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Abstract

Introspective systems have been proved useful in several applica-

tions, especially in the area of automated reasoning. In this paper

we propose to use structured algebraic speci�cations to describe the

embedded account of introspective systems. Our main result is that

extending such an introspective system in a valid manner can be re-

duced to development of correct software. Since sound extension of

automated reasoning systems again can be reduced to valid exten-

sion of introspective systems, our work can be seen as a foundation

for extensible introspective reasoning systems, and in particular for re-

ective provers. We prove correctness of our mechanism and report on

�rst experiences we have made with its realization in the KIV system

(Karlsruhe Interactive Veri�er).
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1 Introduction

An introspective system is a software systems that has a partial description

of itself embedded in itself [36, 51]. Such systems have been proved useful

in areas like programming languages [7, 50, 32], knowledge representation

[35], and deduction. The latter is the concern for this paper. We believe that

introspection provides a solution to two main problems of powerful reasoning

systems:

� soundness: How can we guarantee that the formulas proved by a the-

orem prover are actually theorems? This question arises as modern

reasoning systems (e.g. Nqthm [9], Nuprl [15], KIV [45], Never [16], HOL

[21]) are quite complex. One approach | taken e.g. in Never [34] and


-MKRP [29, 30] | is to transmit the proofs constructed by a com-

plex prover to a proof checker which is so simple that it can be trusted.

However this method leads to ine�ciency. Another approach is to guar-
antee the soundness of the (complex) reasoning system itself. This can
be done by starting out with a simple (and sound) prover and soundly
extending it step by step.

� exibility: It is a well-known fact that depending on the application

di�erent provers are well suitable. So it is desirable to tune a reasoning
system for intended applications. This tuning can be done by extending
the prover with kinds of rules and procedures that humans have found
e�ective in constructing proofs. Understandably enough the soundness
of such extensions has to be guaranteed by some mechanism.

So both, soundness problem and exibility problem, can be reduced to the
problem of sound extensions. The primary traditional solution to this prob-

lem is tactics [22, 15, 41, 27]. Tactic mechanisms are sound as each tactic
application amounts to constructing a justi�cation using primitive inference
rules. However, (as has often been pointed out, e.g. in [49, 19, 39, 5]) this
may be very time-consuming. One alternative that avoids this ine�ciency
is to explicitly prove the soundness of extensions. This requires the pos-

sibility to reason about (extensions of) the reasoning system. In so-called

reective provers this reasoning is done within the system itself. In order
to reason about itself such a system must have an embedded declarative de-
scription of (a part of) itself. Therefore, reective provers are introspective

systems. However, though the reective approach has been pursued several

times [17, 52, 10, 33, 28, 38, 26], it appears that up to now it has not been

used in signi�cant applications. We believe that the reason for this is in

the particular mechanisms taken so far: reection requires to prove com-
plex obligations, and so techniques are necessary to handle these tasks. Our

approach reduces sound extensions of a (reective) theorem prover to devel-
opment of correct software. As a consequence, there are no new techniques
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Figure 1: Reducing sound extensions of (reec-
tive) provers to development of correct program
modules

to be developed but we can directly employ advanced techniques known for
correct software development (e.g. modularization). First experiments with
the realization of our mechanism in the KIV system look quite promising.

This paper is organized as follows. Section 2 recalls some basic notions.

In section 3 we introduce the notion of introspective systems and prove a the-
orem which states that validity preserving extension of introspective systems
can be reduced to development of correct program modules. In section 4 we
show how soundly extending a reective prover can be reduced to extending
an introspective system in a validity preserving manner. Figure 1 illustrates
this situation. In section 5 related work is considered, and in the �nal section

we draw conclusions and report on �rst experiences we have made with the

realization in the KIV system.

2 Basic notions

Signatures, formulas. We consider many-sorted signatures � = (S;F )

with a set of sorts S and a set F of function1 symbols equipped with a

1Without loss of generality we assume to have no predicate symbols. Instead we use
functions with a (prede�ned) sort bool = ftt;� g as target sort.

3



mapping2 sort : F ! S��S. If �0 = (S0;F 0) with S0 � S and F 0 � F is again

a signature, we call �0 a subsignature of �. For a family X := fXs j s 2 Sg

of variable sets L(�;X) denotes the set of �rst-order formulas over � and X.

Algebras. Formulas are interpreted over �-algebras. For � = (S;F ) a

�-algebra A = ((As)s2S; (fA)f2F ) consists of non-empty carrier sets As and

interpretations fA for the symbols from F . For f 2 F with sort(f) =

(s1 : : : sn; s) the interpretation fA is a total function from As1
� � � � �Asn

to

As. For a subsignature �
0 = (S0;F 0) of � we call A j�0 := ((As)s2S0; (fA)f2F 0)

the �0-reduct of A.

A �-algebra A = ((As)s2S; (fA)f2F ) is called generated if for each sort

s 2 S every carrier element a 2 As can be denoted by a ground term over

�. For a formula ' 2 L(�;X) and a �-algebra A we write A j= ' if A is a

model of '. By Gen(�;�) we denote the set of generated �-algebras which

are models of a formula set � � L(�;X).

Algebraic speci�cations. As motivated in [44] we use full �rst order spec-
i�cations and consider the class of all generated models as its semantics (so-

called loose semantics). A speci�cation SP = (�;X; �) consists of a signature
� = (S;F ), a familyX = fXs j s 2 Sg of countably in�nite variable sets, and
a set � 2 L(�;X) of �rst-order formulas over � and X. By sig(SP) := �
we denote the signature of SP , by op(SP ) := F its function symbols, by
vars(SP) := X its variable sets, and by ax(SP) := � its axioms. For the se-

mantics of a speci�cation we adopt an approach of Giarratana et al. [18] and
the Munich CIP-group [55, 54]: We de�ne the semantics of SP = (�;X; �)
by SemS(SP ) := Gen(�; �).

A speci�cation SP 1 = (�1;X1; �1) with �1 = (S1;F 1) is an enlargement

of the speci�cation SP2 = (�2;X2; �2) with �2 = (S2;F 2) if S1 = S2, F 1 �

F 2, X1 � X2, and �1 � �2. The enlargement operation can be used to

add new function symbols to the signature of a speci�cation SP and new
axioms to those of SP which describe the new functions. For a speci�cation
SP = (�;X; �), a subsignature �0 = (S0;F 0) of �, and X 0 := fXs j s 2 S0g

we call SP j�0 := (�0;X 0; � \ L(�0;X 0)) the �0-reduct of SP .

Programs. We assume a typed programming language and an algebraic
semantics de�ned for programs in this language (cf. [3]). A program PRG =

(TD;PD) consists of type declarations TD and procedure declarations PD

and is built over a set of type identi�ers TIDS and a set of procedure iden-
ti�ers PIDS equipped with a mapping type : PIDS ! TIDS � � TIDS .

We only consider well-formed programs; especially we demand that all type
and procedure identi�ers used in PRG are declared in PRG and that all

2S� are the �nite words over S.
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procedure declarations in PD exhibit the typing indicated by their proce-

dure identi�ers. Furthermore we restrict ourselves to procedures that are
functional3 and never fail to terminate.4 For (a part of) a program PRG,
dt(PRG) and dp(PRG) denote the set of type identi�ers and procedure iden-
ti�ers declared in it, respectively. The semantics of the program PRG is the
algebra induced by the type declarations TD (which has exactly one carrier

set At for each t 2 dt(PRG)) enlarged by functions Fp := SemP (p;PRG),
p 2 dp(PRG), computed by the corresponding declarations in PD. So if
type(p) = (t1 : : : tn; t) then Fp is a total function from At1

� � � � �Atn
to At.

Abstract programs. For a signature � = (S;F ) an abstract program

aPRG over � is a set of procedure declarations which use the function sym-
bols from F as elementary operations. No type declarations are required as

the procedures operate on the sorts S. Wellformedness is de�ned as above
and implicitly assumed. Again we restrict on functional procedures but do

not demand termination. The semantics SemAP (p; aPRG) of an abstract
procedure in aPRG with identi�er p is a total function that maps �-algebras

A = ((As)s2S ; (fA)f2F ) into the partial function over the carrier of A that is
computed when calling p where the symbols f 2 F occurring in aPRG are

interpreted by fA.

3Functional procedures do not use global variables and use reference parameters only
as result parameters.

4The demand for termination can be dropped if one uses partial algebras as semantics.
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Program modules. As proposed in [2] the notion of program modules

can be used for vertical re�nement of speci�cations. In order to re�ne a

speci�cation SP 1 it is implemented in terms of a (more elementary) speci-

�cation SP2. In this paper we restrict ourselves to modules where SP 1 is

an enlargement of SP 2. Formally, a module M = (EXP ; IMP ; aPRG;MAP)

consists of two speci�cations EXP = ((SEXP ;FEXP );XEXP ; �EXP ) and

IMP = ((SIMP ;FIMP );XIMP ; �IMP ), a set aPRG of abstract procedures

over �IMP = (SIMP ; OPIMP ), and a representation function MAP . We de-

mand EXP to be an enlargement of IMP, so SEXP = SIMP and FEXP �

FIMP . EXP and IMP are called the export and the import of the mod-

ule M , respectively. MAP is a total, injective function that maps func-

tion symbols from FEXP n FIMP into procedure identi�ers of aPRG with

the same typing. Roughly speaking, the semantics SemM (M) of a mod-

ule M = (EXP ; IMP ; aPRG;MAP) is a partial function induced by aPRG.

It maps generated models of the import speci�cation IMP to generated
algebras of the export signature �EXP = (SEXP ;FEXP ) as follows: For

A =
�
(As)s2SIMP ; (fA)f2FIMP

�
2 SemS(IMP) we set

SemM(M)(A) := �
As

�
s2SEXP

;

�
fA

�
f2FIMP

S�
SemAP

�
MAP(f); aPRG

�
(A)

�
f2FEXP nFIMP

!

if all functions SemAP

�
MAP(f); aPRG

�
(A) are total. Otherwise, the value

of SemM(M)(A) is unde�ned. A module M is called correct if the function
SemM (M) is total and its values are models of the export speci�cation EXP .
Informally, this means that the procedures of the implementation terminate
and exhibit the behavior speci�ed in the export.

Signature representations. For a signature � = (S;F ) and a program
PRG a �-representation REP in PRG is a total, injective function that
maps sorts from S into type identi�ers from dt(PRG), and function symbols
from F into procedure identi�ers from dp(PRG), so that5 REPT (sort(f)) =
type(REP(f)). We call

APRG ;REP :=

��
AREP (s)

�
s2S

;
�
SemP (REP(f);PRG)

�
f2F

�

the algebra induced by PRG and REP . APRG ;REP is a �-algebra. By REPP

we denote the total function that maps abstract procedure declarations PRC
over � into non-abstract procedure declarations:6 REPP (PRC ) is essentially

5The function REPT is de�ned to map sorts of function symbols f in � into types of
procedures by REPT (s1 : : : sn; s) := (REP (s1) : : :REP (sn);REP(s)).

6We assume separate identi�ers for abstract procedures and allow to use the same ones
as identi�ers for non-abstract procedures (with a di�erent typing).

6



PRG

META� REP

Figure 3: An introspective system

the same as PRC itself calling the procedures REP(f) whenever a symbol

f 2 F occurs in PRC .

In the next section we make use of the following connection between

abstract programs and non-abstract programs:

Fact 2.1 Let aPRG be an abstract program over a signature � and REP a

�-representation in a program PRG with dp(aPRG) \ dp(PRG) = ;. Then

for each procedure identi�er p in aPRG holds:

SemAP (p; aPRG)(APRG ;REP ) = SemP (p;PRG [ REPP (aPRG)):

3 Introspective systems and their extensions

An introspective system is a software system that has an embedded account
of itself (cf. [50, 36]), i.e. a partial description of itself in itself. We propose
to use (�rst-order) speci�cations to represent such descriptions.

De�nition 3.1 An introspective system IS = (PRG;META;REP) consists
of a program PRG, a speci�cation META, and a sig(META)-representation

REP in PRG.

The representation REP explicitly establishes a relation between the em-

bedded account META and the program PRG. REP can be described as

a table or implemented as a procedure in the programming language too.
Notice that introspection is restricted: META represents components from
PRG only and not from REP or META itself. Notice further that META

may be merely a partial description of PRG: there can be procedures in

PRG that are not in the range of REP. We want META to represent PRG
\adequately7", i.e. that the meaning of the represented part of PRG is in fact

7Besides adequacy, for some applications a kind of faithfulness of META with respect
to PRG is required. This can be achieved by demanding META to be monomorph. We
will not discuss this aspect here but refer to [44, 47].
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modeled by META. If IS has this property we call it a valid introspective
system.

De�nition 3.2 An introspective system IS = (PRG;META;REP) is valid
if the algebra induced by PRG and REP is a model of META, i.e.

APRG ;REP 2 SemS(META):

This situation which is illustrated in �gure 4 looks very similar to the

work that has been done in connection with the reective theorem prover
GETFOL [26, 23]. However, in all what follows we signi�cantly di�er from the
approach taken in GETFOL. For more details see section about related work.

In the rest of this section we deal with the question on how an intro-
spective system can be extended in a validity preserving manner. We have

restricted ourselves to extensions of an introspective system where no new

sorts can be added to the signature of META. This restriction is not abso-
lutely compelling but it simpli�es presentation.

De�nition 3.3 An introspective system IS 1 = (PRG1;META1;REP1) is

an extension of an introspective system IS 2 = (PRG2;META2;REP2) if

PRG1 � PRG2 holds, META1 is an enlargement of META2, and furthermore8

REP1 jsig(META 2)
= REP2.

The following theorem is our main result. Informally, it states that (some

kinds of) validity preserving extensions can be reduced to construction of

correct program modules.

8For a function g : D ! R and D0 � D we write g jD0 to denote the restriction of g on
D0, i.e. g jD0 : D0 ! R with g jD0 (x) := g(x) on D0.
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Theorem 3.1 Let IS = (PRG;META;REP) be an introspective system

and M = (META+;META; aPRG;MAP) a module with dp(aPRG) and

dp(PRG) disjoint. Then for IS+ := (PRG+;META+;REP+) with PRG+ :=

PRG [ REPP (aPRG) and9 REP+ := REP [MAP holds:

1. IS+ is an introspective system,

2. IS+ is an extension of IS, and

3. if IS is valid and M is correct then IS+ too is valid.

Proof. The proof is almost straightforward.

1. It is easy to see that REP+ is a sig(META+)-representation in PRG+.

Notice that REP+ is de�ned at all since all function symbols added by

enlargment have to be new.

2. This is an immediate consequence of de�nition 3.3. Remember that
META+ is an enlargement of META because of our restricted notion
of modules.

3. From validity of IS follows that APRG;REP 2 SemS(META). So,

because of the correctness of M , SemM(M)(APRG ;REP ) is de�ned

and in SemS(META+). Furthermore it holds (for sig(META) =: (S;F )
and sig(META+) =: (S+;F+)):

APRG +
;REP +

=

 �
AREP +

(s)

�
s2S+

;

�
SemP

�
REP+(f);PRG+

��
f2F+

!

=

 �
AREP +

(s)

�
s2S

;

�
SemP

�
REP+(f);PRG+

��
f2F

[
�
SemP

�
REP+(f);PRG+

��
f2F +

nF

!

=

 �
AREP (s)

�
s2S

;

�
SemP

�
REP(f);PRG

��
f2F

[
�
SemP

�
MAP(f);PRG [ REPP (aPRG)

��
f2F +

nF

!

=

 �
AREP (s)

�
s2S+

;

�
SemP

�
REP(f);PRG

��
f2F

[

9For two functions g1 : D1 ! R1 and g2 : D2 ! R2 with D1 \ D2 = ; we de�ne

g1 [ g2 : D1 [D2 ! R1 [R2 by (g1 [ g2)(x) :=

�
g1(x) , if x 2 D1

g2(x) , if x 2 D2

9



�
SemAP

�
MAP(f); aPRG

�
(APRG ;REP )

�
f2F

+
nF

!

= SemM (M)(APRG ;REP )

The fourth equation is an application of fact 2.1. In summary we have

APRG +
;REP + = SemM(M)(APRG ;REP ) 2 SemS(META+)

which states the validity of IS+.

Theorem 3.1 suggests the following instruction how to extend an intro-

spective system IS = (PRG;META;REP) so that its validity is preserved:

1. build META+: specify the procedures F1; : : : ; Fn to be added to
the program of IS . That is, enlarge META by new function sym-
bols f1; : : : ; fn representing the procedures and by axioms describing
their e�ect.

2. build aPRG: implement F1; : : : ; Fn as abstract procedures over
sig(META).

3. build MAP : establish the relationship fi ! Fi, i 2 f1; : : : ; ng ex-
plicitly.

4. prove the correctness of the module
M = (META+;META; aPRG;MAP).

5. update IS with IS+ := (PRG+;META+;REP+) where PRG+ :=

PRG [ REPP (aPRG) and REP+ := REP [MAP .

Carrying out these �ve steps results in an (extended) valid introspective

system again and the whole process can be arbitrarily iterated. Notice that
steps 1 { 4 are exactly the same that are required in development of correct

modular software systems [46]. So techniques and tools developed for this
task can be directly applied.

The de�nition of an introspective system (and validity preserving exten-
sions of it) as presented here does not �t for all applications where intro-
spection is required. However, in the next section we demonstrate that our

notion is useful in building powerful theorem provers.
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4 Application to reective reasoning systems

Assume we want to build a powerful prover. Then on the one hand soundness

preserving extensibility is required (as motivated in the introduction). How-

ever, on the other hand, if the underlying logic is powerful enough (to express

and prove module correctness) the reasoning system itself can be used as a

tool to support sound extensions of itself. To get into such a situation we

suggest to proceed as follows:

(A) Design the reasoning system as an introspective system, so that sound

extensions of it can be reduced to valid extensions of introspective

systems, and therefore to construction of correct modules (by Theorem

3.1).

(B) De�ne a uniform mapping VC from modules into formulas of the un-
derlying logic, so that a module M is correct if VC(M) can be proved

valid.

As illustrated in �gure 5, it is now allowed to reduce the task of soundly
extending the prover to a proof task which can be performed using the prover
itself. Following the de�nition in [36] we have built a reective prover since
it is \about itself in a causally connected way", i.e. it is able to reason about

itself in order to modify itself (see �gure 6).

How to do (B) has already been treated in [46] (where it has been car-
ried out in the setting of dynamic logic). Informally, to show correctness of

a module M = (EXP ; IMP ; aPRG;MAP) it is su�cient to prove that all
procedures in aPRG terminate and exhibit the behavior speci�ed in EXP .
So it remains the question on how to perform (A), and the rest of this section
is about it.

First of all we de�ne some further notions. For a given logic (syntax,
semantics) an (inference) rule is a computable function which is of a speci�c

type RULETYPE . We do not specify this type any further here because it

depends on the kind of reasoning system under consideration.10 A rule is said

to be sound if it is semantically correct. A calculus is a �nite set of rules which
we call sound if all rules in it are sound. A reasoning system RS = (PRG; IM )
is a program PRG[IM divided up into PRG and an inference machinery IM

which implements a calculus, i.e. type(p) = RULETYPE for all p 2 dp(IM ).

RS is called sound if IM implements a sound calculus.

10For example in the case of proof checkers, rules are best represented as predicates, i.e.
RULETYPE = (formulalist � formula; bool) may be a good choice.
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De�nition 4.1 IRS = (PRG; IM ;META;REP) is an introspective reason-

ing system if:

(a) IS := (PRG [ IM ;META;REP) is an introspective system.

(b) RS := (PRG; IM ) is a reasoning system.

(c) dp(IM ) � REP(sig(META)).

(d) \META formalizes a soundness criterion":

for any enlargement META+ of META and any function symbol f 2

op(META+) with REPT (sort(f)) = RULETYPE there is a formula

SOUNDRULE (f) 2 L(sig(META+); vars(META)) so that for anyA 2

SemS(META+) holds: if A j
sig(META )= APRG[IM ;REP and A j=

SOUNDRULE (f) then fA is a sound rule.

(e) \META formalizes soundness of IM":

for all f 2 op(META) with REP(f) 2 dp(IM ) holds11 META j=
SOUNDRULE (f).

Via (a) and (b) the notions of validity and extensions (of introspective
systems) and soundness (of reasoning systems) are de�ned for introspective
reasoning systems too.

Our notion of introspective reasoning systems is very restricted, especially
(c) { (e). For some applications a relaxation may be reasonable. However,
we have found this de�nition appropriate for representation in this paper.

The following theorem states that soundness of an introspective reasoning
systems can be reduced to its validity.

Theorem 4.1 Any valid introspective reasoning system is sound.

Proof. Let IRS = (PRG; IM ;META;REP) be an introspective reasoning

system. If it is valid then holds A := APRG [IM ;REP 2 SemS(META).
Let f 2 op(META) a function symbol that represents an inference rule,
i.e. REP(f) 2 dp(IM ). Then by (e) we have META j= SOUNDRULE (f)

and therefore A j= SOUNDRULE (f). Using (d) (for the degenerated case

META+ =META) we get that fA = SemP (REP(f);PRG [ IM ) is a sound

rule. So by (c) all procedures in IM implement sound rules.

We use this theorem to prove a corollary about sound extensions of in-

trospective reasoning systems.

11For a speci�cation SP and a formula ' 2 L(sig(SP ); vars(SP )) we write SP j= ' if
A j= ' for all A 2 SemS(SP ).

13



Corollary 4.1 Let IRS+ = (PRG+; IM+;META+;REP+) be an extension

of an introspective reasoning system IRS = (PRG; IM ;META;REP) with:

dp(IM+nIM ) � REP+(sig(META+)) and for all f 2 op(META+)nop(META)

with REP+(f) 2 dp(IM+) is REPT (sort(f)) = RULETYPE and12 META+ j=

SOUNDRULE (f). Then holds:

(1) IRS+ is again an introspective reasoning system.

(2) if IRS+ is valid then it is sound too.

Proof. To prove (1) we go through the points (a) { (e) of de�nition 4.1.

(a) is an assumption in the corollary.

(b) for all p 2 dp(IM +) it is:

type(p) = type(REP+(REP+�1(p)))

= REP+
T
(sort(REP+�1(p)))

= REPT (sort(REP
+�1(p)))

= RULETYPE

(c) trivial.

(d) because of transitivity of enlargement.

(e) trivial.

Assertion (2) follows from (1) by theorem 4.1.

This corollary suggests how to specialize the algorithm for valid exten-

sions of introspective systems to �t for sound (and valid) extensions of an
introspective reasoning system IRS := (PRG; IM ;META;REP):

12Notice that SOUNDRULE (f) actually exists since IRS is an introspective system.
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1. build META+: specify the procedures F1; : : : ; Fm to be added to

PRG and the procedures Fm+1; : : : ; Fn to be added to IM . That

is, enlarge META by new function symbols f1; : : : ; fn representing

the procedures and by axioms describing their e�ect. For i 2 fm+

1; : : : ; ng it must be REPT (sort(fi)) = RULETYPE .

2. prove META+ j= SOUNDRULE (fi) for i 2 fm+ 1; : : : ; ng.

3. build aPRG = aPRG1 [ aPRG2: implement F1; : : : ; Fm and

Fm+1; : : : ; Fn as abstract procedures over sig(META).

4. build MAP : establish the relationship fi ! Fi, i 2 f1; : : : ; ng ex-

plicitly.

5. prove the correctness of the module
M = (META+;META; aPRG;MAP).

6. update IRS with IRS+ := (PRG+; IM+;META+;REP+) where

PRG+ := PRG [ REPP (aPRG1), IM
+ := IM [ REPP (aPRG2),

and REP+ := REP [MAP .

Step 2 becomes trivial by demanding SOUNDRULE (f) 2 ax(META+) in

step 1.

5 Related Work

We share the goal of self-reection with a lot of work in the programming
language community (e.g. [7, 50, 37, 32]). The substantial di�erence is that in
our approach the introspection is performed by deduction instead of by com-
putation. In all what follows only the related work in the area of automated

reasoning systems is considered. Here introspection is mainly used to solve
the problem of sound extensions. The relation to tactic mechanisms, which

embody the traditional solution to this problem, is already discussed in the

introduction. As argued in [25] the approach to proof planning in the sense
of Bundy [12], which has been realized in the Oyster/Clam system [14], can

be regarded as a speci�c tactic mechanism (very similar to the one proposed
by Brown [11]). In particular the ine�ciency problem of tactic mechanisms

appears in a similar way (cf. [13]).

We now concentrate on work concerning metatheoretical extensibility of
proving systems. The pioneers are Davis & Schwartz [17], Weyhrauch [52, 53],

and Boyer & Moore [10]. Very close to the approach of Boyer & Moore is
the one taken by Howe in the Nuprl system [28]. Another line of research

15



at Cornell was that of Constable & Knoblock [33] in which they formalized

the structure of proofs within (an extension of) Nuprl. Later it has been

suggested to use a single proof type that refers to itself and can formally

reasoned about [1]. The work of Weyhrauch has been continued and signi�-

cantly extended by Giunchiglia, Traverso, and others [25, 26, 6, 24, 23]: they

developed the reective theorem prover GETFOL on top of a reimplementation

of the FOL system.

Though quite di�erent, the reection mechanisms listed above have the

common feature that the user has to provide only one description of a new

inference rule. This description has to be declarative because one has to

reason about it, but it has to be procedural as well because one wants to ex-

ecute it (possibly after some compilation). In this point our approach di�ers

from all other reection mechanisms known to us. We strictly separate the

declarative description (�rst-order speci�cation META+) from the procedu-

ral description (program PRG) | the connection has to be established by
deduction (i.e. by proving module correctness) and not by fully automated
compiling. At the �rst sight this feature may be seen to be a little bit clumsy

since it takes a greater e�ort to extend a reasoning system: describing a new
rule declaratively and procedurally, and proving that these descriptions are
not contradictory. However, we believe that it is worth the additional ex-
penditure, and that separating declarative and procedural description is the
key for keeping reection mechanisms manageable in large applications for

the following reasons:

� On the one hand, using an expressive logic as speci�cation language
allows natural descriptions. In particular, some functions are best ax-
iomatized using quanti�ers. On the other hand, using (a part of) a
common programming language makes implementing to a widely mas-

tered job (which is not the case e.g. in the approach proposed in [17]).

� Separating declarative and procedural description allows separating im-

plementational issues from correctness issues. A sophisticated, but
very e�cient implementation can be \hidden" by referring to the corre-

sponding speci�cation, which should be more accessible to deduction.

Moreover the speci�cation can abstract from details of the implemen-
tation: only the aspects of interest have to be formalized.

� In the course of software maintenance it may be desirable to optimize

the code, i.e. to change the implementation but keep the speci�cation.

Then, as illustrated in �gure 7, only the module containing the op-

timized procedure has to be proven correct again. Procedures using

the changed procedure remain correct without any further veri�cation
e�ort, because their correctness has been shown with respect to the

speci�cation only.
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Figure 7: if P1 changes only M1 has to be proven correct again.

Just these arguments contribute to the fact that constructing both, pro-
cedural and declarative description, has been established and proved a good
investment in the area of software engineering. Actually, our approach is
quite natural because soundly extending a reasoning system amounts to con-
struction of correct software. This allows us to directly employ the techniques

and tools known for this task. For instance, the KIV system supports speci-
�cation and modularization of large software systems as well as veri�cation
of individual program modules.

There is another point distinguishing our work. Most approaches to re-

ective proving make full use of quoting13 or dequoting while applying (new)
inference rules (e.g. [17, 52]) or while doing metareasoning (e.g. [10]). As

pointed out in [8] this may lead to ine�ciency. Our approach avoids this

problem since changing of the representation is only done while performing
the update operation (which is not critical with respect to e�ciency).

About portability of our mechanism it can be said that we do not use
special features of an underlying logic (e.g. the method presented in [10] is
not directly applicable in typed logics). Moreover we do not restrict ourselves

to a certain class of new inference rules we can reason about. In particular

13Quoting means switching from a logical object to its representation in the metatheory;
dequoting is the inverse operation.
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the realization in KIV allows induction over formulas and proofs; therefore

also so-called admissible rules can be proven sound (which is not the case

e.g. in [52, 26]).

Finally mention should be made of logical frameworks like, for instance,

ELF [43], Isabelle [42] or �Prolog [40] since they provide a meta-logic to

encode syntax and inference rules of object-logics (so that proving at the

object level is done by reasoning at the meta-level). This encoding of a

logic in a logic constitutes an overlap between the concern of metatheoretic

extensibility and the concern of logical frameworks. However, the concerns

are di�erent: logical frameworks are designed to make encoding of object-

logics and proving at the object level as simple as possible. This is done

by identifying some object-logic structures with corresponding framework

logic structures, e.g. the representation of variable binding by using lambda

abstraction. However, this internalization severely restricts the metareason-

ing facilities of logical frameworks. For this reason Basin and Constable [4]
advocate to use externalized encodings | especially, they suggest to spec-
ify syntax and inference rules of an object-logic by means of (higher-order)
abstract data-types. This paradigm was adopted e.g. in the 2OBJ system
[19]. Another logical framework that is especially designed for doing metar-
easoning is FS0 [39]. In all these so-called metalogical frameworks only the

object-logic can be extended and not the meta-logic. However, in our opinion
extension of the framework logic is desirable as well since reasoning about
provability is (in general) a quite complex task that calls for a quite complex
(meta-)reasoning system (see the discussion in the introduction).

6 Conclusion

In this paper we have attempted to extract the features required for a system
in order to introspect, and �xed them in the notion of introspective systems.

Though our focus is on reasoning systems, the proposed mechanism of valid

extensions is not restricted to ensuring the soundness of new inference rules.
Properties of any (new) procedures are accessible to reasoning. This enables
one to use formal methods in building (or at least in extending) a system for

correct software development (which has often been called for by critics).

A main feature of our approach is that soundly extending a reective

prover is reduced to construction of correct program modules. (In particular
we advocate separating procedural and declarative description of new pro-

cedures for reasons explained in the previous section.) Therefore advanced
techniques known for correct software development can be directly employed.

Our hope is that this is the key for keeping reection mechanismsmanageable
in large applications. First experiences we have made with the realization of

our ideas in the KIV system give some positive evidence.
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A well-known example, which we have adopted from14 [9, 49], is the

tautology-checker [48]. Here the possibility to use quantors permits spec-

i�cation in a very natural manner. We have made use of modularization: the

overall code was divided up into 5 modules | the correctness of each of them

provable independently from all the others. Especially, this turned out to be

very advantageous whenever the code of one module changes (which is the

normal case in realistic software development), e.g. because of error correc-

tion or because of optimization. The tautology checker example in the KIV

system embraces about 250 lines of code (in a PASCAL-like programming

language) and about 150 lines of speci�cation. 84 proof obligations (ensuring

correctness of the modules) were generated by the system, 17 lemmas were

formulated; most proofs worked by induction on formulas.

Another case-study we have carried out in the reective version of the

KIV system is the soundness proof for the \determinism-rule" [56]:

<�> '

[� ]'
if � is deterministic

This is a rule in dynamic logic; it states that total correctness of a determin-
istic program � implies its partial correctness. This example is remarkable
since the rule itself can be expressed schematically and applied in constant

time (if only deterministic programs are considered), but (assuming a basic
calculus as in [20]) a tactic (in the sense of LCF) with the same e�ect takes
an amount of time linear in the size of �. This phenomenon also appears in
the soundness proof: it works by induction on �.

Though we believe that our approach is a signi�cant step towards reec-
tive mechanisms which can be brought into action in a big way, the question

concerning practicability cannot yet be fully answered. Especially, it has to
be found out whether restrictions imposed by presently available software
veri�cation techniques prevent a rigorous use of reection.
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