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Abstract 
 
Building design, realization, operation and refurbishment have to take into account the 
resulting environmental impacts as well as the costs over a long period of time. This can be 
realized by combining life cycle analysis (LCA), life cycle costing (LCC) and building 
product models in integrated LCA models. Two difficulties appear: 

• The general data uncertainty in LCA/LCI models, 
• The lack of experience of practitioners who are not LCA specialists. 

As answers to these shortcomings there are the improvement of integrated LCA models by 
managing uncertainty and, the development of robust, simplified models for building design, 
construction and operation.  
The contribution discusses the available methods to assess the different uncertainty sources in 
building LCA models (mainly Monte Carlo simulation and experiment plans). Possibilities to 
use the results for the design of simplified tools are presented. 
 
 

1. Uncertainty sources in building LCA models 
 
In building LCA models [KOH  2002], uncertainty is due to:  

- Data quality (incomplete, inaccurate, not appropriate, obsolete etc.) 
- Building description (incomplete, inaccurate) 
- Building life span and building components lifecycle (assumptions on life span, end of 

life span, degree of refurbishment) 
- Building operation (user influence, performance of HVAC equipment, long term 

evolution of costs etc.) 
Furthermore, additional data uncertainty comes from the upstream process analysis. The 
inventories of material and energy flows are highly dependent on geographical localisation 
and technology. Finally calculation methods of impact indicators are not yet all well defined 
for some categories (for example: toxicity).  
Uncertainty analysis is the study for the uncertain aspects of a model and their influence on 
the model's results. However, a single data or value can have a great uncertainty even if its 
contribution to the uncertainty of the overall result could be insignificant. It is possible to deal 
with this problem by performing an uncertainty importance analysis using e.g. Monte Carlo 
simulation or experiment design techniques. 
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2. Necessity to have relevant results at the planning phase  
 
The desired quality level of the results depends of course very much on the problem which 
has to be solved, and on the risks (e.g. damage, death). This distinguishes approaches in the 
field of the reliability of civil engineering structures  [DFG 2001 and 2002] from the design of 
new buildings even if they might use similar methods. The data quality will vary from exact 
empirical measures to highly speculative assumptions on replacement cycles in 30 years. In 
the domain of design and refurbishment of buildings, it is crucial to know, at an early stage, 
the potentials for environmental impacts reduction, cost cuttings and human toxic risks. It is 
therefore necessary to determine which are the input parameters that have the largest 
influence on the output results and within which margins. This could be achieved with the 
help of a sensitivity analysis. 
 
 

3. Methodology of uncertainty and sensitivity analysis 
 
[BJÖ] introduces the different tools available to handle sensitivity and uncertainty analysis. 
General definitions of sensitivity, uncertainty importance analysis and uncertainty analysis are 
given in the following table (Figure 1), together with a brief list and description of available 
tools. 
 
 Sensitivity and Uncertainty importance analysis  
 Sensitivity analysis Uncertainty importance 

analysis 

Uncertainty analysis  

D
ef

in
iti

on
 Influence of one parameter on 

the value of an other 
Contribution of the 
uncertainty of different 
parameters to the total 
uncertainty of results 

Identify and quantify the uncertainty 
introduced into the results due to the 
cumulative effects of input 
uncertainty and data variability 

(1)Uncertainty of each parameter 
(2)Uncertainty distribution 
(3)Uncertainty propagation through 
models to the final output 

T
oo

ls
 

One way sensitivity analysis : 
How much an input has to vary 
to have x % output change (all 
others inputs constant) 
Scenario analysis: 
Weighting the input parameters 
to create a scenario for the 
future, and analyse its influence 
Factorial design and 
multivariate analysis : low and 
high levels for inputs 
Ratio sensitivity analysis 
Critical error factor 
Tornado diagrams 

Monte Carlo simulation: 
calculate the correlation 
between model input and 
total model output. This is 
done by calcula ting the total 
model uncertainty with 
Monte Carlo simulation 
 
Relative sensitivity = σX/∆X 

 
Tornado diagrams using 
known uncertainty ranges of 
input 

Means for (3): 
Classical statistical analysis 
Bayesian statistical analysis 
Interval arithmetic  
Vague error interval (fuzzy) 
Probabilistic simulation (Monte 
Carlo) 
Scenario analysis 
Rules of thumb 
Expert judgements 

Figure 1: Tools to deal with sensitivity and uncertainty analysis 

 
In the following the focus will be on the use of experiment design (also called factorial 
design) and probabilistic simulation (later called Monte Carlo simulation). 
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4. Different methods available 

4.1 Monte Carlo simulation 
 
A Monte Carlo analysis consists in performing a large number of successive simulations with 
the same model, each time with a distinct set of model input parameters.  
The procedure can be summarized in 4 steps (Figure 2): 
 

1. Specify uncertainties, width and probability distribution functions for all input data, 
2. Select values for variables from the probability distributions, 
3. Calculate the results in the conventional way using the selected input values, 
4. Iterate until mean and distribution do not change anymore and calculate the 

probability distributions of the output data. 
 
This technique allows producing a large number of scenarios. For each one the probability 
distribution of input data is sampled in a manner that reproduces the distribution's shape. 
The basic principle is to select a limited number of parameters and then calculate the 
influence on cumulative results caused by uncertainties on these parameters. 
Different sampling strategies of input parameters have been developed: 

- Simple random sampling: input parameters are randomly selected from a priori fixed 
probability density function; 

- Stratified sampling procedures, like Latin Hypercube sampling. 
Probability distributions may be obtained by a variety of methods, including statistical 
analysis of data, or the elicitation of expert judgement.  
N.B: It is also possible to run a Bayesian Monte Carlo analysis (BMC). It attributes a 
posteriori a weight to individual Monte Carlo simulations by comparing them with 
observations. Simulations, which better fit observations, receive a larger weight. 
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Figure 2: Monte Carlo simulation process 
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4.2  Experiment design 
 
Experiment plans are a succession of carefully planned simulations. They are used in order to 
determine the different parameters which influence the results more, with a minimum of 
experiments and for an affordable accuracy. Experimental plans provide answers to the 
following questions: 
1- Between all the inputs parameters: 

a. Which are those having a significant influence? 
b. What is this influence? 
c. Are there any dependencies between parameters? 

2- Quantify the parameter’s influence by determining an equation 
3- Optimise the model for more accurate results. 
A simple method consists in fixing all the parameters and vary only one. Applied to all 
parameters, this will give thousands of results difficult to handle and analyse, and will not 
provide any information about dependencies between parameters.  
Another possibility is to vary some parameters at the same time and repeat the operation with 
different arrangements. This will provide less results, will be easier to analyse and needs less 
simulations. Moreover, it will furnish information about dependencies between input 
parameters. It's called the fractional matrix.  
The choice of the matrix has no impact on the description of experimental plans method.  
The method can be described in 5 steps: 
1- Define objectives to reach and output parameters to be optimised, 
2- Determine all the input parameters and their associated levels (minimum and maximum)  
3- Choose the experiment matrix (from those available), 
4- Run the experiment (in the present case “experiments” are "simulations"), 
5- Analyse the results and determine effects of parameters. 
The method of experimental plans: does not require any mathematical background (apart from 
basics statistics knowledge), is easy to operate, gives relevant results (easy to handle and 
analyse) and allows the deduction of a simplified model. 
 
 

4.3 Comparison between experiment design and Monte-Carlo simulations  
 
Figure 3 provides a short comparison between experiment plan and Monte Carlo simulation. 
For applying sensitivity and uncertainty analysis to the integrated building LCA model, we 
have chosen to apply the experimental plan strategy based on the advantages of this method.  
 
The principal disadvantage of Monte Carlo simulation is the difficulty to assess probability 
distributions of the input parameters. In addition, experimental plans allow defining a 
simplified model. Moreover, in the report from 8th SETAC Symposium, it is mentioned, 
"several participants doubted the general usefulness of Monte Carlo analyses in handling 
uncertainty in LCA" [WEI 2000]. 
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Experiment design Monte Carlo simulation 

MBmB

mA MA

P(A)

P(B)

Input parameters and their
supposed probability function,
min. and max. values

 

1- Use many times the minimum and 
maximum values of each parameters 
(mA, MA, mB, MB) as input values. 

2- Run the model. 
3- Results are: 

 

Contribution 
to the output 

% 

Input 
parameters and 

interactions 

a 

b 

c d e ab cd 

Interactions between inputs 

Effects of inputs 

 

1- Select randomly values of 
A and B included between 
minimum values, 
maximum values and their 
probability distribution 
(P(A), P(B)). 

2- Run the model. 
3- Results are probability 

distributions for each 
output: 

Output 

P(z) 

z  

 

Advantages A limited simulation number allows 
identifying the effect of parameters on 
results and the possible interactions. 
Possible to deduce a simplified model 
from the relevant parameters identified 

Simple and efficient 

Disadvantages  The choice of probability 
distribution is highly 
subjective and user dependant 
èthus introduces more 
uncertainty. 

Figure 3: Comparison between experiment plans and Monte Carlo simulation 

 
 
 

4.4 The use of experimental plans  
 
The use of experiment design requires the choice of a matrix from four possible ones (cf 
Figure 4).  
 
N.B: After running simulations using the selected matrix, the response area can be 
determined with the help of Doehlert networks.  
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Matrix names Possibilities Disadvantages 
Hadamard Analyses in depth a range of 

selected parameters, supposed to 
be the most relevant ones. 

Parameters must not interact. 
Saturated matrix: no information 
available on experiment. 
variance. 

Rechtschaffner Analyses parameters influence. 
Analyses dependencies between 
two parameters. 

Saturated matrix: no 
information available on 
experimental variance. 
Parameters with only 2 levels. 

Fractional Analyses parameters influence 
and their dependencies (no order 
restriction). Possibility to add 
more parameters later. Less 
simulation depending on which 
dependencies are analysed. 

 

 

Complete Analyses parameters influence 
and their dependencies. 

The one, which needs the more 
simulations. 

Figure 4: Different matrix ava ilable for running experiment plans 

 
 
The undoubted presence of interactions prevents us from choosing the Hadamard matrix. 
The large quantity of input parameters doesn't give any chance to the complete matrix, which 
will be too much time and energy consuming. The non-availability of information about the 
experimental variance when a Rechtschaffner matrix is used might be an additional difficulty 
when analysing the results. 
The last matrix available is the fractional one. As mentioned above, this matrix leads to a 
certain number of simulations, depending which dependencies are wanted to be analysed.  
The number of simulations with a complete matrix is 2k with k the number of parameters. 
With a fractional matrix, the number of simulations is 2k-r, r depends on the choices made 
concerning the dependencies analysis. These two relations show the advantages of fractional 
matrix concerning the reduction of simulations number. 
 
 

5. First simulations results 
 
For the first use of experiment plans it was decided to analyse the effects of thermal quality of 
six envelope elements (windows, lower floor, intermediate floors, upper floor, external walls, 
internal walls) on the release of CO2  (GWP) and on the ozone depletion  (ODP).  For the six 
inputs, two levels of thermal quality are assigned.  Each level corresponding to different CO2 
and ODP values. For the building dimensions (four parameters), two values are given to each 
parameter. A certain number of buildings were modelled in detail with a complete integrated 
LCA tool (LEGOE), which produced the output values for GWP and ODP.  
Those considerations are summed up in the experiments matrix (Figure 5). 
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Simulation 1 2 3 4 5 6 7 8 9 10 CO2 

(kgCO2 eq)
ODP 
(kgCFC11eq)

Ubât 

(W.K1.m) 
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 254574 0,25 0,64 
2 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 266399 0,26 0,87 
3 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 378205 0,51 0,76 
….              
1024 1 1 1 1 1 1 1 1 1 1 5239377 6,47 0,66 

Figure 5: Simulation matrix 

 
In the current situation, the chosen matrix is complete and can be handled with existing tools 
such as MATLAB and it allows the analysis of all dependencies. Moreover, doing a fractional 
plan directly into the integrated building LCA model enables to separate the analysis of 
dependencies from the principal effects' one. 

Mean effects of parameters and their dependencies on ODP and CO2 impacts
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Figure 6: Typical graph of results which can be obtained with the help of experiment plans 

 
The first experiment plans have been chosen for a situation well known in advance. Only the 
input parameters directly linked to thermal losses will have an influence on the output for 
GWP but not for ODP. The latter depends much more on the material composition and the 
masses of some building elements. The results of this first run show how simple known and 
unknown effects can be reproduced. The next experiments will gradually consider less and 
less well-known domains.  
 
 

6. Outlook 
 
The aim of this contribution is to show how experiment plans can be used in order to: 

• Identify the input parameters which have greater influence on the output results, 
• Determine this influence and the dependencies between parameters, 
• Developed a simplified model. 
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The first simulation results given above are encouraging and are a starting point to further 
investigations. They provide information on relations that may exist between material inputs 
in the building and their related effects on CO2 and ODP impacts. 
The generalization of this analysing process to more inputs and more outputs will lead to: 

• Identify specific performance targets for the life cycle behaviour of buildings, 
• The possibility to assess a simplified model that can be used at the planning phase of the 

building. 
In short terms, the use of experiment plans in building integrated LCA model is a step 
towards a simplified model. 
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