which is a

continuous, piecewise quadratic function on the triangles T1 and T2 sharing

the edge E and has the value one at the middle point of the edge E, see Fig-

ure 3.8. The expansion of the usual nodal basis of piecewise linear functions

by the edge bubble functions f[hEgE2Eh can be taken as a hierarchical basis

of order 2 for the space V H
h+. The solution of the error equation in space V H

h+

requires an assemblage of a new sti�ness matrix for the hierarchical basis

and the solution of a linear system with a higher e�ort than needed for the

calculation of the discrete solution uh. Therefore the sti�ness matrix is re-

duced to its diagonal. The signi�cant solution components of this simpli�ed

linear system are given by

�HE := � 1

B([hE; [
h
E)

Z



�
a(r[hE)(ruh) + (buh � f)[hE)

�
dx (3.186)

for all edges E 2 Eh where the bilinear form B : H1
(
) � H1

(
) ! IR is

de�ned by

B(v1; v2) := �
Z



�
a(rv1)(rv2) + bv1v2

�
dx for all v1; v2 2 H1

(
) : (3.187)

The value �HE delivers an estimation for the discretization error at the middle

point of the edge E 2 Eh. It can be proved that the a{posteriori error

estimate

�Hh :=

X
E2Eh

�HE [
h
E (3.188)

is equivalent to the true error in the sense of De�nition 3, see Deufelhard [31],

Bank [15]. (Remark: Theorem 4 can be used to get this result). For the proof

two assumptions are needed: the saturation condition in the sense of De�-

nition 2 and the fact that the bilinear form B de�ned by equation (3.187)

is symmetric and positive de�nite. This last condition restricts the appli-

cation of the hierarchical error estimate drasticly as in many applications,

especially for non{linear problems, the involved bilinear form B is neither

symmetric nor positive de�nite. However, Bornemann [18] and Verfuerth [64]

have shown that the error estimator �Hh cannot be expressed in terms of the

Babu�ska{Miller residual error estimator which is equivalent to the true error

without using any saturation condition (if the material functions a and b and

the right hand side f are piecewise constant, see Babu�ska [7]). Therefore

the saturation condition is an indispensable assumption for the hierarchical

a{posteriori error estimate �Hh .

It is obvious that the space V c
h = V

2h;2
0 added to the approximation space

V h;1
to de�ne the expansion Vh+ for the projecting error estimate can be
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Figure 3.9: The edge bubble function [2hE on edge E on the coarse mesh T2h.

expressed by using edge bubble functions:

V
2h;2
0 = spanf[2hE gE2E2h : (3.189)

Di�ering from the space V H
h+ used to de�ne the hierarchical error estimate

�Hh the space V h;1
is expanded by edge bubble functions on the coarse mesh

T2h instead of using the �ne mesh Th, see Figure 3.9. The construction of

the space V
2h;2
0 builds up the macro{elements in the coarse mesh T2h from

the elements in �ne mesh Th. At the end no new node coordinates have to

be generated as the middle points of the edges in the coarse mesh that are

associated with the edge bubble functions are vertices of elements in the �ne

mesh. However, it is

Vh+ = V h;1
+ V

2h;2
0 � V H

h+ : (3.190)

This con�rms that the projecting error estimate �Ph and the hierarchical error

estimate �Hh are closely related. The property (3.190) shows that it is not

possible to express the projecting error estimate in terms of the Babu�ska{

Miller residual error estimator. Therefore the saturation condition in the

sense of De�nition 2 has to be assumed to prove that the projecting error

estimate is equivalent to the true error in the sense of De�nition 3.

The re
ection on the hierarchical error estimate has emphasized some ad-

vantages of the projecting error estimate compared to other error estimates.

The calculation of the projecting error estimate is possible as for most FEM

schemes a higher order scheme and a suitable interpolation operator from

the lower to the higher order scheme is available. In this sense the projecting
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error estimate is de�ned for most FEM problems without additional assump-

tions, like symmetry or positivity. Since the higher order scheme uses the

double polynomial order than the lower order scheme stability problems can

occur if the projecting error estimate is applied to a FEM approximation

based on polynomials of high order.

The special quality of the projecting error estimate is the new idea to reuse

the sti�ness matrix for the calculation of the a{posteriori error estimate.

This approach saves the assemblage of a new sti�ness matrix. Moreover

there is the possibility to pro�t from the reordering of the matrix, the LU-

factorization or the preconditioner matrix, that were set up to calculate the

discrete solution uh e�ciently, for a second time when solving the error equa-

tion.

3.8 Summary

The projecting a{posteriori error estimate for the �nite element method of

order k is equivalent to the true error in the sense of De�nition 3 if poly-

nomials of order 2k for the error estimate are used. The e�ectivity index

indicating the quality of the error estimate depends on the condition number

D2
of the Jacobi matrix of the kernel G and the mesh quality � of the �nite

element mesh. This holds under the assumption that the sought solution is

smooth enough. As proved in Corollary 2 the e�ectivity index is increased for

a non-smooth solution u and the a-posteriori error estimate becomes more

fuzzy.

Though only the homogeneous Neumann boundary value problem has been

discussed the result is also valid for non{homogeneous Neumann boundary

value problems including homogeneous Dirichlet boundary conditions and

systems of such boundary value problems. The reason is that for these

problem types a modi�ed uniform positivity of the kernel G involved in the

formulation of the boundary value problems can be speci�ed as well. Non{

homogeneous Dirichlet boundary conditions can be considered by introducing

a Lagrangean multiplier which produces a saddle{point problem.

Saddle{point problems, e.g. see Brezzi [21], are not belonging to the class of

problems investigated in this chapter but they can be treated by the abstract

analysis of Chapter 2. The essential problem is to verify that the involved

operators are well{posed. It is necessary to use various polynomial orders for

the components of the solution. However the projecting a{posteriori error

estimate can be applied to this kind of problems, too. By using Theorem 4
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it can be shown that this projecting error estimate is also equivalent to the

true error (see Example 4 in Section 4.7).

Further extensions consider curved domains. That requires the introduction

of curved elements with non-a�ne parametrical representations (e.g. isopara-

metrical elements). In principle the results of this chapter can be adapted

with some modi�cations considering the bending of the elements, see e.g.

Ciarlet [24, 25]. If the projecting error estimate shall consider the error from

the approximation of the domain the formulation of the algorithm, espe-

cially the de�nition of the global re�ned triangulation, as well as the analysis

becomes more di�cult but the line of the thoughts and the results remain

mostly unchanged.
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Chapter 4

Examples

4.1 Introduction

In the following some examples are presented to demonstrate the projecting a-

posteriori error estimate for piecewise linear FEMs based on an expanding by

piecewise quadratic polynomials in practice. For the calculations a modi�ed

version of the program package VECFEM [38] is used, see Section 4.2. The

�rst example is a very smooth problem to get a feeling for the actual values of

the e�ectivity index given in Theorem 14. In the second example the in
uence

of the smoothness of the solution on the e�ectivity index is examined. In

the third example the calculation of the displacements of a loaded linear

elastic body is presented. To illustrate that the projecting error estimate

also works for saddle{point problems the fourth example is the solution of

the two{dimensional Navier{Stokes equations.

4.2 The VECFEM Program Package

VECFEM [38] is a program package to solve non{linear variational problems

by the �nite element method. The solution can have more than one com-

ponent. The user can select between isoparametrical elements up to order

three and mixed �nite elements of arbitrary order on lines, quadrilaterals,

triangles, hexahedrons, prisms and tetrahedrons. The variational problem

has to be entered in the formulation (3.50). Among other terms surface

integrals can be additionally introduced to consider non{homogeneous Neu-

mann boundary conditions. Moreover Dirichlet boundary conditions can be
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considered. The variational problem and Dirichlet boundary conditions are

speci�ed symbolically. A code generator transforms the variational problem

into a FORTRAN program which solves the problem by calling suitable rou-

tines of the VECFEM library. In particular the code generator calculates

the Jacobi matrix @G by using the computer algebra program MAPLE [22].

By introducing a suitable basis of Vh the discrete variational problem is

reduced to the system of non{linear equations (2.29). It is solved by the

Newton{Raphson method (2.41). This requires the assemblage of the sti�-

ness matrix (2.37) by evaluating the Jacobi matrix @G. For the numerical

integration on lines, quadrilaterals and hexahedrons Gaussian quadrature

schemes are used. The quadrature schemes for triangles, prisms and tetra-

hedrons are constructed by transforming the Gaussian quadrature schemes

in a suitable manner. The mounted linear system is solved by the program

package LINSOL [65]. LINSOL uses iterative methods of the conjugate gra-

dient type. The stopping criterion for LINSOL is optimally set by VECFEM

to compute the Newton{Raphson correction with a minimal number of con-

jugate gradient steps to not destroy the quadratic convergence order of the

Newton{Raphson.

The basis of the approximation space V h;k
is constructed by a basis for the

polynomial space Pk on the n-simplex. This local basis is assembled to a

global basis of V h;k
by using the parametrical representations of the elements

in the triangulation Th. The local basis is de�ned by a table that gives the

values of the basis functions and their �rst derivatives at the integration

nodes. Therefore it is very simple to modify the basis and the quadrature

scheme for the space V h;k
without changing other parts of the code. More

details are presented in Grosz [40].

A simple implementation of the projecting error estimate for FEM approx-

imations of order two could be found by exchanging the standard table of

VECFEM: FEM data for an order two approximation on a coarse triangula-

tion T2h are handed over. By using piecewise linear polynomials on subele-

ments, see Figure 4.1, a FEM approximation of order one on the re�ned tri-

angulation Th is calculated. The right hand side of the error equation (3.164)

bsed on the order two method on the coarse triangulation T2h is assembled

by using the original FEM data. In detail this procedure works as follows:

When implementing the FEM approximation and its projecting error esti-

mate by error equation (3.164) the main di�culty arises from the fact that

two triangulations are needed, namely the triangulation Th for the FEM ap-

proximation and the coarse triangulation T2h for the error estimation. But

Lemma 10 allows to interpret the space V h;1
as a FEM space based on the
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integration node

Figure 4.1: Three local basis functions of the space S1 on the 2-simplex and

integration nodes for a quadrature scheme that is exact of order 1.

coarse triangulation T2h with local basis of the space S1 de�ned by equa-

tion (3.132). Therefore for this test implementation of the projecting error

estimate it is assumed that FEM data are handed over to VECFEM which

are normally used to construct an approximation by piecewise polynomials

of order two on a coarse triangulation T2h. Yet the local basis for polyno-

mials of order two belonging to this FEM data is replaced by a basis for

the space S1. This can be done since both spaces have the same dimension.

Figure 4.1 shows three of the needed six local basis functions for the space

S1 of piecewise linear functions on the 2-simplex.

For a given local quadrature scheme Ql
and the triangulation Th the global

quadrature scheme has to be calculated by formula (3.67). Because of the

identity (3.131) the global quadrature scheme can be interpreted as a global

quadrature scheme of the coarse triangulation T2h and a local quadrature

scheme that is composed by quadrature schemes on the sets of the subdivision

T0 of the n-simplex de�ned by equation (3.128). The composed quadrature

scheme is constructed by formula (3.67) where the subdivision T0 plays the
role of the triangulation Th. Figure 4.1 shows the location of the integration

nodes for a composed quadrature scheme that is exact of order 1 in the sense

of De�nition 4.

95



integration node

Figure 4.2: I2 interpolation of the basis of the space S1 shown in Figure 4.1

and integration nodes for a quadrature scheme that is exact of order 3.

After the FEM approximation in the space V h;1
has been calculated the right

hand side of the error equation (3.164) has to be assembled to calculate the

projecting error estimate. For that purpose the image of the basis of the

space V h;1
for the global interpolation operator I2h;2 has to be speci�ed. By

applying formula (3.76) this global interpolation is reduced to an interpola-

tion of the local basis of S1 by the local interpolation operator I2. Therefore
the assembling routine of VECFEM can be used for the right hand side of

the error equation if the local basis is selected to the I2-interpolation of the

basis of the space S1. As above the quadrature scheme is constructed by a

composed quadrature scheme. Figure 4.2 shows the I2-interpolation of the

S1{basis functions shown in Figure 4.1 and the location of the integration

nodes that are exact for polynomials of order two on the subelements.

The new linear system of the new right hand side and the sti�ness matrix used

for the solution of the discrete variational problem is solved by LINSOL to

get the projecting error estimate. In the same manner FEM data for an order

4 method on a coarse triangulation T2h could be processed. In this case a

FEM approximation of order two on the re�ned triangulation Th is calculated
by using a local basis of piecewise polynomials of order two. The right hand

side for the error equation is assembled by using the given FEM data for the
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order 4 method on the coarse triangulation T2h. It is obvious that in any

case the selected implementation based on the coarse triangulation is not the

most e�cient way to implement the projecting error estimate. However, it

is a simple way as one does not need to write a new FEM code and it is

su�cient to check if the projecting error estimate works successfully.

4.3 Common Terms

The following test problems are solved by �nite element approximations of

order one with various mesh sizes. The meshes are generated by hand or by

the commercial mesh generator I{DEAS [44]. The small problems are solved

on a workstation IBM RS6000 and large scale problems on a vector computer

Fujitsu VPP300. Some comparative computations for problems of medium

order (� 5000 unknowns) have shown that the results are independent of the

used platform.

The discrete variational problems are solved with an accuracy TOL = 10
�10

on the level of solution, see Grosz [38, 39]. This very small accuracy ensures

that the error from terminating the Newton{Raphson iteration can be ne-

glected compared to the discretization error. The stopping criterion (2.136)

presented in Corollary 3 is used when solving the equation (3.164) that de-

�nes the projecting error estimate. For all problems � = 10
�4

is set.

Since the exact solutions of the example problems are known the dependence

of the k:k1;
-norm of the true error (that is the di�erence of the exact solution

and the calculated FEM approximation) on the mesh size is presented. The

values of the errors are the absolute errors, i.e. they are not scaled by the

norm of the solution. In the diagrams logarithmic scales for the mesh sizes

and the true errors are used. In a second diagram the ratio of the k:k1;
-
norm of the projecting error estimate and the k:k1;
-norm of the true error

with a linear scale is shown. In all diagrams the actually measured values

are marked by points. Points which are connected by lines are produced by

meshes with approximately the same mesh quality, see equation (3.63).
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4.4 Example 1: The Model Problem

The �rst example should get the actual order of the e�ectivity index given

in Theorem 14:

Let 
 := [0; 1]n be the n-dimensional unit cube (n = 1; 2; 3). The sought

solution u : 
 ! IR is determined by the linear Neumann boundary value

problem

��u+ u� f = 0 on 


@u

@n
= 0 on @
 :

(4.1)

@u
@n

denotes the derivative of the function u with respect of the outer normal

of the boundary @
 of the domain 
. The function f : 
! IR is determined

by the exact solution

u(x) =
nY
i=1

cos(mi�xi) for all x = (xi)i=1;n 2 
 (4.2)

with �xed (m1; : : : ; mn) 2 IN
n
0 . The value m := m1 + : : : + mn scales the

number of oscillations of the function u. The H1
(
)-norm of the solution is

in the order of (�m)
n
.

Actually the boundary value problem is solved in its weak formulation: �nd

the solution u 2 H1
(
) with

Z


(u� f)v +

nX
i=1

@u

@xi

@v

@xi
dx = 0 for all v 2 H1

(
) : (4.3)

In the notations of Chapter 3 it is set

G(�; x) = (�1 � f(x); �2; : : : ; �n+1) (4.4)

for all x 2 
 and all � = (�i)i=1;n+1 2 IR
n+1

. This kernel G is uniform positive

de�nite with a positivity bound 1. For the construction of the �nite element

space the n-dimensional unit cube is subdivided into n-simplexes basing on

a rectangular grid. For the three as well as for the two dimensional case the

values for the mesh qualities s are in the order of 4.

In the �rst test the dependence of the true error on the mesh size is in-

vestigated. Various numbers of oscillations of the solution indicated by the

value m are selected to inspect the in
uence of the solution on the results.

Figure 4.3 shows the dependence of the true error on the mesh size for the

1-dimensional case, Figure 4.4 for the 2-dimensional case and Figure 4.5 for
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Figure 4.3: Example 1, n = 1: The true errors in the H1
(
)-norm for various

numbers of solution oscillations m.
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Figure 4.4: Example 1, n = 2: The true errors in the H1
(
)-norm for various

numbers of solution oscillations m.
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Figure 4.5: Example 1, n = 3: The true errors in the H1
(
)-norm for various

numbers of solution oscillations m.
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Figure 4.6: Example 1, n = 2: The true errors in the H1
(
)-norm for various

mesh qualities s (m = 10).
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Figure 4.7: Example 1, n = 1: The ratios of estimated and true errors in the

H1
(
)-norm for various numbers of solution oscillations m.

the 3-dimensional case. Corresponding to the result of Theorem 13 the true

errors converge to zero if the mesh size goes to zero. The convergence order

is independent of the solution and the mesh quality (see Figure 4.6). On

the other hand the actual error depends on the solution as well as the mesh

quality. The tests con�rm the well{known behavior of the FEM.

The Figures 4.7 to 4.10 present the dependencies of the ratio of the estimated

and true error in the H1
(
){norm on the mesh size for the projecting a-

posteriori error estimate. As shown in Figures 4.7 and 4.8 the ratios of

estimated and true error seem to converge to the value 0:577 �
p
3
3

for a

one or two{dimensional domain. Even if the mesh quality is increased this

value does not change, see Figure 4.10. For a three dimensional domain

the situation is undetermined since the computational e�ort to process FEM

meshes with a mesh size less than 0:01 exceeds the limit of the available

computer capacity. But the results give no counterargument to conclude

that the ratios of estimated and true errors converge to a value in the order

of 0:577, too. Summarizing these tests it has to be stated that at least for

small mesh sizes the projecting a{posteriori error estimate underestimates

the true error by a factor in the order of 0:577.
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Figure 4.8: Example 1, n = 2: The ratios of estimated and true errors in the

H1
(
)-norm for various numbers of solution oscillations m.
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Figure 4.9: Example 1, n = 3: The ratios of estimated and true errors in the

H1
(
)-norm for various numbers of solution oscillations m.
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Figure 4.10: Example 1, n = 2: The ratios of estimated and true errors in

the H1
(
)-norm for various mesh qualities s (m = 10).

4.5 Example 2: Singularities

Now the dependence of the e�ectivity index on the smoothness of the solution

is investigated. The domain is the two-dimensional, L-shaped domain


 := [�1; 1]2n[�1; 0]2 ; (4.5)

see Figure 4.11. It is set

�N = [�1; 0]� f0g [ f0g � [�1; 0] (4.6)

and �D := @
n�N . The test problem is the Poisson equation with Neumann

and Dirichlet conditions for the sought solution u : 
! IR:

��u+ f = 0 on 


u = 0 on �D

@u

@n
= 0 on �N :

(4.7)

f is a given function on the domain 
.

The corresponding weak formulation is given by the variational problem on

the space H1
0(
) := fv 2 H1

(
) j vj�D = 0g: �nd the solution u 2 H1
0(
)
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Figure 4.11: Example 2: L-shaped domain with triangulation.
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Figure 4.12: Example 2: The true error in theH1
(
)-norm for various powers

a indicating the smoothness of the solution.

with Z


(fv +

@u

@x1

@v

@x1
+

@u

@x2

@v

@x2
) dx = 0 for all v 2 H1

0 (
) : (4.8)

The function f is determined by the exact solution

u(x1; x2) = (x21 + x22)
a
(x21 � 1)(x22 � 1) (4.9)

for all (x1; x2) 2 
 (a 2 IR). Depending on the value for the power a the

solution u has a singularity at (0; 0). The solution u belongs to the space

H1
0 (
) if the power a is positive or equal to zero. The solution u belongs

to H2
(
) if the power a is greater than

1
2
or equal to zero. If a < 0 the

resulting right hand side f = ��u does not belong to H0
(
) and therefore

the variational problem (4.8) is not properly formulated. Triangulations of

the domain were generated by the commercial mesh generator I-DEAS [44],

see Figure 4.11.

In Figure 4.12 the true errors of a series of meshes with decreasing mesh

size and almost constant mesh quality are shown. The abscissa gives the

mean value of the element size. If the solution belongs to H2
(
), that is for

a = 0:75 and a = 1:00, the convergence order is actually of order 1 but for

a = 0:25 and a = 0:10 the convergence order declines since the solution is

not smooth enough (62 H2
(
)).
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Figure 4.13: Example 2: The ratio of estimated and true error in the H1
(
)-

norm for various powers a indicating the smoothness of the solution.

Naturally the ratio of the estimated and true error for the projecting error

estimate is the most interesting value in the test, see Figure 4.13. Analo-

gously to Example 1 in Section 4.4 the ratio of the estimated and the true

error seems to converge to a speci�c limit but the value of this limit depends

on the smoothness of the solution u. For the case a > 1
2
tested by a = 1:00

and a = 0:75 the approximations from the expansion Vh+ by polynomials of

order 2 have a higher convergence order to the solution u than the approxi-

mations uh from the space Vh. Yet the convergence order will not be equal

to 2 as the solution does not belong to the Sobolev space H3
(
) but it is

greater than one. Therefore (uh; uh+)h>0 is saturated for the solution u with

saturation bound 0. This is the reason why the ratio of true and estimated

error converges to the limit � 0:577 that appeared before in Example 1. The

situation changes if the value of a is less than
1
2
. For a = 0:25 or a = 0:1

the saturation bound is not equal to zero since the addition of piecewise

polynomials of order two to the approximation space Vh cannot improve the

convergence order for h ! 0. The projecting error estimate becomes more

inaccurate as predicted in Corollary 2. The actual value of the saturation

bound cannot be determined by a practical calculation as it is very expensive

to modify the VECFEM code to solve the discrete variational problem on

Vh+.
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Figure 4.14: Example 2: True errors in the H1
(
)-norm by the optimal

stopping criterion relative to the true errors in the H1
(
)-norm when using

accuracy TOL = 10
�10

.

In a second test the optimal stopping criterion (2.117) is investigated. The

calculation is repeated with the optimal stopping criterion set to � = 0:075.

Figure 4.14 shows the ratio of the true errors when using the optimal stopping

criterion and using the high accuracy of TOL = 10
�10

. As seen in this �gure

the ratio is in the order of one. That means that the errors for the solutions

computed with a high accuracy and with the optimal stopping criterion have

nearly the same value. For a = 1 and a small mesh size the ratio increases

up to 1:4 since the optimal stopping criterion prevents VECFEM to execute

the next Newton-Raphson step. When applied in practice this deviation is

acceptable. Further re�nement of the mesh would admit the execution of this

additional iteration step. This could not be tested since the needed number

of elements exceeds the limit of the available I{DEAS installation.

Figure 4.15 shows the ratio of the CPU-time using the optimal stopping crite-

rion and the high accuracy of TOL = 10
�10

on a Fujitsu VPP300. For both

calculations the zero function is the initial guess for the Newton{Raphson

iteration. Although the evaluation of the optimal stopping criterion requires

the assemblage of a second right hand side in every iteration step the usage

of this criterion saves more than 60% of the computing time. Naturally it is

questionable whether an accuracy TOL = 10
�10

is reasonable. Moreover the
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Figure 4.15: Example 2: Computing time when using the optimal stopping

criterion relative to the computing time when using accuracy TOL = 10
�10

.

implementation is not optimal and therefore the actual pro�t may be less.

4.6 Example 3: Structural Analysis

To illustrate that the projecting a{posteriori error estimate works also for

systems of boundary value problems the equations of the linear elasticity are

examined, e.g. see Dawe [29], Zienkiewicz [68]:

The displacement u = (u1; u2; u3) of a linear elastic body 
 under the ac-

tion of internal and external forces is determined. The vector "(u) of the

(linearized) strains is de�ned by

"(u) := ("1(u); "2(u); "3(u); 
12(u); 
23(u); 
13(u))

:= (

@u1

@x1
;
@u2

@x2
;
@u3

@x3
;
@u1

@x2
+

@u2

@x1
;
@u2

@x3
+

@u3

@x2
;
@u1

@x3
+

@u3

@x1
) :

(4.10)

For linear elastic and isotropic material the stress vector

�(u) := (�1(u); �2(u); �3(u); �12(u); �23(u); �13(u)) (4.11)
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is calculated from the strain vector "(u) by Hooke's law:

�1(u) = C11 "1(u) + C12 "2(u) + C12 "3(u)

�2(u) = C12 "1(u) + C11 "2(u) + C12 "3(u)

�3(u) = C12 "1(u) + C12 "2(u) + C11 "3(u)

�12(u) = C44 
12(u)

�23(u) = C44 
23(u)

�13(u) = C44 
13(u) :

(4.12)

The parameters C11, C12 and C44 are material constants depending on the

modules of elasticity and Poisson's ratio. In this example it is set C11 = 1,

C12 =
1
2
and C44 =

1
4
corresponding to the non{dimensionalzed modelling of

steal. The stress vector has to ful�l the equilibrium condition

@�1(u)

@x1
+

@�12(u)

@x2
+

@�13(u)

@x3
� f1 = 0

@�12(u)

@x1
+

@�2(u)

@x2
+

@�23(u)

@x3
� f2 = 0

@�13(u)

@x1
+

@�23(u)

@x2
+

@�3(u)

@x3
� f3 = 0 :

(4.13)

The function f = (f1; f2; f3) denotes the vector of internal forces (e.g. grav-

itation). Via the equations (4.10) and (4.12) the equilibrium condition is a

system of three partial di�erential equations of order two for the sought dis-

placement u. To make the solution of the equilibrium condition (4.13) unique

boundary conditions have to be set. Boundary conditions for the stress intro-

ducing external surface loads are boundary conditions of the Neumann type.

Restraint conditions prescribing values for the displacement are boundary

conditions of the Dirichlet type.

The weak formulation of the boundary value problem arising from the equi-

librium condition (4.13) and the boundary conditions is given in the following

form: Set

V := f(v1; v2; v3) 2 H1
(
)

3 j v1j�1 = 0; v2j�2 = 0; v3j�3 = 0g : (4.14)

The sets �1;�2;�3 � @
 denote the locations of the restraint conditions for

the displacement. The sought solution u 2 V is given by the variational

problemZ


( �1(u)"1(v) + �2(u)"2(v) + �3(u)"3(v) +

�12(u)
12(v) + �13(u)
13(v) + �23(u)
23(v) +

f1v1 + f2v2 + f3v3) dx

+

Z
@

(p1v1 + p2v2 + p3v3) d� = 0

(4.15)
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for all v 2 V . The function p = (p1; p2; p3) : @
 ! IR
3
describes the surface

loads. If �1 = �2 = �3 has a positive surface measure it can be shown by

Korn's inequality that the operator on V � H1
(
)

3
involved in the varia-

tional problem (4.15) is well{posed, see Fichera [35].

The domain of the test problem is the tetrahedron with a unit triangle as

base-surface and height 1:5. The tetrahedron has been rotated in a way that

it is standing on the vertex with the most acute degree and this vertex is

the origin, see Figure 4.16. Triangulations were generated by I{DEAS [44].

At the point (0; 0; 0) the mesh size is the fourth part of the mesh size at

the opposite face. The displacements u1 and u2 are prescribed to be zero

at all vertices of the tetrahedron. The displacement u3 is only prescribed at

the origin. The internal force f and the surface load p are set by the given

displacement

u1 = x1(1:5� x3)

u2 = x2(1:5� x3)

u3 = 1� ex3 :

(4.16)

Figure 4.17 shows the convergence of the true errors to zero for decreasing

mesh size. The ratio of estimated and true error shown in Figure 4.18 seems

to converge to a value in the order of 0:65. Therefore the projective error

estimate is equivalent to the true error for the solution of systems of boundary

value problems as well. As one has already realized in the foregoing examples

the projecting error estimate underestimates the true error. The corrective

factor seems lightly to deviate from the known value 0:577.

4.7 Example 4: Navier-Stokes Equations

The velocity �eld u := (u1; u2) of an incompressible Newtonian 
uid in

a domain 
 is the solution of the Navier{Stokes equations. In the non{

dimensionalized formulation this is a system of three partial di�erential equa-

tions:

��u +Re(u
T � r)u�rp = f

rT � u = 0
(4.17)

on the domain 
. The unknown function p : 
 ! IR denotes the pressure.

Re is called the Reynolds number. The function f = (f1; f2) describes an

internal load working on the 
uid. For both velocity components Dirichlet

boundary conditions are set on the total boundary @
 of the domain 
. As

the pressure is unique apart from a constant a norming condition for the
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Figure 4.16: Example 3: Tetrahedron standing at one of its vertices.
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pressure has to be set, e.g. Z


p dx = 0 : (4.18)

Surveys on the numerical solution of the Navier{Stokes{equations by �nite

elements are given by Gunzenburger [42] and Chung [23] and a mathematical

analysis is given by Girault [37].

The weak formulation of the Navier-Stokes equation (4.17) is given by the

non{linear variational problem: �nd (u; p) 2 X � Y with

Z



� @v1
@x1

(

@u1

@x1
+ p) + v1 (Re(u1

@u1

@x1
+ u2

@u1

@x2
)� f1) +

@v2

@x2
(

@u2

@x2
+ p) + v2 (Re(u1

@u2

@x1
+ u2

@u2

@x2
)� f2) +

(

@v1

@x2
+

@v2

@x1
)(

@u1

@x2
+

@u2

@x1
) + q (

@u1

@x1
+

@u2

@x2
)

�
dx = 0

(4.19)

for all (v; q) 2 X � Y . The vector space X � Y is de�ned by

Y := fq 2 H0
(
) j

Z


q dx = 0g (4.20)

and

X := fv 2 H1
(
)

2 j v1j@
 = v2j@
 = 0g : (4.21)

The variable q in the variational problem (4.19) is the Lagrangean multiplier

to consider the continuity condition rT � u = 0.

For Reynolds number Re = 0 the problem becomes a linear variational prob-

lem called Stokes problem. Using the well-known analysis of saddle{point

problems it can be shown that the operator involved in the variational prob-

lem of the Stokes problem is well-posed, see Brezzi [21]. Unfortunately the

construction of suitable �nite element approximation spaces is more di�-

cult than for the previous examples. The selected spaces have to ful�l the

Ladyzhenskaya-Babu�ska-Brezzi (or LBB) condition to ensure that the dis-

crete operator is well-posed, see Brezzi [21]. Typically the approximation

order of the pressure has to be one order less than the approximation order

of the velocity. The general variational problem (4.19) has an unique solu-

tion for su�ciently small forces f and su�ciently small Reynolds numbers

Re only. In this case the properties of the Stokes problem are also valid. For

larger forces or greater Reynolds numbers special solution techniques have

to be used when solving the Navier{Stokes equations.

The test domain is the channel [0; 3] � [0; 1] of length 3 and height 1. The

force f is selected in such a way that the exact solution of the Navier-Stokes
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pressure element velocity elements

Figure 4.19: Example 4: Macro{element for pressure approximation.

equations is given by

u1 :=

@ 

@x2

u2 := � @ 

@x1

p := 0

(4.22)

where the stream function  is de�ned by

 (x1; x2) := (

4

3

)
4
(x1 (3� x1) x2 (1� x2))

2 : (4.23)

From the de�nition it is evident that the selected velocity u ful�lls the con-

tinuity condition rT � u = 0 and the boundary condition u1j@
 = u2j@
 = 0.

The treated problem does not describe a physical 
uid (as the channel has

only walls and there is no inlet or outlet) but it is a test problem.

For the approximation of the velocity polynomials of order one are used.

The pressure is approximated by piecewise constant polynomials on macro{

elements composed by six elements that are used for the velocity approxi-

mation, see Figure 4.19. In the discretization the norming condition (4.18)
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Figure 4.20: Example 4: The true error of the velocity in the H1
(
)

2
-norm

for various Reynolds numbers.

for the pressure is replaced by a Dirichlet type condition at a single node in

the interior of the domain. For the projecting error estimate the approxi-

mation space is expanded by Taylor-Hood elements (or P2 � P1-elements).

They use quadratic polynomials for the velocity and linear polynomials for

the pressure on the same element, see Cuvelier [1]. For smooth solutions

(u; p) the approximation has the convergence order 1 and the approximation

space for the error estimate produces a convergence order of at least order 2.

Therefore the pair of approximations by macro{element approximations and

by the extension with P2�P1-elements is saturated for (u; p) with saturation

bound 0 in the sense of De�nition 2.

Figure 4.20 shows the dependence of the true error of the velocity components

u = (u1; u2) in the H1
(
)

2
-norm on the mesh size for various Reynolds num-

bers. The error of the pressure in the H0
(
)-norm is shown by Figure 4.21.

The true errors are independent of the Reynolds number (as the selected

values for the Reynolds number are small). Reynolds numbers greater than

10 could not be tested as then the iterative methods in VECFEM did not

converge. More interesting for the discussion is the behavior of the ratio of

estimated and true errors for the velocity u which is shown in Figure 4.22 and

for the pressure p which is shown in Figure 4.23. For the velocity components

the H1
(
)

2
{norm and for the pressure the H1

(
){norm is used. Indepen-
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Figure 4.21: Example 4: The true error of the pressure in the H0
(
)-norm

for various Reynolds numbers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0.01 0.1

es
tim

at
ed

/tr
ue

 e
rro

r

mesh size h

Re=0
Re=1

Re=10

Figure 4.22: Example 4: The ratio of estimated and true error of the velocity

in the H1
(
)

2
-norm for various Reynolds numbers.
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Figure 4.23: Example 4: The ratio of estimated and true error of the pressure

in the H0
(
)-norm for various Reynolds numbers.

dently of the Reynolds number the ratios for the velocity converge to a value

in the order of 0:577 which is known from the previous two dimensional ex-

amples. The ratio of estimated and true error of the pressure converges to

one. The reason for that is that another interpolation operator and another

norm for the pressure like for the velocity components is used. However, this

example shows that the projecting error estimate applied to saddle{point

problems is also equivalent to the true error in the sense of De�nition 3.

The optimal stopping criterion (2.117) is investigated. Figure 4.24 shows the

ratio of the true error of the velocity u when using the optimal stopping cri-

terion and a high accuracy TOL = 10
�8
. Similar to Example 2 in Section 4.5

the ratio is in the order one. This demonstrates that the optimal stopping

criterion works in an optimal manner. Figure 4.25 shows the ratio of the

CPU time when calculating the solution with the optimal stopping criterion

and the high accuracy on a Fujitsu VPP300. The saving of computing time

is greater than 80%.
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Figure 4.24: Example 4: True error of the velocity u in the H1
(
)

2
-norm by

the optimal stopping criterion relative to the true error in the H1
(
)

2
-norm

when using accuracy TOL = 10
�8
.
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Figure 4.25: Example 4: Computing time when using the optimal stopping

criterion relative to the computing time when using accuracy TOL = 10
�8
.
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Chapter 5

Conclusions

A general theory of a{posteriori error estimates for variational problems has

been presented. The theory can be applied to non{linear well{posed varia-

tional problems. The basic idea is that a better solution approximation can

be calculated by expanding the original approximation space Vh to a larger

space Vh+ = Vh � V c
h . The analysis includes the hierarchical error estimate

which solves the error equation in V c
h and the in
ating error estimate which

solves the error equation in the total expansion Vh+. In addition to these

well{known error estimate techniques a new a{posteriori error estimate was

derived from this general framework. It is called projecting error estimate

since an approximation of the error is computed from the space Vh. Theo-

rem 4 shows that all three error estimates are equivalent to the true error,

i.e. they have exactly the same convergence order for decreasing mesh size

like the exact error.

Moreover in Theorem 3 a stopping criterion for any iterative procedure to

solve the non{linear discrete variational problem has been suggested. Bal-

ancing the discretization error and the stopping error ensures that the con-

vergence order of the returned approximation towards the sought solution

is optimal. The presented examples have shown that more than 60% of the

arising computing costs can be saved by using this stopping criterion when

the total error of the return approximation has to be minimal for the given

FEM mesh and quadrature scheme. Under this condition the discrete varia-

tional problem can only be solved with a high accuracy as a{priori the size

of the discretization error is unknown.

The projecting a{posteriori error estimate has been applied to the �nite el-

ement method basing on the addition of higher order polynomials to the
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original approximation space. Theorem 14 proves that the projecting error

estimate for the FEM is equivalent to the true error in the sense of De�ni-

tion 3. The proof has been given for a non{linear model problem but the

results are valid for other elliptic variational problems and can be extend

to saddle{point problems. The projecting error estimate considers the in-

terpolation error as well as the error from numerical integration. Reusing

the sti�ness matrix which is available from the non{linear solver the cal-

culation of the projecting error estimate is very cost{e�ective. It is always

well{de�ned independently of the variational problem dealt with, no mat-

ter if it is linear or non{linear. This property in addition to the fact, that

there are no speci�c conditions to the used FEM meshes, are the advantages

of the projecting error estimate compared to other estimate techniques. As

no deepened knowledge on the variational problem and no adapting are re-

quired the projecting error estimate is perfectly suitable for the application

in black{box solver software for partial di�erential equations like VECFEM.

The presented two and three dimensional examples have con�rmed the the-

oretical results for a FEM approximation by piecewise linear polynomials

estimated by piecewise quadratic polynomials. The variety of the examples

has shown that the projecting error estimate works for the analyized model

problem as well as for other elliptic and saddle{point problems. It turned

out that for most problems the true error is underestimated with a factor

in the order of 0:577 �
p
3
3

(in particular for two dimensional problems, for

saddle{point problems the factor holds for the components approximated

from H1
(
)). As the theoretically obtained bounds for the ratio of esti-

mated and true error (see inequality (3.165)) contain unknown constants it

is not possible to verify this factor. Under- and overestimating of the true

errors can be observed by other a{posteriori error estimate techniques, see

Babu�ska [6, 8], Bank [16, 53], Duran [32], Rodriquez [54]. The extensive

investigation of some known a{posteriori error estimates by Babu�ska [12]

considering many problem parameters shows that underestimating by factor

0:577 is in the usual range of other error estimates.

The bounds for the ratio of estimated and true error for the projecting error

estimate given in Theorem 3/Corollary 2 depend on the smoothness of the

solution, the mesh quality and the condition number of the involved opera-

tors. But the examples have shown that only the smoothness of the solution

in
uences the quality in a signi�cant manner. However, for linear FEM ap-

proximations the results of the projecting error estimate based on piecewise

quadratic polynomials and corrected by the factor 1:5 give a safe, reliable

and robust estimate of the true error with a wide range of applications.
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