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Abstract

Most engineering parts contain some changes in cross section or boreholes. There is a

stress concentration at these points and the parts will probably fail there. Almost all

machine parts are dynamically loaded. The most important failure mode is fatigue.

Fatigue is observed at load levels below the yield stress. On a macroscopic scale the struc-
tural behavior is elastic, but on a microscale plasticity is found at inclusions and other

material weakness.
During fatigue lifetime, a stress redistribution is observed in the structure, due to the
material deterioration. It is possible to model fatigue behavior accurately with a Con-

tinuum Damage Mechanics Model. The history of loading is taken into account and also
the stress redistribution is modelled. On the basis of this modellization two new cost
functions for shape optimization considering fatigue are determined.

The optimization results show a remarkably increased lifetime in comparison to a classical

shape in calculation as well as in experiment. The di�erence to the statically optimized
shape is small.
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Remarks to the Notation:

Scalars are written in normal font. Vectors and matrixes are written bold face. If tensor

notation is used Einsteins sum convention is adopted, this means if a subscript appears

twice, than the sum over this index is taken.

A comma as a subscript means partial di�erentiation.

The meaning of all other uncommon symbols is explained at the �rst appearance in the

text.
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Chapter 1

Introduction

In our times there is an increased sensitivity regarding resources and energy. More and
more components are required not only to be functional but also to be a somewhat opti-

mal solution (e.g. minimum of weight).
New management strategies such as Simultaneous Engineering take these demands into

account. Design and calculation are no longer separated procedures. The calculation
engineer nowadays is already involved in the design process. Therefore, he or she needs
tools which help her/him not only in the design process of the whole part but also to get

improvements of detail problems.
Almost any machine part includes places with changes in cross section, boreholes or
notches. These places are always connected with a stress concentration which will deter-

mine the strength of the whole machine part. To optimize the more or less free boundary
of these places will always improve the strength of the whole part, because the weakest

link of the machine part will vanish.
Here, determination of this free boundary is called shape optimization (In [39] a more
general de�nition including topology and parameter optimization is given). From a math-

ematical point of view the question of an optimally shaped structure is called an inverse

problem. Instead of the calculation of the structural behavior for a given structure, given

loads and supports, here the somewhat optimal shape of the structure itself is asked [28].

Shape optimization methods have been developed over the last 30 years [10, 12, 35, 40, 86]

and the principal problems are solved. Present research work is the combination of shape

optimization and topology optimization [11, 73, 77, 89], the other important branch of

structural optimization. Now, �rst applications of shape and/or topology optimization

are found in industry [7, 16, 28, 61, 78]. But nearly all the developed procedures are

dealing with static optimization whereas almost any machine part is dynamically loaded.

If dynamical loadings are considered the main interest is either in resonance [7, 29], or

very simple engineering concepts are used [19, 62] to describe fatigue behavior.

1



2 CHAPTER 1. INTRODUCTION

In [30, 31] there is a �rst attempt of a systematical investigation of shape optimization

for dynamical loadings. The following cases are taken into account: fatigue, multiaxial

out-of-phase loadings and resonance fatigue.

Fatigue is modelled using di�erent fatigue notch factor hypotheses (fatigue notch factor

Kf : quotient of fatigue strength of smooth specimen and fatigue strength of notched

specimen.)

In his conclusion Fanni found almost no di�erence between static optimization and Kf -

optimization for all studied hypotheses. It was only in the case of the \weakest-link"

model (statistical approach [15]) with a small statistical parameter (e.g. ceramics, with

high scattering in the length of initially existing cracks), that not the static optimum was

not achieved (FSD=fully stressed design: The von Mises stress is constant along the free

boundary until the separation point is reached. See [86] and Fig. 1.1 and Fig. 1.2).

a.) b.)

Figure 1.1: Static shape optimization of a notched tension bar. A quarter of the structure
is discretized: a.) meshed start shape, b.) meshed optimized shape.

a.) b.)

FSD
Circular Notch
(r=9mm)

Smooth Specimen
FSD
Circular Notch
(r=9mm)

σσ MPa/

Figure 1.2: Static shape optimization of a notched tension bar. a.) Stress along the free
boundary (�: normalized von Mises stress), b.) experimental S-N-diagrams.

Two things must be pointed out:
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� Static Analysis

The whole dynamic degeneration process is analyzed for fatigue in [30, 31] by just

one single static FE-calculation. In Chapter 6 we will see that there is a stress

redistribution due to damage accumulation during the fatigue process which is not

mentioned in this modellization.

� Experimental Results

The experimental results (See Fig. 1.2) show a remarkably increased lifetime if a

part with statically optimized shape is used instead of the circularly notched part.

They are encouraging for further studies.

The aim of this work is to analyze the fatigue behavior, which is the most important

and also the most dangerous failure mode in dynamical load cases, more carefully and to

present an adequate optimization procedure. In conclusion the results of this procedure

will be compared with the static optimization results.

After these introductory words in the �rst chapter, in the second chapter the main mi-
croscopic mechanisms and the main features of fatigue are described briey, and the

engineering procedure of lifetime calculation in LCF and HCF is summarized.
In Chapter 3, at �rst the continuous optimization problem is formulated and the procedure
for the numerical solution of the discretized problem for a static load case is described.

This is the basis for the \dynamical" optimization procedure.
In Chapter 4, a short introduction to Continuum Damage Mechanics (CDM) is given and
a two scale model to characterize fatigue behavior within this CDM concept is described.

The numerical damage analysis is very CPU-time intensive.
Therefore, in Chapter 5, at �rst some tools to save CPU-time and toget accurate results

are introduced. In the second part of the chapter, damage evolution is studied for di�erent
shapes. In the end of the chapter, a dynamical optimization based on this CDM approach
will be discussed.

In Chapter 6, the fatigue behavior is examined experimentally.
Some concluding remarks are found in Chapter 7.



Chapter 2

Fatigue

Fatigue is the most important failure mode in material deterioration of dynamically loaded
machine parts. Fatigue occurs at stress levels beyond the yield stress. This means, a part

will probably fail under cyclic loading at a stress level which causes no remarkable damage
in a single static load case.

Depending on the applied load level the following classi�cation is often used:

� Very Low Cycle Fatigue (VLCF): �"p

�"e
' 10::100,

� Low Cycle Fatigue (LCF): �"p

�"e
' 1::10 and

� High Cycle Fatigue (HCF): �"p

�"e
' 0.

2.1 Phases of Fatigue Life

Fatigue life of dynamically loaded metallic parts can be divided into three sections:

� Crack initiation,

� Crack propagation,

{ State I,

4



2.1. PHASES OF FATIGUE LIFE 5

{ State II and

� Fracture residual.

The following short description of fatigue micromechanics is based on the work of

[59, 60, 65].

At �rst, plastic deformations at a microlevel take place in the whole loaded structure. The

amount and the number of grains containing these so-called fatigue slip bands increases

with lifetime.

At �rst the dislocations are randomly distributed, this is called a debris structure. Later,

depending on the crystal symmetry and the stacking fault energy (), di�erent dislocation

structures are built up.

Areas of high dislocation concentration are surrounded by areas of low dislocation con-

centration. In areas with high concentration, the dislocations interact and the possibility
of slipping in reduced. Therefore, the plastic strain level at constant load decreases.

Normally, fatigue cracks occur at the surface of the parts. But in places of material

inhomogenities, e.g. cavities, large inclusions or in the case of surface hardening, crack
initiation is also observed inside the part.
If there are no initial surface defects, microcracking is mostly observed in the fatigue slip

bands. These slip bands form extrusion-intrusion pairs with high stress concentration at
the surface of the part. These extrusion-intrusion pairs will appear at the same place,
if the part is polished and loaded once more. Therefore, they are called persistant slip

bands (PSB).
Often a lot of these microcracks appear, but only some are dominant and responsible for

�nal failure.
State I crack propagation means the propagation of microcracks which may initially exist

or which are built up in the crack initiation phase. Crack propagation of these microc-

racks is shear stress controlled. It will only occur in crystals with slip bands parallel to

the highest shear stress (see Fig. 2.1). After the microcrack has grown over some crystals,

state II of the crack propagation takes place.

State II crack propagation is connected with the propagation of the macroscopic crack

(l0 = 0:1� 1mm).

The crack is following a path perpendicular to the applied load. To describe the velocity

of macrocrack propagation is the task of Linear Elastic Fracture Mechanics (LEFM). The
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simplest approach is achieved by Paris law:

da

dN
= C�Km; (2.1)

where

C, m: are material constants and K: is the stress intensity factor.

state I
(shear stress controlled
in adequately orientated 
crystals)

state II
(perpendicular to loading)

Figure 2.1: Schematic representation of state I and II crack propagation.

For medium crack propagation velocities (10�5 � 10�3mm=cycle) the fractured surface
often contains striations. The cleavage between them can be measured by an electron

micrograph. This gives the movement of the crack-tip cycle by cycle.
The crack grows in this way until it reaches a critical size and becomes unstable.

Some people try to take the concepts of LEFM and to model with these concepts the

growth of the microcracks (see e.g. [46]) in a probabilistic way. This procedure can be-

come valuable particularly for materials with initial microcracks.

It is di�cult to give practical criteria to distinguish the crack initiation phase and the
crack propagation phase. So, it is usual to de�ne the crack propagation phase just by the

second state und to add the �rst state to the crack initiation phase.

With this classi�cation more than 90% of the lifetime is in the crack initiation phase,

especially for not too sharply notched parts with polished surfaces. Nethertheless, �rst

microscopic cracks can be found after 0.1 % of the lifetime [88].
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Therefore, we will focus our attention in this work on the maximization of the crack ini-

tiation phase.

An important di�erence of crack propagation under static and dynamical loadings are

crack closure e�ects in the phase of compression. Their inuence is known, but not

completely understood until now [88].

2.2 Main Features of Fatigue

In the last section fatigue behavior was described on a microscopic scale. In this section
the resulting macroscopic behavior is discussed.

2.2.1 History of Loadings

All factors inuencing the lifetime can vary during fatigue life. As an example, the
inuence of changing the load level will be discussed below. Besides this, the material

behavior - even if all inuencing factors are constant - often changes during lifetime.

E�ect of Strengthening and Softening

Depending on the heat treatment of the material, the microscopic mechanisms described

in Section 2.1 lead to a strengthening and/or softening of the material during lifetime.

In Fig. 2.2, in a normalized specimen at �rst a dislocation structure is built up, this is

acompanied by softening. Then, there is an interaction between the highly concentrated

dislocations accompanied by a strengthening of the material. For cold worked specimens,

these e�ects of softening and strengthening are almost missing.
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N

σ

ε

= const.

a
p

a

normalized

cold worked

Figure 2.2: Schematic cyclic load-deformation curves, see [65].

Di�erent Load Levels

It is well known [56, 88] that there is a great inuence of the history of loading in case that

load amplitude is not constant. If the sequence of the loading levels e.g. in a two level
fatigue test is changed, there is a much longer lifetime if the lower load level is applied
�rst, and a shorter lifetime if �rst the higher loading takes place. In Fig. 2.3 there are

some examples for this behavior. For the chosen scaling of the axis, all results will be on
a straight line connecting P1 = (1; 0) and P2 = (0; 1) if there is no inuence of the load
history.

Figure 2.3: Two level fatigue tests for maraging steel at room temperature. � Low load

level �rst, � high load level �rst. Load amplitudes in ksi, see [57] for more details.
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This training e�ect is also observed in [87] for 42CrMo4. The material behavior of

42CrMo4 is close to 30CrNiMo8 used here.

2.2.2 Three Dimensional E�ects

Almost any fatigue tests are done for the case of a one-dimensional state of stress. If

there is a multiaxial state of stress (e.g. a notch), this has to be transformed to the

one-dimensional case. The problems caused by this transformation are well known also

from plasticity [5]. For the isotropic case, the three invariants of the stress tensor are

used to de�ne a equivalent stress (E.g.: The von Mises equivalent stress based on the J2
invariant is used often for the yield criterion by metals.). As mentioned in Section 2.1, at

�rst fatigue cracks develop under 450, i.e. they are shearstress orientated, and in state II

they are normal to the applied load. Therefore we observe di�erent anisotropic behavior

during lifetime.

2.2.3 Mean Stress

In tension-compression tests, a positive mean stress will reduce lifetime, whereas a negative

mean stress will improve lifetime. In Fig. 2.4 three W�ohler-Curves (or S-N-diagrams) with
di�erent mean stress are shown for 50% crack probability.

100

200

300

400

500

0

10 1010 10
3 4 5 6

-120

0 

560

/MPaσ
a

N

  /MPaσ
m

Figure 2.4: W�ohler-Curve for notched tension bars (Kt=4.5). Material: X2NiCoMo18 7
5, see [59].

Negative mean stresses have a greater inuence on the fatigue limit than positive mean
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stresses. The inuence of mean stresses is assigned to the crack propagation phase. So,

there is e.g. the interesting observation that, if there are great negative mean stresses,

microcracking may occur, but will not develop, because a development is only possible

under tension [59]. The inuence of mean stresses is also dependent on the load case.

There is a great inuence in tension-compression tests as mentioned and only low or even

no inuence in torsion tests.

For lifetime calculations, the mean stress e�ect is usually considered by the use of Smith

or Haigh diagrams.

2.2.4 Frequency

If the parts are well cooled and the frequency is low (0:1 � f � 200Hz), there is only

a very small inuence of the frequency [33]. In this case there is no need to take inertia
forces into account.
If the load frequency is in the vicinity of the eigenfrequency of the part, certainly inertia

forces have to be considered. In [30] e.g., there is an example showing that the use of
a part with statically optimized shape can reduce the lifetime of the part. This can

happen, because by optimization, the eigenfrequency of the part is changed and the new
eigenfrequency is maybe closer to the load frequency than the eigenfrequency of the part
with start shape.

2.2.5 Size E�ect and Scattering

It is an inherent feature of life time tests that there is a large scattering of the results.

There is the observation that the lifetime will increase, if the broken parts of a specimen
are used as specimens for the following tests. Another found e�ect is that the lifetime

of a wire is increased by shortening the wire [42]. These e�ects are explained assuming

some weakness of the material (inclusions, voids, surface inhomogenities) statistically
distributed and the damage accumulation highly concentrated at these places.

The probability of a fail-down of the structure is increased with the number of possible
places for the failure. In the �rst example the weakest link of the original specimen

vanished, so the new parts will have longer lifetimes. In the second example the possibility

of a weaker link increases with the length of the wire. The scatter of lifetime tests can be
explained by the scatter of weakness distributed in the specimens.
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2.3 Engineering Lifetime Calculation

A basis for the calculation of the lifetime of a notched specimen is the knowledge of the S-

N-diagram for smooth specimens. Depending on the material, the notch has no inuence

(notch sensitivity � = 0, e.g. cast iron with lamellar graphite [60]) or some inuence on

the fatigue strength. Full inuence (� = 1) means, the fatigue strength of the notched

specimen is reduced by the notch factor Kt. This is not observed. Normally, there is some

inuence of the notch (0 � � < 1). The quotient of the fatigue strength of the smooth

and the notched specimens is called fatigue notch factor:

Kf =
�f

�nf
: (2.2)

A relation between the notch sensitivity, the notch factor and the fatigue notch factor is

given by the following equation:

� =
Kf � 1

Kt � 1
: (2.3)

10     10     10    10     10    10     10
 1       2        3      4       5      6        7 N

σn

σ

σ

f

f
n

Figure 2.5: Schematic S-N-diagrams for smooth and notched specimens.

It is remarkable that the lifetime of the notched specimens in the VLCF is higher than

the lifetime of the smooth specimen. Normally, the curves intersect at N = 101 � 104

cycles [60].

2.3.1 Lifetime Calculation in LCF and HCF

We assume that the load amplitude is constant during lifetime. In cases of a random load

amplitude Rainflow counting is normally adopted [76]. If there is a sequence of di�erent

but constant load levels, often a linear damage accumulation is used (see next section).
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In the past a lot of di�erent lifetime-load relations were proposed �tting the experimental

results [22]. In this work the approaches of W�ohler:

lgN = a� b� (2.4)

and of Basquin

LgN = a� b lg � (2.5)

will be used to describe this relation. These relations were worked out especially for

HCF. In addition, a fatigue notch factor has to be chosen. "Neuber's" fatigue notch

factor proposed on the basis of micro support caused by microplasticity has found wide

application:

Kf = Kt

s
R

R + s��
(2.6)

with

R: is the notch radius, ��: is a material parameter and s: is depending on loading

conditions and specimen.

With the fatigue notch factor, as well as the knowledge of the S-N-diagram for the un-
notched specimen, the chosen S-N relation and a determined intersection point of the
S-N curve of the notched parts with the unnotched parts (compare Fig. 2.5) it is easy to

calculate the lifetime of a notched part for any load level.
In this approach maximization of lifetime through shape optimization is realized by min-

imizing the fatigue notch factor [30, 31].

In LCF, plasticity has a dominating inuence even on a macroscopic scale.

The experiments are often strain driven. If both axes are logarithmically scaled, a linear

relation can be found (Fig. 2.6) The Co�n-Manson equation [56, 59] describes this

relationship:
�"p = "0N

c
F (2.7)

with

the material constants: c, "0.

In this modellization, maximization of lifetime is connected with minimization of plastic
strain.



2.3. ENGINEERING LIFETIME CALCULATION 13

Figure 2.6: Lifetime-Strain relation in LCF for strainhardened steel: AISI 1010 at room

temperature, see [51].

2.3.2 Damage Accumulation

In the last sections the determination of lifetime has been described for a constant load
level (strain in LCF and stress in HCF). In the case that there are some load sequences
with di�erent but constant load level within a block, often linear damage accumulation

according to Miner0s rule is used:

Di =
Ni

Nfi

; (2.8)

where

Di: is the damage of a block with constant amplitude,

Ni: is the number of cycle with this load amplitude and
Nfi: is the number of cycle to failure for this load amplitude.

If D:

D =
nX
i=1

Di: (2.9)

reaches one, failure will take place. In this approach only linear damage accumulation is

regarded without any attention to the sequence of the loading.
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2.4 Discussion

There are a lot of other factors inuencing fatigue behavior (e.g. temperature, atmo-

sphere, manufacturing process, in [60] an overview can be found), but it is out of the

scope of this work to describe all these e�ects. It has been tried to keep all inuencing

factors constant for the fatigue tests to study the e�ect of designing the free boundary of

the dynamically loaded part.

In the last sections, it was shown how to determine the lifetime of a part loaded in LCF or

HCF. Nevertheless, these "engineering" descriptions give very poor results if the loading

is complex [55]. The material parameters of the di�erent fatigue notch factor hypotheses

are not independent of the load case (see Eq. 2.6).

Besides this, in Section 2.2.1, it was shown that there is a history dependency. In Section
6.2 a stress redistribution is found. All these e�ects will be considered in a more detailed

approach found within the Continuum Damage Mechanics Concept described in Chapter
4.



Chapter 3

Formulation and Solution of the

Static Shape Optimization Problem

In this chapter, the static shape optimization problem is de�ned as the minimization of
maximum stress. In general, the point of maximum stress can be within the considered

solid body or on the surface. To �nd this point is not trivial. Generally, the point of
maximum stress for notch problems is on the notch surface, but exception to this rule

can be found in literature (e.g. [82]: plate with bilateral notched edges, loaded in pure
shear). However, in this work we restrict ourselves to special notch problems, where the
maximum stress for the undamaged material will always appear on the notch surface.

In the �rst section of this chapter the continuous problem is de�ned. In the second
section the discretized static shape optimization problem is speci�ed, and in the third

section there are some remarks for the implementation of the numerically approximated
solution of the discretized static problem.

3.1 Continuous Optimization Problem

In this section, the equations de�ning the �eld problem are summarized �rst. The solution

of this problem will be approximately computed using the Finite Element Method (de-

scribed in Section 3.2.1). After this, the optimization problem is formulated. The static

optimization problem is speci�ed in more detail for the discretized structure in Section

3.2.2.

15
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3.1.1 Boundary Value Problem in Linear Elasticity

In the domain 
 � R3 with a Lipschitz boundary surface �, the following set of equations

given in a tensorial notation - referred to an orthogonal Cartesian coordinates system

x = (x1; x2; x3) - has to be ful�lled:

�km;k = 0 (equilibrium condition), (3.1)

ekm =
1

2
(vk;m + vm;k) (kinematic relation), (3.2)

�km =
E

1 + �

�
ekm +

�

1� 2�
�kmeqq

�
(material law, linear elastic material) (3.3)

where

E: Young's modulus and
�: Poisson's ratio.

The displacement vector vk has three independent components. Out of the displacement
vector vk the strain tensor ekm (six various components) is computed. These six compo-
nents cannot be independent. They have to ful�ll the compatibility equations additionally

(see [41]):

ekm;pq + epq;km � ekp;mq � emq;kp = 0: (3.4)

By replacing the stresses in Eq. 3.1 with Eq. 3.2 and Eq. 3.3 the Navier equations:

vm;kk +
1

1� 2�
vk;km = 0 (3.5)

are derived. The Navier equations with the following mixed boundary conditions de�ne

the boundary value problem for a instantaneously �xed free boundary ��:

vk = v�k on �k (Dirichlet conditions),

pm = p�m on �s (Neumann conditions).

(3.6)

The whole boundary � is decomposed into a kinematic and a static part (Fig. 3.1):

� = �k [ �s and �k \ �s = ; with �k 6= ;: (3.7)

The free boundary is a simply connected subset of the static boundary (�� � �s). It is
assumed to be loadfree (pmj�� = 0).
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Γ

Γk

s

Variation
Domain

Γ∗

Ω

Figure 3.1: Shape optimization problem.

3.1.2 Nonlinear Optimization Problem

In this work we will deal with constrained optimization problems. Nevertheless, it is useful
to de�ne the unconstrained optimization problem and the conditions for a solution at

�rst, because often constrained optimization problems are transformed into unconstrained
problems.

Unconstrained Optimization Problem

An unconstrained optimization problem is de�ned by the following expression:

F = min
t2U

f(t); (3.8)

where

f(t): is the cost function and
t: is the design vector (e.g. node coordinates of the free boundary).

t� 2 U is a global minimum if:

f(t�) � f(t) 8 t 2 U � Rn: (3.9)
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A local minimum is de�ned by the following expression:

f(t�) � f(t) 8 t 2 U�(t
�) ft 2 U�(t

�)j k t� t� k� �g: (3.10)

If t� is a solution of the unconstrained optimization problem, it will ful�ll the following

necessary condition:

rf(t�) =

 
@f

@t1
;
@f

@t2
; � � � ;

@f

@tn

!
t�
= 0: (3.11)

We introduce the Hessian matrix to formulate a su�cient optimality criterion:

H(t) =

"
@2f

@ti@tj

#
: (3.12)

If t� is a local solution of the unconstrained problem, the Hessian matrix has to be positive

de�nite in its vicinity.

Constrained Optimization Problem

The constrained optimization problem is de�ned as:

F = min
t
ff(t)jh(t) = 0; g(t) � 0g: (3.13)

with

h(t): is a set of equality constraints and

g(t): is a set of inequality constraints.

If the cost function and/or the constraints are nonlinear, Eq. 3.13 de�nes a nonlinear
constrained optimization problem.

For static shape optimization, the maximum stress on the free boundary is often chosen

as cost function (an overview of usual cost functions and constraints can be found in [96]).
Therefore, the following problem results:

min(f(t)) = min

�
max
��

(�eq)

�
; (3.14)

where

�eq: is the von Mises equivalent stress.
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The solution space S � Rn is determined by the side constraints (for shape optimization

problems: variation domain):

S := ftjti � ti � tig � Rn: (3.15)

We introduce the Lagrange function to de�ne the optimality conditions for the constrained

optimization problem:

L(t;�;�) = f(t) + �igi(t) + �jhj(t); (3.16)

(Remark: Einstein's sum convention is adopted.)

where � 2 Rmg and � 2 Rmh are Lagrange multipliers or dual variables.

Further more, we need the following de�nitions to determine necessary and su�cient
conditions for the constrained optimization problem:

� De�nition 1: P � S includes all possible solutions of Eq. 3.13:

P := ftj hi(t) = 0; i = 1; ::; mh; gj(t) � 0; j = 1; ::; mgg: (3.17)

� De�nition 2: I is called index set. It summarizes the active inequality constraints:

I(t) := fjj gj(t) = 0; j = 1; ::; mgg: (3.18)

� De�nition 3: The constraint quali�cation [13] is ful�lled, if the gradients of the
equality constraints and the active inequality constraints are linear independent in

t� 2 P:

�irhi(t
�) + �jrgj(t

�) 6= 0 8 � 6= 0 (3.19)

with

i = 1; ::; mg and j 2 I(t
�).

� De�nition 4: A function f : Rn !R is called convex, if:

f(�t+ (1� �)s) � �f(t) + (1� �)f(s) (3.20)

8 t; s 2 Rn and � 2 (0; 1). (The function is called concave if in Eq. 3.20 the "�" is
replaced by a "�".)

If the function is di�erentiable twice, (f 2 C2) convexity and semi-de�niteness of
the Hessian matrix of f are equivalent.
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Convexity is important for optimization algorithms, because mostly only in this special

case convergence is ensured.

Duality theory shows that if t�, �� and �� are a saddle point, i.e. if

L(t�;�;�) � L(t�;��;��) � L(t;��;��) (3.21)

8 t 2 Rn; 8 � 2 Rmg and 8 � 2 Rmh

with �i � 0; i = 1; ::; mg; then t
� is the global solution of Eq. 3.13 [79, 80].

This means, if the dual variables are known exactly (��;��), an unconstrained problem

results out of Eq. 3.13. Therefore in the past, the same e�ort was made to solve the dual

problem as to determine t� directly.
If f(t); hi(t)i = 1; ::; mh; gj(t)j=1;::;mg

are elements of C2 and the constraint quali�cations

g =0

g =0

f

1

1
2

2 ∆
∆

∆

∆

f=const

g

g

−

g =0
3

f

∆−2

∆

g
3
g

A

B

Figure 3.2: Kuhn-Tucker Conditions: Point A is not an optimal solution because there is
no nonnegative linear combination of the gradients of the active constraints equal to the

negative gradient of f . Point B is an optimal solution because there is no direction of

descent in the solution space.

are ful�lled and t� is a local minimum, then �� and �� will exist and the following relations

are valid:

rtL(t
�;��;��) = 0;

hj(t
�) = 0; j = 1; ::; mh;
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gj(t
�) � 0; j = 1; ::; mg;

��jgj(t
�) = 0; j = 1; ::; mg;

��j � 0; j = 1; ::; mg: (3.22)

si
@2L(t�;��;��)

@ti@tj
sj � 0 (3.23)

8 s 2 Rn with
@hi(t

�)

@tj
sj = 0, i 2 f1; ::; mhg and

@gk(t
�)

@tj
sj = 0, k 2 I(t�). The meaning

of the Kuhn-Tucker conditions (�rst order conditions: Eq. 3.22) is that the gradient of the

cost function and a positive linear combination of the gradients of the active constraints

will vanish for a local minimum (see Fig. 3.1.2).

Point A in Fig. 3.1.2 is not an optimal solution because the gradient of the cost function

does not belong to the subspace de�ned by the active constraints (all �j � 0!). Point B

is an optimal solution, because there is no direction of descent in the solution space.

For convex problems the Kuhn-Tucker condition is not only a necessary but also a su�cient
condition (see [39, 53] for further information).
The meaning of Eq. 3.23 is that the Lagrange function is positive semi-de�nite in the

tangential subspace of the equality and active inequality constraints.
With the same preceptions as before it is also possible to determine su�cient optimality
conditions. Besides the Kuhn-Tucker conditions the following relation has to be ful�lled:

si
@2L(t�;��;��)

@ti@tj
sj > 0 (3.24)

8 s 2 Rn, with s 6= 0,
@hi(t

�)

@tj
sj = 0, i 2 f1; ::; mhg and

@gi(t
�)

@tj
sj = 0, i 2 f1; ::; mgg,

where ��i > 0.

In this case t� is a local minima of f in P. This means:

f(t�) < f(t) 8 t 2 U� \ P: (3.25)

The side constraints are considered as two inequality constraints here.

In the next section the structure analysis for the discretized structure 
 is described. On

the basis of this structure analysis, the discretized free boundary value problem is formu-

lated and a numerical method (SQP=Sequential Quadratic Programming) for solving the

problem approximately is described.
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3.2 Discretized Static Shape Optimization Problem

In this work we restrict ourselves to the 2D plane stress state. In the 2D case the stress

and the strain tensor referred to a Cartesian orthogonal coordinate system can be written

in the form:

� = (�xx; �yy; �xy)
T and " = ("x; "y; xy)

T ; (3.26)

with

xy = 2"xy.

For homogeneous isotropic material, the matrix

D =
E

1� �2

2
64
1 � 0

� 1 0
0 0 1��

2

3
75 (3.27)

describes linear elastic behavior according to the plane stress state. In this notation Eq.
3.3 can be written in the form:

� = D": (3.28)

3.2.1 Structure Analysis

In this work a displacement approach of the FEM is used. For derivation of the method
at �rst the following sets of kinematically admissible displacements are de�ned:

K� =
n
v : 
! R2; v = u� on �k

o
and

K0 =
n
v : 
! R2; v = 0 on �k

o
: (3.29)

The minimum principle of potential energy states: If there is a solution of the boundary
value problem (Eq. 3.5 and Eq. 3.6) there is the following equivalence:

u 2 K�solution of Eq. 3.5 and Eq. 3.6 , �(u) � �(u+ v) 8 v 2 K� (3.30)

The total potential energy of the body in the case of vanishing volume forces is the sum:

�(u) =
1

2
Q(u;u)� �(u); (3.31)

of the strain energy:
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Q(u;u) =
Z



"TD"d
;

and the potential energy of the surface loads:

�(u) =
R
�s
p�Tud�:

If a function u minimizes the functional �(u), then the �rst variation of �(u) must

vanish:

�� = 0 = Q(u;w)� �(w) 8 w 2 K0: (3.32)

(Remark: Eq. 3.32 can also be understood as a weak formulation of the equilibrium

condition Eq. 3.1. )
At this point, the structure is divided into ne triangular �nite elements:


 � ~
 =
ne[
e=1


e: (3.33)

For each element, we introduce the vector de of nodal displacements and the matrixN e of
shape functions, which contains the nodal basis functions of the approximating subspace.

Thus, the approximation of u in the element e has the form:

uh =N e(X)de: (3.34)

The strains " are derived by di�erentiation of Eq. 3.34:

"e = Bede (3.35)

(Remark: For an elementwise linear approximation of the displacements the correspond-

ing strains are constant in each element. )
Writing Eq. 3.32 for one element and introducing the displacement set-up (Eq. 3.34 and

Eq. 3.35) leads to the following formula:

��e(uh) = �deT
�Z


e
BeTDBed


�
de � �deT

�Z
�s\�e

p�
T
N ed�

�
= 0: (3.36)

The element sti�ness matrix is introduced by:

Ke =
Z

e

BeTDBed
: (3.37)

An a�ne linear transformation to triangular coordinates and explicit integration is per-

formed to determine the element sti�ness matrix (Eq. 3.37). The given loads are trans-

formed into a nodal load vector:

F e =
Z
�s\�e

p�
T
N ed�: (3.38)
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Introducing the last two equations in Eq. 3.36 leads to:

��(uh) = �deT (Kede � F e) = 0: (3.39)

�de is an arbitrary vector. Therefore the minimum of potential energy can only be achieved

if the term in parentheses vanishes. Superposition of all elements 
e leads to the funda-

mental FE-equation for the whole structure:

Kd = F ; (3.40)

where

K: is the global sti�ness matrix,

d: is the vector of (global) nodal displacements and

F : (global) nodal force vector.

If the nodal displacement vector is determined solving Eq. 3.40, the strains can be com-

puted according to Eq. 3.35. With the strains, the stresses are computed element by
element with Hooke's law. The stress components at a node are determined by averaging
the stress components of the adjacent elements:

�nodeij =
1

ne

neX
k=1

�kij; (3.41)

where

ne: is the number of elements containing the speci�ed node.

3.2.2 Formulation of the Discretized Static Shape Optimization

Problem

After the discretization of the structure (~
 � 
), the FE-node coordinates on the free

boundary are the natural design variables.

Therefore the constraints in a variation domain can be written as:

Xi � Xi � Xi and

Yi � Yi � Yi: (3.42)

Besides these constraints in variation domain, some other constraints are considered. They

are described in detail in Section 3.2.4.
The proposed cost function:

F : min f1(t) = min

�
max
i=1;::;m

�
�ieq

��
: (3.43)

where
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(Xi; Yi) 2 �� and m: is the number of design nodes on the free boundary

implies the problem that during the optimization procedure, the node with maximum

stress may change. Therefore, the cost function is not di�erentiable. However, this

property is necessary because gradient methods of mathematical progamming (MP) will

be used to solve the problem. To overcome this problem, we introduce an additional

design variable (see also [82]) � and the additional constraints:

�ieq � � � 0 i = 1; ::; m: (3.44)

The new cost function is:

f(t) = min�: (3.45)

Now, the cost function is linear and depends only on the additional design variable. This
additional design variable is forced to be greater than the highest stress on the free bound-

ary by the additional constraints.

(Remark: Although the original cost function is now transferred into the set of constraint,

we will call the function characterizing the fatigue behavior cost function further on.)

Another method to overcome this problem can be found in [92]. This second method was
also tested and led to the same results as the method described above.

The cost function is linear now, but the constraints are nonlinear. So we also have a

nonlinear constrained optimization problem.

3.2.3 Optimizer

A helpful overview of currently used optimization procedures can be found in [25, 31, 83].

In Fig. 3.3 a short summary is given.
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Probabilistic
Strategies

Deterministic 
Strategies

(Random Search)

Monte-Carlo Strategies
Evolution Strategies
 

(Hill climbing)

Optimality-
criterion-based
algorithms

Methods of mathe-
matical programming

linear non-linear

constrained
optimization

unconstrained
optimization

Simplex method

Penalty function
method
Feasible direction
method
Sequential linear 
Programming
Sequential quadratic 
programming

Search method
Conjugate gradient
algorithm
Newton method
Quasi-Newton
method

Figure 3.3: Summary: Most important optimization strategies [82].



3.2. DISCRETIZED STATIC SHAPE OPTIMIZATION PROBLEM 27

Mathematical Programming versus OC-Methods

It is well known that Optimality Criteria Methods lead to very accurate optimization

results in short CPU-time [64, 78, 82, 83, 84]. All OC-methods consist of two principal

constituents:

The optimality criteria itself (mathematical formulation: e.g. Kuhn-Tucker conditions or

intuitive criterion: e.g. strain energy density constant) and an algorithm to change the

structure in such a way that the mentioned optimality criterion/criteria is/are achieved.

As an example for an OC-Method Schnack0s gradientless method is briey summarized:

Schnack has formulated the following two hypotheses on the basis of Neuber0s [66] and

Baud0s [8] works as optimality criteria for plane and axisymmetric structures:

Let A and B be the end points of the free boundary ��. If the free boundary is chosen so

that the tangential stress �t is constant between A and B, then the stress concentration is

minimized.

If there is no �� with constant tangential stress according to the �rst hypothesis available

in the chosen variation domain, then the stress concentration is minimized if the length

(�) with �t on �� is maximized and �t has no higher values on ��n�.

These hypotheses were extended in [45, 82, 83] to axisymmetric and 3-D-problems using

von Mises equivalent stress instead of the tangential stress.
Remark: If several load cases are considered, the maximum equivalent stress of all load
cases is used.

The optimization algorithm is based on the observation that the stress is locally increased

by the reduction of the local curvature radius and vice versa.

In addition, there is the observation that increasing the stress minima also reduces the

maxima in its vicinity (notch reaction law).
According to these two observations, the point of minimum equivalent stress is shifted by

increasing the normalized local curvature, and the point of maximum equivalent stress is

shifted by reducing the normalized local curvature. The points between these two points

are interpolated.

In [64, 78] an extension of this algorithm can be found. In these papers the shift of the

nodes is calculated not only for the points of minimum and maximum stress but for all

points on the free boundary.



28 CHAPTER 3. STATIC SHAPE OPTIMIZATION PROBLEM

The advantage of these OC-methods is that a CPU-time intensive gradient calculation is

not necessary.

The methods of mathematical programming are used in this work for two reasons: First,

neither optimality criteria nor algorithms for the special cost functions considered here,

excist. Second, in this work special constraints are added to the cost function, which are

not allowed if OC-methods are used.

Sequential Quadratic Programming

In this work, Sequential Quadratic Programming (SQP) is used to solve the discretized
optimization problem numerically, because SQP is well established for nonlinear structural

optimization problems [30, 31, 79, 80], if the number of constraints and design variables is
not too large (� 200). The advantages of this procedure are the global convergence and
the local superlinear convergence rate. The procedure can be adopted for constrained,

highly nonlinear optimization problems (see Fig. 3.3).
The disadvantages of SQP are the scale sensitivity (values of design variables, cost func-

tions and constraints must be harmonized), during optimization the allowed solution space
is often left and the convergence rate is dependent on the penalty factors and the merit
function.

SQP belongs to the Lagrange methods. Lagrange methods solve the necessary optimality

equations directly. The SQP method is based on the successive solution of quadratic
subproblems (QP) of the constraint optimization problem Eq. 3.13. These QPs are

derived by a quadratic approximation of the cost function and a linearization of the

constraints:

min
1

2
kpi

kBij
kpj +

@f(kt)

@ti

kpi (3.46)

and

@hi(
kt)

@tj

kpj + hi(
kt) = 0 for i = 1; ::; mh and

@gi(
kt)

@tj

kpj + gi(
kt) = 0 for i = 1; ::; mg: (3.47)

The bounds for this quadratic subproblem (QP) are:

kti � ti �
kpi � ti �

kti for i = 1; ::; n: (3.48)

The abbreviations have the following meanings: kt is the kth approximation of the solution,
kB is the kth approximation of the Hessian matrix, it is determined only with �rst order
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information on the basis of the method developed by Powell Han and Wilson (see [81])

and kp� is the solution of the kth QP-subproblem Eq. 3.46.

If the optimal Lagrange multipliers are k�� and k��, we can determine the next iteration

step with the following expression:

8><
>:

k+1t
k+1�
k+1�

9>=
>; :=

8><
>:

kt
k�
k�

9>=
>;+ �k

8><
>:

kp�

k�� � k�
k�� � k�

9>=
>; : (3.49)

�k is a step size parameter. It is determined by line search of the merit function (see [80]).

The SQP-algorithm [79] requires of the user to choose the design variables (node coordi-

nates or de-Boor ordinates of the B-spline approximation, see Section 3.3.2 and Section

5.5.1), to provide the cost function (see Chapter 4), the constraints (see next section) and

the sensitivity analysis (see Section 3.3.3).

3.2.4 Constraints

Normally, one tries to keep the number of additional constraints small to save CPU-

time. On the other hand it can also happen that the optimum is reached earlier by the
introduction of additional constraints, because the solution space is reduced.
Here, three sets of constraints are introduced.

Distance Constraint

This set of constraints compares the distance to the previous and the following neighbor
node on the free boundary. This distance is forced to be equal for all nodes on the free

boundary:

q
(Xi �Xi�1)

2 + (Yi � Yi�1)
2 �

q
(Xi+1 �Xi)

2 + (Yi+1 � Yi)
2 = 0; (3.50)

i = 2; ::; m� 1, where m is the number of nodes on the free boundary.

This constraint (Eq. 3.50) is used to keep the mesh regular and to avoid net deterioration.
Obviously it cannot be used if the free boundary is described with B-splines.
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Concave Constraint

For notch problems, the optimum shape is obviously concave. This is forced by the

calculation of the area formed by three adjacent nodes on the free boundary:

2Ai =

�������
1 1 1

Xi�1 Xi Xi+1

Yi�1 Yi Yi+1

������� ; (3.51)

where

i = 1; ::; m� 1, for i = 1: X0 = X2 and Y0 = �Y2, because of the symmetry.

i

i+1

i-1

A
i

Figure 3.4: Area of the triangle formed by three adjacent nodes on the free boundary.

This set of constraints helps to avoid oscillations in the low stress area. In [86] this
problem is mentioned in detail and an extension of this set of constraints can be found for
the case that the whole free boundary can be decomposed in parts which are determined

convex or concave a priori [31].

Manufacturing Constraint

The considered optimization example (see Section 5.4) is studied not only theoretically

but also experimentally. In order to achieve that the optimum shape is producible with a

CNC-milling cutting machine, the smallest local curvature radius has to be greater than
the smallest cutter radius:

Rmin � Ri � 0: (3.52)
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At �rst the center (X0i; Y0i) of the local curvature radius has to be determined. It is found

at the intersection of the two mid-verticals (i-1, i and i,i+1, see Fig. 3.5):

X0i =
A +B

N
=
Z1

N
and Y0i =

C +D

N
=
Z2

N
; (3.53)

where

A = x2i�1 (yi+1 � yi)� x2i (yi+1 � yi�1) + x2i+1 (yi � yi�1) ;

B = (yi+1 � yi�1) (yi � yi�1) (yi+1 � yi) ;

C = (xi � xi�1) (xi+1 � xi�1) (xi � xi+1) ;

D = xi�1
�
y2i+1 � y2i

�
+ xi

�
y2i�1 � y2i+1

�
+ xi+1

�
y2i � y2i�1

�
N = 2[(xi�1 � xi) (yi+1 � yi)� (xi � xi+1) (yi � yi�1)]:

i+1

i

i-1

(X   ,Y  )

R 

0i 0i

i

Figure 3.5: Determination of the local curvature radius.

The local curvature radius is:

Ri =
q
(X0i � xi)

2
+ (Y0i � yi)

2
: (3.54)

There is no need to apply this constraint in every point of the free boundary. In a primary

intelligent look on the notch surface, \dangerous points" are determined. The constraint

is then only applied at these \dangerous points" near the separation point. (The opti-

mization result depends sensitively on the value of the design variables in this area, see

[31, 84].)
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3.3 E�cient Algorithms and Implementation

The described optimization procedure for the numerical solution of the discretized static

shape optimization problem will be used as a basis for the fatigue (dynamic behavior)

optimization problem. Therefore it is necessary to analyze the stress-strain �eld several

times (see Chapter 4) during lifetime. This leads to a rapidly increasing CPU-time.

Therefore the optimization problem only can be solved if for the implementation e�cient

algorithms are used.

3.3.1 Sparse Storing and Iterative Solver

The chosen displacement method with linear elements requires a very �ne FE-mesh to
determine the stress-strain �eld accurately. This leads to a lot of nodes, i.e. a high degree

of freedom (DOF ). A sparse storing of the global sti�ness matrix is therefore necessary
to reduce computer memory consumption.

The sti�ness matrixK is symmetric and positive de�nite. Instead of the upper triangle of
K only the nonzeros of this triangle are stored in a vector k. The row and column indices
are kept by introducing two additional vectors. The nonzero elements of the sti�ness

matrix are put into k row by row. The �rst added vector with dimension n = rank(K)
contains pointers to the main diagonal elements of K in k. The second vector with the
same length as k contains the column index of K for every component of k (see [72] for

a more detailed description).

Instead of a direct solver (e.g. Cholesky-Method [30, 31]), in this work an iterative
solver (preconditioned CG-method: SSORCG=Sucessive Symmetric Overrelaxed Conju-

gate Gradient Method) is used to solve the linear FE-equation system (Eq. 3.40.). It
was found [72] by several - not too small (� 1000DOF ) - numerical examples that the
computation time for the solution of the linear FE-equation system is reduced by a factor

� 5 � � �10, if the SSORCG is used instead of a Cholesky method.

Equivalent to solving the linear equation system Kx = b is the minimization of the
following quadratic functional:

f(x) =
1

2
xTKx� bTx+ c: (3.55)

If a start solution x0 is known, the residuum is calculated in the following form:

r0 = b�Kx0: (3.56)

Using p0 = r0 as a �rst direction of descent, the equations for the kth iteration are:

k� =
krT kr

kpT K kp
;
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k+1x = kx+ k� kp;
k+1r = kr + k�K kp;

k� =
k+1rT k+1r

krT kr
and

k+1p = k+1r + k� kp: (3.57)

It can be shown, that the exact solution is found after maximal n = rank(K) iterations

[1].

In practical use the iteration process is stopped, if a limit su�ciently small for the Eu-

clidean norm of the residual vector is reached.

The derivation of the recursive equations and more details can be found in [1, 43].

A description of the preconditioning is found in [1, 50, 54].

The use of this iterative method becomes particularly valuable if a good start solution is

available. In optimization the values of the last iteration are a very close approximation.

3.3.2 Design Variables

If a structure is approximated with �nite elements, the natural design variables for shape
optimization are the node coordinates of the free boundary.
With this choice there is a great number of design variables if accurate results in struc-

ture analysis are desired. Besides this, many authors mention a lot of problems with node
coordinates in case methods of MP are used for optimization. Besides the large CPU-

time due to the great number of design variables, there is e.g. the problem of nonsmooth
boundaries in the area of low stresses. (The caused singularities are bad or even not
approximated because of the rough discretization in this area.) This problem is overcome

in this work by introducing the concave constraint. Another very important problem is
that, according to the great number of design variables, a lot of CPU-time is necessary
for the sensitivity analysis.

At the moment, one usually distinguishes between the design and the analysis model.
Often the free boundary is described with Bezier or B-splines [26, 27, 63, 75] and the

control parameter of these descriptions are the design variables.

The advantage of this description is that it is possible to describe a complicated boundary
with only a few design variables.

If such a description is chosen, this is a second approximation of the structure. Or in
other words, the solution space is constrained once more [31, 44].

In this work besides the node coordinates, B-splines will be used to describe the free

boundary. With the use of B-spline control parameters as design variables, a good approx-
imation of the solution will be calculated in a short time (see Section 5.5.1).

In the following subsections a brief introduction in B-(or basis) splines is given. For more
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general information see [14, 32]. In brackets the actual chosen features are outlined.

Introduction to B-splines

There are parametric and nonparametic (used here) B-splines. A B-spline is determined by

its polynomial degree n (here: n = 3), a sequence of nodes u0 � u1 � u2 � ::: � uL+2n�2
and the de-Boor ordinates di. The B-spline s(u) is de�ned over the interval given by the

domain nodes:

[un�1; uL+n�1] (here: [u2; uL+2]) : (3.58)

L is related to the node multiplicity (here: Every node in the interval of de�nition has

the multiplicity ri = 1. The �rst and last node have the multiplicity three. This ensures

that these points are �xed and lie on the B-spline curve.):

L+ 1 =
L+n�1X
i=n�1

ri;

 
here: L+ 1 =

L+2X
i=2

1

!
: (3.59)

If all nodes inside the de�nition interval have the multiplicity one, L is the number of
sections.

The B-spline is controlled by the control polygon. This is de�ned by the Greville abscissas
and the de-Boor ordinates. The de-Boor ordinates are speci�ed by the user. The Greville
abscissas are calculated in the following form:

�i =
1

n
(ui + ui+1 + :::ui+n�1)

�
here: �i =

1

3
(ui + ui+1 + ui+2)

�
(3.60)

In Fig. 3.6 a B-spline with ten sections and polynomial degree n = 3 is shown.
The node sequence is marked with a \o". The �rst and last node of the sequence have
the multiplicity three, all the others the multiplicity one. Greville abscissas are marked

with a \�", the points of the control polygon (Greville abscissa, de-Boor ordinate di) are
marked by a \2".

The B-spline is de�ned by:

s (u) =
L+n�1X
i=0

diN
n
i (u) ;

 
here: s (u) =

L+2X
i=0

diN
3
i (u)

!
: (3.61)

The basis functions Ni have local support:

suppNn
i (u) = fuj u 2 [ui�1; ui+n]g:

�
here: suppN3

i (u) = fuj u 2 [ui�1; ui+3]
�
:

(3.62)
Therefore for a subsection u 2 [ui; ui+1] the following formula results:

s (u) =
i+1X

j=i�n+1

djN
n
j (u) 8 u 2 [ui; ui+1];

0
@here: s (u) = i+1X

j=i�2

djN
3
j (u)

1
A : (3.63)
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Figure 3.6: Example for the control polygon and the B-spline curve (n = 3, L = 10).

The basis functions can be derived by recurrence formulas. For this work the Mans�eld,

de Boor and Cox recursion was chosen. Alternative formulations can be found in [32].

Nn
i (u) =

u� ui�1

ui+n�1 � ui�1
Nn�1
i (u) +

ui+n � u

ui+n � ui
Nn�1
i+1 (u) ; (3.64)

where

N0
i (u) =

(
1 if: ui�1 � u < ui
0 else:

(3.65)

For the special case considered here the following formula is derived:

s (u) = (ui+1 � u)2
di�2 (ui+1 � u) + di�1 (u� ui�2)

(ui+1 � ui�2) (ui+1 � ui�1) (ui+1 � ui)

+ (u� ui)
2 di+1 (u� ui) + di (ui+3 � u)

(ui+3 � ui) (ui+2 � ui) (ui+1 � ui)

+
di�1 (ui+2 � u) + di (u� ui�1)

ui+2 � ui�1

 
u� ui�1

ui+1 � ui�1

ui+1 � u

ui+1 � ui
+
ui+2 � u

ui+2 � ui

u� ui

ui+1 � ui

!
(3.66)

for: u 2 [ui; ui+1); i = 2; : : : ; L+ 1:

Statements in the form \0/0" and not de�ned nodes (e.g. u1) are set to zero formally.
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Some B-spline properties:

� Smoothness

At the points of the node sequence there is Cn�r (here C2) smoothness.

� Local control

Due to the local support of the basis functions, there is only a local control. A

variation of di has an inuence only in this area (see Fig. 3.7). This local inuence

makes the B-spline description attractive for shape optimization.

� Node insertion

Additional nodes can be inserted into the node sequence (successive strategy, see

Section 5.3). In order to save CPU-time, a successive strategy introduced for node

coordinates (increasing number of design variables) can be used in the case of a

B-spline description of the free boundary, too.

� Linear precision

If l(u) is a straight line of the form l(u) = au + b, and if we read o� the Greville
abscissas, the resulting B-spline curve reproduces the straight line. Therefore, for

shape optimization, it is very easy to start with a \v"-notched shape.
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Figure 3.7: Local control of a B-spline curve.

For optimization the de-Boor ordinates are chosen as design variables. During one opti-

mization slope the x-coordinates of the FE-nodes are constant. The distance constraint is
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not used, if the free boundary is described with B-splines. After an optimization slope the

FE-nodes are distributed equidistantly on the free boundary. The necessary integration,

which determines the length of the free boundary, is carried out numerically [44].

At the beginning of the optimization procedure a coarse discretization is used. This means

a rough approximation of the stress strain �eld, but allows a large variation of the free

boundary without net deterioration. Successively, the number of FE-nodes is increased

during optimization. If no further optimization success can be achieved, the number of

control nodes of the B-spline is increased.

3.3.3 Sensitivity Analysis

Besides the values of the cost function and the constraints SQP demands the values of

the gradients of the cost function and the constraints with respect to the design variables.
This is called the sensitivity analysis.

With the chosen transformation of the cost function (Eq. 3.45) it is trivial to obtain its
gradient:

rf(t) = (0; 0; ::; 1)T ; (3.67)

with

t = (X1; X2; ::Xn; Y1; Y2; ::Yn; �)
T

in the case of node coordinates as design variables and

t = (d1; d2; ::dn; �)
T

in the case of de-Boor ordinates.

The gradients of the necessary additional stress constraints (Eq. 3.44) are approximated

by �nite di�erences:
@gi

@tj
�

��ieq
�tj

: (3.68)

All of the other gradients are derived analytically. As an example for the gradients of the

constraints in the following subsection, at �rst the gradients of the manufacturing con-

straints are determined with respect to the node coordinates. Next comes an explanation

of which modi�cations are necessary, if B-splines are used instead of the node coordinates
to describe the free boundary.

The derivative of any of the geometrical constraints with respect to the additional design

variable is zero.
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Gradients of Manufacturing Constraint with Respect to Node Coordinates

The gradients of the local curvature radius Ri (see also Eqs. 3.52-3.54) do not vanish

only in case the derivative is done with respect to the last (Xi�1; Yi�1), the actual (Xi; Yi)

or the next (Xi+1; Yi+1) node coordinates. It makes no di�erence if the actual curvature

radius is determined as the di�erence between the center and the node i � 1, i or i + 1

(see Fig. 3.5) so in the code always the coordinates �tting to the actual design variable

are used. The following expressions result:

@Ri

@xk
=

(Z1 �Nxk) (NZ
0

1 � Z1N
0 �N2) + (Z2 �Nyk) (NZ

0

2 � Z2N
0)

N3Ri

(3.69)

with 0 = @
@xk

where k 2 (i� 1; i; i + 1);

and

@Ri

@yk
=

(Z1 �Nxk) (NZ
0

1 � Z1N
0) + (Z2 �Nyk) (NZ

0

2 � Z2N
0 �N2)

N3Ri

; (3.70)

with 0 = @

@yk
where k 2 (i� 1; i; i+ 1):

The used abbreviations have the following meanings:

@Z1
@xi�1

= 2xi�1 (yi+1 � yi) ;
@Z1
@xi

= 2xi (yi�1 � yi+1) ;
@Z1
@xi+1

= 2xi+1 (yi � yi�1) ;

@Z1
@yi�1

= x2i � x2i+1 � y2i+1 � y2i + 2yi�1 (yi+1 � yi) ;

@Z1
@yi

= �x2i�1 + x2i+1 + y2i+1 � y2i�1 + 2yi (yi�1 � yi+1) ;

@Z1
@yi+1

= x2i�1 � x2i � y2i + y2i�1 + 2yi+1 (yi � yi�1) ;

@Z2
@xi�1

= �x2i + x2i+1 + 2xi�1 (xi � xi+1) +
�
y2i+1 � y2i

�
;

@Z2
@xi

= x2i�1 � x2i+1 + 2xi (xi+1 � xi�1) +
�
y2i�1 � y2i+1

�
;

@Z2
@xi+1

= x2i � x2i�1 + 2xi+1 (xi�1 � xi) +
�
y2i � y2i�1

�
;
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@Z2
@yi�1

= 2yi�1 (xi � xi+1) ;
@Z2
@yi

= 2yi (xi+1 � xi�1) ;
@Z2
@yi+1

= 2yi+1 (xi�1 � xi) ;

@N

@xi�1
= 2 (yi+1 � yi) ;

@N

@xi
= 2 (yi�1 � yi+1) ;

@N

@xi+1
= 2 (yi � yi�1) ;

@N

@yi�1
= 2 (xi � xi+1) ;

@N

@yi
= 2 (xi+1 � xi�1) ;

@N

@yi+1
= 2 (xi�1 � xi) :

Special care was taken if N = 0 $ Ri = 1. More details concerning the coding can be

found in [44].

Gradients of Manufacturing Constraint with Respect to de-Boor Ordinates

In principal there are two posibilities to determine the manufacturing constraint with

respect to a B-spline description of the free boundary. At �rst it is possible to use the
description based on the node coordinates introduced above. Besides this there is also
the possibility to use the analytical expression for the curvature:

d2s (u)

d u2
= s00 (u) : (3.71)

This gives the following expression for the curvature radius:

� =
(1 + s02 (u))

3

2

s00 (u)
: (3.72)

The manufacturing constraint can be formulated by:

��Rmin � 0; u 2 [u2; uL+2]: (3.73)

In this work the �rst approach using three adjacent nodes on the free boundary is used

further on. For the gradient calculation the chain rule has to be adopted. It has to
be pointed out that the position of the x-coordinate of the nodes is �xed during one

optimization cycle:

@gj

@dk
=

@gj

@yi�1

@yi�1

@dk
+
@gj

@yi

@yi

@dk
+

@gj

@yi+1

@yi+1

@dk
: (3.74)

As mentioned above the basis function N3
i (u) are de�ned only over u 2 [ui�1; ui+3]. For

u = xl only four partial derivatives (@yl=@dk = @s(xl)=@dk will not vanish:

@s (u)

@di�2
=

(ui+1 � u)
3

(ui+1 � ui�2) (ui+1 � ui�1) (ui+1 � ui)
;
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@s (u)

@di�1
=

(ui+1 � u)
2
(u� ui�2)

(ui+1 � ui�2) (ui+1 � ui�1) (ui+1 � ui)

+
ui+2 � u

ui+2 � ui�1

 
u� ui�1

ui+1 � ui�1

ui+1 � u

ui+1 � ui
+
ui+2 � u

ui+2 � ui

u� ui

ui+1 � ui

!
;

@s (u)

@di
=

(u� ui)
2
(ui+3 � u)

(ui+3 � ui) (ui+2 � ui) (ui+1 � ui)

+
u� ui�1

ui+2 � ui�1

 
u� ui�1

ui+1 � ui�1

ui+1 � u

ui+1 � ui
+
ui+2 � u

ui+2 � ui

u� ui

ui+1 � ui

!
;

@s (u)

@di+1
=

(u� ui)
3

(ui+3 � ui) (ui+2 � ui) (ui+1 � ui)
;

8 u 2 [ui; ui+1); (3.75)

where

dk 2 fd1; d2; ::; dL+1g, d0 and dL+2 are �xed.

Keeping in mind that the x-coordinates of the nodes and the node sequence is constant
during one optimization slope, it can be seen that all expressions in Eq. 3.75 are constant.

For an e�cient algorithm it is possible to calculate these expressions once before the op-
timization slope is started. Then the gradient calculation is reduced to the determination
of the derivatives @gj=@yl and the scalar product (Eq. 3.74) during the optimization slope

takes place.



Chapter 4

Damage Mechanics

Material deterioration is an irreversible process; during this damage process the entropy
is increasing.

At a microscale level damage is caused by the accumulated deterioration due to micro-
stresses in the neighborhood of defects, interfaces and by breaking of bonds. On a meso-

scale level, the level of the so called representative volume element, damage is connected
with the growth of microcracks and microvoids which initiate the �nal macroscopic crack.
At a macroscale it is the growth of this macroscopic crack. The two �rst stages may

be studied by the use of a damage variable. The third stage is usually studied applying
fracture mechanics (e.g. Paris law Eq. 2.1).

4.1 Introduction to Damage Mechanics

Kachanov was the �rst, who introduced in 1958 a continuous damage variable describing

creep of a metal under uniaxial loading [48]. This concept was taken up again in the

seventies especially in France (Chaboche & Lemaitre), in Sweden (Hult), in England

(Leckie) and Japan (Murakami). The concept was extended to ductile failure and to
fatigue. Nowadays the Gurson model has achieved a wide application particular for
ductile failure. There are only a few papers concerning a description of fatigue with this

damage mechanics concept. Most of them are dealing with LCF, in this case there is

ductile damage [20, 21, 94, 95]. HCF is more interesting for shape optimization because

most engineering parts are designed for a long or in�nite lifetime. In HCF there is quasi

brittle damage [56, 57]. This means the structure behavior is elastic at a mesoscale, but at

a microscale highly localized there is some weakness of the material (inclusions, defects)

41
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with elasto-plastic behavior carrying damage.

After a short introduction in the damage mechanics concept the main interest will be

concentrated on the modellization of this quasi brittle behavior.

4.1.1 Introduction of a Damage Variable

De�nition of a Representative Volume Element

Continuum mechanics deals with quantities de�ned for the mathematical point. From

a physical point of view this means some kind of homogenization in a certain volume.

This Representative Volume Element (RVE) must be small enough to avoid smoothing of

high gradients and large enough to represent an average of the microprocesses. Certainly
the size of the RVE will depend on the chosen material. Below, the magnitude of the

characteristic length for a RVE (proposed as a quader) is given for some materials:

� metals & ceramics: (0:1mm)3,
� polymers & composites: (1mm)3,

� wood: (10mm)3 and
� concrete: (100mm)3.

De�nition of an Isotropic Damage Variable

Consider a damaged part with a RVE in point M orientated by a plane with normal ~n

and abscisssa x (see Fig. 4.1). �S is the area of intersection of the considered plane with

the RVE. �SDx is the e�ective area of intersections of all microcracks and microcavities

in �S. The damage value D(M;~n; x) attached to the point M , the direction ~n and the

abscissa x is de�ned as:

D(M;~n; x) =
�SDx

�S
: (4.1)

The failure of the RVE will be caused by the most damaged intersection area:

D(M;~n) = max
x

D(M;~n; x) =
�SD

�S
; (4.2)

where

�SD: is the most damaged intersection area.
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Figure 4.1: De�nition of the damage variable

From the above de�nition it is found that

0 � D � 1: (4.3)

D = 0 means the material in the RVE is undamaged. D = 1 means the RVE is broken
into two parts.
Eq. 4.2 can be used as de�nition for D in a general case. If microcracks and cavities are

uniformly distributed the damage variable will not depend on the orientation of ~n. This
is the case of isotropic damage. We will restrict ourselves to the case of isotropic damage
in this work. Only some remarks will be outlined for anisotropic damage in 4.4.1.

4.1.2 Concept of E�ective Stress

The introduced damage variable leads directly to the concept of e�ective stress. Let us

�rst consider the case of uniaxial tension: For an isotropic damaged material the cross

section is no longer S but becomes S � SD. So the usual stress:

� =
F

S
is replaced by the e�ective stress: ~� =

F

S � SD
=

�

1�D
: (4.4)

It is obvious that
~� � �: (4.5)

For the virgin material ~� = � and in the moment of fracture ~� !1.

In the case of multiaxial isotropic damage neither �S nor �SD depend on the orientation

~n so the whole e�ective stress tensor can be written as:

~� =
�

1�D
: (4.6)

The damaged intersection area �SD has to be taken as e�ective area. For example it

should take into account the concentration of microstresses (�SD has to be taken smaller
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than the area of the intersections of the microcracks, see [56]), or in a tension compression

test in the phase of compression �SD is reduced or even zero, because the microcracks are

closed in compression. Often a crack closure parameter is introduced in this case:

� ~SD =

(
�SD if � � 0;

h�SD; 0 � h � 1 else:
(4.7)

where

h: is the crack closure parameter.

4.1.3 Strain Equivalence Principle

We like to avoid the micromechanical analysis for each type of defect and each type of
damage mechanism. Therefore, a thermodynamical description is used on a mesoscale
postulating the following principle (Lemaitre 1971):

\Any strain constitutive equation for a damaged material may be derived in the same way

as for a virgin material except that the usual stress is replaced by the e�ective stress".

This statement is a principle because it has been proved only in some particular cases of
damage by the use of homogenization techniques.

It is a local approach. This means on a microscale, that the strains in a microvolume
element do not depend on the neighboring microvolume element containing a microcrack.

4.2 Thermodynamical Description

In this section two potentials are introduced within the framework of \State Kinetic Cou-

pling Theory" [58].

It is an important and di�cult problem to do the right choice for the explicit formula-

tion of the two potentials particular for the potential of dissipation. Thermodynamics
will give some general guidelines and some restriction, but only basic experiments and

micromechanics can determine details.
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4.2.1 State Potential

To characterize the material, a state potential is introduced. Here, the speci�c Helmholtz

free energy ( ) is chosen which is a scalar function of all the state variables (VI).  is a

convex function of the state variables mentioned below. In the case of thermoelasticity

it is additionally a concave function in temperature T containing the origin. The link

between the state variables and the associated variables (AI) is given by the state laws:

AI =
@� 

@VI
: (4.8)

with

�: is the density.

In the following table the state variables and the linked associated variables (or dual
variables) are given for isothermal elasto-plastic behavior with hardening and damage:

STATE VARIABLES ASSOCIATED VARIABLES

ELASTICITY " �

(deformation) (stress)

PLASTICITY "p ��

(plastic strain) (stress)

ISOTROPIC r R

HARDENING (accumulated plastic strain) (isotropic strain hardening)

KINEMATIC � X

HARDENING (back strain tensor) (kinematic hardening, back stress)

DEGENERATION D �Y
(damage) (damage energy release rate)

Remark: In  instead of " and "p only the di�erence of both ("e = " � "p) is needed

to describe the deformation state. With Eq. 4.8 and the chain rule it is found that the
associated variable to "p is therefore ��.

It is usual to divide the state variables into observables and internal variables. In the
considered case the strain tensor is an observable, all other state variables cannot be
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measured directly, so they are internal variables. A second observable in the case of

thermoelasticity is the temperature (T ).

To determine the explicit expression for  it is necessary to know the state coupling.

A state coupling exists between two mechanisms I and J corresponding to the state

variables VI and VJ if a variation of VI implies a modi�cation of AJ (and vice versa).

Since AJ = @� =@VJ a state coupling exists if:

@AJ

@VI
=

@2� 

@VI@VJ
6= 0: (4.9)

If there is no coupling between I and J the potential can be split into two additive terms:

 (V) =  1(VI ;VK) +  2(VJ ;VK); (4.10)

with: K = 1::N and K 6= I, K 6= J .

For example as the development of slips has no inuence on the interaction between the
atoms, the elastic behavior is not coupled with the plastic behavior:

@2 

@"e@r
= 0 and

@2 

@"e@�
= 0: (4.11)

The development of decohesion certainly has an inuence on the interaction between the

atoms. The elastic behavior is coupled with the damage:

@2 

@"e@D
6= 0: (4.12)

The following table gives an impression of the couplings (1) and uncouplings (0) for a

2024 aluminium alloy [58]:

"-"p � r D

"� "p - 0 0 1

� 0 - 0 0

r 0 0 - 0

D 1 0 0 -

From the table above and the drawn considerations the following general expression for

the Helmholtz free energy is derived:

 =  1("
e; D) +  2(�) +  3(r): (4.13)
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If we assume linear elasticity and small deformations Eq. 4.13 can be rewritten in a more

precise form:

 =
1

�

�
1

2
aijkl"

e
ij"

e
kl

�
(1�D) + terms for plasticity (4.14)

where

aijkl: is the fourth order elasticity sti�ness tensor.

With the further assumptions of homogeneous isotropic material and classical expressions

for isotropic and kinematic hardening the following expression is deduced:

 =
1

�

"
E

2

"
"eij"

e
ij

1 + �
+

�"ekk
2

(1 + �)(1� 2�)

#
(1�D) +R1

�
r +

1

b
e�br

�
+
X1

3
�ij�ij

#
(4.15)

where

b, R1, , X1: are the material parameters for isotropic and kinematic hardening.

As a proof for the formulation of  the state law (Eq. 4.8) is used e.g. to derive the law
of elasticity:

�ij = �
@ 

@"ij e
= E(1�D)

"
"eij

1 + �
+

�"ekk�ij

(1 + �)(1� 2�)

#
; (4.16)

or:

"eij =
1 + �

E
~�ij �

�

E
~�kk�ij: (4.17)

The associated variable (�Y ) to the damage variable (D) is derived in the same way:

�Y = �
@ 

@D
= �

E

2

"
"eij"

e
ij

1 + �
+

�"ekk
2

(1 + �)(1� 2�)

#
: (4.18)

Y is called the strain energy density release rate. This name is justi�ed by the following

considerations:

we is the elastic strain energy density. With the help of Eq. 4.14 and under consideration

that D = const:, we is derived as:

we =
Z
�ijd"

e
ij =

1

2
aijkl"

e
ij"

e
kl(1�D) = Y (1�D): (4.19)

Now, the loss in elastic strain energy for constant stress is calculated:

d�ij = 0 = aijkl [(1�D)d"ekl � "ekldD] : (4.20)
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Eq. 4.20 is transformed to:

d"ekl = "ekl
dD

1�D
: (4.21)

Formulation of the increment of elastic strain energy density with the restriction to con-

stant stress gives:

dwej�=const = �ijd"
e
ij = �ij"

e
ij

dD

1�D
= aijkl"

e
ij(1�D)"ekl

dD

1�D
: (4.22)

or:
dwe

dD

�����
�=const

= aijkl"
e
ij"

e
kl: (4.23)

So, in conclusion:

Y =
1

2

dwe

dD

�����
�=const

: (4.24)

It can be seen from Eq. 4.24 that Y is determined by the loss of sti�ness of a RVE in
which the damage occurred.

An important conclusion of state coupling theory is, that the internal variables which are

di�cult or even impossible to measure directly, can now be determined by measuring the
observables. For example the damage variable (D) can be measured by determining the

e�ective decreasing Young's modulus ( ~E = (1�D)E, see Fig. 4.3) instead of the di�cult
and time intensive microscopic observations.

4.2.2 Potential of Dissipation

To complete the constitutive equations, the evolution laws of the internal variables must

be added to the state laws. The theory of thermodynamics of irreversible processes gives
a guideline to obtain the evolution laws.

To satisfy the second principle of thermodynamics we start with the Clausius�Duhem

inequality:

�ij _"ij � �( _ + s _T � qi
T;i

T
) � 0; (4.25)

where

q: is the heat ux vector associated to the temperature gradient (T;i).
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We restrict ourselves to isothermal processes.

The rate of the Helmholtz free energy is attained by di�erentiation with respect to the

state variables:
_ =

@ 

@"eij
_"eij +

@ 

@r
_r +

@ 

@�ij
_�ij +

@ 

@D
_D: (4.26)

Introducing the associated variables and _"ij = _"eij + _"pij leads to:

tr(� _"p)� R _r � tr(X _�) + Y _D � 0; (4.27)

or in a short form:

B _U � 0; (4.28)

where

_U : is the vector of ux variables ( _"p;� _r;� _�; _D) and

B: is the vector of force variables (�; R;X; Y ).

The product in Eq. 4.28 is positive if a pseudo potential of dissipation � with some
properties of convexity is introduced [99]. The ux variables are derived by di�erentiation

of this potential:

_U =
@�

@B
: (4.29)

For isothermal processes the plastic dissipation is negligible, so the following expression
results:

Y _D � 0: (4.30)

Y is a positive quadratic function, so the damage rate _D must be a nonnegative function.
This means, it can only be used to describe material deterioration and not be applied to

describe a recovery of strength of the material.
The potential of dissipation is introduced as function of the force variables. Nevertheless
the state variables can be introduced as parameters in this function:

� = �(B;V ): (4.31)

There is a kinetic coupling of mechanism I on J if a variation of VI leads to an modi�cation

of the rate of UJ :

with: _UJ =
@�

@BJ

there is a coupling if:
@ _UJ

@VI
6= 0: (4.32)

If � is out of C2 this is equivalent to:

@2�

@BJ@VI
6= 0: (4.33)

The kinetic coupling for an aluminium alloy 2024 [58] can be found in the table below

(This table summarizes the kinetic couplings for most engineering materials.):
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onnof "e "p � r D

"p 0 0 0 0 1

� 0 0 0 0 1

r 0 0 0 0 1

D 0 0 0 0 0

There is a kinetic coupling from damage on the mechanism of plasticity assumed, as it is

well known that with increasing material degeneration the yield stress is decreasing and

the plastic strain rate is increasing. The coupling is done by replacing the stress by the

e�ective stress in the potential of dissipation.

As an example, the potential of dissipation for time-independent plasticity coupled with

damage is given below:

� = �p(�;X; R;D) + �D(Y ) = �P (~�;X; R) + �D(Y ): (4.34)

If the von Mises criterion is used for de�nition of the yield surface (the kinetic coupling is
found to act also only on the deviatoric part of the stress tensor) together with kinematic

and isotropic hardening, the following classical expression is found for the �rst part of the
potential of dissipation:

�P =
�
~�D �XD

�
eq
� R� �y: (4.35)

The ux variables are derived using the normality rule:

_"ij
p = _�

@f

@�ij
=

3

2

~�Dij �XD
ij

(� �X)eq

_�

1�D
; (4.36)

� _� = _�
@f

@X
; (4.37)

� _r = _�
@f

@R
= �1; (4.38)

where

f : is the yield function (here associated plasticity is assumed ) �P = f ) and
�: is the plastic multiplier.

An identity is found by introducing the accumulated plastic strain, de�ned by its ux:

_p =

�
2

3
_"pij _"

p
ij

� 1

2

; (4.39)

with Eq. 4.36 we obtain:

_p = (1�D) _�: (4.40)
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Like Hooke's law for elasticity or Prandtl-Reuss's law in plasticity, a general expression for

the potential of dissipation for almost all materials is desired to model damage evolution.

This expression must include the following properties:

� The considerations above show that the main causal variable for damage is the

strain energy release rate (Y ). In Y triaxiality which has a large inuence on

damage behavior will be considered (see next subsection).

Remark: For notch problems, which were covered in the beginning of Chapter 3,

we have seen that the point with maximum stress is located in most cases on the

notch surface. In the here considered 2D case, RV � 1 for the notch surface on a

mesoscale as can be seen in Section 4.2.3.

� Damage is always connected with irreversible straining (accumulated plastic strain

Eq. 4.40) either on a meso- or a microlevel. This is already taken into account by

the plastic multiplier:

_D = _�
@fD

@Y
= (1�D)

@fD

@Y
_p: (4.41)

The accumulated plastic strain rate _p is always greater than zero. Thus, the irre-

versibility of damage is guaranteed.

� It can be shown that (see [56]) the ux ofD is proportional to Y in a general meaning
(In A.2 a micromechanical model for fatigue crack growth using a homogenization

technique is found):
_D � Y ) �D � Y 2: (4.42)

� Experiments often show, that damage occurs if the point of �u is passed in an uni-
axial tension test ("pD). In multiaxial loading this threshold has to be transferred
to a threshold in accumulated plastic strain (pD). This is inserted into the model

introducing a step function:

�(p� pD) =

8><
>:

0 if p < pD and

1 if p � pD.

(4.43)

In conclusion the following expression is deduced:

�D � Y 2 �(p� pD): (4.44)

In addition the factor [2S(1�D)]�1 is introduced. S, is called damage strength, it is a

material constant. The introduction of (1�D)�1 is necessary, because experiments show
a nondecreasing damage rate if _p and Y are constant. Combining the last considerations,
the following expression results:

�D =
Y 2

2S(1�D)
�(p� pD) ! _D =

Y

S
_p �(p� pD): (4.45)
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4.2.3 Triaxiality and Damage Equivalent Stress

In this section according to the equivalent stress in plasticity a damage equivalent stress

is formulated with the help of a triaxiality function.

At �rst we is split into two parts: the shear energy and the hydrostatic energy, corre-

sponding to the deviatoric and the spherical part of the stress and strain tensors:

�ij = �Dij + �H�ij and "eij = "eDij + "eH�ij; (4.46)

where

�H = 1

3
�kk and "eH = 1

3
"ekk,

and
we =

Z
�ijd"

e
ij =

Z
�Dijd"

eD
ij +

Z
�ij�ij�

Hd"eH: (4.47)

Hooke's law coupled with damage is also split in the deviatoric and the hydrostatic parts:

"eDij =
1 + �

E

�Dij

1�D
and "eHij =

1� 2�

E

�H

1�D
: (4.48)

Inserting Eq. 4.48 in Eq. 4.47 leads to:

we =
1

2

0
@1 + �

E

�Dij�
D
ij

1�D
+ 3

1� 2�

E

�H
2

1�D

1
A (4.49)

With the von Mises equivalent stress de�ned as:

�eq =

�
3

2
�Dij�

D
ij

� 1

2

: (4.50)

the following formula is derived for Y :

Y =
we

1�D
=

�2eq

2E(1�D)2

2
42
3
(1 + �) + 3(1� 2�)

 
�H

�eq

!2
3
5 ; (4.51)

where

�H
�eq

: triaxiality ratio.

The term in square brackets is called triaxiality function (RV ):

RV =
2

3
(1 + �) + 3(1� 2�)

 
�H

�eq

!2
: (4.52)
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So, Eq. 4.51 can be rewritten in a short form:

Y =
~�2eq
2E

RV : (4.53)

Similar to the plastic equivalent stress a damage equivalent stress is now de�ned. It is a

one-dimensional stress (��) which causes for the same value of damage the same elastic

strain energy as the three dimensional state of stress.

For the one-dimensional case there is:

[��] =

2
64
�� 0 0

0 0 0

0 0 0

3
75 ; �H =

1

3
�� and

h
�D
i
=

2
6664

2

3
�� 0 0

0 �1

3
�� 0

0 0 �1

3
��

3
7775 : (4.54)

The elastic strain energy is for this one-dimensional case:

we =
��2

2E(1�D)
: (4.55)

Requiring the equality of strain energy density of the one-dimensional case (Eq. 4.55) and

the three dimensional case (Eq. 4.51 and Eq. 4.53) determines the damage equivalent
stress in the following form:

�� = �eqR
1

2

V : (4.56)

The damage equivalent stress di�ers from the von Mises equivalent stress by the triaxiality
function. Plasticity is connected with slips which are caused by shear stresses. There is

no dependency on hydrostatic stresses observed. Damage is connected with debonding
which is inuenced by hydrostatic stress or triaxiality ratio ("triaxiality makes material
brittle").

Triaxiality on the Notch Surface in 2D:

In Chapter 3 it was remarked, that for the considered notch problems the point of max-

imum stress is on the notch surface. On the free boundary of the notch surface there is
only a one-dimensional state of stress tangential to the boundary in the 2D plane stress

case. If an orthogonal coordinate system parallel to the direction of principal stress is
chosen, only �2 = �t does not vanish.

Introducing this in Eq. 4.52 determines the triaxiality function RV � 1 for all points on

the free boundary.

In conclusion: For the 2D case it is outlined, that on a mesoscale:

�eq = �� 8X 2 ��: (4.57)

4.3 Modelling Fatigue

Eq. 4.41 states a direct proportionality of the damage rate and the rate of accumulated

plastic strain. This means, without plasticity there is no damage accumulation.
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In Chapter 2 we found, that for HCF the structure will stay elastic on a macroscale and

even on the mesoscale (=scale of the RVE).

Certainly there is a damage accumulation in HCF. The mentioned problem can be solved

using a two scale model.

4.3.1 Two Scale Model

The fatigue model considered here was worked out by Lemaitre [55, 56, 57]. Lemaitre

supposes a two scale model: an elastic matrix material with weaker inclusions su�ering

damage in it.

l

d

ijij
ε εε

σ σσ

ij

u y f

µ

µµ

=

σ σy f

Figure 4.2: Two scale RVE.

The matrix material is characterized by its yield stress (�y), its ultimate stress (�u) and

its fatigue limit (�f < �y).
The behavior of the inclusions is assumed elastic-perfect plastic with a yield stress (��y ,

the superscript � will always denote that the variable belongs to the inclusion.) set to

the fatigue limit of the origin material (��y = �f ).
The assumption of the simple elastic-perfect plastic behavior of the inclusions is justi�ed,

because damage always occurs after strain hardening has �nished. Nevertheless in [55]

the description of modelling the stress strain curve stepwise elastic-perfect plastic is given.
In Lemaitres work only the inclusions can su�er damage. This feature will be modi�ed

further on (see Section 4.3.4).
Below the fatigue limit of the material no damage occurs. In another assumption the

fatigue limit of the inclusions is reduced in the same proportion as for the matrix material:

�
�
f

�
�
y

=
�f

�y
) �

�
f = �f

�f

�y
: (4.58)

Lin-Taylor's strain compatibility hypothesis [91] - matrix and inclusion are equally

strained - gives the bridge between the behavior of the matrix and the inclusion.
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If the accumulated plastic strain has crossed its threshold, the kinetic damage law for the

inclusion is:

_D =
Y �

S
_p�: (4.59)

Damage accumulation of the inclusions will be solved numerically in Section 4.3.4. Here,

with some reasonable approximations the microscopic functions Y � and _p� can be ex-

pressed as functions of variables at mesoscale. This will help to give some arguments for

the discussion of the �nal results.

According to Lin-Taylors hypothesis we assume the same strain rate for the inclusion and

the matrix:

_" = _"�: (4.60)

The elastic strain of the inclusion can be neglected in comparison to the plastic strain.

With this approximation the following relation is derived:

_p� =

�
2

3
_"
p�
ij _"

p�
ij

� 1

2

=

�
2

3
_"
�D
ij _"

�D
ij

� 1

2

=

�
2

3
_"Dij _"

D
ij

� 1

2

= _"eq: (4.61)

The strain energy density release rate for the inclusion can be rewritten with the help of

the yield criterion formulated at the microscale:

��eq

1�D
= ��y = �f (4.62)

and the microscopic triaxiality function:

R
�
V =

2

3
(1 + �) + 3(1� 2�)

 
�
�
H

�
�
eq

!2
: (4.63)

With respect to the last two equations the following expression is derived for the strain
energy release rate (see Eq. 4.53):

Y � =
�2f

2E

2

3
(1 + �) + 3(1� 2�)

 
�
�
H

�
�
eq

!2

: (4.64)

The hydrostatic part of the stress tensor is related to the hydrostatic part of the elastic

strain tensor at microscale by the following expression:

�
�
H =

E(1�D)

1� 2�
"
e�
H : (4.65)

"
e�
H = "H since "e� + "p� = " and tr("p�) = 0.

Lemaitre supposes pure elasticity at mesoscale:

"H =
1� 2�

E
�H : (4.66)
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So, the following expressions result:

�
�
H = (1�D)�H and

�
�
H

�
�
eq

=
�H

�
�
y

: (4.67)

Finally, the following expression is found for the damage rate at microscale:

_D� =
�2f

2ES

2
42
3
(1 + �) + 3(1� 2�)

 
�H

�f

!2
3
5 _"eq: (4.68)

4.3.2 Damage Threshold and Critical Damage

In this section a damage threshold (pD) (see Section 4.2.2) is de�ned by comparison of

the energy stored in a fatigue test with the energy of a one-dimensional tension test. If we
look in the schematic tension diagram (Fig. 4.3), we notice a decreasing Young's modulus
after the point of ultimate stress is passed, because damage takes place.

E=E(1-D)E

ε

σ

σ
σ

σ

εpD

y

u

R

Figure 4.3: Schematic stress-strain diagram with unloadings

In a rough approximation the dissipative energy is:

wD = (�u � �f )"pD: (4.69)

This energy is compared with the energy stored in the inclusions. In the absence of
damage the second principle of thermodynamics states, that the energy dissipated in heat

is: ��f p
�.

So, the stored energy is:

ws =
Z
�ijd"

p
ij � �

�
f p

�: (4.70)
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Stored Energy

Heat

σ

σ

µ

µ

f

y

ε

Figure 4.4: Energy stored in the inclusions.

Here only perfect plasticity is considered:

ws = (�f � �
�
f )p

�: (4.71)

Comparing Eq. 4.71 and Eq. 4.69 determines the threshold:

p
�
D =

�u � �f

�
�
y � �

�
f

"pD =
�u � �f

�f � �
�
f

"pD: (4.72)

The critical damage value corresponds to an instability. Often it can be related to the

energy dissipated during the damage process:

Z DC
�

D=0
Y �dD� = constant at failure: (4.73)

Assuming a proportional loading (RV
� is constant in that case, see Appendix A.1) leads

to: Z DC
�

D=0

Y dD� =
Z DC

�

D=0

�f
2RV

�

2E
dD� =

�f
2RV

�

2E
DC

�: (4.74)

Again the uniaxial tension test is taken as reference:

�f
2RV

�

2E
DC

� =
�2u
2E

D1C : (4.75)

D1C : Critical damage value (one-dimensional reference).

Transforming Eq. 4.75 leads to the following expression for the critical damage value:

DC
� =

�2u
�f 2RV

�D1C � 1: (4.76)

This critical damage is derived for microscale, but in Appendix A.3 it is shown that this
corresponds to failure of the mesoelement.
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4.3.3 Constitutive Equations

Collecting the equations of the last two subsections gives the set of constitutive equations

which have to be solved in numerical analysis on a microscale:

"
�
ij = "

e�
ij + "

p�
ij ;

"
e�
ij =

1 + �

E

�
�
ij

1�D
�
�

E

�
�
kk

1�D
�ij;

_"p�ij =

8>><
>>:

3

2

~�
�D

ij

�f
_p� if: f = 0 ^ _f = 0,

0 else,

_D� =

8><
>:

�f
2

2ES
R
�
V _p� if: p� � pD

� ^ f = 0 ^ _f = 0,

0 else.

(4.77)

4.3.4 Numerical Procedure

In [57] Lemaitre & Doghri have developed a fully implicit integration scheme with ex-
plicitly updated unknowns. This scheme is described below. The input are the strains

computed �rst in an elastic FE structure analysis. They use this scheme and a special
jump-in procedure in a postprocessor. Here it is also used for optimization but with a
recoupling to the whole structure.

Integration Scheme

All variables are known for the time-step kt. The task is to �nd the update for the
time-step k+1t:

k+1t = kt+�kt: (4.78)

The superscript k + 1 is omitted. All variables without subscript belong to k + 1. All
variables except the fatigue limit �f belong to microscale, the superscript � is also omitted

in this section, because the scheme can be used more generally, not only for fatigue [56].

A tensorial notation is used.
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We start with an elastic predictor step:

~�ij =
E

1 + �

�
�

1� 2�
"ll�ij + "ij �

k"
p
ij

�
: (4.79)

All other \plastic" variables are equal to their values at kt. If the elastic predictor satis�es

the yield condition f � 0, the elastic predictor step was correct and the computation is

going on with the next time increment. If the yield condition is violated f > 0, a plastic

correction step is necessary. Therefore the rate equations (Eq. 4.77) are discretized in

an incremental form. This leads to a fully implicit integration scheme with unconditional

stability [70] and explicit expressions for the plastic corrections. The solution for the

time-step k+1t has to ful�ll the following relations:

f = ~�eq � �f = 0;

~�ij =
E

1 + �

�
�

1� 2�
"ll�ij + "ij �

k"
p
ij ��"pij

�
;

�"pij = Nij�p with Nij =
3

2

~�Dij
~�eq

and

�D =
Y

S
�p (4.80)

with

�X = Xn+1 �Xn.

If �"p in the second equation of 4.80 is replaced using the third equation the problem is
reduced to the two nonlinear primary equations with the two unknowns ~� and p:

f = ~�eq � �f = 0 (4.81)

and

hij = ~�ij �
E

1 + �

�
�

1� 2�
"ll�ij + "ij �

k"
p
ij �Nij�p

�
= 0: (4.82)

This nonlinear equation system is solved iteratively by Newton's method. For each iter-

ation s there are the following equations:

f +
@f

@~�ij
C ~�
ij = 0 and hij +

@hij

@~�pq
C ~�
pq +

@hij

@p
Cp = 0 (4.83)

f;h and their partial derivatives are taken at the time step k+1t and at the iteration s.

The corrections of the e�ective stress and the accumulated plastic strain are de�ned by:

C ~�
ij =

s+1~�ij �
s~�ij and Cp = s+1p� sp: (4.84)

The starting iteration (s = 0) corresponds to the elastic predictor. After some analysis

[55] the following explicit expressions are derived for the corrections:

Cp =
2(1 + �)(f �Nijhij)

3E
and (4.85)
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C ~�
ij = �

2

3
(f �Nqphqp)Nij �

hij +
E�p

�eq(1+�)
NqphqpNij

1 + 3

2

E

~�eq(1+�)
�p

: (4.86)

The procedure is working adaptive: if a solution is not found, the time increment is

bisected.

Once p and ~� are found, "p and D are calculated from their discretized constitutive

equations. The stress components are given by �ij = (1�D)~�ij.

Jump-In Cycles Procedure

In fatigue, particular in HCF, there is a large number of periodic cycles, so computation

step by step becomes impossible because of CPU-time. Therefore in [55, 56] a jump-in

procedure is described. It is working in two steps:

a.) Before damage growth: (p� � pD
�)

A calculation is performed until a stabilized cycle Ns is reached. �p
� is the increment

in plastic strain for this cycle. It is assumed, that the increment in plastic strain is

linear over the next �N cycles. With �N determined in the following way:

�N =
�p�

�p�
; (4.87)

with

�p�: a given value which determines the accuracy.

A jump of �N in cycles is done and the accumulated plastic strain is updated:

p�(Ns +�N) = p�(Ns) + �N�p�: (4.88)

This procedure is repeated until damage growth starts.

b.) With damage growth (p� � pD
�):

The calculation is performed with a constant damage ( _D� = 0) until a stabilized

cycle is reached. A fully coupled elasto-plastic and damage calculation is performed

for the considered microelement for the next cycle. �p� and �D� are the increments
of accumulated plastic strain and damage for this stabilized cycle. It is assumed, that
during the next �N cycles there is a linear accumulation in damage and accumulated

plastic strain. �N is now determined by a value for �p� as well as a value for �D�:

�N = min

(
�p�

�p�
;
�D�

�D�

)
: (4.89)
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A jump of cycles is performed and damage and accumulated plastic strain are up-

dated:

p�(Ns+1+�N) = p�(Ns+1)+�N�p
� and D�(Ns+1+�N) = D�(Ns+1)+�N�D

�:

(4.90)

The procedure is repeated until the chosen number of cycles is reached or the part

is broken.

A guess for �p and �D performing accurate results is given in [55]:

�D� =
D1c

50
and �p� =

S

Y �
�D�: (4.91)

Coupling

In [56] Lemaitre distinguishes three kinds of coupling between the damage and the stress-
strain �eld of the structure:

� Uncoupled Analysis

In a �rst step the stress and the strain �eld are computed. Then the point(s) with

highest damage equivalent stress (��) are determined.
As long as the loading is proportional (De�nition in A.1), these point(s) will have
the highest damage equivalent stress during the whole loading history. For a non-

proportional loading the highest loaded point is not necessarily connected with the
highest damage. A point less loaded but for a longer time above the threshold can

become more damaged and therefore more dangerous than the highest loaded point.
At last the kinetic damage law on a micro- or mesolevel (Eq. 4.77) is integrated for
all these critical points. There is no coupling of damage to the stress-strain �eld.

For strain controlled conditions, it can be shown [56] that the uncoupled analysis
gives a lower bound on lifetime.

� Fully Coupled Analysis

For ductile and creep damage, often a large part of the structure is damaged. Then,

for a good accuracy, at least for a substructure, the coupling between the damage

and the strain �eld must be considered. This makes the calculation more complex,
but it is the only way to proceed. There are the same problems with convergence
of iterations and with CPU-time as for classical elastoplastic analysis.

A fully coupled elasto-plastic damage integration algorithm is described in [9].

� Locally Coupled Analysis

Quite often damage is highly localized. This means, the damaged volume is small
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in comparison to the whole structure and even to the RVE. Therefore an uncoupled

analysis on a macroscale which considers only a local coupling is performed.

The method of locally coupled analysis is particularly recommended [56] for brittle

and fatigue damage. There is only a coupling on microscale. This means, after the

primary structure analysis, there is no longer any boundary value problem. The

stress-strain �eld will stay constant during lifetime on a mesoscale and only on mi-

croscale a reduction of Cauchy stress is observed.

It can be shown, that if the point of critical damage is reached also the mesoelement

will break down (see Section A.3).

If a locally coupled analysis is carried out to model fatigue behavior for the consid-

ered problems and there is a proportional loading, the minimization of maximum

damage will always give the same results as the static optimization. This can be

understood by the following considerations:

With some minor simpli�cations we have derived Eq 4.68. In this equation the

damage increment is only dependent on the hydrostatic stress and the (elastic on

the mesoscale) strain increment. For the here considered 2-D case the following

expression results for a coordinate system orientated in the directions of principal
stresses (�̂1, �̂2:

_D� =
�2f

ES

2
42
3
(1 + �) + 3(1� 2�)

 
�2

�f

!2
3
5 (1 + �2)

1

2

E
j _�2j (4.92)

Minimization of the von Mises equivalent stress in the case of static optimization

means minimization of the tangential stress �t. In 2D on a mesoscale �t = �2. There-
fore, static minimization means also minimization of the second principal stress and
thus minimization of the damage increment!

The locally coupled analysis is summarized in Fig. 4.6.a. For this work the procedure

was modi�ed because of two reasons:
At �rst it is typical for an optimized part, that a large part of the structure is equally
loaded (See Fig. B.4.a and compare with B.4.c). Therefore, not only one element will be

damaged, but at least almost the whole region along the free boundary.
Second, a stress redistribution is observed during lifetime with the mentioned photoelastic

experiments (See Fig. B.4.b and B.4.d).

The locally coupled analysis supposes that there is no coupling of the damage of the
microelement to the mesoelement except that failure of the microelement will cause the

breakdown of the mesoelement. In this case the stress redistribution will be observed only
on microscale. The stress redistribution found implies a damage at mesoscale before the

fail down of the part. Here we have load driven experiments. If a region is damaged, it will

not carry as much load as before. A consequence is that the region around the damaged
elements has to carry more load now. Certainly it will give the best results to do a fully

coupled analysis. But this is very time intensive, so an alternative was searched. The

locally coupled analysis was taken and extended in the following way (See Fig. 4.6.b):



4.3. MODELLING FATIGUE 63

a.)

b.)
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Figure 4.5: Solid line: damage at microlevel, dashed line: damage at mesolevel. a.)
Locally coupled: coupling between micro- and mesoscale only in the point of critical
damage; b.) Modi�ed locally coupled: direct transfer of the microscopically determined

damage to the mesoscale.

� Modi�ed Locally Coupled Analysis

At �rst a structure analysis is made and the element with highest damage equivalent

stress is determined. This element will control the jump-in cycles procedure. Then
a damage analysis is carried out at �rst for this element and a �rst jump of cycles
is ful�lled. The damage analysis is then carried out for all other elements in a

substructure with an appropriate jump of cycles. After this �rst jump is done with
all elements the accumulated plastic strains and the damage variables are updated.
In a �rst approximation due to the fact that the fail down of the inclusion causes

the fail down of the whole mesoelement the microscopic determined value of the
damage variable (Eq. 4.77) is transferred directly to the mesoscale:

D = D� update every jump-in cycles. (4.93)

If damage has taken place at least in one element a new structure analysis is carried

out after every jump-in cycles for the whole structure with modi�ed Young's mod-
ulus where necessary. The modi�cation of the Young's modulus corresponds to the

usage of the strain equivalence principle. Therefore we have to adopt the modi�ed
Hooke's law (in di�erence to the work of Lemaitre):

"eij =
�ij(1 + �)

(1�D)E
�

��kk

(1�D)E
�ij with D = D�: (4.94)

This procedure is repeated until the desired number of cycles is reached or the part

has broken [36].
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For optimization a third iteration slope is put around all. This means very time intensive

calculation. This is one of the numerical problems discussed in the next chapter.

4.4 Further Developments

4.4.1 Anisotropic Damage

The assumption that damage is isotropic is realistic in many cases, especially under pro-

portional loading when the directions of principal stresses remain constant.

As was shown in Section 2.1 almost all fatigue microcracks (state I) appear under 450

because they are shear stress controlled. Therefore, the assumption of isotropic damage
is not really ful�lled but only a �rst simple approximation.

The most simple way to model anisotropic damage is to assume that damage will only
occur in the plane perpendicular to the highest principal stress (Lecki, Hayhurst, 1973).

[~�] =

2
64
�1 0 0
0 �2 0

0 0 �3
1�D

3
75 ; (4.95)

�1 < �2 < �3.

Murakami has developed an approach based on geometrical considerations with a second

order damage tensor.

In his model, not only the e�ective cross section is decreasing during loading, but also the

orientation of that cross section. Assuming that the shape of the considered cross section

is not changing (this leads to the case of orthotropic damage) we can write according to

the isotropic case:

(1�D)~n�S = ~~n� ~S; (4.96)

with

1: second order identity tensor, D: second order damage tensor.
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When the principal directions of stress and damage coincide, the following expression is

valid:

[~�] =

2
64

�1
1�D1

0 0

0 �2
1�D2

0

0 0 �3
1�D3

3
75 : (4.97)

Chaboche and Lemaitre have introduced a fourth order damage tensor on the basis of

the concept of e�ective stress connected with the strain equivalence principle.

To describe these concepts in detail is out of the scope of this work, more informations

are found in [56, 57].

4.4.2 Deterministic/Probabilistic Theory

As far as described, damage mechanics is a deterministic theory. As we have seen in

Section 2.2.5 scattering in lifetime results and a size e�ect are inherent features of fatigue
behavior. These e�ects are well described by the statistical Kf -hypotheses (see Chapter

1, weakest-link model) but cannot be determined with the introduced damage mechanics
model.
There is the possibility to include these features into the CDM concept. Instead of to

give every element a certain initial value of accumulated strain p0 and initial damage D0

these values can be assumed statistically distributed. The introduction of such statistical
features is actual research work in CDM.



Chapter 5

Numerical Tools and Results

In contrast to the work of Fanni [31], who describes the whole dynamic fatigue behavior
using the fatigue notch factor with only a single static structure analysis, here for one

damage analysis several structure analyses are carried out.
Besides this, damage growth is very stress sensitive.

Therefore, not only a fast but also a very accurate structure analysis is required. At the
beginning of this chapter, a very simple but e�ective error indicator is described. It is
used to build up adequate FE-meshes.

In order to save CPU-time, a successive strategy is used during optimization, and B-splines
instead of node-coordinates describe the free boundary, and a substructure is introduced.
Using these tools introduced in the �rst part of this chapter, a static optimization is

carried out �rst to show that the procedure works. After some damage analysis showing
the di�erence between local and modi�ed coupling, optimization is carried out with respect

to damage at the end of this chapter.

5.1 Simple Error Indicator

On the basis of the heuristic error estimator published by Zienkiewicz and Zhu [100] a

simple error indicator is introduced, and according to the results, a local and/or global h
re�nement is realized.

The Zienkiewicz & Zhu error estimator is recommended in [2], particularly for linear dis-

placement elements. In [74] it is shown that for linear displacement elements this heuristic
error estimator is equivalent to the residual error estimator formulated by Babuska and

Rheinboldt [6].

67
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If u denotes the correct solution of the boundary value problem (Eq. 3.5) and the resulting

correct stress �eld is �, the errors are de�ned by:

e = u� û the error in displacement and

e� = � � �̂ the error in stress. (5.1)

The approximated solution is marked by the hat.

This is a pointwise de�nition of the errors. It is more convenient to adopt an integral

measure, e.g. the energy norm:

kek =
�Z




eTBTDBed


� 1

2

=

�Z



e�
TD�1Be�d


� 1

2

(5.2)

If the L2 norm is adopted, the error in stress is:

ke�kL2 =
�Z




eT�e�d


� 1

2

(5.3)

A relative error is de�ned by the following expression:

� =
kek

kuk
� 100%: (5.4)

A seldom used - but very relevant - measure is the stress error in absulute terms [100].
By the use of the L2 norm it can be de�ned for a subdomain ~
:

�� =

 
ke�k

2
L2

~


! 1

2

(5.5)

Here, we de�ne as error indicator a relative error on the basis of the last equation:

er� =
��

maxi=1::nel�eq
(5.6)

This measure will be used for an adaptive mesh re�nement.
For the application of the derived indicator we have to determine the correct solution (�):

The introduced displacement method works with linear shape functions. This means, the

strains and also the stresses (�̂) stay constant within the elements and show a discontinuity

at the element boundaries (see Fig. 5.1). Obviously an improved approximation for the

correct stress is achieved [100] by interpolating the averaged nodal stresses maintaining
the equilibrium with the shape functions.

�� =N �� with
Z


NT (�� � �̂): (5.7)

Therefore, �� is used as a guess for the correct solution. With this approximation the
stress error is determined as follows:

e� � �� � �̂ (5.8)

With this strategy a relative stress error is calculated for every element.
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Figure 5.1: Approximation of error in stress for a one-dimensional problem with linear
displacement elements.

5.2 Substructuring and Mesh Re�nement

A substructure (
S) is introduced around the free boundary to save CPU-time. In the

second part of the paragraph, several techniques of mesh re�nement are introduced to
reduce the error in the calculation of the stress-strain �eld.
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Figure 5.2: De�nition of a substructure: 
 = 
R [ 
S ^ 
R \ 
S = ;.



70 CHAPTER 5. NUMERICAL TOOLS AND RESULTS

5.2.1 Substructuring

During the optimization of the considered problem, almost the whole structure remains

unchanged. By introducing a substructure (
S), almost the whole sti�ness matrix will not

change during the optimization procedure and only the part belonging to the substructure

must be updated. A second reason for the introduction of a substructure is the damage

calculation. Damage accumulation is very stress sensitive. This means, only points with

high stress concentration will become damaged. Therefore, it is not necessary to carry out

a damage calculation for the whole structure. It is su�cient to do so in the substructure

or even in some layers of the substructure.

During optimization, due to the movement of the free boundary, often the FE-mesh is

destroyed. It is adequate to rebuild the mesh only in 
S in this case.

Two kinds of substructuring were tested:

Automatic Net Generation

The used automatic front contour mesh generator [17, 47] allows to specify three kinds of
boundaries:

� straight lines,

� circular curves and

� nodewise de�ned boundaries.

The common boundary (�c, see Fig. 5.2) - i.e.the boundary between the substructure

and the rest of the structure - is always determined nodewise. During the optimization
procedure the free boundary is also determined nodewise.

The automatic mesh generation is controlled by the choice of the element size at every

corner. If a boundary is given nodewise, there is no possibility to inuence the mesh
generation in this place. Therefore it has been observed that during the optimization

process often poor meshes are built (large and small triangles beside each other) with this

automatic mesh generation. The automatic mesh generator was �nally used only for the

remaining structure (
R) with some local mesh re�nement if necessary.
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Adaptive Substructuring

For the special notch problem considered here (see Section 5.4), an adaptive substructure

technique was also generated. With this substructure technique it is possible to re�ne the

mesh of the substructure layer by layer and to introduce more layers if necessary (See Fig.

5.3). During optimization the free boundary will move. The nodes in the substructure

a.) b.)

Figure 5.3: Substructure with three layers a.) without b.) with re�nement from layer to

layer. It is also possible to re�ne the mesh by introducing new layers.

will move according to this movement as described in [31].

This adaptive substructuring was used for optimization. With this procedure it was always
possible to get results in the structure analysis with an error er� < 5%. Two examples for

the used substructured meshes are shown in Fig. 5.11.

5.2.2 Mesh Re�nement

A threshold for the stress error is determined and four levels (see Fig. 5.4) are used
for local mesh re�nement. Besides this local mesh re�nement, a global mesh re�nement

level 1 level 2 level 3

Figure 5.4: Three levels of compatible local mesh re�nement

(quartering every triangle) was done if necessary. If the substructure technique was used,

this local mesh re�nement was only adopted in the remaining structure.
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5.3 Successive Strategies

These strategies are particularly valuable in case node coordinates are used as design

variables. Two successive strategies were tested: First, the mesh was re�ned during

optimization. At the beginning just a rough approximation was used. This enables the

nodes on the free boundary to make great movements without deterioration of the mesh.

If a remarkable reduction of the cost function cannot be achieved any more, the whole

mesh, or at least the mesh in the substructure, was re�ned for further improvement.

Second, not all nodes on the free boundary are used as design variables the whole time.

At the beginning only a small number (e.g. every third) was taken and the nodes between

the design nodes were interpolated during the optimization process [31].

The amount of CPU-time saved using the second strategy was small. It was tested, but

not used for the displayed optimization results [44].

5.4 Numerical Example

As a numerical example the notched tension bar was chosen. In Fig. 5.5 the problem is
demonstrated. It is su�cient to discretize a fourth of the part because of the inherent
symmetry. The adequate support and the variation domain can also be found in Fig. 5.5.

During optimization the measurement of the damage constants was not �nished for 30CrN-
iMo8. Therefore, the material data chosen for optimization are::

� Linear Elasticity

Young's modulus E = 200000MPa; Poisson's ratio � = 0:3;

� Plasticity

fatigue limit �f = 180MPa; yield stress �y = 260MPa;

ultimate stress �u = 700MPa;

� Damage

damage constant S = 7MPa; damage threshold "pD = 10%;

The material data are found in [56] for stainless steel (T = 200C).
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Figure 5.5: The notched tension bar.

5.5 Statically Optimized Shape

As a starting point the optimization procedure was tested for static optimization. This

means minimization of maximum von Mises stress at the free boundary.
The circular notch was chosen as a start shape if node coordinates were used.

If the free boundary was described by B-splines, a straight line was chosen between the

�xed points, because of the linear precision property of the B-spline (see Section 3.3.2).
The static optimization was carried out without substructuring.

5.5.1 Numerical Results

For the �rst and second displayed result, node coordinates were used as design variables.

A successive strategy was applied, at last 31 nodes were used. Besides the constraints
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in variation domain, the distance constraint and the concave constraint were used in the

�rst example (Fig. 5.6). The start geometry was the circular notch.
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a.) b.)

Figure 5.6: Static optimum shape: a.) mesh at the end of optimization b.) normalized

von Mises equivalent stress (� = �eq

�n
) along the optimized boundary.

The next example (Fig. 5.7) was optimized with just the same features. In addition the

curvature constraint was mentioned (rmin = 3mm). The third (Fig. 5.8) and fourth

a.) b.)
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Figure 5.7: Static optimum shape with curvature constraint: a.) mesh at the end of

optimization b.) normalized von Mises equivalent stress along the optimized boundary.

example (Fig. 5.9) use B-splines to approximate the free boundary. In the fourth example

the curvature is additionally used. In both cases the distance constraint was certainly shut

o�.

5.5.2 Discussion

There is a close agreement of the optimization results with the results of Fanni [30, 31].

If the curvature constraint is used, the stress is somewhat higher and the distance of
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Figure 5.8: Static optimum shape (de Boor-ordinates as design variables): a.) mesh at

the end of optimization b.) normalized von Mises equivalent stress along the optimized

boundary.
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Figure 5.9: Static optimum shape with curvature constraint (de Boor-ordinates as design
variables): a.) mesh at the end of optimization b.) normalized von Mises equivalent stress

along the optimized boundary.

constant stress is a little bit shortened down (compare, for instance, Fig. 5.6.b and Fig.

5.7.b). The stress concentration factor (Kt =
�max

�n
) increases from Kt = 1:31 to Kt = 1:35

in case that node coordinates are used as design variables and from Kt = 1:37 to Kt = 1:4,

if the de Boor-ordinates are used.

If B-splines are used to describe the free boundary the stress is no longer constant but

shows little oscillations. This is due to the interpolation of the node coordinates. Similar
results have been derived if, instead of all node coordinates, only some are used as design

variables and the position of the others is interpolated after every optimization step.

Nevertheless, the B-spline approximation (maximum ten design variables) will be used

in the case of time intensive (!) damage optimization. With a maximum increase of less

than 3% in stress, the achieved accuracy is within the tolerated stress error and therefore

su�cient.
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5.6 Damage Analysis

Before the described damage concept was used for optimization, some damage analyses

were carried out. At �rst, the algorithm is tested in this section. After this, a comparison

is made between the damage accumulation in a part with circularly notched shape and a

statically optimized notched part.

5.6.1 Testing the Algorithm

Damage accumulation as described in Chapter 4 is very stress sensitive. This means a

small error in the stress-strain �eld calculation will produce any result in damage calcula-
tion. Therefore it is very important to have a very accurate FE-simulation which means

a very �ne mesh because of the chosen linear displacement setup. For all meshes used in
damage analysis only an error less than 5% was tolerated. At �rst the mesh dependency
of the lifetime was studied.

Mesh Dependency with Respect to Global Mesh Re�nement

The mesh dependency of lifetime with respect to global mesh re�nement was examined
for the circular notch with a load of �L = 80MPa. The fundamental mesh (777 elements,
er� = 5:16%) and the second globally re�ned mesh (3108 elements, er� = 3:77%) are shown

in Fig. 5.10.
A third mesh was obtained by a second global re�nement (12432 elements).

a.) b.)

Figure 5.10: a.) Fundamental net (777 elements) and b.) �rst global re�nement (3108

elements)

N0 is connected with the number of cycles until the �rst element is damaged (Di > 0).
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NR determines the number of cycles until the �rst element reaches the critical damage

value (DC = 1). The results for the three meshes are summarized in the table below:

mesh 1 mesh 2 mesh 3

N0 1358 1390 1402

NR 34715 35144 33946

The greatest di�erence is 3:4%. This is within the desired accuracy and certainly tolerable.

Mesh Dependency with Respect to Local Mesh Re�nement

In a second test the two �rst meshes of the previous subsection were chosen and the most
damaged element was divided into three parts (=local net re�nement level 1). Now, the

damage in these three new elements is compared at the end of the lifetime of the part:

D1 D2 D3

mesh 1 0.989 0.765 0.764

mesh 2 0.985 0.896 0.896

The maximum di�erence is 9% for the \good" (second) mesh. This e�ect is of an order
which cannot be neglected. The mesh dependency of damage calculations is well known. It

is a present research topic to overcome this problem with nonlocal approaches introducing
a kind of structural length. It was out of the scope of this work to go into detail here,

but it was found [93] that the e�ect of mesh dependency is smaller if the desired value

of accumulated damage is set down. In fatigue for most material the structure will fail
at a damage value DC < 1. For the considered material DC = 0:2 was found [56]. This

improves the result signi�cantly.

Mesh Dependency and Coupling

The second mesh was also analyzed with the same loading but just locally coupled. The
result was the expected same number of cycles in damage initiation (N0 = 1396) and the
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increased number in cycles until rupture (NR = 42058).

Besides this, once more the most damaged element of the two meshes of Fig. 5.10 were

divided into three parts. It is remarkable that in the case of a locally coupled analysis (D

in the table has the meaning of D� in this case) the mesh dependency becomes worse:

D1 D2 D3

mesh 1 0.989 0.534 0.534

mesh 2 0.985 0.616 0.616

5.6.2 Comparison of Circularly Notched and Statically Opti-

mized Part

In Fig. 5.11 the meshes of the circularly notched part and the statically optimized part

including a substructure are shown. The mesh of the statically optimized part was also
used as start geometry for the damage optimization described in the next section. It was

necessary to double the nodes on the free boundary (65 nodes) to achieve a stress error
er� < 5% in this case.

a.) b.)

Figure 5.11: Meshes of a.) circularly notched (r = 9mm) and b.) statically optimized

shape.

In Figure 5.12 the stress redistribution for a statically optimized part is shown. In Figure

5.13 (left) damage is almost constant along the free boundary until the separation point

is reached. It is widely spread out for this statically optimized part. Damage is highly

concentrated if the circularly notched part is considered.
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Figure 5.12: Stress before damage accumulation: N = 1 (left) and after N = 30157 cycles

(right).
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Figure 5.13: Damage after N = 30157 cycles, �L = 105MPa for a statically optimized

part (left) and damage after N = 27010 cycles, �L = 84:5MPa for a circularly notched

part.

5.6.3 Discussion

With the modi�ed algorithm, the stress redistribution observed experimentally is well

modelled. The introduced coupling is reduces the e�ect of mesh dependency.

Damage is highly concentrated in the case of the circular notch and widely spread out in

the case of the statically optimized shape.
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5.7 Dynamically Optimized Shape

For damage analysis only small errors in the stress-strain �eld can be tolerated, and

therefore a very �ne mesh is required allowing only small movements of the free boundary

before a remeshing is needed. The damage analyses of the circularly and the statically

optimized shape have shown that the damage optimized shape will be at least close to

the statically optimized shape. Therefore, for the damage optimization the statically

optimized shape (with curvature constraint and B-spline description) was used as start

geometry. The substructure technique was adopted and the number of nodes on the free

boundary was doubled. The von Mises equivalent stress along the free boundary of this

\statically optimized" part is shown in Fig. 5.14. In Figure 5.15 the von Mises stress
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Figure 5.14: Von Mises stress along the free boundary, before damage takes place and
after N = 10504 cycles (stress redistribution!).

along the free boundary of the statically optimized part is compared with the circularly

notched part.

In Figure 5.16 the damage along the free boundary of the statically optimized and the

circularly notched part are shown.

Besides the maximun von Mises stress, now two new cost functions were chosen:

� Maximum damage itself at a certain number of cycles was chosen as new cost func-
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Figure 5.15: Von Mises stress along the free boundary afterN = 10504 cycles. Comparison
of the circularly notched and the statically optimized structure.
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Figure 5.16: Damage along the free boundary after N = 10504 cycles. Comparison of the

circularly notched and the statically optimized structure.

tion. In the discreticed formulation we obtain:

f2(t) = max
i=1::m

D

����
N�=const

: (5.9)

� Damage increment is controlled by the increment of accumulated plastic strain and

the e�ective damage equivalent stress. Therefore, before damage occurs, the maxi-
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mum damage equivalent stress was chosen as second new cost function.

f3(t) = max
i=1::m

��: (5.10)

In both cases we have to consider minimax problems. These problems are handled as

described in Section 3.2.2 for minimization of maximum von Mises stress.

5.7.1 Damage Optimization

For a load of �L = 100MPa the number of cycles until failure (D = DC) of the statically

optimized part were calculated. This number (N� = 10504) was �xed and maximum

damage along the free boundary was minimized.
In Figure 5.17 the von Mises stress along the free boundary of the damage optimized part

is compared with the von Mises stress of the statically optimized part.
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Figure 5.17: Von Mises stress along the free boundary afterN = 10504 cycles. Comparison
of the statically optimized and the damage optimized structure.

In Figure 5.18 the damage along the free boundary of the statically and the damage

optimized part are shown.

The oscillation in damage along the free boundary of the statically optimized part is

reduced by damage optimization. In von Mises stress there is almost no di�erence between

the two shapes.
The damage optimum was found after 6 iterations; a remeshing was not necessary.
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Figure 5.18: Damage along the free boundary after N = 10504 cycles. Comparison of the
statically optimized and the damage optimized structure.

5.7.2 Damage Equivalent Stress

Damage evolution is controlled by damage equivalent stress. In fatigue, damage equiva-
lent stress at microscale determines the damage evolution. The damage equivalent stress

di�ers from the von Mises equivalent stress by the square root of the triaxiality function.
On a mesoscale there is no di�erence between the von Mises stress and the damage equiv-
alent stress, because RV � 1 on the free boundary (see Section 4.2.3). The microscopic

damage equivalent stress may di�er, because of incompressibility during plasticity of the
material [55, 56].

The maximum damage equivalent stress was determined before damage evolution has
started. The cost function which was minimized was this maximum damage equivalent
stress. After optimization, the �� part was loaded once again with �L = 100MPa for

N = 10504 cycles in order to compare the stress and damage distribution with the opti-

mization results of the �rst new approach.

In Fig. 5.19 the von Mises stress of the statically optimized part is compared with the
von Mises stress along the ��-optimized part.

In Figure 5.20 the damage along the free boundary of the statically and the ��-optimized
part are shown.

The optimum was achieved after one remeshing and 8 iterations.

The results of the ��-optimization are very close to the results of the damage optimization
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Figure 5.19: Von Mises stress along the free boundary afterN = 10504 cycles. Comparison
of the statically optimized and the ��-optimized structure.
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Figure 5.20: Damage along the free boundary after N = 10504 cycles. Comparison of the

statically optimized and the ��-optimized structure.

in the last subsection. Again, almost no di�erence in von Mises equivalent stress can be

found, and the oscillation in damage is reduced.
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5.7.3 Discussion

The oscillation in damage of the statically optimized part was remarkably reduced by

optimization with the two new cost functions.

The following reasons can be responsible for this:

� The now modelled stress redistribution,

� triaxiality at microscale or

� numerical approximation problems.

The stress redistribution is considered if damage itself is minimized. �� is minimized

before damage takes place. Both new cost functions lead to very close results, therefore
the observed e�ect cannot be due to stress redistribution.
The negligible e�ect of stress redistribution can be understood, if one notices, that damage

evolution is controlled by the e�ective damage equivalent stress. During stress redistri-
bution the e�ective stress is stays high because of the quotient (1�D).

The following considerations will help to clarify, whether the oscillations are due to nu-
merical problems or to triaxiality at microscale.
There is a slight, appropriate oscillation in the von Mises stress of the statically optimized

part (see Fig. 5.14). If a B-spline description of the free boundary is used, slight oscilla-
tions in von Mises stress are always observed [31]. The observed oscillations in stress are
about 6%, which is normally negligible. In this work, because of the stress sensitivity of

the damage analysis, only errors in stress e�� < 5% are tolerated.
The structure analysis of the statical optimization was carried out with \only" 31 design

nodes on the free boundary. The doubling of the nodes - necessary for the desired stress
accuracy - was not considered in the static optimization procedure.

Therefore, the statically optimized part was statically optimized a second time but with

the re�ned, substructured mesh. In Fig. 5.21 the von Mises stress along the free boundary

of the part that has been statically optimized twice is compared with the von Mises stress

of the \statically optimized" part.

It is remarkable that the damage oscillation in Fig. 5.22 is reduced in the same manner

as if the two new cost functions are used.

In conclusion, the inuence of triaxiality is negligible in this case. This was already

mentioned for 2D in Section 4.3.4 by replacing the microscopic variables in the case of

the uncoupled analysis.

Finally, it can be concluded that the optimization results of the statical, the damage and
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Figure 5.21: Von Mises stress along the free boundary afterN = 10504 cycles. Comparison
of the statically optimized and the structure that was statically optimized twice.
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Figure 5.22: Von Mises stress along the free boundary afterN = 10504 cycles. Comparison
of the statically optimized and the structure that was statically optimized twice.

the �� optimization are really close. This is also demonstrated in the S-N-diagram (Fig.
5.23).

For a practical use there is no di�erence and a static optimization is recommended. The

situation may change for 3D problems, because triaxiality becomes more important. In

this case, the importance of stress redistribution has to be checked also. Maybe a static
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Figure 5.23: S-N Diagram for parts with statically optimized, damage equivalent stress
minimized and damage minimized shape.

optimization with �� instead of the von Mises equivalent stress (considering the triaxial-

ity) is su�cient.
The new concept becomes particularly valuable if nonproportional loadings have to be

considered. In this case, the point of failure and the point with maximum stress may
di�er. In the case of nonproportional loadings a less loaded point (but for a longer time

above the threshold) can cause the failure of the structure and we therefore expect totally

di�erent optimization results.



Chapter 6

Experimental Investigations

All experiments were carried out with a 1000kN SCHENCK hydraulic pulser.
It is an inherent feature of lifetime tests (especially for low loads near the fatigue limit)

that there is a great scatter in results. In order to minimize this scatter, all inuencing
factors were tried to be heldconstant (e.g. manufacturing process, residual stresses, sur-

face roughness). The e�ect of designing the free boundary was thus extracted.
The determination of the material properties was carried out at the same time as the
numerical optimization. For static optimization the material properties (E, �) are almost

the same, therefore only very small di�erences in comparison to the stainless steel are
expected.
Here, the principal determination of the damage constants is studied. And the CDM

model is compared with experimental results for smooth specimens.
The damage constant will di�er signi�cantly for di�erent materials. A damage optimiza-

tion with the material properties determined here will be published in [37].

6.1 Material Properties

The material used for the experiments was a high strength steel 30CrNiMo8. This material

was chosen, because it shows a very homogeneous texture (see Fig. 6.1) and is also often
used in industry for large, highly loaded machine parts.

All specimens used in the experiments are out of the same manufacturing process (Charge:

263160/92). The material was directly supplied by the manufacturer THYSSEN STAHL

AG.

88
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Figure 6.1: Micrograph of 30CrNiMo8. No di�erence was found in texture for longitudinal

and transversal intersections.

The chemical composition is:

Ingrediants C Si Mn P S Cr Mo

Weightpercent 0.33 0.18 0.53 0.024 0.002 2.08 0.35

Ingrediants Ni V W Al B Co Cu

Weightpercent 2.1 <0.01 0.02 0.021 <0.0004 0.025 0.08

6.1.1 Preparation of the Specimens

There was a hardening at 8600C (oil cooled) and after this a tempering at 6000C for two

hours (air cooled).

By this hardening process 333� 5 HRB were reached.

After manufacturing and polishing the speci�ed parts (Geometries see Fig. 6.2), residual

stresses were minimized by annealing at 5700C for three hours in vacuum.
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Figure 6.2: Geometry of the used specimens, sizing in mm.

6.1.2 Material Constants

The following material parameters are necessarily measured (see Appendix B for detailed
experimental results) to use the continuum damage mechanics approach:

� Elasticity

Young's modulus (E = 216291� 4620MPa) and Poisson's ratio (� = 0:3)

� Plasticity

Fatigue limit (�f = 484MPa), yield stress (�y = 865:9 � 18:4MPa) and ultimate

stress (�u = 1020:6� 14:2MPa)

� Inclusion

Perfect plasticity (��y = �f )

� Damage Damage constant (S = 58), plastic strain threshold (pD = 21) and critical

damage (DC = 0:2)

The given values are mean values. The easiest test to determine the damage constant is

the tension test with unloadings. Fig. 6.3 shows such a single tension test. The values

measured by such tension tests (S � 2) di�er signi�cantly from the value in the table.

The explanation is an inhomogeneous plasti�cation found in materials like the considered
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30 CrNiMo8 [24]. In this case, strain driven VLCF-tests are recommended. In Appendix

B, some hystereses and the p-D-diagram for such a strain driven tension test (�" = 1:2%,

f = 0:2Hz, NB = 1744) are shown. The mentioned VLCF measurements [69] show a

Figure 6.3: Tension test with unloadings. Strains are measured with a SCHENCK DSA

25/20 strain clip.

crack closure parameter h = 0:5 for the considered material. Crack closure has not been

implemented into the algorithm until now.

6.2 Photoelastic Experiments

One of the main characteristics of the damage mechanics concept is the proposed stress

redistribution.
A stress redistribution during fatigue life is found experimentally by the use of pho-

toelasticity. A reexion method was used, therefore the specimens were covered by a
photoelastic sheet (PS � 1, hc = 1mm, Measurements Group). The stress-optic law

provides a relation between the retardation of a loaded photoelastic material and the

principal stresses. Using a reexion method, it is assumed that specimen and coating are
equally strained. In this case the stress-optic law can be rewritten in the following form:

"c1 � "c2 = "1 � "2 =
1 + �

E

f�

2hc

�

�
; (6.1)
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with

f� =
�
C
: the material fringe value,

�: the retardation and

hc: the thickness of the coating.

There was no need to get the directions of principal strains, so circularly polarized light

was used. This means the isochromates (lines of equal principal strain di�erence) are not

disturbed by the isoclines (lines of equal principal strain direction). The whole set-up

is demonstrated in Fig. 6.2. By polarizing the light, retarding it at the �/4-plates and

according to the stress-optic laws and interfering it at the analyzer, the following equation

is derived for the amplitude of the electric �eld [98]:

E(t) =
p
2E0 cos (!t� 2�) sin (

�

2
); (6.2)

with

�: the retardation in radiants.

The intensity of the emerging light is observed:

I(t) = 2E2
0 cos

2 (!t� 2�) sin2 (
�

2
): (6.3)

Time averaging eliminates the high frequency term. Eq. 6.3 shows in particular that the
intensity is zero if

�

2
= n�; (6.4)

with

n: fringe order.

In the experiment a white-light source is used. Therefore in almost any place Eq. 6.4 is

satis�ed for a special wavelength:
� = nk�; (6.5)

with

�: wavelength, k = 2�

�
: wave propagation factor.

and the complementary color is observed in the pattern.
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Figure 6.4: Photoelastic experiments: reexion method with white circular polarized

light, dark �eld: polarizer and analyzer are crossed.

6.2.1 Camera Synchronization

In this case the major interest was to get at least a qualitativ impression of the
stress/strain distribution and redistribution during the fatigue test without disturbing

the experiment.
For this purpose the camera (NIKON F-801) had to be synchronized to the actual signal
of the hydraulic pulser.

Some standard techniques for dynamic recording can be found in [98]. For the discussed
application a simple and inexpensive alternative was developed.

The synchronization of the camera was achieved by the following procedure: In a primary
experiment the delay of camera and electronic was measured by taking a photo of a dis-
play which was driven from a counter measuring the time after the start signal for the

photo was given. A constant delay can be found for every adjustment of the camera with
a tolerance of less than �t1 = �1ms. The synchronization is now achieved by adding a
second delay so that the next point of maximum load is reached:

�t2 =
1

f
��t1 (6.6)

with

f : the load frequency of the fatigue test.

A schematic diagram of the synchronization is found in Fig. 6.5. Certainly, instead of

detecting the point of maximum load, any �xed point can be used as start signal if the

second delay is determined adequately.
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6.2.2 Discussion of the Results

All colored photoelastic �gures are collected in Appendix B.3. Eq. 6.1, 6.3 and 6.5 show

that the isochromats are colored lines of the same di�erence of principal strain (See e.g.

[97] for the assignment of the principal strain di�erences to the colors.).

For a quantitative strain-stress �eld analysis at least two independent measurements are

needed, because only the di�erence of principal strain is detected. Here only one picture

at the same time was available. Therefore the analysis of the results is carried out only

qualitatively.

If elastic behavior can be assumed the principal strain di�erence is easily transferred to

principal stress di�erence by the use of Hooke's law. At the free boundary and at points

of vertical/horizontal symmetry one principal stress vanishes and the second principal

stress can be found directly out of the principal strain di�erence found in the pattern.

From the comparison between Fig. B.4.a and Fig. B.4.c, it is obvious that the stress is

constant along the optimized shape between the separation points. This is characteristic

for the static optimization result (FSD). It has to be mentioned that the red color along
the boundary and the red color in the middle of the part are of di�erent order. This
means \high" stress along the free boundary and low stress in the middle of the part.

In Fig B.4.b and B.4.d it is not allowed any more to determine the stress directly from
the visualized strain patterns. These �gures have to be analyzed more carefully. In B.4.d
there are several orders in strain along almost the whole free boundary. In B.4.b there is

also higher straining now, but more localized at the root of the notch. This high straining
is not connected with high stresses. It is worth mentioning that in the middle of the part

the low strain has vanished. As a transformation of the strain to the stress with Hooke's
law is still allowed in the middle of the part, thisa means the stress has increased here,
whereas at the boundary there is a large straining without almost any stress. This is well

explained by the CDM-concept. The large straining without carrying load is a result of
the high damage accumulation in this region.

This stress redistribution is found really early during lifetime. The number of cycles at
failure was NB = 20901 e.g. in the case of the circularly notched part, the number of
cycles at �rst stress redistribution seen in the photoelastic experiments was N0 = 13000

(Fig. B.4.b was taken after N = 14659 cycles).

6.3 Lifetime Tests

First a comparison of experimental results and the numerical calculation is shown for

unnotched specimens. Afterwards the lifetimes of the di�erent shapes are experimentally

compared using an engineering statistical standard method.
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6.3.1 Comparison of Experimental and Numerical Results

In Fig. 6.6, the numerical (CDM-approach) and experimental results are compared. In

the �gure we �nd one curve for the start of damage evolution (No), one curve for the

breakdown calculated by the orginal Lemaitre-algorithm and one curve calculated by

the modi�ed algorithm. Using the modi�ed algorithm the lifetimes are always shorter,

because of the damage accompanied by larger straining at mesoscale. However, the di�er-

ence to the original algorithm is small. The start of damage evolution was not observed

during experiments - this would be valuable for the next term. Therefore, only the num-

ber of cycles at breakdown are compared. The experimental data is well approximated

by the calculation.

Scattering of results is an inherent feature of all lifetime tests, even if a careful specimen

preparation has been carried out. Therefore a statistical analysis of the results is necessary
if the lifetimes of di�erent shapes are compared.

6.3.2 Statistical Analysis of Results

A standard concept to analyze lifetime tests in a statistical manner is the so-called
arcsin

p
p-transformation. In [22] a comparison of several techniques analyzing fatigue

data is found. The mentioned transformation was chosen, because it provides reasonable

results for the S-N-diagram with only few experiments on every load level. Usually one
assumes a straight line for the S-N-diagram in the area of time strength. This straight
line buckles horizontally at the fatigue strength (N = 2 �106�107, NB = 2 �106 was chosen
for determination of the fatigue strength, here.). Both areas can be analyzed separately

by the arcsin
p
p-transformation. The statistical analysis for the experiments in the area

of time strength is briey described, here. A description of the analogous procedure in

statistical fatigue limit determination is found in [60].
Let n be the number of specimens broken at one load level. These n results are ordered

with increasing lifetime. The crack probability assigned to every test result is:

P =
i

n
� 100% if i < n and P =

�
1�

1

2n

�
� 100% if i = n: (6.7)

The transformation is used to determine the lifetime for an arbitary crack probability:

lgNB = at + bt arcsin
p
P: (6.8)

The experimental results are �tted by the usual least square method.
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In order to connect the results of a speci�ed crack probability to a straight line, the

original W�ohler (see Eq. 2.4) approach was chosen:

lgNB(P ) = a� b�(P ): (6.9)

The regression line is found by a second least square �tting.

It is recommended to use at least 3-4 load levels with at least 5-7 specimens at each level.

This means at least 20 tests for one S-N-diagram.

6.3.3 Experimental Comparison of Di�erent Shapes

Fig. 6.7 shows S � N�diagrams for 50% crack proability. The lifetime for a part with

optimized shape is remarkably increased in comparison to a circularly notched part for
any load level. In Appendix B.2.2 the data of the single tests is collected.
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Figure 6.6: S-N-diagrams for unnotched specimens. Comparison of experimental and
numerical (CDM-approach) results.
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Chapter 7

Conclusion

The usually used engineering lifetime determination with fatigue notch factors provides
only poor results if the loading situation is complex. Problems with e.g. changing load

levels are mentioned. In addition, in photoelastic experiments a stress redistribution was
observed during fatigue life. This stress redistribution has not been taken into account

for shape optimization of dynamically loaded parts failing by fatigue until now.
The concepts of Continuum Damage Mechanics were used to model this stress redistri-
bution. With these concepts, a discretization in time considering changing loading and

material conditions is possible.
Damage evolution is connected with plasticity. Especially in high cycle fatigue there is no
plasticity on a macroscale. This problem is overcome by introducing a two-scale model to

characterize fatigue behavior. Elastic behavior on a macroscale and elasto-plastic behav-
ior on a microscale are assumed. Damage is connected with breaking of atomic bonds,

plasticity with slips. This means, besides the deviatoric part of the stress tensor, also
the hydrostatic part is inuences damage evolution. This istaken into account by the
introduction of a triaxiality function.

In contrast to Lemaitre0s work not only the microelement is damaged. Here, the damage

of the microelement is directly transferred to the mesoelement which is represented by the

�nite element. This direct transfer is encouraged by the initial conditions D = D� = 0

(initial damage is zero for micro- and mesoelement) and by the �nal conditions (failure of

the microelement causes failure of the whole mesoelement). The feature may be modi�ed

according to further experimental studies.

For dynamical shape optimization, the minimization of damage at a certain number of

cycles and the minimization of damage equivalent stress (before damage evolution starts)

were chosen as new cost functions.

For optimization, there are two di�erences in comparison to the minimization of von Mises
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equivalent stress (=static optimization), if proportional loadings are considered:

� Triaxiality at microscale and

� Stress redistribution.

The considered numerical example shows that both e�ects are negligible in this case.

The numerical results of the three cost functions: minimizing maximum von Mises stress,

minimizing maximum damage equivalent stress and minimizing maximum damage at the

free boundary are very close.

For 3D-problems the inuence of triaxiality may arise.

The highly concentrated damage for the circularly notched part is widely spread out for
the optimized parts. The damage is almost constant along the free boundary between the

separation points. Small oscillations in damage along the shape are due to the B-spline
approximation of the free boundary.

Completely di�erent optimization results are expected for nonproportional loadings. The
described concept is - in principle - also adoptable in this case.

The lifetime tests show that the CDM-approach �ts the experimental data very well.

Statistically analyzed lifetime experiments for circularly notched, unnotched specimens
and specimens with optimized shape show a remarkably increased lifetime of the optimized
parts.



Appendix A

Damage Mechanics

A.1 Proportional Loading

A loading on a particular structure (
) is considered to be proportional if the stress �eld

can be written as a product of a tensor depending only on the considered point (M) and
a scalar function depending only on time:

�(M; t) = S(M)�(t) (A.1)

It can easily be shown [56] that in the case of a proportional loading the principal stress

directions do not change in time. The triaxiality ratio and also the triaxiality function
also remain constant in time.

A.2 Fatigue Crack Growth

On a microscale we consider a distribution of fatigue cracks with area si (see Fig. A.2).

In a simplest case damage is de�ned as:

D =

Pn
i=1 si

l2
; (A.2)

with the rate:

_D =

Pn
i=1 _si

l2
: (A.3)
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l

l

d

si

micro scale cell

meso scale RVE

microcrack area

Figure A.1: Micro-meso element for brittle fatigue crack growth

The crack growth of one crack may be expressed as a function of the strain energy release
rate of one cell _Gi by the use of Paris0 law of fatigue crack growth (see Eq. 2.1). We

reduce our considerations to a two-dimensional problem with the crack length 2a and the
crack increment �a

�N
per cycle. The exponent in Paris law is m ' 4 for most metallic

materials. The crack increment per cycle can be interpreted as the integral of the crack

rate over one cycle. Therefore the rate of a is derived by di�erentiation of Paris law:

_a = mCKm�1 _K (A.4)

If we assume that the crack i has the width ei we get the following expressions for cell i:

K = (EG)
1

2 ; _K =
E

1

2

2
G�

1

2 _G and _si = ei _ai (A.5)

where

G: strain energy release rate corresponding to a crack with area s.

So the crack area rate has the following expression:

_si = mCeiE
m

2 G
m

2
�1

i
_Gi (A.6)

A relation between Gi and Yi can be found using their relations to the elastic strain

energy:

Gi =
@W e

i

@si
and Yi = �

@we
i

@Di

: (A.7)

with

Wei = d3wei: (A.8)
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The following expression results:

Gi = �
1

2

@(we
i d

3)

@Di

@Di

@si
(A.9)

where

Di '
si

d2
; Gi = Yid; _Gi = _Yid: (A.10)

The following expression is obtained by inserting in Eq. A.6:

si = mCeiE
m

2 d
m

2 Y
m

2
�1

i
_Yi (A.11)

The damage rate is:

_D =

P
_si

l2
=
mCE

m

2 d
m

2

l2

nX
i=1

eiY
m

2
�1

i
_Yi: (A.12)

With the assumption that all the n cracked cells have the same strain energy density

release rate, the homogenized strain energy density release rate for the RVE is:

Y = nYi and _Y = n _Yi (A.13)

and the further assumption that the width is equal for all cracks:

nX
i=1

eiY
m

2
�1

i
_Yi = neY

m

2
�1

i
_Yi = en1�

m

2 Y
m

2
�1 _Y ; (A.14)

_D =
mCE

m

2 d
m

2 e

l2n
m

2
�1

Y
m

2
�1 _Y : (A.15)

It can be seen from Eq. A.15 that for m ' 4 the damage rate is an increasing function

quasi proportional to the strain energy release rate and proportional to its rate _Y .

A.3 Failure in Micro-Mesoscale

In 4.3.2 it is shown that a microelement will fail, if the damage variable reaches its critical
value:

Dc
� = D1c

�2u
�y�2Rv

� � 1 (A.16)

The strain energy release rate at the mesoscale corresponding to a microcrack of surface

�A = d2 is:

G = �
�W

�A

�����
�=const:

(A.17)

On the other side ��W=2 is also the energy dissipated in the inclusion by the damaging
process at constant stress

G(�A) =
d3
RDc

0 Y dD

�A
(A.18)
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assuming a constant strain energy release rate (Yc):

G(�A) = YcDcd: (A.19)

Another relation comes from comparing the energy dissipated in a damage process due to

microcrack initiation and the energy dissipated to produce the same crack through brittle

fracture mechanics:

YCDCd
3 = GCd

2 (A.20)

where

GC : is the toughness of the material

Comparing relation A.19 and A.20 shows that GC = G(�A). So the criterion for microc-

rack initiation is also the criterion for crack instability on a mesoscale.



Appendix B

Experimental Results in Detail

The parts were delivered with a circular pro�le and a length of 460 mm. These parts
were numbered with arabic �gures. Out of every circular pro�le part three at bars were

manufactured and numbered \A",\B" and \C".

The tension tests and the VLCF tests for the determination of the damage constants were
carried out with unnotched axisymmetric specimens. In Fig. B.1 the geometry is shown.

30
100
234
450

R70
R10

o
2
0

o
4
0

o
7
0

Figure B.1: Geometry of the axisymmetric specimens.
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B.1 Tension Tests

specimen HRB E=MPa �y=MPa �u=MPa �R=MPa

21B 298 211367 863.6 1018.2 854.5

18A 306 214346 868.2 1018.2 827.3

20C 302 216166 859.1 1009.1 835.0

13A 317 217197 900.1 1048.3 850.7

16A 298 213891 860.2 1020.5 795.3

17A 306 224782 845.1 1010.7 780.3

Mean values/standard deviation:

E=MPa �y=MPa �u=MPa �R=MPa

216291 �4620 865.9 �18.4 1020.6 �14.2 823.6 �30.1

The Poisson ratio was not measured. For most metals � = 0:3 is a \good" choice.

B.2 Fatigue Tests

B.2.1 Damage Constants in VLCF

The damage constants were measured in strain driven VLCF tests. In strain driven tests,
often problems with the controlling of the pulser appear (see Fig. B.2). Nevertheless this

test is recommended, because of the homogeneous material deterioration.

Because of the controlling problems of the pulser, only the e�ective Young's modulus in

tension (unloading) are used for analysis. A decreasing of the Young's modulus is observed
after pD = 21 (pD =

PN0

i=1 2�"
p
i ). The damage constant is determined as the slope of the

p�D-diagram (Fig. B.3).
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Figure B.2: Strain driven VLCF test. �" = 1:2%, NB = 1744, f = 0:2Hz.

Figure B.3: Determination of the damage constants in a VLCF test.
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B.2.2 Fatigue Tests for Di�erent Shapes

specimen �n=MPa HRB N

1A 488 313 144497

34A 488 302 278186

26C 488 302 321487

4A 488 306 swr

26B 477 295 177581

18C 477 313 swr

5C 477 302 swr

4C 477 310 swr

specimen �n=MPa HRB NB

17B 636.36 313 17408

5A 636.36 306 20616

25A 636.36 306 29087

9C 636.36 302 35496

9A 636.36 310 36259

7B 590.91 302 43347

34C 590.91 298 48518

34B 590.91 302 56416

4C 590.91 310 74427

20B 545.45 298 83592

28C 545.45 306 85972

15C 545.45 310 98577

9B 545.45 302 101683

13A 545.45 317 111388

10A 500 306 168576

26A 500 306 195857

8C 500 306 200467

40A 500 295 217480

3C 500 302 236215

11A 500 310 311026

Left table: Determination of the fatigue limit. swr: specimen without rupture during
N = 2 � 106 cycles. �f = 484MPa for 50% crack probability.

Right table: Lifetime test for smooth specimens.
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specimen �n=MPa HRB NB

27B 500 306 15520

27C 500 310 15547

44B 454.55 313 23154

3B 454.55 310 25145

27A 454.55 306 31130

1C 409.09 302 40616

2A 409.09 310 47497

1B 409.09 306 49592

43A 409.09 306 64925

28A 363.64 310 75501

24A 363.64 313 90659

36B 363.64 313 108924

3A 363.64 310 129360

6C 318.18 310 145825

39B 318.18 295 156008

35B 318.18 302 184139

35C 318.18 313 599027

specimen �n=MPa HRB NB

33C 545.45 302 17154

8B 545.45 302 17932

31C 545.45 295 19962

38C 545.45 302 20112

44C 545.45 310 23550

32C 500 302 30153

28B 500 302 35775

15A 500 306 37803

12A 500 295 38136

38A 409.09 306 104334

22A 409.09 306 104473

19C 409.09 302 109463

35B 409.09 302 116456

36C 409.09 302 124425

25B 363.64 302 138163

39C 363.64 295 162100

32A 363.64 302 211982

39A 363.64 292 255680

38B 363.64 302 260254

35A 340.91 306 208032

32B 340.91 302 294884

22B 340.91 310 299059

33C 340.91 302 1478323

Left table: Lifetime tests for circularly notched specimens (r = 9mm).

Right table: Lifetime tests for statically optimized specimens.
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B.3 Photoelastic Pictures

c.)

a.) b.)

d.)

Figure B.4: Circularly notched part in a.) beginning b.) at the end of the experiment.

Statically optimized part c.) in the beginning d.) at the end of the experiment. Load in

both cases: �n = 454:54MPa.
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