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Abstract. We give a translation of inheritance nets to normal default
theories. To avoid discussions about sceptical and credulous reasoning

we only regard unambiguous nets but allow explicit exception links re-

stricting the validity of direct links. Contrary to former translations ev-
ery link will be translated to a \hard" fact of the corresponding default

theory while the defaults only represent the implicit assumptions made

when computing the extension of the net. The translation is sound and
complete if we restrict the deduction mechanism of default logic appro-

priately.

1 Introduction

Taxonomic hierarchies are widely used in natural language processing (cp. [K94,
Le83, EG90]). As the concepts employed may turn out inadequate or incomplete
later on, we want to regard hierarchies that could be altered subsequently.

Inheritance nets are a means for representing taxonomic knowledge. They
allow overriding information in the presence of exceptions. On the other hand,
approaches to belief revision where consistent sets of formulas are changed after
adding contradictory information have been treated extensively in the literature.
In order to be able to apply those results, we need a representation of inheritance
nets as a set of �rst-order formulas. Our translation to normal default theories
yields such a set; only the implicit assumptions underlying the conclusions of the
net remain to the defaults. Thus, we present the �rst step for applying the results
of belief revision on inheritance nets and leave the rest for future investigations.

Previous investigations (e.g. [T86]) generally asked how to de�ne the set of
conclusions supported by a net resp. how to de�ne a valid path in it. In the
presence of ambiguities the most speci�c information should be chosen. If none
of the contradictory information is most speci�c, it is either allowed to arbitrarily
choose between the competing information (credulous reasoning), or all of it has
to be blocked (sceptical reasoning). Unfortunately the intuitions about the valid
conclusions of a net often depend on the labeling of the nodes.

For that reason we do not discuss this problem, but regard such nets as
underspeci�ed and restrict ourselves to the investigation of unambiguous nets.
Paths are always valid if there are no exceptions present. Inadequate represen-
tations may be altered later on. We can model sceptical, as well as credulous
reasoning by modifying the net appropriately, or mixing both if required.



We will begin with Touretzkys de�nitions of inheritance nets (cp. [T86]).
Contrary to him, we do not allow nets that have valid paths contradicting each
other. We only regard unambiguous nets but preserve enough expressive capa-
bilities to model interesting situations since we extend the formalism by explicit
exception links. These start at a node and point to a link that is to be blocked.
We require to eliminate ambiguities by blocking appropriate links. Exception
links may only start at nodes \deeper" in the hierarchy than the link to be
blocked.

This makes Touretzkys de�nition that subclasses override superclasses (in-
ferential distance) explicit. In ambiguous situations we decide which path shall
be believed. Credulous or sceptical reasoning will be expressed by links appro-
priately marked with exceptions.

Etherington and Reiter already regarded inheritance nets with exceptions in
[ER83]. They also gave a semantics by translating the nets to default logic. But
they translated strict links to facts and defeasible links to semi-normal defaults.
We do not distinguish between strict and defeasible links, since we represent all
links uniformly as facts of the corresponding default theory. We assume that
all links can be restricted, so are defeasible. Distinguishing strict and defeasible
links could be done by de�ning priorities among the facts, thus allowing even
more than two priorities (it would correspond to strict/defeasible links).

Our translation yields a consistent set of formulas that allows belief revision.
Revision of that set shall correspond to a revision of the net. The defaults needed
only express the underlying assumptions that there exists no information more
speci�c than already provided. Contradictions shall be removed by restricting
links rather then by erasing them.

2 Tweety and Nixon

Example 1. (1) If we know that birds can 
y, pinguins are birds, pinguins cannot

y, and that Tweety is a bird, we can conclude that Tweety can 
y.
(2) If we come to know afterwards that Tweety is a pinguin we want to conclude
instead that Tweety cannot 
y. The usual �nal representation as inheritance
nets looks like �g. 1.

We want to stress two aspects:

{ The conclusion that Tweety can 
y is possible in the �rst net if we assume
that Tweety is not a pinguin. This is a common implicit assumption when
interpreting inheritance nets. It will appear as a default when translated to
default logic.

{ The nets contain two contradicting paths about pinguins' ability to 
y. Gen-
erally the contradiction will be solved by preferring a direct link over a
compound path. Thus in the second net we get: Tweety cannot 
y.

The representation of this example as a net assumes that all relevant in-
formation about the concepts involved is present. We think this assumption is
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Fig. 1. Famous Tweety

inadequate, and allow nets to be generated iteratively instead. The conclusions
about Tweety's ability to 
y depend on the links already present in the net.
They can be re�ned by inserting further links.

Counterexamples can be inserted provided that the net will be altered so
that it does not allow contradicting conclusions. This will be done by classifying
more speci�c concepts as exceptions of less speci�c ones, like pinguins being
exceptions of birds.

Example 2. Fig. 2 shows an example of a net allowing di�erent contradicting
conclusions:
Nixon is quaker and republican. Quakers are paci�sts, republicans are not.

We demand to de�ne exactly whether a conclusion from nixon to paci�sts is
allowed and if so which one. So, if the last link of the Nixon-diamond is added,
a contradiction appears that has to be resolved by blocking at least one of the
two con
icting paths. For this use, we allow exception links starting from a node
and pointing to a link, blocking the link pointed at. The starting point of such
a link is called exception.

If the Nixon-diamond is drawn with exception links we can model credulous
(�g. 3) or sceptical reasoning (�g. 4). By this means we always get nets with
exactly one extension thus avoid the discussion about the advantages of sceptical
vs. credulous inheritance reasoners.

Supporting uniformity we also add an exception link if a path is overridden
by a direct link. To obtain the same conclusions it has to point from the most
speci�c concept participating in the contradiction to the last link of the path to
be contradicted. \Tweety" would then look like �g. 5.



p

q r

N

~~
~~
~~

??

�@@@

__@@@

__?????? ��
��
��

??
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Fig. 3. The Nixon-diamond with exception links: the credulous extensions
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Fig. 4. The Nixon-diamond with exception links: the sceptical extension
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Fig. 5. Famous Tweety with exception links



3 Inheritance Nets

Our language will contain

{ Individuals a; b; : : :
{ Concepts X;Y; : : : with P being the set of all concepts
{ Signed concepts +X or �X called positive or negative concepts, respectively.
{ Links (x; y; Z) where x is an individual or a positive concept, y is a positive
or negative concept and Z � P the set of the exceptions of that link.

We introduce the orderings �, �tr , �is�a and �is�atr . If (x; y; Z) is a link,
then x � y. If y is positive, then also x �is�a y. �tr and�is�atr are the transitive
closures of � and �is�a.

If y is positive we write x!Z y. If it is negative, there is a positive concept
V with y = �V . We then write x 6! V . The links are called positive or negative
links, respectively.

In the followingx; y; z will denote individuals or positive or negative concepts,
if not declared otherwise. For a signed concept x; jxj will denote the correspond-
ing unsigned object.

De�nition1. An inheritance net N is a �nite set of links satisfying the following
conditions:
1. If (x; y; Z) 2 N , then x 62 Z and y 62 Z.
2. (x; y; Z) and (x; y; Z0) 2 N implies Z = Z0.
3. If (x; y; Z) 2 N then z �is�atr x for all z 2 Z and all z are positive concepts.

De�nition2. A path of a net N (from x1 to xn) is an n-tuple (x1; : : : ; xn) so
that
- n = 2 and there is a link (x1; x2; Z) 2 N or
- n � 3 and there is a path (x1; : : : ; xn�1) and a link (xn�1; xn; C) 2 N; x1; : : : ; xn
pairwise disjoint, x1; : : : ; xn�1 positive.

A path is called positive, if xn is a positive concept and negative, if xn is a
negative concept.

De�nition3. An explicit path of a net N (from x1 to xn) is a n+1-tuple
(x1; : : : ; xn; Z) so that
- n = 2 and (x1; x2; Z) 2 N or
- n � 3 and there exists an explicit path (x1; : : : ; xn�1; B) and a link (xn�1; xn; C)
in N , Z = B [C; x1; :::; xn pairwise disjoint and not in Z, x1; : : : ; xn�1 positive.

A path (x1; : : : ; xn) is explicit if there is an explicit path (x1; : : : ; xn; Z) in
N .

Lemma4. Let (a; x1; : : : ; xn; Z) be an explicit path in N . Then for every i 2
f1; : : : ; ng there exists a set Zi so that (a; x1; :::; xi; Zi) is an explicit path in N .

Proof
See de�nition of explicit path.



Remarks 3.1

{ Contrary to the de�nitions in [T86] we allow links being blocked by excep-
tions (cp. [ER83]). This extension is rational as it allows the explicit blocking
of paths if contradictions are present.

{ In condition 3 of de�nition 1 we could also allow individuals as exceptions
blocking a link. This would complicate the presentation of our results and
proofs. Nets containing individuals as exceptions can be transformed by in-
troducing a new concept being true only of the exceptional individual and
pointing to the link to be blocked.

{ A link may only be blocked by more speci�c concepts. In terms of paths this
means: If (x1; : : : ; xn; Z) is a path in N; z 2 Z, then there is an path from z

to an xi. This is a very natural restriction, because exceptions of concepts are
only exceptions if they really belong to that concept. This condition re
ects
the idea that inheritance nets are generated iteratively from links without
exceptions and exceptions are only added to remove contradictions.

{ Contrary to Touretzky we de�ne paths by forward chaining rather than by
double chaining. There will be no di�erences here because we only consider
unambiguous nets. Thus, the problems like decoupling e.g. (cp. [Lo89]) do
not occur.

De�nition5. An inheritance net is called acyclic, if �tr contains no pairs (x; x).

De�nition6. The extension of a net N is Ext(N ) := f (x; y)j there is an explicit
path (x; : : : ; y; Z) in Ng.

De�nition7. A net N is called ambiguous if (x; y) 2 Ext(N ) and (x;�y) 2
Ext(N ). N is unambiguous if it is not ambiguous.

De�nition8. An inheritance net N is called clear, if all positive paths from x

to y in N are explicit or all are not explicit and the same is true of all negative
paths (cp. �g. 6).

Remarks 3.2

{ If a net is unambiguous there are no con
icting paths. A (possibly ambigu-
ous) inheritance net constructed as described by Touretzky can be trans-
formed to an unambiguous one agreeing with our de�nitions by inserting
explicit exception links if a path shall be overridden by a more speci�c one
(inferential distance). As a direct link can only be blocked by more speci�c
concepts it always wins against a longer path.

{ If a net has more than one extension we select one of them by inserting
exceptions. Credulous reasoning means blocking one of the con
icting paths,
sceptical reasoning blocking all of them.

{ We only want to consider acyclic nets in order to get a good translation.
{ We could omit the condition of a net being clear if we adopted a strategy

like Touretzkys \inferential distance". We had to guarantee that an explicit
path is not considered for the extension if there is a more speci�c path being
blocked by an exception. We omitted this concept for simplicity.
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Fig. 6. The left net is not clear, the right one is ambiguous.

4 Reiter's Default Theories

We work with a �nite signature � := (Const; P ), Const is a set of constants
a; b; : : : and P contains unary predicate symbols x; y; : : : A default theory is a
pair (F;D), with F being a set of �rst-order formulas, D a set of (here: normal)
defaults without prerequisites, written : :x(v)=:x(v) with constant or variable
v. This means that :x(v) may be inferred in the default theory if it is consistent
(cp. [R80]).

De�nition9. The extension of a default theory is de�ned as a �xpoint of an
operator � satisfying:
Let (F;D) be a closed default theory, S a set of closed �rst-order formulas. Then
� (S) is the smallest set satisfying the following three properties:
D1) F � � (S).
D2) The theorems of � (S) are contained in � (S).
D3) If : :x(v)=:x(v) 2 D and x(v) 62 S, then :x(v) 2 � (S).

Every closed normal default theory has an extension ([R80]).

De�nition10. Let E be an extension of (F;D). Then GD(E) are called the
generating defaults of E if GD(E) is the smallest subset of D so that E is also
an extension of (F;GD(E)).

5 Translation

We identify individuals of inheritance nets with constants of default theories.
Positive concepts are identi�ed with predicate symbols, negative concepts with
negated predicate symbols.

Links (x; y; Z) of a net N will be translated to



{ y(x), if x is an individual. Then always Z = ;.
{ (8v)[

W
z2Z z(v) _ :x(v) _ y(v)] with zi �is�atr x �tr y.

Here z and x are predicate symbols, y is a (possibly negated) predicate symbol.

De�nition11. FN and (FN ; D)
Let N be an inheritance net. Then FN is the set of all formulas that are the
translations of all links of N . We build the default theory (FN ; D) with D :=
f: :x(a)=:x(a)jx 2 P; a 2 Constg. Thus we assume that a has not property x

if it is consistent to do so (closed world assumption).

Remarks 5.1

{ We would like to get a result that the default theory corresponding to an
inheritance net always has one extension yielding the same conclusions as
the net. Unfortunately this is not true:

Example 3. The translation of the net in �g. 7 yields a default theory with
two di�erent extensions, one containing fb(Tw), f(Tw), :p(Tw)g, the other
fb(Tw); :f(Tw); p(Tw)g. The �rst extension needs the default
::p(Tw)=:p(Tw), the second needs ::f(Tw)=:f(Tw). Thus we can deduce
that an exception is present even if there would be another possibility. This
is due to the fact that default logic, contrary to inheritance nets, may use
contraposition of formulas.

{ It can easily be shown that the extensions of the default theories described
above are always complete, i.e. for every constant a and every predicate y
we get either y(a) or :y(a). Obviously that is di�erent from the conclusions
in the extension of the original inheritance net. To tackle these problems, we
restrict the deduction mechanism.

{ If nets are not clear, (a; p) 2 Ext(N ) does not imply that (FN ; D) has an
extension that contains p(a). The left net of �g. 8 is not clear, r(a) 2 Ext(N ),
but r(a) is not deducible from (FN ; D), because s(a) is deducible from FN .
The right net of �g. 8 is neither clear nor unambiguous, but FN is consistent.
De�ning I by I(p) = I(q) = I(s) = fag and I(r) = ; we get a model of FN .

{ Example 4. The nets of �g. 9 are ambiguous as their extensions contain (a; s)
as well as (a;:s). But FN is consistent, yielding p(a); q(a); r(a);:s(a) and
t(a).

Theorem12. Let N be an acyclic, unambiguous and clear inheritance net.

Then the set of formulas FN resulting from translating N to default logic is
consistent.

Proof
We show the assertion by constructing a model of FN .
We classify the predicates corresponding to the relation � on them.
P0 := fy 2 P jthere is no x 2 P with x � yg
Pi := fy 2 P jthere is no x 2 P nPi�1 with x � yg
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Now the formulas are classi�ed accordingly:
F 0
N := f(:)y(a) 2 FN jy 2 P0; a 2 Constg

F i
N := f

W
z2Z z(v) _ :x(v) _ (:)y(v) 2 FN jy 2 Pi; x � y; z �tr x for all z 2

Zg [ f(:)y(a) 2 FN jy 2 Pi; a 2 Constg
We iteratively construct a Herbrand-model:
For y 2 P we de�ne
y0w := fa 2 Constjy(a) 2 F 0

Ng;
y0f := fa 2 Constj:y(a) 2 F 0

Ng:

yiw := fa 2 Constj[
W
z2Z z(v) _ :x(v) _ y(v) 2 F i

N ; a 62 zi�1w for all z 2 Z; a 2
xi�1w ] or y(a) 2 F i

Ng [ y
i�1
w

yif := fa 2 Constj[
W
z2Z z(v) _ :x(v) _:y(v) 2 F i

N , a 62 zi�1w for all z 2 Z; a 2

xi�1w ] or :y(a) 2 F i
Ng [ y

i�1
f

We get that for y 2 Pi; y
j
w = y

j
f = ; for j < i as well as yjw = yj+1w and y

j
f =

y
j+1

f for j � i. Let n be minimal with Pn = P . We show thatM := (Const; I) with I(y) =
ynw for all y 2 P is a Herbrand-model of FN . Thus on level i all predicates of Pi
are de�ned based on the de�nitions of the predicates of the levels 0 to i-1.

In order to proceed with the proof we show

Lemma13. Let N be an acyclic, unambiguous and clear inheritance net, n min-
imal with Pn = P . Then for all a 2 Const; y 2 Pn :[a 2 ynw i� (a; y) 2 Ext(N )]
and [a 2 ynf i� (a;�y) 2 Ext(N )].

Proof
We proof the assertion by induction on the classi�cation of the predicates:
1. i = 0:
For i = 0 all links in the net pointing to a node y 2 P0 cannot have any excep-
tions, they look like (a; (�)y; ;) with a 2 Const. Then y(a) 2 F 0

N resp. :y(a) 2
F 0
N i� (a; y; ;) resp. (a;�y; ;) 2 N i� (a; y) 2 Ext(N ) resp. (a;�y) 2 Ext(N ).

2. i-1 ! i:
Let a 2 yiw for y 2 Pi. Then F i

N contains the formula y(a) or the formulaW
z2Z z(v) _ :x(v) _ y(v) with a 2 xi�1w ; a 62 zi�1w for all z 2 Z.

2.1. If y(a) 2 F i
N we know that (a; y; ;) 2 N , so (a; y) 2 Ext(N ).

2.2. If [
W
z2Z z(v) _ :x(v) _ y(v)] 2 F i

N we know that x 2 Pj for a j < i.
Using the induction hypothesis we get that in N there exists an explicit path
(a; x1; : : : ; xn; x; C) and a link (x; y; Z). We assume for contradiction that the
path (a; x1; : : : ; xn; x; y; C [ Z) is not explicit. Thus w.l.o.g. there is an k with
xk 2 Z; xk 2 Pi�1 (for uniformity of the representation we have excluded the pos-
sibility of a being an element of Z, see remark in the de�nitions). We know there
is an explicit path (a; x1; : : : ; xk; D) in N (Lemma 3.4), so (a; xk) 2 Ext(N ).
Using the induction hypothesis we get a 2 xi�1kw

with xk 2 Z: Contradiction.

The proof is analogous if a 2 yif .

Now let (a; y) 2 Ext(N ). So there exists an explicit path (a; : : : ; x; y; C) 2 N .
Then N contains an explicit path (a; : : : ; x; C0) and a link (x; y; Z) with C =



Z [ C0. Using the induction hypothesis, we get a 2 xi�1w and a 62 zi�1w for all
z 2 C0. We show a 62 zi�1w for all z 2 Z.

Assume, a 2 zi�1w for a z 2 Z. Then (a; z) 2 Ext(N) and z �is�atr x. As
N is clear and there exists an explicit path from a to x, there is also an explicit
path (a; : : : ; z; : : : ; x; Zz) from a via z to x. Adding the link (x; y; Z) yields the
path (a; : : : ; z; : : : ; x; y; Zz[Z) being not explicit for z 2 Z. Contradiction to the
assumption of N being clear as (a; : : : ; x; y; C) is an explicit path.

For negative paths and links the proof is analogous.

We now show that the model constructed above always exists. Assume that F i
N

contains the two formulas
W
z2Z z(v)_:x(v)_:y(v) and

W
z2Z0 z(v)_:x0(v)_y(v)

and there is a constant a with a 2 xnw [ x0w
n
. We know by Lemma 13 that

then (a; x) and (a; x0) 2 Ext(N ). As N is unambiguous (a; y) 62 Ext(N ) or
(a;:y) 62 Ext(N ) but (x; y; Z) and (x0;:y; Z0) are in N . Thus one of the paths
from a to (:)y is blocked by an exception z 2 Z [ Z0 and (a; z) 2 Ext(N ). By
Lemma 13 we can conclude a 2 znw for a z 2 Z [ Z0. Thus at most one of the
above formulas is applicable and yw \ yf = ; is guaranteed.

Corollary14. Let N be an acyclic, unambiguous and clear inheritance net.
Then the resulting default theory (FN ; D) has a consistent extension.

Proof
See theorem 12 and [R80], page 91, Corollary 2.2.

We now show how to restrict the deduction mechanism. We start out from
Reiters description of top down default proofs used to determine whether a
default theory has an extension containing a formula �. As pointed out before
we do not want to get all formulas of an extension. So we use an appropriate
restriction. Recall the de�nition of a linear resolution proof of a formula � ([Lo70,
Lu70]) :

De�nition15. A linear resolution proof of a formula � from a set of clauses S
has the form of �g. 10 where
(1) the top clause, R0, is a clause of :�.
(2) For 1 � i � n;Ri is a resolvent of Ri�1 and Ci�1.
(3) For 0 � i � n� 1; Ci 2 S or Ci is a clause of :� or Ci is Rj for some j < i.

(4) Rn is the empty clause.

De�nition16. Res� � proof

{ A res� � proof of a literal � from a set of clauses S is a linear resolution
proof of � from S respecting the order � on the predicates of P :
If Ri�1 =

W
i2I Li(a) _ L(a) and Ci�1 =

W
j2J Lj(a) _ :L(a), then Ri =W

i2I[J Li(a) is the resolvent of Ri�1 and Ci�1 and L 6�tr Li for all i 2 I[J .
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{ A res� � proof of � from a default theory (FN ; D) is a res� � proof of �
from FN with C0 2 FN and for 0 < i � n�1; Ci 2 FN [f:p(a)j there exists
no res� � proof of p(a) from (FN ; D).

Lemma17. Let N be an acyclic, unambiguous and clear inheritance net, (FN ; D)
the corresponding default theory, ynw and ynf as in theorem 12. Then [there exists
a res��proof of y(a) from (FN ; D) i� a 2 ynw] and [there exists a res��proof
of :y(a) from (FN ; D) i� a 2 ynf ].

Proof
Induction on the classi�cation of the predicates:
1. Let y 2 P0 . There is a res��proof of (:)y(a) is equivalent to (:)y(a) 2 FN
being equivalent to (:)y(a) 2 F 0

N (cp. theorem 12).
(:)y(a) 2 F 0

N i� a 2 ynw resp. a 2 ynf .

2. For all p �tr y we assume: There exists a res� � proof of (:)p(a) i� a 2 ynw
resp. a 2 ynf .
2.1: (:)y(a) 2 FN . Analogous to 1.
2.2: There is a formula

W
z2Z z(v) _ :yn�1(v) _ (:)y(v) in FN . Then the �rst

step in the proof will be

:y(a)
W
z2Z z(v) _ :yk�1(v) _ y(v)

W
z2Z z(a) _ :yk�1(a)

hhhh
hhhh

hhhh
hhhh

h

(resp. y and :y exchanged)
For all z 2 Z there is no res� � proof of z(a) (as FN is consistent and the
res� � proof of (:)y(a) is also a proof of

V
z2Z :z(a) ^ yk�1(a).



For inheritance nets we know z �tr yk�1 for all z 2 Z. With the induction hy-
pothesis we get a 2 ynk�1w ; a 62 znw for all z 2 Z. But then a 2 ynw resp. a 2 ynf .

For the other direction:
Let a 2 ynw resp. a 2 ynf ; y 2 Pi. For i = 0 see 1.

Let i > 0. Then there is a formula
W
z2Zy

z(v) _ :yk�1(v) _ (:)y(v) in F i
N ; a 2

ynk�1w ; a 62 znw for all z 2 Zy. We construct a res� � proof of (:)y(a):

:y(a)
W
z2Zy

z(v) _ :yk�1(v) _ y(v)

W
z2Zy

z(a) _ :yk�1(a)
hhhh

hhhh
hhhh

hhhh
h

(resp. y and :y exchanged)
will be the �rst step, z �tr yk�1. With the induction hypothesis we get that there
exists a res� � proof of yk�1(a) and no res� � proof of z(a) for all z 2 Z.
Therefore we may use the defaults : :z(a)=:z(a) in the proof. Putting the �rst
step together with the proof of yk�1(a) and using the defaults : :z(a)=:z(a) if
necessary yields a res� � proof of (:)y(a).

Theorem18. Let N be an unambiguous, clear inheritance net, (FN ; D) the cor-
responding default theory. Then (FN ; D) has an extension E so that: [(a; y) 2
Ext(N ) i� y(a) 2 E] and [(a;�y) 2 Ext(N ) i� :y(a) 2 E and : :y(a)=:y(a) 62
GD(E)].

Proof
We constructed a model of FN (see theorem 12). As all extensions of (FN ; D)
are complete, every extension has exactly one model and every model of FN is
the model of one extension of (FN ; D). Thus (FN ; D) has an extension with the
model constructed in theorem 12. Lemma 17 shows that we get all ground literals
valid in that model by res� � proofs or by defaults.

6 Summary

We provided a translation from inheritance nets with exceptions to normal de-
fault theories having the following properties:

{ Every link in the net corresponds to a fact in the default theory. The implicit
assumptions underlying the conclusions of a net are translated to defaults.
This di�ers from former approaches ([ER83, S86]) that represented defeasible
links as defaults.

{ Our translation is sound for unambiguous and clear acyclic nets.



{ Inheritance nets implicitly de�ne an order on the concepts used. For default
theories we de�ne a deduction mechanism respecting that order. Thus, the
translation becomes complete.

Our translation is very natural because ist respects the di�erence between
explicit information (= links) and implicit assumptions (= defaults) underlying
the conclusions of a net. Furthermore we can then apply results of approaches
to belief revision. This will be subject to future investigations.

7 Acknowledgements

I would like to thank Ch. Brzoska, J. Giesl, Th. Linke, J. Posegga and Th. Ortelt
for discussions, helpful comments and for reading the draft of the paper.

References

[E88] Etherington, D.: Reasoning with incomplete information. Los Altos, Morgan
Kaufmann (1988).

[ER83] Etherington, D. W. and Reiter, R.: On inheritance hierarchies with ex-

ceptions. Proc. AAAI-83, Washington, DC (1983) 104-108.
[EG90] Evans, R. and Gazdar, G. (eds.): The DATR papers, Vol. 1. CSRP 139.

School of Cognitive and Computing Sciences, The University of Sussex,

Brighton BN19QH (1990).
[K94] Kilbury, J.: Strict inheritance and the taxonomy of lexical types in DATR.

This volume.

[Le83] Levinson, S. C.: Pragmatics. Cambridge University Press (1983).
[Lo89] Lorenz, S.: Nichtmonotones Schlie�en mit ordnungssortierten Defaults. Mas-

ter thesis, University of Karlsruhe (1989).

[Lo70] Loveland, D. W.: A linear format for resolution. Proc. IRIA Symp. Au-
tomatic Demonstration, Versailles, France, 1968 (Springer-Verlag, New York,

1970) 147-162.

[Lu70] Luckham, D.: Re�nements in resolution theory, Proc. IRIA Symp. Automatic
Demonstration, Versailles, France, 1968 (Springer-Verlag, New York, 1970)

163-190.

[R80] Reiter, R.: A logic for default reasoning. Arti�cial Intelligence 13 (1980)
81-132.

[S86] Sandewall, E.: Nonmonotonic inference rules for multiple inheritance with

exceptions. Proc. IEEE 74 (1986) 81-132.
[SL93] Selman, B. and Levesque, H.J.: The complexity of path-based defeasible

inheritance. Arti�cial Intelligence 62 (1993) 303-339.

[T86] Touretzky, D.: The mathematics of inheritance systems. Los Altos, Morgan
Kaufmann (1986).

This article was processed using the LaTEX macro package with LLNCS style


