Valid Extensions of Introspective Systems:
A Foundation for Reflective Theorem Provers

Arno Schönegge*
Institut für Logik, Komplexität und Deduktionssysteme
Universität Karlsruhe
D-76128 Karlsruhe, Germany
email: schoeneg@ira.uka.de

Abstract
Introspective systems have been proved useful in several applications, especially in the area of automated reasoning. In this paper we propose to use structured algebraic specifications to describe the embedded account of introspective systems. Our main result is that extending such an introspective system in a valid manner can be reduced to development of correct software. Since sound extension of automated reasoning systems again can be reduced to valid extension of introspective systems, our work can be seen as a foundation for extensible introspective reasoning systems, and in particular for reflective provers. We prove correctness of our mechanism and report on first experiences we have made with its realization in the KIV system (Karlsruhe Interactive Verifier).

Contents
1 Introduction 2
2 Basic notions 3
3 Introspective systems and their extensions 7
4 Application to reflective reasoning systems 11
5 Related Work 15
6 Conclusion 18

*This work was supported by the Deutsche Forschungsgemeinschaft as part of the focus program "Deduktion".
1 Introduction

An introspective system is a software system that has a partial description of itself embedded in itself [36, 51]. Such systems have been proved useful in areas like programming languages [7, 50, 32], knowledge representation [35], and deduction. The latter is the concern for this paper. We believe that introspection provides a solution to two main problems of powerful reasoning systems:

- **soundness:** How can we guarantee that the formulas proved by a theorem prover are actually theorems? This question arises as modern reasoning systems (e.g., Nqthm [9], Nuprl [15], KIV [45], Never [16], HOL [21]) are quite complex. One approach — taken e.g. in Never [34] and Ω-MKRP [29, 30] — is to transmit the proofs constructed by a complex prover to a proof checker which is so simple that it can be trusted. However this method leads to inefficiency. Another approach is to guarantee the soundness of the (complex) reasoning system itself. This can be done by starting out with a simple (and sound) prover and soundly extending it step by step.

- **flexibility:** It is a well-known fact that depending on the application different provers are well suitable. So it is desirable to tune a reasoning system for intended applications. This tuning can be done by extending the prover with kinds of rules and procedures that humans have found effective in constructing proofs. Understandably enough the soundness of such extensions has to be guaranteed by some mechanism.

So both, soundness problem and flexibility problem, can be reduced to the problem of sound extensions. The primary traditional solution to this problem is **tactics** [22, 15, 41, 27]. Tactic mechanisms are sound as each tactic application amounts to constructing a justification using primitive inference rules. However, (as has often been pointed out, e.g. in [49, 19, 39, 5]) this may be very time-consuming. One alternative that avoids this inefficiency is to explicitly prove the soundness of extensions. This requires the possibility to reason about (extensions of) the reasoning system. In so-called **reflective** provers this reasoning is done within the system itself. In order to reason about itself such a system must have an embedded declarative description of (a part of) itself. Therefore, reflective provers are introspective systems. However, though the reflective approach has been pursued several times [17, 52, 10, 33, 28, 38, 26], it appears that up to now it has not been used in significant applications. We believe that the reason for this is in the particular mechanisms taken so far: reflection requires to prove complex obligations, and so techniques are necessary to handle these tasks. Our approach reduces sound extensions of a (reflective) theorem prover to development of correct software. As a consequence, there are no new techniques
to be developed but we can directly employ advanced techniques known for correct software development (e.g. modularization). First experiments with the realization of our mechanism in the KIV system look quite promising.

This paper is organized as follows. Section 2 recalls some basic notions. In section 3 we introduce the notion of introspective systems and prove a theorem which states that validity preserving extension of introspective systems can be reduced to development of correct program modules. In section 4 we show how soundly extending a reflective prover can be reduced to extending an introspective system in a validity preserving manner. Figure 1 illustrates this situation. In section 5 related work is considered, and in the final section we draw conclusions and report on first experiences we have made with the realization in the KIV system.

2 Basic notions

Signatures, formulas. We consider many-sorted signatures $\Sigma = (S, F)$ with a set of sorts S and a set F of function\footnote{Without loss of generality we assume to have no predicate symbols. Instead we use functions with a (predefined) sort $\text{bool} = \{\text{tt}, \text{ff}\}$ as target sort.} symbols equipped with a
mapping\(^2\) sort: \(F \rightarrow S^* \times S\). If \(\Sigma' = (S', F')\) with \(S' \subseteq S\) and \(F' \subseteq F\) is again a signature, we call \(\Sigma'\) a subsignature of \(\Sigma\). For a family \(X := \{X_s \mid s \in S\}\) of variable sets \(L(\Sigma, X)\) denotes the set of first-order formulas over \(\Sigma\) and \(X\).

Algebras. Formulas are interpreted over \(\Sigma\)-algebras. For \(\Sigma = (S, F)\) a \(\Sigma\)-algebra \(A = ((A_s)_{s \in S}, (f_A)_{f \in F})\) consists of non-empty carrier sets \(A_s\) and interpretations \(f_A\) for the symbols from \(F\). For \(f \in F\) with \(\text{sort}(f) = (s_1, \ldots, s_n, s)\) the interpretation \(f_A\) is a total function from \(A_{s_1} \times \cdots \times A_{s_n}\) to \(A_s\). For a subsignature \(\Sigma' = (S', F')\) of \(\Sigma\) we call \(A \upharpoonright_{\Sigma'} = ((A_s)_{s \in S'}, (f_A)_{f \in F'})\) the \(\Sigma'\)-reduct of \(A\).

A \(\Sigma\)-algebra \(A = ((A_s)_{s \in S}, (f_A)_{f \in F})\) is called generated if for each sort \(s \in S\) every carrier element \(a \in A_s\) can be denoted by a ground term over \(\Sigma\). For a formula \(\varphi \in L(\Sigma, X)\) and a \(\Sigma\)-algebra \(A\) we write \(A \models \varphi\) if \(A\) is a model of \(\varphi\). By \(\text{Gen}(\Sigma, \Phi)\) we denote the set of generated \(\Sigma\)-algebras which are models of a formula set \(\Phi \subseteq L(\Sigma, X)\).

Algebraic specifications. As motivated in [44] we use full first order specifications and consider the class of all generated models as its semantics (so-called loose semantics). A specification \(SP = (\Sigma, X, \phi)\) consists of a signature \(\Sigma = (S, F)\), a family \(X = \{X_s \mid s \in S\}\) of countably infinite variable sets, and a set \(\phi \in L(\Sigma, X)\) of first-order formulas over \(\Sigma\) and \(X\). By \(\text{sig}(SP) := \Sigma\) we denote the signature of \(SP\), by \(\text{op}(SP) := F\) its function symbols, by \(\text{vars}(SP) := X\) its variable sets, and by \(\text{ax}(SP) := \phi\) its axioms. For the semantics of a specification we adopt an approach of Giarratana et al. [18] and the Munich CIP-group [55, 54]: We define the semantics of \(SP = (\Sigma, X, \phi)\) by \(\text{Sem}_S(SP) := \text{Gen}(\Sigma, \phi)\).

A specification \(SP_1 = (\Sigma_1, X_1, \phi_1)\) with \(\Sigma_1 = (S_1, F_1)\) is an enlargement of the specification \(SP_2 = (\Sigma_2, X_2, \phi_2)\) if \(S_1 = S_2, F_1 \supseteq F_2, X_1 \supseteq X_2\), and \(\phi_1 \supseteq \phi_2\). The enlargement operation can be used to add new function symbols to the signature of a specification \(SP\) and new axioms to those of \(SP\) which describe the new functions. For a specification \(SP = (\Sigma, X, \phi)\), a subsignature \(\Sigma' = (S', F')\) of \(\Sigma\), and \(X' := \{X_s \mid s \in S'\}\) we call \(SP \upharpoonright_{\Sigma'} := (\Sigma', X', \phi \cap L(\Sigma', X'))\) the \(\Sigma'\)-reduct of \(SP\).

Programs. We assume a typed programming language and an algebraic semantics defined for programs in this language (cf. [3]). A program \(PRG = (TD, PD)\) consists of type declarations \(TD\) and procedure declarations \(PD\) and is built over a set of type identifiers \(TIDS\) and a set of procedure identifiers \(PIDS\) equipped with a mapping \(\text{type}: PIDS \rightarrow TIDS^* \times TIDS\). We only consider well-formed programs; especially we demand that all type and procedure identifiers used in \(PRG\) are declared in \(PRG\) and that all

\(^2\)\(S^*\) are the finite words over \(S\).
procedure declarations in PD exhibit the typing indicated by their procedure identifiers. Furthermore we restrict ourselves to procedures that are functional\(^3\) and never fail to terminate.\(^4\) For (a part of) a program PRG, \(dt(\text{PRG})\) and \(dp(\text{PRG})\) denote the set of type identifiers and procedure identifiers declared in it, respectively. The semantics of the program PRG is the algebra induced by the type declarations TD (which has exactly one carrier set \(A_t\) for each \(t \in dt(\text{PRG})\)) enlarged by functions \(F_p := \text{Sem}_p(p, \text{PRG}),\) \(p \in dp(\text{PRG})\), computed by the corresponding declarations in PD. So if \(\text{type}(p) = (t_1 \ldots t_n, t)\) then \(F_p\) is a total function from \(A_{t_1} \times \cdots \times A_{t_n}\) to \(A_t\).

Abstract programs. For a signature \(\Sigma = (S, F)\) an abstract program aPRG over \(\Sigma\) is a set of procedure declarations which use the function symbols from \(F\) as elementary operations. No type declarations are required as the procedures operate on the sorts \(S\). Wellformedness is defined as above and implicitly assumed. Again we restrict on functional procedures but do not demand termination. The semantics \(\text{Sem}_{\text{AP}}(p, \text{aPRG})\) of an abstract procedure in aPRG with identifier \(p\) is a total function that maps \(\Sigma\)-algebras \(\mathcal{A} = ((A_t)_{t \in S}, (f_A)_{f \in F})\) into the partial function over the carrier of \(\mathcal{A}\) that is computed when calling \(p\) where the symbols \(f \in F\) occurring in aPRG are interpreted by \(f_A\).

\(^3\)Functional procedures do not use global variables and use reference parameters only as result parameters.

\(^4\)The demand for termination can be dropped if one uses partial algebras as semantics.
Program modules. As proposed in [2] the notion of program modules can be used for vertical refinement of specifications. In order to refine a specification SP_1 it is implemented in terms of a (more elementary) specification SP_2. In this paper we restrict ourselves to modules where SP_1 is an enlargement of SP_2. Formally, a module $M = (EXP, IMP, aPRG, MAP)$ consists of two specifications $EXP = (S_{EXP}, F_{EXP}, \phi_{EXP})$ and $IMP = (S_{IMP}, F_{IMP}, \phi_{IMP})$, a set $aPRG$ of abstract procedures over $\Sigma_{IMP} = (S_{IMP}, O_{P_{IMP}})$, and a representation function MAP. We demand EXP to be an enlargement of IMP, so $S_{EXP} = S_{IMP}$ and $F_{EXP} \supseteq F_{IMP}$. EXP and IMP are called the export and the import of the module M, respectively. MAP is a total, injective function that maps function symbols from $F_{EXP} \setminus F_{IMP}$ into procedure identifiers of $aPRG$ with the same typing. Roughly speaking, the semantics $Sem(M)$ of a module $M = (EXP, IMP, aPRG, MAP)$ is a partial function induced by $aPRG$. It maps generated models of the import specification IMP to generated algebras of the export signature $\Sigma_{EXP} = (S_{EXP}, F_{EXP})$ as follows: For $A = ((A_s)_{s \in S_{IMP}}, (f_A)_{f \in F_{IMP}}) \in Sem_{S}(IMP)$ we set

$$Sem_M(M)(A) := \left((A_s)_{s \in S_{EXP}}, (f_A)_{f \in F_{IMP}} \cup \left(Sem_{AP}(MAP(f), aPRG)(A) \right)_{f \in F_{EXP} \setminus F_{IMP}} \right)$$

if all functions $Sem_{AP}(MAP(f), aPRG)(A)$ are total. Otherwise, the value of $Sem_M(M)(A)$ is undefined. A module M is called correct if the function $Sem_M(M)$ is total and its values are models of the export specification EXP. Informally, this means that the procedures of the implementation terminate and exhibit the behavior specified in the export.

Signature representations. For a signature $\Sigma = (S, F)$ and a program PRG a Σ-representation REP in PRG is a total, injective function that maps sorts from S into type identifiers from $dt(PRG)$, and function symbols from F into procedure identifiers from $dp(PRG)$, so that\footnote{The function REP_T is defined to map sorts of function symbols f in Σ into types of procedures by $REP_T(s_1, \ldots, s_n, s) := (REP(s_1) \ldots REP(s_n), REP(s))$.} $REP_T(sort(f)) = type(REP(f))$. We call

$$APRG,REP := \left((A_{REP(s)})_{s \in S}, \left(Sem_P(REP(f), PRG) \right)_{f \in F} \right)$$

the algebra induced by PRG and REP. $APRG,REP$ is a Σ-algebra. By REP_P we denote the total function that maps abstract procedure declarations PRC over Σ into non-abstract procedure declarations;\footnote{We assume separate identifiers for abstract procedures and allow to use the same ones as identifiers for non-abstract procedures (with a different typing).} $REP_P(PRC)$ is essentially
the same as PRC itself calling the procedures $REP(f)$ whenever a symbol $f \in F$ occurs in PRC.

In the next section we make use of the following connection between abstract programs and non-abstract programs:

Fact 2.1 Let $aPRG$ be an abstract program over a signature Σ and REP a Σ-representation in a program PRG with $dp(aPRG) \cap dp(PRG) = \emptyset$. Then for each procedure identifier p in $aPRG$ holds:

$$Sem_{AP}(p, aPRG)(A_{PRG,REP}) = Sem_F(p, PRG \cup REP_F(aPRG)).$$

3 Introspective systems and their extensions

An introspective system is a software system that has an embedded account of itself (cf. [50, 36]), i.e. a partial description of itself in itself. We propose to use (first-order) specifications to represent such descriptions.

Definition 3.1 An introspective system $IS = (PRG, META, REP)$ consists of a program PRG, a specification $META$, and a sig($META$)-representation REP in PRG.

The representation REP explicitly establishes a relation between the embedded account $META$ and the program PRG. REP can be described as a table or implemented as a procedure in the programming language too. Notice that introspection is restricted: $META$ represents components from PRG only and not from REP or $META$ itself. Notice further that $META$ may be merely a partial description of PRG: there can be procedures in PRG that are not in the range of REP. We want $META$ to represent PRG “adequately?”, i.e. that the meaning of the represented part of PRG is in fact

7Besides adequacy, for some applications a kind of faithfulness of $META$ with respect to PRG is required. This can be achieved by demanding $META$ to be monomorph. We will not discuss this aspect here but refer to [44, 47].
modeled by META. If IS has this property we call it a valid introspective system.

Definition 3.2 An introspective system IS = (PRG, META, REP) is valid if the algebra induced by PRG and REP is a model of META, i.e.

\[A_{PRG,REP} \in \text{Sem}_S(META). \]

This situation which is illustrated in figure 4 looks very similar to the work that has been done in connection with the reflective theorem prover GETFOL [26, 23]. However, in all what follows we significantly differ from the approach taken in GETFOL. For more details see section about related work.

In the rest of this section we deal with the question on how an introspective system can be extended in a validity preserving manner. We have restricted ourselves to extensions of an introspective system where no new sorts can be added to the signature of META. This restriction is not absolutely compelling but it simplifies presentation.

Definition 3.3 An introspective system IS$_1 = (PRG_1, META_1, REP_1)$ is an extension of an introspective system IS$_2 = (PRG_2, META_2, REP_2)$ if PRG$_1 \supseteq$ PRG$_2$ holds, META$_1$ is an enlargement of META$_2$, and furthermore8

\[REP_1 |_{\text{sig}(META_2)} = REP_2. \]

The following theorem is our main result. Informally, it states that (some kinds of) validity preserving extensions can be reduced to construction of correct program modules.

8For a function $g : D \to R$ and $D' \subseteq D$ we write $g |_{D'}$ to denote the restriction of g on D', i.e. $g |_{D'} : D' \to R$ with $g |_{D'} (x) := g(x)$ on D'.

8
Theorem 3.1 Let $IS = (PRG, META, REP)$ be an introspective system and $M = (META^+, META, aPRG, MAP)$ a module with $dp(aPRG)$ and $dp(PRG)$ disjoint. Then for $IS^+ := (PRG^+, META^+, REP^+)$ with $PRG^+ := PRG \cup REP_p(aPRG)$ and $REP^+ := REP \cup MAP$ holds:

1. IS^+ is an introspective system,
2. IS^+ is an extension of IS, and
3. if IS is valid and M is correct then IS^+ too is valid.

Proof. The proof is almost straightforward.

1. It is easy to see that REP^+ is a $sig(META^+)$-representation in PRG^+.
 Notice that REP^+ is defined at all since all function symbols added by enlargement have to be new.

2. This is an immediate consequence of definition 3.3. Remember that $META^+$ is an enlargement of $META$ because of our restricted notion of modules.

3. From validity of IS follows that $A_{PRG,REP} \in Sem_S(META)$. So, because of the correctness of M, $Sem_M(M)(A_{PRG,REP})$ is defined and in $Sem_S(META^+)$. Furthermore it holds (for $sig(META) := (S, F)$ and $sig(META^+) := (S^+, F^+)$):

$$
A_{PRG^+,REP^+} = \left(\left(A_{REP^+,(s)} \right)_{s \in S^+}, \left(Sem_p \left(REP^+(f), PRG^+ \right) \right)_{f \in F^+} \right)
$$

$$
= \left(\left(A_{REP^+,(s)} \right)_{s \in S^+}, \left(Sem_p \left(REP^+(f), PRG^+ \right) \right)_{f \in F} \cup \left(Sem_p \left(REP(f), PRG \right) \right)_{f \in F \setminus F^+} \right)
$$

$$
= \left(\left(A_{REP,(s)} \right)_{s \in S}, \left(Sem_p \left(REP(f), PRG \right) \right)_{f \in F} \cup \left(Sem_p \left(MAP(f), PRG \cup REP_p(aPRG) \right) \right)_{f \in F \setminus F^+} \right)
$$

$$
= \left(\left(A_{REP,(s)} \right)_{s \in S^+}, \left(Sem_p \left(REP(f), PRG \right) \right)_{f \in F} \cup \left(Sem_p \left(MAP(f), PRG \cup REP_p(aPRG) \right) \right)_{f \in F \setminus F^+} \right)
$$

5 For two functions $g_1 : D_1 \rightarrow R_1$ and $g_2 : D_2 \rightarrow R_2$ with $D_1 \cap D_2 = \emptyset$ we define $g_1 \cup g_2 : D_1 \cup D_2 \rightarrow R_1 \cup R_2$ by $(g_1 \cup g_2)(x) := \begin{cases} g_1(x), & \text{if } x \in D_1 \\ g_2(x), & \text{if } x \in D_2 \end{cases}$
\[
\left(\text{Sem}_{AP}(MAP(f), aPRG)(A_{PRG,REP}) \right)_{f \in F^+ \setminus F}
\]

\[
= \text{Sem}_{M}(M)(A_{PRG,REP})
\]

The fourth equation is an application of fact 2.1. In summary we have

\[
A_{PRG^+,REP^+} = \text{Sem}_{M}(M)(A_{PRG,REP}) \in \text{Sem}_{S}(META^+)
\]

which states the validity of IS\(^+\).

Theorem 3.1 suggests the following instruction how to extend an introspective system \(IS = (PRG, META, REP)\) so that its validity is preserved:

1. build \(META^+\): specify the procedures \(F_1, \ldots, F_n\) to be added to the program of \(IS\). That is, enlarge \(META\) by new function symbols \(f_1, \ldots, f_n\) representing the procedures and by axioms describing their effect.

2. build \(aPRG\): implement \(F_1, \ldots, F_n\) as abstract procedures over \(\text{sig}(META)\).

3. build \(MAP\): establish the relationship \(f_i \rightarrow F_i, i \in \{1, \ldots, n\}\) explicitly.

4. prove the correctness of the module \(M = (META^+, META, aPRG, MAP)\).

5. update \(IS\) with \(IS^+ := (PRG^+, META^+, REP^+)\) where \(PRG^+ := PRG \cup REP_P(aPRG)\) and \(REP^+ := REP \cup MAP\).

Carrying out these five steps results in an (extended) valid introspective system again and the whole process can be arbitrarily iterated. Notice that steps 1 – 4 are exactly the same that are required in development of correct modular software systems [46]. So techniques and tools developed for this task can be directly applied.

The definition of an introspective system (and validity preserving extensions of it) as presented here does not fit for all applications where introspection is required. However, in the next section we demonstrate that our notion is useful in building powerful theorem provers.
4 Application to reflective reasoning systems

Assume we want to build a powerful prover. Then on the one hand soundness preserving extensibility is required (as motivated in the introduction). However, on the other hand, if the underlying logic is powerful enough (to express and prove module correctness) the reasoning system itself can be used as a tool to support sound extensions of itself. To get into such a situation we suggest to proceed as follows:

(A) Design the reasoning system as an introspective system, so that sound extensions of it can be reduced to valid extensions of introspective systems, and therefore to construction of correct modules (by Theorem 3.1).

(B) Define a uniform mapping VC from modules into formulas of the underlying logic, so that a module M is correct if $VC(M)$ can be proved valid.

As illustrated in figure 5, it is now allowed to reduce the task of soundly extending the prover to a proof task which can be performed using the prover itself. Following the definition in [36] we have built a reflective prover since it is “about itself in a causally connected way”, i.e. it is able to reason about itself in order to modify itself (see figure 6).

How to do (B) has already been treated in [46] (where it has been carried out in the setting of dynamic logic). Informally, to show correctness of a module $M = (EXP, IMP, aPRG, MAP)$ it is sufficient to prove that all procedures in $aPRG$ terminate and exhibit the behavior specified in EXP. So it remains the question on how to perform (A), and the rest of this section is about it.

First of all we define some further notions. For a given logic (syntax, semantics) an (inference) rule is a computable function which is of a specific type $RULETYPE$. We do not specify this type any further here because it depends on the kind of reasoning system under consideration. A rule is said to be sound if it is semantically correct. A calculus is a finite set of rules which we call sound if all rules in it are sound. A reasoning system $RS = (PRG, IM)$ is a program $PRG \cup IM$ divided up into PRG and an inference machinery IM which implements a calculus, i.e. $type(p) = RULETYPE$ for all $p \in dp(IM)$. RS is called sound if IM implements a sound calculus.

\[10\] For example in the case of proof checkers, rules are best represented as predicates, i.e. $RULETYPE = (formula list \times formula, bool)$ may be a good choice.
validity of formulas

Figure 5: Reducing soundness of (reflective) prover extensions to validity of formulas

reflective reasoning system as tool for constructing sound extensions of

Figure 6: A reflective reasoning system
Definition 4.1 IRS = (PRG, IM, META, REP) is an introspective reasoning system if:

(a) IS := (PRG ∪ IM, META, REP) is an introspective system.

(b) RS := (PRG, IM) is a reasoning system.

(c) dp(IM) ⊆ REP(sig(META)).

(d) “META formalizes a soundness criterion”: for any enlargement META+ of META and any function symbol f ∈ op(META+) with REP𝑇(sort(f)) = RULETYPE there is a formula SOURDRULE(f) ∈ L(sig(META+), vars(META)) so that for any A ∈ SemS(META+) holds: if A |sig(META) = APRG∪IM,REP and A |= SOURDRULE(f) then fA is a sound rule.

(e) “META formalizes soundness of IM ”: for all f ∈ op(META) with REP(f) ∈ dp(IM) holds11 META |= SOURDRULE(f).

Via (a) and (b) the notions of validity and extensions (of introspective systems) and soundness (of reasoning systems) are defined for introspective reasoning systems too.

Our notion of introspective reasoning systems is very restricted, especially (c) – (e). For some applications a relaxation may be reasonable. However, we have found this definition appropriate for representation in this paper.

The following theorem states that soundness of an introspective reasoning systems can be reduced to its validity.

Theorem 4.1 Any valid introspective reasoning system is sound.

Proof. Let IRS = (PRG, IM, META, REP) be an introspective reasoning system. If it is valid then holds A := APRG∪IM,REP ∈ SemS(META). Let f ∈ op(META) a function symbol that represents an inference rule, i.e. REP(f) ∈ dp(IM). Then by (e) we have META |= SOURDRULE(f) and therefore A |= SOURDRULE(f). Using (d) (for the degenerated case META+ = META) we get that fA = Sem𝑝(REP(f), PRG ∪ IM) is a sound rule. So by (c) all procedures in IM implement sound rules. ■

We use this theorem to prove a corollary about sound extensions of introspective reasoning systems.

11For a specification SP and a formula φ ∈ L(sig(SP), vars(SP)) we write SP |= φ if A |= φ for all A ∈ SemS(SP).
Corollary 4.1 Let $IRS^+ = (PRG^+, IM^+, META^+, REP^+)$ be an extension of an introspective reasoning system $IRS = (PRG, IM, META, REP)$ with: $\text{dp}(IM^+ \setminus IM) \subseteq REP^+(\text{sig}(META^+))$ and for all $f \in \text{op}(META^+) \setminus \text{op}(META)$ with $REP^+(f) \in \text{dp}(IM^+)$, $REP_T(\text{sort}(f)) = \text{RULETYPE}$ and 12 $META^+ \models \text{SOUNDRULE}(f)$. Then holds:

(1) IRS^+ is again an introspective reasoning system.

(2) if IRS^+ is valid then it is sound too.

Proof. To prove (1) we go through the points (a) – (e) of definition 4.1.

(a) is an assumption in the corollary.

(b) for all $p \in \text{dp}(IM^+)$ it is:

$$type(p) = type(REP^+(REP^{+1}(p))) = REP_T^{+}(\text{sort}(REP^{+1}(p))) = REP_T(\text{sort}(REP^{+1}(p))) = \text{RULETYPE}$$

(c) trivial.

(d) because of transitivity of enlargement.

(e) trivial.

Assertion (2) follows from (1) by theorem 4.1.

This corollary suggests how to specialize the algorithm for valid extensions of introspective systems to fit for sound (and valid) extensions of an introspective reasoning system $IRS := (PRG, IM, META, REP)$:

\[\text{SOUNDRULE}(f)\] Notice that $\text{SOUNDRULE}(f)$ actually exists since IRS is an introspective system.
1. build $META^+$: specify the procedures F_1, \ldots, F_m to be added to PRG and the procedures F_{m+1}, \ldots, F_n to be added to IM. That is, enlarge $META$ by new function symbols f_1, \ldots, f_n representing the procedures and by axioms describing their effect. For $i \in \{m + 1, \ldots, n\}$ it must be $REP_{\tau} (sort(f_i)) = RULETYPE$.

2. prove $META^+ \models SOUNDRULE(f_i)$ for $i \in \{m + 1, \ldots, n\}$.

3. build $aPRG = aPRG_1 \cup aPRG_2$: implement F_1, \ldots, F_m and F_{m+1}, \ldots, F_n as abstract procedures over sig(META).

4. build MAP: establish the relationship $f_i \rightarrow F_i$, $i \in \{1, \ldots, n\}$ explicitly.

5. prove the correctness of the module $M = (META^+, META, aPRG, MAP)$.

6. update IRS with $IRS^+ := (PRG^+, IM^+, META^+, REP^+)$ where $PRG^+ := PRG \cup REP_p(aPRG_1)$, $IM^+ := IM \cup REP_p(aPRG_2)$, and $REP^+ := REP \cup MAP$.

Step 2 becomes trivial by demanding $SOUNDRULE(f) \in ax(META^+)$ in step 1.

5 Related Work

We share the goal of self-reflection with a lot of work in the programming language community (e.g. [7, 50, 37, 32]). The substantial difference is that in our approach the introspection is performed by deduction instead of by computation. In all what follows only the related work in the area of automated reasoning systems is considered. Here introspection is mainly used to solve the problem of sound extensions. The relation to tactic mechanisms, which embody the traditional solution to this problem, is already discussed in the introduction. As argued in [25] the approach to proof planning in the sense of Bundy [12], which has been realized in the Oyster/Clam system [14], can be regarded as a specific tactic mechanism (very similar to the one proposed by Brown [11]). In particular the inefficiency problem of tactic mechanisms appears in a similar way (cf. [13]).

We now concentrate on work concerning metatheoretical extensibility of proving systems. The pioneers are Davis & Schwartz [17], Weyhrauch [52, 53], and Boyer & Moore [10]. Very close to the approach of Boyer & Moore is the one taken by Howe in the Nuprl system [28]. Another line of research
at Cornell was that of Constable & Knoblock [33] in which they formalized the structure of proofs within (an extension of) Nuprl. Later it has been suggested to use a single proof type that refers to itself and can formally reasoned about [1]. The work of Weyhrauch has been continued and significantly extended by Giunchiglia, Traverso, and others [25, 26, 6, 24, 23]: they developed the reflective theorem prover GETFOL on top of a reimplementaiton of the FOL system.

Though quite different, the reflection mechanisms listed above have the common feature that the user has to provide only one description of a new inference rule. This description has to be declarative because one has to reason about it, but it has to be procedural as well because one wants to execute it (possibly after some compilation). In this point our approach differs from all other reflection mechanisms known to us. We strictly separate the declarative description (first-order specification $META^+$) from the procedural description (program PRG) — the connection has to be established by deduction (i.e. by proving module correctness) and not by fully automated compiling. At the first sight this feature may be seen to be a little bit clumsy since it takes a greater effort to extend a reasoning system: describing a new rule declaratively and procedurally, and proving that these descriptions are not contradictory. However, we believe that it is worth the additional expenditure, and that separating declarative and procedural description is the key for keeping reflection mechanisms manageable in large applications for the following reasons:

- On the one hand, using an expressive logic as specification language allows natural descriptions. In particular, some functions are best axiomatized using quantifiers. On the other hand, using (a part of) a common programming language makes implementing to a widely mastered job (which is not the case e.g. in the approach proposed in [17]).

- Separating declarative and procedural description allows separating implementational issues from correctness issues. A sophisticated, but very efficient implementation can be “hidden” by referring to the corresponding specification, which should be more accessible to deduction. Moreover the specification can abstract from details of the implementation: only the aspects of interest have to be formalized.

- In the course of software maintenance it may be desirable to optimize the code, i.e. to change the implementation but keep the specification. Then, as illustrated in figure 7, only the module containing the optimized procedure has to be proven correct again. Procedures using the changed procedure remain correct without any further verification effort, because their correctness has been shown with respect to the specification only.
Figure 7: if P_1 changes only M_1 has to be proven correct again.

Just these arguments contribute to the fact that constructing both, procedural and declarative description, has been established and proved a good investment in the area of software engineering. Actually, our approach is quite natural because soundly extending a reasoning system amounts to construction of correct software. This allows us to directly employ the techniques and tools known for this task. For instance, the KIV system supports specification and modularization of large software systems as well as verification of individual program modules.

There is another point distinguishing our work. Most approaches to reflective proving make full use of quoting13 or dequoting while applying (new) inference rules (e.g. [17, 52]) or while doing metareasoning (e.g. [10]). As pointed out in [8] this may lead to inefficiency. Our approach avoids this problem since changing of the representation is only done while performing the update operation (which is not critical with respect to efficiency).

About portability of our mechanism it can be said that we do not use special features of an underlying logic (e.g. the method presented in [10] is not directly applicable in typed logics). Moreover we do not restrict ourselves to a certain class of new inference rules we can reason about. In particular

13Quoting means switching from a logical object to its representation in the metatheory; dequoting is the inverse operation.
the realization in KIV allows induction over formulas and proofs; therefore also so-called admissible rules can be proven sound (which is not the case e.g. in [52, 26]).

Finally mention should be made of logical frameworks like, for instance, ELF [43], Isabelle [42] or λProlog [40] since they provide a meta-logic to encode syntax and inference rules of object-logics (so that proving at the object level is done by reasoning at the meta-level). This encoding of a logic in a logic constitutes an overlap between the concern of metatheoretic extensibility and the concern of logical frameworks. However, the concerns are different: logical frameworks are designed to make encoding of object-logics and proving at the object level as simple as possible. This is done by identifying some object-logic structures with corresponding framework logic structures, e.g. the representation of variable binding by using lambda abstraction. However, this internalization severely restricts the metareasoning facilities of logical frameworks. For this reason Basin and Constable [4] advocate to use externalized encodings — especially, they suggest to specify syntax and inference rules of an object-logic by means of (higher-order) abstract data-types. This paradigm was adopted e.g. in the 2OBJ system [19]. Another logical framework that is especially designed for doing metareasoning is FS₀ [39]. In all these so-called metalogical frameworks only the object-logic can be extended and not the meta-logic. However, in our opinion extension of the framework logic is desirable as well since reasoning about provability is (in general) a quite complex task that calls for a quite complex (meta-)reasoning system (see the discussion in the introduction).

6 Conclusion

In this paper we have attempted to extract the features required for a system in order to introspect, and fixed them in the notion of introspective systems. Though our focus is on reasoning systems, the proposed mechanism of valid extensions is not restricted to ensuring the soundness of new inference rules. Properties of any (new) procedures are accessible to reasoning. This enables one to use formal methods in building (or at least in extending) a system for correct software development (which has often been called for by critics).

A main feature of our approach is that soundly extending a reflective prover is reduced to construction of correct program modules. (In particular we advocate separating procedural and declarative description of new procedures for reasons explained in the previous section.) Therefore advanced techniques known for correct software development can be directly employed. Our hope is that this is the key for keeping reflection mechanisms manageable in large applications. First experiences we have made with the realization of our ideas in the KIV system give some positive evidence.
A well-known example, which we have adopted from14 [9, 49], is the tautology-checker [48]. Here the possibility to use quantors permits specification in a very natural manner. We have made use of modularization: the overall code was divided up into 5 modules — the correctness of each of them provable independently from all the others. Especially, this turned out to be very advantageous whenever the code of one module changes (which is the normal case in realistic software development), e.g. because of error correction or because of optimization. The tautology checker example in the KIV system embraces about 250 lines of code (in a PASCAL-like programming language) and about 150 lines of specification. 84 proof obligations (ensuring correctness of the modules) were generated by the system, 17 lemmas were formulated; most proofs worked by induction on formulas.

Another case-study we have carried out in the reflective version of the KIV system is the soundness proof for the “determinism-rule” [56]:

\[
\begin{array}{c}
\langle \alpha \rangle \varphi \\
\hline
[\alpha] \varphi
\end{array}
\]

if α is deterministic

This is a rule in dynamic logic; it states that total correctness of a deterministic program α implies its partial correctness. This example is remarkable since the rule itself can be expressed schematically and applied in constant time (if only deterministic programs are considered), but (assuming a basic calculus as in [20]) a tactic (in the sense of LCF) with the same effect takes an amount of time linear in the size of α. This phenomenon also appears in the soundness proof: it works by induction on α.

Though we believe that our approach is a significant step towards reflective mechanisms which can be brought into action in a big way, the question concerning practicability cannot yet be fully answered. Especially, it has to be found out whether restrictions imposed by presently available software verification techniques prevent a rigorous use of reflection.

\textbf{Acknowledgments}

I am indebted to Thomas Fuchs, Wolfgang Reif, Gerhard Schellhorn, and Kurt Stenzel for valuable discussions during the course of this research. Especially, I would like to thank Gerhard Schellhorn who has made very helpful comments on an earlier draft of this paper.

14However, unlike [9, 49], we are able to add the code of new proof procedures verified with KIV to the KIV system itself and use them to do further proofs.
References

[26] F. Guinchiglia and P. Traverso. Reflective reasoning with and between a declarative metatheory and the implementation code. In J. Mylopoulos and

[34] S. Kromodimoejlo and W. Pase. Proof logging and proof checking in NEVER. In [5].

