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Abstract

Proben1 is a collection of problems for neural network learning in the realm of pattern classi�-
cation and function approximation plus a set of rules and conventions for carrying out benchmark
tests with these or similar problems. Proben1 contains 15 data sets from 12 di�erent domains. All
datasets represent realistic problems which could be called diagnosis tasks and all but one consist of
real world data. The datasets are all presented in the same simple format, using an attribute repre-
sentation that can directly be used for neural network training. Along with the datasets, Proben1
de�nes a set of rules for how to conduct and how to document neural network benchmarking.
The purpose of the problem and rule collection is to give researchers easy access to data for the
evaluation of their algorithms and networks and to make direct comparison of the published results
feasible. This report describes the datasets and the benchmarking rules. It also gives some basic
performance measures indicating the di�culty of the various problems. These measures can be
used as baselines for comparison.
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4 1 INTRODUCTION

1 Introduction

This section discusses why standardized datasets and benchmarking rules for neural network learning

are necessary at all, what the scope of Proben1 is, and why real data should be used instead of or in

addition to arti�cial problems as they are often used today.

1.1 Why a benchmark set?

A recent study of the evaluation performed in journal papers about neural network learning algorithms

[15] showed that this aspect of neural network research is a rather poor one. Most papers present

performance results for the new algorithm only for a very small number of problems | rarely more

than three. In most cases, one or several of these problems are meaningless synthetic problems, for

instance from the parity/symmetry/encoder family. Comparisons to algorithms suggested by other

researchers are in many cases not done at all (exception: standard backpropagation).

Why is this so? Several explanations (read: excuses) are possible:

1. Since training a neural network usually takes quite long, a thorough evaluation takes a very large

amount of CPU time.

2. The algorithms of other researchers are often not available as programs at all or their implemen-

tations are not stable or are based on some exotic environment.

3. It is di�cult to get data for real problems.

4. It is much work to prepare data for neural network training.

5. Even results obtained for the same problem can often not be compared directly because of di�erent

problem representations or di�erent experimental setups.

None of these arguments, however, is still a valid one today. I discuss them in order:

1. Not really a problem. Our machines are fast enough now to do a signi�cant amount of training

runs within a few days | at least for small or moderately large datasets. And, hey!, it's your

computer that must do the work, not you!

2. Yes, often true. And probably nothing that we can easily avoid. However, it would not be a

problem if we could just compare against the results of other researchers directly by making the

corresponding experiment with a new algorithm.

3. Only partially true. Many researchers who have used real data in their research are willing to

give it to others upon request. There are also publicly accessible collections of such data; most

notably the UCI machine learning databases repository.

4. Correct. It really is. But not everybody needs to make that data preparation again. We as a

research community can and should share the results of such work.

5. This is a real problem that comes in three variants: First, sometimes experimental setups are

just plain wrong, giving invalid results. Second, often experimental setups are not documented

properly in the papers published, making reproduction or exact comparison impossible. Third,

often the documentation just looks obscure, because the same things are expressed in very di�erent

ways by di�erent people. We need a standard set of conventions for our experiments and their

documentation in order to �ght this problem.

As we see from this discussion, there is a need for standard sets of problems and rules or conventions

for applying them to be used in learning algorithm evaluations. Proben1 is meant as a �rst step

towards a set of standard benchmarks for some areas of neural network training algorithm research.
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Its availability lays ground for better algorithm evaluations (by enabling easy access to example data

of real problems) and for better comparability of the results (if everybody uses the same problems and

setup) | while at the same time reducing the workload for the individual researcher.

Aspects of learning algorithms that can be studied using Proben1 are for example learning speed,

resulting generalization ability, ease of user parameter selection, and network resource consumption.

What cannot be assessed well using a set of problems with �xed representation (such as Proben1)

are all those aspects of learning that have to do with the selection or creation of a suitable problem

representation.

Lack of standard problems is widespread in many areas of computer science. At least in some �elds,

though, standard benchmark problems exist and are used frequently. The most notable of these

positive examples are performance evaluation for computing hardware and for compilers. For many

other �elds it is clear that de�ning a reasonable set of such standard problems is a very di�cult task

| but neural network training is not one of them.

1.2 Why benchmarking rules?

It is clear from the discussion above that having a standard set of benchmark problems is, although nec-

essary, not su�cient to improve the de-facto scienti�c quality of our evaluations. A real improvement

is made only if the results published for these benchmark problems are comparable and reproducible.

This is not trivial, though, since every application of a neural network training algorithm to a particu-

lar problem involves a signi�cant number of user selectable parameters of various kinds | often more

than a dozen. If but one of these parameters is not published along with the result, the experiment

becomes irreproducible and the comparability of the results is hampered. Even if all parameters are

published, comparability might still be an issue due to the fact that many descriptions are ambiguous

since we are lacking a standard terminology.

Thus, a set of benchmark problems should be complemented by a set of benchmarking rules (or

benchmarking conventions, if you want) that describe and standardize ways of setting up experiments,

documenting these setups, measuring results, and documenting these results. Such rules need not

reduce the freedom of choosing among several possible experimental setups | they just suggest a core

standard that should be used in order to maximize comparability of experimental results and show

what should be documented in which way when one deviates from that standard.

As a side-e�ect, thoroughly documented benchmarking rules reduce the danger that a researcher makes

a major fault in his or her experimental setup, thereby producing invalid results.

1.3 Scope of Proben1

Neural network learning algorithm research is a wide �eld trying to tackle many di�erent classes of

problems. Many sub�elds, such as machine vision, optical character recognition, or speech recognition,

are quite specialized and hence also require specialized benchmarks. Other �elds require or forbid

certain properties to be present in any benchmark problem to be used. Thus, no single set of benchmark

problems can be usable for the evaluation of research in the whole �eld.

The scope of the Proben1 problems can be characterized as follows. All problems are suited for

supervised learning, since input and output values are separated. All problems are suited for use with

networks that do not maintain an internal state, since all examples within a problem are independent

of each other. Most of the problems can be tackled by pattern classi�cation algorithms, while a few
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others need the capability of continuous multivariate function approximation. Most problems have

both continuous and binary input values. All problems are presented as static problems in the sense

that all data to learn from is present at once and does not change during learning. All problems except

one (the mushroom problem) consist of real data from real problem domains.

The common properties of the learning tasks themselves are characterized by them all being what I

call diagnosis tasks . Such tasks can be described as follows:

1. The input attributes used are similar to those that a human being would use in order to solve

the same problem.

2. The outputs represent either a classi�cation into a small number of understandable classes or the

prediction of a small set of understandable quantities.

3. In practice, the same problems are in fact often solved by human beings.

4. Examples are expensive to get. This has the consequence that the training sets are not very large.

5. Often some of the attribute values are missing.

The scope of the Proben1 rules can be characterized as follows. The rules are meant to apply to

all supervised training algorithms. Their presentation, however, is biased towards the training of feed

forward networks with gradient descent or similar algorithms. Hence, some of the aspects mentioned

in the rules do not apply to all algorithms and some of the aspects relevant to certain algorithms

have been left out. The rules suggest certain choices for particular aspects of experimental setups as

standard choices and say how to report such choices and the results of the experiments.

Both parts of Proben1, problems as well as rules, cover only a small part of neural network learning

algorithm research. Additional collections of benchmark problems are needed to cover more domains

of learning (e.g. application domains such as vision, speech recognition, character recognition, control,

time series prediction; learning paradigms such as reinforcement learning, unsupervised learning; net-

work types such as recurrent networks, analog continuous-time networks, pulse frequency networks.

Su�cient benchmarks available today for only a few of these �elds). Additions and changes to the

rules will also be needed for most of these new domains, learning paradigms, and network types.

This is why the digit 1 was included in the name of Proben1; maybe some day Proben100 will be

published and the �eld will be mature.

1.4 Why no arti�cial benchmarks?

In the early days of the current era of neural network research (i.e., during the second half of the

1980s), most benchmark problems used were arti�cial. The most famous one of these is the XOR

problem. Its popularity originates from the fact that being able to solve it was the great breakthrough

(achieved by the error back-propagation algorithm), compared to the situation faced during the �rst

era of neural network research in the 1960s when no learning algorithm was known to solve a not

linearly separable classi�cation task such as XOR.

Other training problems that were often used in the 1980s are the generalized XOR problem (n-bit

parity), the n-bit encoder, the symmetry problem, the T-C problem, the 2-clumps problem, and others

[3, 18]. Their de�ciencies are known: all of these problems are purely synthetic and have strong a-

priori regularities in their structure; for some of them it is unclear how to measure in a meaningful

way the generalization capabilities of a network with respect to the problem; most of the problems

can be solved 100% correct, which is untypical for realistic settings.

Later works used still other synthetic problems which can not be exactly solved so easily. Instances

are the two spirals problem [4, 5, 10] or the three discs problem [19]. The problem with these problems



1.5 Related work 7

is, similar to the ones mentioned above, that we know a-priori that a simple exact solution exists |

at least when using the right framework to express it. It is unclear, how this property in
uences the

observed capability of a learning algorithm or network to �nd a good solution: some algorithms may

be biased towards the kind of regularity needed for a good solution of these problems and will do very

good on these benchmarks, although other algorithms not having such bias would be better in more

realistic domains.

Summing up, we can conclude that the main problem with the early arti�cial benchmarks is that we

do not know what the results obtained for them tell us about the behavior of our systems on real

world tasks.

One way to transcend this limitation is to make the data generation process for the arti�cial problems

resemble realistic phenomena. The usual way to do that is to replace or complement the data gener-

ation based on a simple logic or arithmetic formula by stochastic noise processes and/or by realistic

models of physical phenomena. Compared to the use of real world data this has the advantage that

the properties of each dataset are known, making it easier to characterize for what kinds of problems

(i.e., dataset characteristics) a particular algorithm works better or worse than another.

Two problems are left by this approach. First, there is still the danger to prefer algorithms that happen

to be biased towards the particular kind of data generation process used. Imagine classi�cation of

datasets of point clouds generated by multidimensional gaussian noise using a gaussian-based radial

basis function classi�er. This can be expected to work very well, since the class of models used by the

learning algorithm is exactly the same as the class of models employed in the data generation.1

Second, it is often unclear what parameters for the data generation process are representative of

real problems in any particular domain. When overlaying a functional and a noise component, the

questions to be answered are how strong the non-linear components of the function should be, how

strong and of what type the non-linearities in that components should be, and what amount of noise

of which type should be added. Choosing the wrong parameters may create a dataset that does not

resemble any real problem domain.

Clearly arti�cial datasets based on realistic models and real data sets both have their place in algorithm

development and evaluation. A reason for prefering real data over arti�cially generated data is that

the former choice guarantees to get results that are relevant for at least a few real domains, namely

the ones being tested. Multiple domains must be used in order to increase the con�dence that the

results obtained did not occur due to a particular domain selection only.

1.5 Related work

Despite the high importance of benchmarks, little is done on the �eld for neural networks. The

only public benchmark collection available that is speci�cally meant for neural network research is the

Neural Bench collection at Carnegie Mellon University maintained by Scott Fahlman and collaborators

(anonymous ftp to ftp.cs.cmu.edu, directory /afs/cs/project/connect/bench). Although it was

created years ago, it still contains only four sets of data from real world problems.

The only larger collection of benchmark learning problems is the UCI machine learning databas-

es archive (anonymous ftp to ics.uci.edu, directory /pub/machine-learning-databases). This

archive is maintained at the University of California, Irvine, by Patrick M. Murphy and David W. Aha.

It contains several dozens of problems, some in multiple variants. The problems in this archive are

1My personal impression is that some researchers do this consciously: they make the data generation �t to the known
bias of the algorithm they advocate in order to get better results.
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meant for general machine learning programs; most of them cannot readily be learned by neural

networks because an encoding of nominal attributes and missing attribute values has to be chosen

�rst.

In both collections, the individual datasets themselves were donated by various researchers. With a

few exceptions, no partitioning of the dataset into training and test data is de�ned in the archives. In

no case a sub-partitioning of training data into training set and validation set is de�ned. The di�erent

variants that exist for some of the datasets in the UCI archive create a lot of confusion, because it is

often not clear which one was used in an experiment. The Proben1 benchmark collection contains

datasets that are taken from the UCI archive (with one exception). The data is, however, encoded

for direct neural network use, is pre-partitioned into training, validation, and test examples, and is

presented in a very exactly documented and reproducible form.

Zheng's benchmark [23], which I recommend everybody to read, does not include its own data, but

de�nes a set of 13 problems, predominantly from the UCI archive, to be used as a benchmark collec-

tion for classi�er learning algorithms. The selection of the problems is made for good coverage of a

taxonomy of classi�cation problems with 16 two- or three-valued features, namely type of attributes,

number of attributes, number of di�erent nominal attribute values, number of irrelevant attributes,

dataset size, dataset density, level of attribute value noise, level of class value noise, frequency of

missing values, number of classes, default accuracy, entropy, predictive accuracy, relative accuracy,

average information score, relative information score. The Proben1 benchmark problems have not

explicitly been selected for good coverage of all of these aspects. Nevertheless, for most of the aspects

a good diversity of problems is present in the collection.

2 Benchmarking rules

This section describes

� how to conduct valid benchmark tests and

� how to publish them and their results.

The purpose of the rules is to ensure the validity of the results and reproducibility by other researchers.

An additional bene�t of standardized benchmark setups is that results will more often be directly

comparable.

2.1 General principles

The following general principles guide the formulation of the benchmarking rules:

Validity: We need a minimum standard of experimentation that guarantees that the results obtained

are valid in the sense that they are not artifacts created by random factors or by a faulty experimental

setup. Invalid results are useless. The Proben1 benchmarking rules thus contain a number of DOs

and DON'Ts to follow in order to avoid invalid results (although following the rules cannot guarantee

validity of the results).

Reproducibility: The rules prescribe to specify all those aspects of the experimental setup that are

needed for other researchers to repeat the experiments. Results that cannot be reproduced are no

scienti�c results. The Proben1 benchmarking rules thus attempt to list the relevant aspects of a
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benchmarking setup that need to be published to attain reproducibility. For many of these aspects,

standard formulations are suggested in order to simplify presentation and comprehension.

Comparability: It is very useful if one can compare results obtained by di�erent researchers directly.

This is possible if the same experimental setup is used. The rules hence suggest a number of so called

standard choices for experimental setups that are recommended to be used unless speci�c reasons

stand against it. The use of such standard choices reduces the variability of benchmarking setups and

thus improves comparability of results across di�erent publications.

In the rules below, phrases typeset in sans serif font like this indicate suggested formulations to be used
in publications in order to reduce the ambiguity of setup descriptions. The following sections present

the Proben1 benchmarking rules.

2.2 Benchmark problem used

For each benchmark problem X that you use, indicate exactly what X is. In the case of a Proben1

problem, just give its name, e.g. hearta. In other cases, specify how and where other researchers

can get the problem dataset. Sometimes this can be done by giving a reference to a paper published

earlier. Otherwise a �le containing the dataset should be available for anonymous FTP somewhere

and you should give the FTP address that must be used to get the dataset. If you prepare your own

datasets, make them available publicly by FTP if possible. If you use problems from Proben1, just

cite this report.

Often researchers use a problem that has been used several times before and refer to it by a natural

language name, for instance \A test was made using Michalski's soybean data". Such kinds of refer-

ences often result in confusion, because several di�erent versions of the data exist. So please either

refer to a named problem from a well-documented benchmark collection such as Proben1 or give the

address of a data �le available by FTP or reference a paper that does so.

2.3 Training set, validation set, test set

The data used for performing benchmarks on neural network learning algorithms must be split into

at least two parts: one part on which the training is performed, called the training data, and another

part on which the performance of the resulting network is measured, called the test set. The idea is

that the performance of a network on the test set estimates its performance in real use. This means

that absolutely no information about the test set examples or the test set performance of the network

must be available during the training process; otherwise the benchmark is invalid.

In many cases the training data is further subdivided. Some examples are put into the actual training

set, others into a so-called validation set. The latter is used as a pseudo test set in order to evaluate the

quality of a network during training. Such an evaluation is called cross validation; it is necessary due

to the over�tting (overtraining) phenomenon: For two networks trained on the same problem, the one

with larger training set error may actually be better , since the other has concentrated on peculiarities

of the training set at the cost of losing much of the regularities needed for good generalization [7].

This is a problem in particular when not very many training examples are available.

A popular and very powerful form to use cross validation in neural networks is early stopping: Training
proceeds not until a minimum of the error on the training set is reached, but only until a minimum

of the error on the validation set is reached during training. Training is stopped at this point and the

current network state is the result of the training run. Note that the actual procedure is a bit more
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complicated since there may be many local minima in the validation set error curve and since in order

to recognize a minimum one has to train until the error rises again, so that resetting the network to an

earlier state is needed in order to actually stop at the minimum. See section 3.3 for a more concrete

description. Other forms of cross validation besides early stopping are also possible. The data of the

validation set could be used in any way during training since it is part of the training data. The

actual name `validation set', however, is only appropriate if the set is used to assess the generalization

performance of the network. Note the di�erentiation: training data is the union of training set and
validation set.

Be sure to specify exactly which examples of a dataset are used for the training, validation, and test

set. It is insu�cient to indicate the number of examples used for each set, because it might make a

signi�cant di�erence which ones are used where. As a drastic example think of a binary classi�cation

problem where only examples of one class happen to be in the training data.

For Proben1, a suggested partitioning into training, validation, and test set is given for each dataset.

The size of the training, validation, and test set in all Proben1 data �les is 50%, 25%, and 25%

of all examples, respectively. Note that this percentage information is not su�cient for an exact

determination of the sets unless the total number of examples is divisible by four. Hence, the header

of each Proben1 data �le lists explicitly the number of examples to be used for each set. Assume

that these numbers are X , Y , and Z. Then the standard partitioning is to use the �rst X examples

for the training set, the following Y examples for the validation set and the �nal Z examples for the

test set. If no validation set is needed, the training set consists of the �rst X + Y examples instead.

As said before, for problems with only a small number of examples, results may vary signi�cantly

for di�erent partitionings (see also the results presented below in section 3.3). Hence it improves the

signi�cance of a benchmark result when di�erent partitionings are used during the measurements and

results are reported for each partitioning separately. Proben1 supports this approach. It contains

three di�erent permutations of each dataset. For instance the problem glass is available in three

datasets glass1, glass2, and glass3, which di�er only in the ordering of examples, thereby de�ning

three di�erent partitionings of the glass problem data. Additional partitionings (although not com-

pletely independent ones) are de�ned by the following rules for the order of examples in the dataset

�le:

a training set, validation set, test set.

b training set, test set, validation set.

c validation set, training set, test set.

d validation set, test set, training set.

e test set, validation set, training set.

f test set, training set, validation set.

This list is to be read as follows: From a partitioning, say glass1, six partitionings can be created

by re-interpreting the data into a di�erent order of training, validation, and test set. For instance

glass1d means to take the data �le of glass1 and use the �rst 25% of the examples for the validation

set, the next 25% for the test set, and the �nal 50% for the training set. Obviously, when no validation

set is used, a is the same as c and e is the same as f, thus only a, b, d, and e are available. glass1a

is identical to glass1. The latter is the preferred name when none of b to f are used in the same

context.

Note that these partitionings are of lower quality than those created by the permutations 1 to 3,

since the latter are independent of each other while the former are not. Therefore, the additional

partitionings should be used only when necessary; in most cases, just using xx1, xx2, and xx3 for

each problem xx will su�ce.

If you want to use a di�erent partitioning than these standard ones for a Proben1 problem, specify
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exactly how many examples for each set you use. If you do not take them from the data �le in the

order training examples, validation examples, test examples, specify the rule used to determine which

examples are in which set. Examples: glass1 with 107 examples used for the training set and 107 examples
used for the test set for a standard order but nonstandard size of the sets or glass1 with even-numbered
examples used for the training set and odd-numbered examples used for the test set, the �rst example
being number 0 for a nonstandard size and order of sets. If you use the Proben1 conventions, just

say glass1 and mention somewhere in your article that your benchmarks conform to the Proben1

conventions, e.g. All benchmark problems were taken from the Proben1 benchmark set; the standard
Proben1 benchmarking rules were applied.

An imprecise speci�cation of the partitioning of a known data set into training, validation and test

set is probably the most frequent (and the worst) obstacle to reproducibility and comparability of

published neural network learning results.

2.4 Input and output representation

How to represent the input and output attributes of a learning problem in a neural network imple-

mentation of the problem is one of the key decisions in
uencing the quality of the solutions one can

obtain. Depending on the kind of problem, there may be several di�erent kinds of attributes that

must be represented. For all of these attribute kinds, multiple plausible methods of neural network

representation exist. We will now discuss each attribute kind and some common methods to represent

such an attribute.

Real-valued attributes are usually rescaled by some function that maps the value into the range

0 : : :1 or �1 : : :1 in a way that makes a roughly even distribution within that range. They are

represented either by a single network input or by a range of inputs using a topological encoding (e.g.

overlapping gaussian receptive �elds). Proben1 always uses a single input for a real-valued attribute,

the rescaling function is always linear (with only one exception where the logarithm is used).

Integer-valued attributes are most often handled as if they were real-valued. If the number of

di�erent values is only small, one of the representations used for ordinal attributes may also be

appropriate. Note that often attributes whose values are integer numbers are not really integer-valued

but are ordinal or cardinal instead. Proben1 treats all integer-valued attributes as real-valued.

Ordinal attributes with m di�erent values are either mapped onto an equidistant scale making

them pseudo-real-valued or are represented by m � 1 inputs of which the leftmost k have value 1 to

represent the k-th attribute value while all others are 0. A binary code using only dlog2me inputs

can also be used. There are only few ordinal attributes in the Proben1 problems. For these, either

pseudo-real-valued or pseudo-nominal representation is used.

Nominal attributes with m di�erent values are usually either represented using a 1-of-m code or a

binary code. With the exception of gene, which uses a 2-bit binary code, Proben1 always employs

1-of-m representation for nominal attributes.

Missing attribute values can be replaced by a �xed value (e.g. the mean of the non-missing values

of this attribute or a value found using an EM algorithm [8]) or can be represented explicitly by

adding another input for the attribute that is 1 i� the attribute value is missing. Proben1 uses both

methods; the �xed value method is used only when but a few of the values are missing. Other methods

are possible if one extends the training regime away from static examples, e.g. by using a Boltzmann

machine [18].



12 2 BENCHMARKING RULES

Most of the above discussion applies to outputs as well, except for the fact that there never are missing

outputs. Most Proben1 problems are classi�cation problems; all of these are encoded using a 1-of-m

output representation for the m classes, even for m = 2.

The problem representation in Proben1 is �xed. This improves the comparability of results and

reduces the work needed run benchmarks. The Proben1 datasets are meant to be used exactly as

they are. The �xed neural network input and output representation is actually one of the major

improvements of Proben1 over the previous situation. In the past, most benchmarks consisting

of real data were publicly available only in a symbolic representation which can be encoded into

a representation suitable for neural networks in many di�erent ways. This fact made comparisons

di�cult.

When you perform benchmarks that do not use problems from a well-de�ned benchmark collection,

be sure to specify exactly which input and output representation you use. Since such a description

consumes a lot of space, the only feasible way will usually be to make the data �le used for the actual

benchmark runs available publicly.

Should you make small changes to the representation of Proben1 problems used in your benchmarks,

specify these changes exactly. The most common cases of such changes will be concerned with the

output representation. If you want to use only a single output for binary classi�cation problems, say

card1, using only one output or something similar. You may also want to ignore one of the outputs

for problems having more than two classes, since one output is theoretically redundant since the

outputs always sum to one. If you ignore an output, you should always ignore the last output from

the given representation. If you want to use outputs in the range �1 : : :1 instead of 0 : : :1 or in a

somewhat reduced range in order to avoid saturation of the output nodes, say for example with the
target outputs rescaled to the range �0:9 : : :0:9. It will be assumed that the rescaling was done using a
linear transformation of the form y0 = ay + b. Other possibilities include for instance with the outputs
rescaled to mean 0 and standard deviation 1, which will also be assumed to be made using a linear

transformation. Of course, all these rescaling modi�cations can be done for inputs as well, but tell us

if you make such changes. I do not recommend to use Proben1 problems with representations that

di�er substantially from the standard ones unless �nding good representations an important part of

your work.

The input and output representations used in Proben1 are certainly not optimal, but they are meant

to be good or at least reasonable ones. Di�erences in problem representation, though, can make

for large di�erences in the performance obtained (see for instance [2]), so be sure to specify your

representation precisely.

2.5 Training algorithm

Obviously, an exact speci�cation of the training algorithm used is essential. When you use a known

algorithm, specify it by giving a reference to a paper that describes it and then either use the algorithm

exactly as speci�ed in that paper or describe precisely all alterations that you make. If you introduce

a new algorithm, give the algorithm a name to make it easier for other authors to refer to your

algorithm. If there are several variants of your algorithm, give each variant its own name, perhaps by

just appending a digit or letter to the primary name.

Whether new algorithm or not, clearly specify the values of all free parameters of the algorithm

that you used. When introducing a new algorithm you should clearly indicate a prototype parameter
vector (including parameter names) that must be speci�ed to document each use of the algorithm.

It is a common error that some of the parameter values used for an algorithm remain unspeci�ed.
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These parameters may include (depending on the algorithm) learning rate, momentum, weight decay,

initialization, temperature, etc. For each such parameter there should be a clearly indicated unique

name and perhaps also a symbol. For all of the parameters that are adaptive, the adaption rule and

its parameters have to be speci�ed as well. A particularly important aspect of a training algorithm is

its stopping criterion, so do not forget to specify that as well (see section 3.3 for an example).

For all user-selectable parameters, specify how you found the values used and try to characterize how

sensitive the algorithm is to their choice. Note that you must not in any way use the performance on

the test set while searching for good parameter values; this would invalidate your results! In particular,

choosing parameters based on test set results is an error.

2.6 Error measures

Many di�erent error measures (also called error functions, objective functions, cost functions, or

loss functions) can be used for network training. The most commonly used is the squared error:
E(o; t) =

P
i (oi � ti)

2 for actual output values oi at the i-th output node and target output values

ti for one example. Note that some researchers multiply this by 1/2 in order to make the derivative

simpler2; this is considered non-standard. The above measure gives one error value per example |

obviously too much data to report. Thus one usually reports either the sum or the average of these

values over the set of all examples. The average is called the mean squared error. It has the advantage
of being independent of the size of the dataset and is thus preferred. Note that mean squared error

still depends on the number of output coe�cients in the problem representation and on the range of

output values used. I thus suggest to normalize for these factors as well and report a squared error
percentage as follows

E = 100 � omax � omin

N � P
PX
p=1

NX
i=1

(opi � tpi)
2

where omin and omax are the minimum and maximum values of output coe�cients in the problem

representation (assuming these are the same for all output nodes), N is the number of output nodes

of the network, and P is the number of patterns (examples) in the data set considered. Note that

networks can (and in early training phases often will) produce more than 100% squared error if they

use output nodes whose activation is not restricted to the range omin : : :omax.

Other error measures include the softmax error, the cross entropy, the classi�cation �gure of merit,

linear error, exponential error, minimum variance error, and others [20]. If you use any of these, state

the error term explicitly. For some of them, the above idea of error percentages is applicable as well.

The actual target function for classi�cation problems is usually not the continuous error measure used

during training, but the classi�cation performance. However, since neural networks with continuous

outputs are able to approximate a-posteriori probabilities [16], which are often useful if the network

outputs are to be used for further processing steps, the classi�cation performance is not the only

measure we are interested in. If space permits, you should thus report the actual error values in

addition to the classi�cation performance. Classi�cation performance should be reported in percent of

incorrectly classi�ed examples, the classi�cation error . This is better than reporting the percentage of

correctly classi�ed examples, the classi�cation accuracy , because the latter makes important di�erences

insu�ciently clear: An accuracy of 98% is actually twice as good as one of 96%, which is easier to

see if the errors are reported (2% compared to 4%). If classi�cation accuracy was far below 50%

instead of being far above 50%, the accuracy would better be report instead of the error, but this is an

2without the factor 1/2 in the error function, the correct derivative is twice as large as the one that is usually used
in formulations of backpropagation. Using the common derivative thus amounts to using halved learning rates.
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uncommon case. Avoid the term classi�cation performance, use classi�cation accuracy and classi�cation
error instead.

There are several possibilities to determine the classi�cation a network has computed from the outputs

of the network. We assume a 1-of-m encoding form classes using output values 0 and 1. The simplest

classi�cation method is the winner-takes-all, i.e., the output with the highest activation designates the

class. Other methods involve the possibility of rejection, too. For instance one could require that

there is exactly one output that is larger than 0.5, which designates the class if it exists and leads

to rejection otherwise. To put an even stronger requirement on the credibility of the network output

one can set thresholds, e.g. accept an output as 0 if it is below 0.3 and as 1 if it is above 0.7, and

reject unless there is exactly one output that is 1 while all others are 0 by this interpretation. There

are several other possibilities. When no rejection capability is needed, the winner-takes-all method is

considered standard. In all other cases, describe your classi�cation decision function explicitly.

2.7 Network used

Specify exactly the topology of the neural network used in any benchmark test. The topology of a

network is described by the graph of the nodes (units, vertices, neurons) and connections (weights,
edges, synapses). Avoid the terms `neuron' and `synapse', because they are inappropriate for arti�cial

neural networks. The term `weight' should be used to refer to the parameter attached to a connection,

but not to the connection itself.

To describe the topology, try to refer to common topology models. For instance for the common case

of the so-called fully connected layered feed forward networks, the numbers of nodes in each layer from

input to output can be given as a sequence: a 5-4-6 network refers to a network with 5 input, 4 hidden,
and 6 output nodes. There is confusion how to count the number of layers in a network, so do not call

a network like the one above a \three layer network" (counting all groups of nodes) nor a \two layer

network" (counting only the groups of nodes with input connections). Instead, call it a network with
one hidden layer. This generalizes to arbitrary numbers of layers. For instance, a 5-10-3-5-6 is a three
hidden layer network.

Specifying the number of nodes is not su�cient even for the \fully connected" networks, because by this

term, some people mean that all connections between adjacent layers are present, while others mean

that all connections are present, even those that skip intermediate layers (shortcut connections). Thus,
use formulations like with all feed forward connections between adjacent layers or with all feed forward
connections, including all shortcut connections as a complement to the speci�cation of the size of the

layers. Examples: a 5-4-6 network with all feed forward connections, including all shortcut connections or
networks with one hidden layer (having between 2 and 20 hidden nodes) and all feed forward connections
between adjacent layers.

Most networks also have a bias (or threshold) for all hidden and output nodes. This bias can be

implemented either as an incoming connection from a node with constant non-zero output (the bias
node) or as an adaptable parameter of the node activation function. Since the style of implementation

is usually irrelevant and networks without bias are the exception, bias need not be mentioned. If

some nodes do not use bias, specify which (and why). Note that if you compute the number of free

parameters in a network, the bias parameter of each hidden and output node has to be included. Since

this may confuse the reader, you should mention the bias in this case.

For recurrent networks use standard names such as Jordan or Elman network where appropriate and

back it up by a reference or further explanation. Non-standard network topologies or non-standard

network models such as networks with shared weights [14] have to be described in detail.
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Other properties of the network architecture also have to be speci�ed: the range and resolution of

the weight parameters (unless plain 32-bit 
oating point is used), the activation function of each node

in the network (except for the input nodes which are assumed to use the identity function; see also

section 2.10), and any other free parameters associated with the network.

2.8 Training results

Usually what one is interested in when training a neural network is its generalization performance.

The value that is usually used to characterize generalization performance is the error on a test set.

A test set is a set of examples that was not used in any way whatsoever during the training process

(see section 2.3 above). This test set error is thus the primary result to be presented for any learning

problem used. The corresponding errors on the training and validation set, if any, are of only marginal

interest and need thus not be reported.

Since training a neural network usually involves some kind of random initialization, the results of

several training runs of the same algorithm on the same dataset will di�er. In order to make reliable

statements about the performance of an algorithm it is thus necessary to make several runs and report

statistics on the distribution of results obtained. If possible, use either 10 runs or 30 runs or some

power of ten of these numbers, because if many researchers use the same numbers of runs direct

comparisons are easier. If these numbers don't seem appropriate for some reason, try to use either 20

or 60 runs or some power of ten of these numbers. The commonly used statistics to report about the

results of the runs should be primarily the mean and n�1 standard deviation3 of test set error (and/or

test set classi�cation error) and the `best' run (see below), secondarily the minimum, maximum, and

median, and if still more data shall be presented, all �ve quartiles or even a �ne-grained distribution

histogram.

The meaning of the `best' run result is to characterize what one could get using a method of model

selection that trained several networks and then picked that one of them that \looked best". In

contrast, all other statistics characterize the quality one can expect if one trains just one network.

The selection of the `best' run must thus not be based on the results of the test set, because that

would mean to use the test set error during the model selection process whereas the test set error

is conceptually the result of the model selection process. Instead, training set error or validation set

error or some other quality measure computed exclusively from the network and the training data

must be used. This means that the `best' network will often not have the minimum test error! So for

instance if your selection criterion is validation set error, you should report something like the network
with lowest validation set error in 30 runs had a test set classi�cation error of 2.34%.

If for some reason you want to exclude some of the runs from the results presented, for instance

because these runs are considered to have not converged (whatever that may mean), always exclude

exactly half of all runs. This allows for easier comparison with the results of other researchers. The

runs to be excluded are the worst runs in the inverse sense of `best' from above, i.e., you must not

exclude those runs that have the worst test set error.

You may want to apply methods of statistical inference to your training results, for instance in order

to test whether one algorithm is signi�cantly better than another. In this case, it may be necessary to

remove a small number of outliers from the samples to be compared in order to make the data satisfy

some requirement of the statistical procedure. For instance in order to apply a t-test, the samples

to be compared must have a normal distribution. If a sample (of, say, the test errors from 30 runs)

is approximately normal except for, say, two outliers with very much larger (or smaller) errors than

3That is, standard deviation computed based on the degrees of freedom, which is one less than the number n of runs.
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all the rest, you can remove these two outliers from the sample. Never remove more than 10% of the

values from any one sample; usually one should remove much less. Never remove an outlier unless

the resulting distribution satis�es the requirement well enough. Other data transformations than

removing outliers may be more appropriate to satisfy the requirements of the statistical procedure;

for instance test errors are often log-normally distributed, so one must use the logarithm of the test

error instead of the test error itself in order to produce valid results. See also section 3.3.4.

2.9 Training times

Unless your algorithm does perform a lot of additional work besides propagating data through a

neural network, the most sensible measure of training time is the number of connection traversals

(connection crossings, sometimes misleadingly called connection updates) needed. This measure is

useful because it is independent of a particular machine and implementation. Forward and backward

propagation counts individually, for certain algorithms that require more than one quantity to be

backwardly propagated through each connection such as [1, 13], each quantity counts as one traversal

at each connection. Actual weight update steps also count as one traversal per updated connection.

If possible report your training times using the connection traversal measure.

If your algorithm performs much work besides traversing the network, the actual CPU time spent is

the best measure to give. The disadvantage of this measure is that it leaves two free parameters: the

speed of the machine used and the e�ciency of the software implementation. Thus, the measure is

directly comparable only for the same software on the same machine. When reporting CPU times, give

the precise brand and model number of the machine you used and its nominal performance in SPEC

marks; give a hint as to whether the software used should be regarded e�cient or not so e�cient.

However, CPU time is certainly always useful as a ballpark �gure for the computational size of the

tackled problem.

A less useful measure is the number of epochs used, i.e., the number of times each example was

processed. This value can be misleading, because the computational cost of one epoch can di�er

signi�cantly from one algorithm or network to another. It is nevertheless �ne to present the epoch

counts in addition to other measures.

Regarding non-converging runs [3], the values you report should re
ect the actual amount of compu-

tation time that was spent. This means that your algorithm should de�ne some stopping or restarting

criterion and the sum of all computation actually performed before and after the restart(s) should be

reported as the training time. It is important to report the precise stopping or restarting criterion

that was used.

2.10 Important details

Finally, some important details are often forgotten; all of them were already shortly mentioned above.

Activation function. Exactly specify the activation function used in the nodes (units) of your network.

You can say standard sigmoid to mean 1=(1 + e�x) and you can say tanh to mean the tangens hyper-

bolicus, which is 2=(1 + e�2x) � 1; these two are the standard choices. All other activation functions

should be given explicitly. Specify whether the output nodes of the network also use this activation

function or use the identity function instead. If the nodes of the input layer (fan-out nodes) perform

any computation on the input values, specify this computation.
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Network initialization. Specify the initialization conditions of the network. The most important point

is the initialization of the network's weights, which must be done with random values for most algo-

rithms in order to break the symmetry among the hidden nodes. Common choices for the initialization

are for instance �xed methods such as random weights from range �0:1 : : :0:1, where the distribution is

assumed to be even unless stated otherwise, or methods that adapt to the network topology used such

as random weights from range �1=
p
N : : :1=

p
N for connections into nodes with N input connections.

Just like the termination criterion, the initialization can have signi�cant impact on the results ob-

tained, so it is important to specify it precisely. Specifying the exact sets of weights used is hopelessly

di�cult and should usually not be tried.

Termination and phase transition criteria. Specify exactly the criteria used to determine when training

should stop, or when training should switch from one phase to the next, if any. For most algorithms,

the results are very sensitive to these criteria. Nevertheless, in most publications the criteria are

speci�ed only roughly, if at all. This is one of the major weaknesses of many articles on neural

network learning algorithms. See section 3.3 for an example of how to report stopping criteria; the

GL� family of stopping criteria, which is de�ned in that section, is recommended when using the early

stopping method.

2.11 Author's quick reference

The following is a quick reference check list of all the points that should be mentioned in a publication

reporting a benchmark test. Remember that peculiar points not listed here may apply additionally to

the particular benchmarks you want to report.

1. Problem: name, address, version/variant.

2. Training set, validation set, test set.

3. Network: nodes, connections, activation functions.

4. Initialization.

5. Algorithm parameters and parameter adaption rules.

6. Termination, phase transition, and restarting criteria.

7. Error function and its normalization on the results reported.

8. Number of runs, rules for including or excluding runs in results reported.

3 Benchmarking problems

The following subsections each describe one of the problems of the Proben1 benchmark set. For

each problem, a rough description of the semantics of the dataset is given, plus some information

about the size of the dataset, its origin, and special properties, if any. For most of the problems,

results have previously been published in the literature. Since these results never use exactly the same

representation and training set/test set splitting as the Proben1 versions, the references are not given

here; some of them can, however, be found in the documentation supplied with the original dataset,

which is part of Proben1. The �nal section reports on the results of some learning runs with the

Proben1 datasets.
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3.1 Classi�cation problems

3.1.1 Cancer

Diagnosis of breast cancer. Try to classify a tumor as either benign or malignant based on cell de-

scriptions gathered by microscopic examination. Input attributes are for instance the clump thickness,

the uniformity of cell size and cell shape, the amount of marginal adhesion, and the frequency of bare

nuclei.

9 inputs, 2 outputs, 699 examples. All inputs are continuous; 65.5% of the examples are benign. This

makes for an entropy of 0.93 bits per example4.

This dataset was created based on the \breast cancer Wisconsin" problem dataset from the UCI

repository of machine learning databases. Please mention in any publication presenting results for this

data set that the data was originally obtained from the University of Wisconsin Hospitals, Madison,

from Dr. William H. Wolberg. Also please cite one or more of the four publications mentioned in the

detailed documentation of the original dataset in the proben1/cancer directory.

3.1.2 Card

Predict the approval or non-approval of a credit card to a customer. Each example represents a real

credit card application and the output describes whether the bank (or similar institution) granted the

credit card or not. The meaning of the individual attributes is unexplained for con�dence reasons.

51 inputs, 2 outputs 690 examples. This dataset has a good mix of attributes: continuous, nominal

with small numbers of values, and nominal with larger numbers of values. There are also a few missing

values in 5% of the examples. 44% of the examples are positive; entropy 0.99 bits per example.

This dataset was created based on the \crx" data of the \Credit screening" problem dataset from the

UCI repository of machine learning databases.

3.1.3 Diabetes

Diagnose diabetes of Pima indians. Based on personal data (age, number of times pregnant) and the

results of medical examinations (e.g. blood pressure, body mass index, result of glucose tolerance test,

etc.), try to decide whether a Pima indian individual is diabetes positive or not.

8 inputs, 2 outputs, 768 examples. All inputs are continuous. 65.1% of the examples are diabetes

negative; entropy 0.93 bits per example. Although there are no missing values in this dataset according

to its documentation, there are several senseless 0 values. These most probably indicate missing data.

Nevertheless, we handle this data as if it was real, thereby introducing some errors (or noise, if you

want) into the dataset.

This dataset was created based on the \Pima indians diabetes" problem dataset from the UCI repos-

itory of machine learning databases.

4Entropy E =
P

Classes c

P (c) log
2
(P (c)) for class probabilities P (c)
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3.1.4 Gene

Detect intron/exon boundaries (splice junctions) in nucleotide sequences. From a window of 60 DNA

sequence elements (nucleotides) decide whether the middle is either an intron/exon boundary (a

donor), or an exon/intron boundary (an acceptor), or none of these.

120 inputs, 3 outputs, 3175 examples. Each nucleotide, which is a four-valued nominal attribute, is

enoded binary by two binary inputs (The input values used are �1 and 1, therefore the inputs are not

declared as boolean. This is the only dataset that has input values not restricted to the range 0 : : :1).

There are 25% donors and 25% acceptors in the dataset; entropy 1.5 bits per example.

This dataset was created based on the \splice junction" problem dataset from the UCI repository of

machine learning databases.

3.1.5 Glass

Classify glass types. The results of a chemical analysis of glass splinters (percent content of 8 di�erent

elements) plus the refractive index are used to classify the sample to be either 
oat processed or non


oat processed building windows, vehicle windows, containers, tableware, or head lamps. This task is

motivated by forensic needs in criminal investigation.

9 inputs, 6 outputs, 214 examples. All inputs are continuous, two of them have hardly any correlation

with the result. As the number of examples is quite small, the problem is sensitive to algorithms that

waste information. The sizes of the 6 classes are 70, 76, 17, 13, 9, and 29 instances, respectively;

entropy 2.18 bits per example.

This dataset was created based on the \glass" problem dataset from the UCI repository of machine

learning databases.

3.1.6 Heart

Predict heart disease. Decide whether at least one of four major vessels is reduced in diameter by

more than 50%. The binary decision is made based on personal data such as age, sex, smoking

habits, subjective patient pain descriptions, and results of various medical examinations such as blood

pressure and electro cardiogram results.

35 inputs, 2 outputs, 920 examples. Most of the attributes have missing values, some quite many: For

attributes 10, 12, and 11, there are 309, 486, and 611 values missing, respectively. Most other attributes

have around 60 missing values. Additional boolean inputs are used to represent the \missingness" of

these values. The data is the union of four datasets: from Cleveland Clinic Foundation, Hungarian

Institute of Cardiology, V.A. Medical Center Long Beach, and University Hospital Zurich. There is

an alternate version of the dataset heart, called heartc, which contains only the Cleveland data (303

examples). This dataset represents the cleanest part of the heart data; it has only twomissing attribute

values overall, which makes the \value is missing" inputs of the neural network input representation

almost redundant. Furthermore, there are still another two versions of the same data, hearta and

heartac, corresponding to heart and heartc, respectively. The di�erence to the datasets described

above is the representation of the output. Instead of using two binary outputs to represent the two-

class decision \no vessel is reduced" against \at least one vessel is reduced", hearta and heartac use

a single continuous output that represents by the magnitude of its activation the number of vessels

that are reduced (zero to four). Thus, these versions of the heart problem are approximation tasks.
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The heart and hearta datasets have 45% patients with \no vessel is reduced" (entropy 0.99 bits per

example), for heartc and heartac the value is 54% (entropy 1.00 bit per example).

These datasets were created based on the \heart disease" problem datasets from the UCI repository

of machine learning databases. Note that using these datasets requires to include in any publication

of the results the name of the institutions and persons who have collected the data in the �rst place,

namely (1) Hungarian Institute of Cardiology, Budapest; Andras Janosi, M.D., (2) University Hospital,

Zurich, Switzerland; William Steinbrunn, M.D., (3) University Hospital, Basel, Switzerland; Matthias

P�sterer, M.D., (4) V.A. Medical Center, Long Beach and Cleveland Clinic Foundation; Robert

Detrano, M.D., Ph.D. All four of these should be mentioned for the heart and hearta datasets,

only the last one for the heartc and heartac datasets. See the detailed documentation of the original

datasets in the proben1/heart directory.

3.1.7 Horse

Predict the fate of a horse that has a colic. The results of a veterinary examination of a horse having

colic are used to predict whether the horse will survive, will die, or will be euthanized.

58 inputs, 3 outputs, 364 examples. In 62% of the examples the horse survived, in 24% it died, and

in 14% it was euthanized; entropy 1.32 bits per example. This problem has very many missing values

(about 30% overall of the original attribute values), which are all represented as missing explicitly

using additional inputs.

This dataset was created based on the \horse colic" problem dataset from the UCI repository of

machine learning databases.

3.1.8 Mushroom

Discriminate edible from poisonous mushrooms. The decision is made based on a description of the

mushroom's shape, color, odor, and habitat.

125 inputs, 2 outputs, 8124 examples. Only one attribute has missing values (30% missing). This

dataset is special within the benchmark set in several respects: it is the one with the most inputs,

the one with the most examples, the easiest one5, and it is the only one that is not real in the sense

that its examples are not actual observations made in the real world, but instead are hypothetical

observations based on descriptions of species in a book (\The Audubon Society Field Guide to North

American Mushrooms"). The examples correspond to 23 species of gilled mushrooms in the Agaricus

and Lepiota Family. In the book, each species is identi�ed as de�nitely edible, de�nitely poisonous,

or of unknown edibility and not recommended. This latter class was combined with the poisonous

one. 52% of the examples are edible (ahem, I mean, have class attribute `edible'); entropy 1.00 bit

per example.

This dataset was created based on the \agaricus lepiota" dataset in the \mushroom" directory from

the UCI repository of machine learning databases.

5The mushroom dataset is so simple that a net that performs only a linear combination of the inputs can learn it
reliably to 0 classi�cation error on the test set!
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3.1.9 Soybean

Recognize 19 di�erent diseases of soybeans. The discrimination is done based on a description of

the bean (e.g. whether its size and color are normal) and the plant (e.g. the size of spots on the

leafs, whether these spots have a halo, whether plant growth is normal, whether roots are rotted) plus

information about the history of the plant's life (e.g. whether changes in crop occurred in the last

year or last two years, whether seeds were treated, how the environment temperature is).

35 inputs, 19 outputs, 683 examples. This is the problem with the highest number of classes in the

benchmark set. Most attributes have a signi�cant number of missing values. The soybean problem has

been used often in the machine learning literature, although with several di�erent datasets, making

comparisons di�cult. Most of the past uses use only 15 of the 19 classes, because the other four have

only few instances. In this dataset, these are 8, 14, 15, 16 instances versus 20 for most of the other

classes; entropy 3.84 bits per example.

This dataset was created based on the \soybean large" problem dataset from the UCI repository

of machine learning databases. Many results for this learning problem have been reported in the

literature, but these were based on a large number of di�erent versions of the data.

3.1.10 Thyroid

Diagnose thyroid hyper- or hypofunction. Based on patient query data and patient examination data,

the task is to decide whether the patient's thyroid has overfunction, normal function, or underfunction.

21 inputs, 3 outputs, 7200 examples. For various attributes there are missing values which are always

encoded using a separate input. Since some results for this dataset using the same encoding are

reported in the literature, thyroid1 is not a permutation of the original data, but retains the original

order instead. The class probabilities are 5.1%, 92.6%, and 2.3%, respectively; entropy 0.45 bits per

example.

This dataset was created based on the \ann" version of the \thyroid disease" problem dataset from

the UCI repository of machine learning databases.

3.1.11 Summary

For a quick overview of the classi�cation problems, have a look at table 1. The table summarizes the

external aspects of the training problems that you have already seen in the individual descriptions

above. It does also discriminate inputs that take on only two di�erent values (binary inputs), inputs

that have more than two (\continuous" inputs), and inputs that are present only to indicate that

values at some other inputs are missing. In addition, the table indicates the number of attributes

of the original problem formulation that were used in the input representation, discriminated to be

either binary attributes, \continuous" attributes, or nominal attributes with more than two values.

3.2 Approximation problems

3.2.1 Building

Prediction of energy consumption in a building. Try to predict the hourly consumption of electrical

energy, hot water, and cold water, based on the date, time of day, outside temperature, outside air

humidity, solar radiation, and wind speed.
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Problem Problem attributes Input values Classes Examples E

b c n tot. b c m tot. b

cancer 0 9 0 9 0 9 0 9 2 699 0.93

card 4 6 5 15 40 6 5 51 2 690 0.99

diabetes 0 8 0 8 0 8 0 8 2 768 0.93

gene 0 0 60 60 120 0 0 120 3 3175 1.50

glass 0 9 0 9 0 9 0 9 6 214 2.18

heart 1 6 6 13 18 6 11 35 2 920 0.99

heartc 1 6 6 13 18 6 11 35 2 303 1.00

horse 2 13 5 20 25 14 19 58 3 364 1.32

mushroom 0 0 22 22 125 0 0 125 2 8124 1.00

soybean 16 6 13 35 46 9 27 82 19 683 3.84

thyroid 9 6 0 21 9 6 6 21 3 7200 0.45

Problems and the number of binary, continuous, and nominal attributes in the original dataset, number of
binary and continuous network inputs, number of network inputs used to represent missing values, number of
classes, number of examples, class entropy E in bits per example. (Continuous means more than two di�erent
ordered values).

Table 1: Attribute structure of classi�cation problems

14 inputs, 3 outputs, 4208 examples. This problem is in its original formulation an extrapolation

task. Complete hourly data for four consecutive months was given for training, and output data for

the following two months should be predicted. The dataset building1 re
ects this formulation of the

task: its examples are in chronological order. The other two versions, building2 and building3 are

random permutations of the examples, simplifying the problem to be an interpolation problem.

The dataset was created based on problem A of \The Great Energy Predictor Shootout | the �rst

building data analysis and prediction problem" contest, organized in 1993 for the ASHRAE meeting

in Denver, Colorado.

3.2.2 Flare

Prediction of solar 
ares. Try to guess the number of solar 
ares of small, medium, and large size that

will happen during the next 24-hour period in a �xed active region of the sun surface. Input values

describe previous 
are activity and the type and history of the active region.

24 inputs, 3 outputs, 1066 examples. 81% of the examples are zero in all three output values.

This dataset was created based on the \solar 
are" problem dataset from the UCI repository of

machine learning databases.

3.2.3 Hearta

The analog version of the heart disease diagnosis problem. See section 3.1.6 on page 19 for the

description. For hearta, 44.7%, 28.8%, 11.8%, 11.6%, 3.0% of all examples have 0, 1, 2, 3, 4 vessels

reduced, respectively. For heartac these values are 54.1%, 18.2%, 11.9%, 11.6%, and 4.3%.
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3.2.4 Summary

For a quick overview of the approximation problems, have a look at table 2. The table summarizes

Problem Problem attribs. Input values Outputs Examples

b c n tot. b c m tot. c

building 0 6 0 6 8 6 0 14 3 4208


are 5 2 3 10 22 2 0 24 3 1066

hearta 1 6 6 13 18 6 11 35 1 920

heartac 1 6 6 13 18 6 11 35 1 303

Problems and the number of binary, continuous, and nominal attributes of the original problem representation
used, number of binary and continuous network inputs, number of network inputs used to represent missing
values, number of outputs, number of examples. (Continuous means more than two di�erent ordered values).

Table 2: Attribute structure of approximation problems

the external aspects of the training problems that you have already seen in the individual descriptions

above. It does also discriminate inputs that take on only two di�erent values (binary inputs), inputs

that have more than two (\continuous" inputs), and inputs that are present only to indicate that

values at some other inputs are missing. In addition, the table indicates the number of attributes

of the original problem formulation that were used in the input representation, discriminated to be

either binary attributes, \continuous" attributes, or nominal attributes with more than two values.

The outputs have continuous values.

3.3 Some learning results

In this section we will see a few results of neural network learning runs on the datasets described

above. The runs were made with linear networks, having only direct connections from the inputs

to the outputs, and with various fully connected multi layer perceptrons with one or two layers of

sigmoidal hidden nodes.

The method applied for training was the same in all cases and can be summarized as follows: Training

was performed using the RPROP algorithm [17] with parameters as indicated below. RPROP is a

fast backpropagation variant similar in spirit to Quickprop. It is about as fast as Quickprop but

requires less adjustment of the parameters to be stable. The parameters used were not determined

by a trial-and-error search, but are just educated guesses instead. RPROP requires epoch learning,

i.e., the weights are updated only once per epoch. While epoch updates are is not desirable for very

large training sets, it is a good method for small and medium training sets such as those of Proben1,

because it allows the use of acceleration techniques as those used in RPROP. Conjugate gradient

optimization methods would be another class of useful algorithms for this kind of training problems

[11].

The squared error function was used. For each dataset, training used the training set and the error

on the validation set was measured after every �fth epoch (this interval between two measurements

of the validation set error is called the strip length, see below). Training was stopped as soon as the

GL5 stopping criterion was ful�lled (see below) or when training progress sank below 0.1 per thousand

(see below) or when a maximum of 3000 epochs had been trained. The test set performance was then

computed for that state of the network which had minimum validation set error during the training

process.
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This method, called early stopping [6, 9, 12], is a good way to avoid over�tting [7] of the network to the

particular training examples used, which would reduce the generalization performance. For optimal

performance, the examples of the validation set should be used for further training afterwards, in order

not to waste valuable data. Since the optimal stopping point for this additional training is not clear,

it was not performed in the experiments reported here.

The GL5 stopping criterion is de�ned as follows. Let E be the squared error function. Let Etr(t) be

the average error per example over the training set, measured during epoch t. Eva(t) is the error on

the validation set after epoch t and is used by the stopping criterion. Ete(t) is the error on the test

set; it is not known to the training algorithm but characterizes the quality of the network resulting

from training.

The value Eopt(t) is de�ned to be the lowest validation set error obtained in epochs up to t:

Eopt(t) = min
t0�t

Eva(t
0)

Now we de�ne the generalization loss at epoch t to be the relative increase of the validation error over

the minimum-so-far (in percent):

GL(t) = 100 �
�
Eva(t)

Eopt(t)
� 1

�

A high generalization loss is one candidate reason to stop training. This leads us to a class of stopping

criteria: Stop as soon as the generalization loss exceeds a certain threshold �. We de�ne the class

GL� as

GL� : stop after �rst epoch t with GL(t) > �

To formalize the notion of training progress, we de�ne a training strip of length k to be a sequence of

k epochs numbered n+1 : : :n+ k where n is divisible by k. The training progress (measured in parts

per thousand) measured after such a training strip is then

Pk(t) = 1000 �
� P

t02t�k+1:::tEtr(t
0)

k �mint02t�k+1:::tEtr(t0)
� 1

�

that is, \how much was the average training error during the strip larger than the minimum training

error during the strip?" Note that this progress measure is high for instable phases of training, where

the training set error goes up instead of down. The progress is, however, guaranteed to approach zero

in the long run unless the training is globally unstable (e.g. oscillating). Just like the progress, GL is

also evaluated only at the end of each training strip.

3.3.1 Linear networks

A �rst set of results is shown in the tables 3 (classi�cation problems) and 4 (approximation problems).

These tables contain the results of 10 runs training a linear neural network for each of the datasets.

The network had no hidden nodes, just direct connections from each input to each output. The output

units used the identity activation function, i.e., their output is just the summed input. The RPROP

algorithm used the following parameters: �+ = 1:2, �� = 0:5, �0 2 0:005 : : :0:02 randomly per weight,

�max = 50, �min = 0, initial weights from�0:01 : : :0:01 randomly. Training was terminated according
to the GL5 stopping criterion using a strip length of 5 epochs.

The results of these training runs give a �rst impression of how di�cult the problems are. There are

some interesting observations to be made:
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Problem Training Validation Test Test set Over�t Total Relevant

set set set classi�cation epochs epochs

mean stddev mean stddev mean stddev mean stddev mean stddev mean stddev mean stddev

cancer1 4.25 0.00 2.91 0.01 3.52 0.04 2.93 0.18 0.55 0.59 129 13 104 31

cancer2 3.95 0.52 3.77 0.47 4.77 0.39 5.00 0.61 5.36 10.21 87 51 79 51

cancer3 3.30 0.00 4.23 0.04 4.11 0.03 5.17 0.00 0.35 0.64 115 18 92 29

card1 9.82 0.01 8.89 0.11 10.61 0.11 13.37 0.67 4.57 1.05 62 9 26 3

card2 8.24 0.01 10.80 0.16 14.91 0.55 19.24 0.43 4.22 1.08 65 10 23 5

card3 9.47 0.00 8.39 0.07 12.67 0.17 14.42 0.46 1.52 0.69 102 9 44 12

diabetes1 15.39 0.01 16.30 0.04 17.22 0.06 25.83 0.56 0.05 0.07 209 50 203 47

diabetes2 14.93 0.01 17.47 0.02 17.69 0.04 24.69 0.61 0.02 0.02 209 32 204 34

diabetes3 14.78 0.02 18.21 0.04 16.50 0.05 22.92 0.35 0.12 0.17 214 22 185 46

gene1 8.42 0.00 9.58 0.01 9.92 0.01 13.64 0.10 0.03 0.07 47 6 43 10

gene2 8.39 0.00 9.90 0.00 9.51 0.00 12.30 0.14 0.02 0.03 46 4 40 6

gene3 8.21 0.00 9.36 0.01 10.61 0.01 15.41 0.13 0.03 0.06 42 4 39 6

glass1 8.83 0.01 9.70 0.04 9.98 0.10 46.04 2.21 3.81 0.42 129 13 23 5

glass2 8.71 0.09 10.28 0.19 10.34 0.15 55.28 1.27 5.74 0.67 34 6 14 2

glass3 8.71 0.02 9.37 0.06 11.07 0.15 60.57 3.82 1.76 0.57 135 30 27 11

heart1 11.19 0.01 13.28 0.06 14.29 0.05 20.65 0.31 1.14 0.45 134 15 41 5

heart2 11.66 0.01 12.22 0.02 13.52 0.06 16.43 0.40 0.13 0.09 184 14 146 48

heart3 11.11 0.01 10.77 0.02 16.39 0.18 22.65 0.69 0.14 0.23 142 15 113 53

heartc1 10.17 0.01 9.65 0.03 16.12 0.04 19.73 0.56 0.15 0.11 128 10 114 23

heartc2 11.23 0.03 16.51 0.08 6.34 0.25 3.20 1.56 3.98 0.56 136 22 25 10

heartc3 10.48 0.31 13.88 0.33 12.53 0.44 14.27 1.67 6.23 1.15 26 9 12 3

horse1 11.31 0.16 15.53 0.29 12.93 0.38 26.70 1.87 6.22 0.57 27 7 9 2

horse2 8.62 0.28 15.99 0.21 17.43 0.45 34.84 1.38 5.54 0.47 42 16 13 3

horse3 10.43 0.27 15.59 0.30 15.50 0.45 32.42 2.65 6.34 1.07 26 6 8 3

mushroom1 0.014 | 0.014 | 0.011 | 0.00 | 0.00 | 3000 | 3000 |

soybean1 0.65 0.00 0.98 0.00 1.16 0.00 9.47 0.51 0.28 0.18 553 11 418 41

soybean2 0.80 0.00 0.81 0.00 1.05 0.00 4.24 0.25 0.02 0.02 509 19 504 18

soybean3 0.78 0.00 0.96 0.00 1.03 0.00 7.00 0.19 0.03 0.04 533 27 522 28

thyroid1 3.76 0.00 3.78 0.01 3.84 0.01 6.56 0.00 0.01 0.03 104 16 99 22

thyroid2 3.93 0.00 3.55 0.01 3.71 0.01 6.56 0.00 0.01 0.02 98 16 96 16

thyroid3 3.85 0.00 3.39 0.00 4.02 0.00 7.23 0.02 0.02 0.02 114 22 109 21

Training set: mean and standard deviation (stddev) of minimum squared error percentage on training set
reached at any time during training.
Validation set: ditto, on validation set.
Test set: mean and stddev of squared test set error percentage at point of minimum validation set error.
Test set classi�cation: mean and stddev of corresponding test set classi�cation error.
Over�t: mean and stddev of GL value at end of training.
Total epochs: mean and stddev of number of epochs trained.
Relevant epochs: mean and stddev of number of epochs until minimum validation error.

Table 3: Linear network results of classi�cation problems
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Problem Training Validation Test Over�t Total Relevant

set set set epochs epochs

mean stddev mean stddev mean stddev mean stddev mean stddev mean stddev

building1 0.21 0.01 0.92 0.06 0.78 0.02 2.15 4.64 407 138 401 142

building2 0.34 0.00 0.37 0.00 0.35 0.00 0.00 0.01 298 23 297 23

building3 0.37 0.04 0.38 0.07 0.38 0.08 1.99 4.45 229 107 217 102


are1 0.37 0.00 0.34 0.01 0.52 0.01 2.17 1.61 41 5 12 4


are2 0.42 0.00 0.46 0.00 0.31 0.02 0.72 0.90 37 3 16 10


are3 0.39 0.00 0.46 0.00 0.35 0.00 0.57 0.73 35 6 18 12

hearta1 3.82 0.00 4.42 0.03 4.47 0.06 1.68 0.68 118 12 27 10

hearta2 4.17 0.00 4.28 0.02 4.19 0.01 0.06 0.13 112 10 107 15

hearta3 4.06 0.00 4.14 0.02 4.54 0.01 0.05 0.05 116 8 110 10

heartac1 4.05 0.00 4.70 0.02 2.69 0.02 0.01 0.02 98 10 96 11

heartac2 3.37 0.11 5.21 0.21 3.87 0.16 6.99 2.27 19 4 13 4

heartac3 2.85 0.09 5.66 0.16 5.43 0.23 6.06 0.99 29 9 14 3

(The explanation from table 3 applies, except that the test set classi�cation error data is not present here.)

Table 4: Linear network results of approximation problems

1. Some of the problems seem to be very sensitive to over�tting. They over�t heavily even with only

a linear network (e.g. card1, card2, glass1, glass2, heartac2, heartac3, heartc2, heartc3, horse1,

horse2, horse3). This suggests that using a cross validation technique such as early stopping is

very useful for the Proben1 problems.

2. For some problems, there are quite large di�erences of behavior between the three permutations

of the dataset (e.g. test errors of card, heartc, heartac; training times of heartc; over�tting of

glass). This illustrates how dangerous it is to compare results for which the splitting of the data

into training and test data was not the same.

3. Some of the problems can be solved pretty well with a linear network. So one should be aware

that sometimes a 'real' neural network might be an overkill.

4. The mushroom problem is boring. Therefore, only a single run was made. It reached zero test set

classi�cation error after only 80 epochs and zero validation set error after 1550 epochs. However,

training stopped only because of the 3000 epoch limit; the errors themselves fell and fell and fell.

Due to these results, the mushroom problem was excluded from the other experiments. Using the

mushroom problem may be interesting, however, if one wants to explore the scaling behavior of

an algorithm with respect to the number of available training examples.

5. Some problems exhibit an interesting \inverse" behavior of errors. Their validation error is lower

than the minimum training error (e.g. cancer1, cancer2, card1, card3, heart3, heartc1, thyroid2,

thyroid3). In a few cases, this even extends to the test error (cancer1, thyroid2).

3.3.2 Choosing multilayer architectures

As a baseline for further comparison, a number of runs was made using multilayer networks with

sigmoidal hidden nodes. For each problem, 12 di�erent network topologies were used: one-hidden-

layer networks with 2, 4, 8, 16, 24, or 32 hidden nodes and two-hidden-layer networks with 2+2, 4+2,

4+4, 8+4, 8+8, and 16+8 hidden nodes on the �rst and second hidden layer, respectively. All of these

networks had all possible feed forward connections, including all shortcut connections. The sigmoid

activation function used was y = x=(1 + jxj).
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For each of these topologies, three runs were performed; two with linear output nodes and one with

output nodes using the sigmoidal activation function. Note that in this case the sigmoid output nodes

perform only a one-sided squashing of the outputs, because the sigmoid range is �1 : : :1 whereas the
target output range is only 0 : : :1. The parameters for the RPROP procedure used in all these runs

were �+ = 1:1, �� = 0:5, �0 2 0:05 : : :0:2 randomly per weight, �max = 50, �min = 0, initial weights

-0.5: : :0.5 randomly. Exchanging this with the parameter set used for the linear networks would,

however, not make much of a di�erence. Training was stopped when either P5(t) < 0:1 or more than

3000 epochs trained or the following condition was satis�ed: The GL5 stopping criterion was ful�lled

at least once and the validation error had increased for at least 8 successive strips at least once and

the quotient GL(t)=P5(t) had been larger than 3 at least once6.

The tables in tables 5 and 6 present the topology and results of the network that produced the lowest

validation set error of all these runs for each dataset. The tables also contain some indication of the

performance of other topologies by giving the number of other runs that were at most 5% (or 10%)

worse than the best run, with respect to the validation set error. The range of test set errors obtained

for these other topologies is also indicated.

The architectures presented in these tables are probably not the optimal ones, even among those

considered in the set of runs presented. Due to the small number of runs per architecture for each

problem, a suboptimal architecture has a decent probability of producing the lowest validation set error

just by chance. Experience with the early stopping method suggests that using a network considerably

larger than necessary often leads to the best results. As a consequence, the architectures presented in

the table shown in table 7 were computed from the results of the runs as the suggested architectures

for the various datasets to be used for training of fully connected multi layer perceptrons. These

architectures are called the pivot architectures of the respective problems. The rule for computing

which architecture is the pivot architecture uses all runs from the within-5%-of-best category as

candidates. From these, the largest architecture is chosen. Should the same largest topology appear

among the candidates with both linear and sigmoidal output units, the one with smaller validation

set error is chosen, unless the linear architecture appears twice, in which case it is preferred regardless

of its validation set error. The raw data used for this architecture selection is listed in appendix D.

It should be noted that these pivot architectures are still not necessarily very good. In particular

for some of the problems it might be appropriate to train networks without shortcut connections in

order to use networks with a much smaller number of parameters. For instance in the glass problems,

the shortcut connections amount for as many as 60 weights, which is about the same number as are

needed for a complete network using 4 hidden nodes but no shortcut connections. Since the problem

has only 107 examples in the training set, it may be a good idea to start without shortcut connections.

Similar argumentation applies for several other problems as well. Furthermore, since many of the pivot

architectures are one of the two largest architectures available in the selection runs, namely 32+0 or

16+8, networks with still more hidden nodes may produce superior results for some of the problems.

The following section presents results for multiple runs using the pivot architectures, a subsequent

section presents results for multiple runs with the same architectures except for the shortcut connec-

tions.

3.3.3 Multilayer networks

Tables 8 (classi�cation problems) and 9 (approximation problems) show the results of training with

the pivot architectures. For each variant of each problem, 60 runs were performed. The training

6The only reason for this complicated criterion is that the same set of runs was also used to investigate the behavior
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Problem Arch Validation set Test set 5% 10% Epochs Test range

err classif.err err classif.err

cancer1 4+2 l 1.53 1.714 1.053 1.149 0 3 75-205 1.176-1.352

cancer2 8+4 l 1.284 1.143 4.013 5.747 0 0 95 |

cancer3 4+4 l 2.679 2.857 2.145 2.299 2 12 55-360 2.112-2.791

card1 4+4 l 8.251 9.827 10.35 13.95 15 23 20-65 10.02-11.02

card2 4+0 l 10.30 10.98 14.88 18.02 6 20 20-50 14.27-16.25

card3 16+8 l 7.236 8.092 13.00 18.02 0 1 50-55 14.52-14.52

diabetes1 2+2 l 15.07 19.79 16.47 25.00 11 23 65-525 16.3-17.52

diabetes2 16+8 l 16.22 21.35 17.46 23.44 4 23 85-335 17.17-18.4

diabetes3 4+4 l 17.26 25.00 15.55 21.35 8 33 65-400 15.65-18.15

gene1 2+0 l 9.708 12.72 10.11 13.37 7 13 30-1245 9.979-11.25

gene2 4+2 s 7.669 11.71 7.967 12.11 0 0 1680 |

gene3 4+2 s 8.371 10.96 9.413 13.62 0 1 1170-1645 9.702-9.702

glass1 8+0 l 8.604 31.48 9.184 32.08 4 21 40-510 8.539-10.32

glass2 32+0 l 9.766 38.89 10.17 52.83 12 31 15-40 9.913-10.66

glass3 16+8 l 8.622 33.33 8.987 33.96 9 35 20-1425 8.795-11.84

heart1 8+0 l 12.58 15.65 14.53 20.00 17 23 40-80 13.64-15.25

heart2 4+0 l 12.02 16.09 13.67 14.78 20 23 25-85 13.03-14.39

heart3 16+8 l 10.27 12.61 16.35 23.91 18 23 40-65 16.25-17.21

heartc1 4+2 l 8.057 16.82 21.33 2 7 35-75 15.60-17.87

heartc2 8+8 l 15.17 5.950 4.000 2 12 15-90 5.257-7.989

heartc3 24+0 l 13.09 12.71 16.00 3 10 10-105 12.95-16.55

horse1 4+0 l 15.02 28.57 13.38 26.37 8 29 15-45 12.7-14.97

horse2 4+4 l 15.92 30.77 17.96 38.46 21 34 15-45 16.55-19.85

horse3 8+4 l 15.52 29.67 15.81 29.67 14 31 15-35 15.63-17.88

soybean1 16+8 l 0.6715 4.094 0.9111 8.824 0 0 1045 |

soybean2 32+0 l 0.5512 2.924 0.7509 4.706 0 1 895-2185 0.8051-0.8051

soybean3 16+0 l 0.7147 4.678 0.9341 7.647 0 3 565-945 0.9539-0.9809

thyroid1 16+8 l 0.7933 1.167 1.152 2.000 1 1 480-1170 1.194-1.194

thyroid2 8+4 l 0.6174 1.000 0.7113 1.278 0 0 2280 |

thyroid3 16+8 l 0.7998 1.278 0.8712 1.500 2 3 590-2055 0.9349-1.1

Arch: nodes in �rst hidden layer + nodes in second hidden layer, sigmoidal or linear output nodes for `best'
network, i.e., network used in the run with lowest validation set error.
Validation set: squared error percentage on validation set, classi�cation error on validation set of `best' run
(missing values are due to technical-historical reasons).
Test set: squared error percentage on test set, classi�cation error on test set of `best' run.
5%: number of other runs with validation squared error at most 5 percent worse than that of best run (as
shown in second column).
10%: ditto, at most 10% worse.
Epochs: Range of number of epochs trained for best run and within-10-percent-best runs.
Test range: Range of squared test set error percentages for within-10-percent-best runs excluding the `best' run.

Table 5: Architecture �nding results of classi�cation problems
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Problem Arch Validation set Test set 5% 10% Epochs Test range

building1 2+2 l 0.7583 0.6450 4 13 625-2625 0.6371-0.6841

building2 16+8 s 0.2629 0.2509 5 20 1100-2960 0.246-0.2731

building3 8+8 s 0.2460 0.2475 5 16 600-2995 0.2526-0.2739


are1 4+0 s 0.3349 0.5283 10 30 35-160 0.5232-0.5687


are2 2+0 s 0.4587 0.3214 14 30 35-135 0.3167-0.3695


are3 2+0 l 0.4541 0.3568 14 32 40-155 0.3493-0.3772

hearta1 32+0 s 4.199 4.428 19 33 35-180 4.249-4.733

hearta2 2+0 l 3.940 4.164 3 23 20-120 3.948-4.527

hearta3 4+0 s 3.928 4.961 15 31 20-105 4.337-5.089

heartac1 2+0 l 4.174 2.665 0 3 50-95 2.613-3.328

heartac2 8+4 l 4.589 4.514 0 2 15 4.346-4.741

heartac3 4+4 l 5.031 5.904 8 16 10-55 4.825-6.540

(The explanation from table 5 applies, except that the test set classi�cation error data is not present here.)

Table 6: Architecture �nding results of approximation problems

Problem pivot arch w Problem pivot arch w Problem pivot arch w

building1 16+0 l 333 building2 16+8 l 605 building3 16+8 s 605

cancer1 4+2 l 100 cancer2 8+4 l 196 cancer3 16+8 l 436

card1 32+0 l 1832 card2 24+0 l 1400 card3 16+8 l 1528

diabetes1 32+0 l 370 diabetes2 16+8 l 410 diabetes3 32+0 l 370


are1 32+0 s 971 
are2 32+0 s 971 
are3 24+0 s 747

gene1 4+2 l 1115 gene2 4+2 s 1115 gene3 4+2 s 1115

glass1 16+8 l 572 glass2 16+8 l 572 glass3 16+8 l 572

heart1 32+0 l 1288 heart2 32+0 l 1288 heart3 32+0 l 1288

hearta1 32+0 l 1220 hearta2 16+0 l 628 hearta3 32+0 l 1220

heartac1 2+0 l 110 heartac2 8+4 l 512 heartac3 16+8 s 1052

heartc1 16+8 l 1112 heartc2 8+8 l 744 heartc3 32+0 l 1288

horse1 16+8 l 1793 horse2 16+8 l 1793 horse3 32+0 l 2161

soybean1 16+8 l 4153 soybean2 32+0 l 4841 soybean3 16+0 l 3209

thyroid1 16+8 l 794 thyroid2 8+4 l 398 thyroid3 16+8 l 794

Pivot architecture and the corresponding number w of connections for each data set.

Table 7: Pivot architectures for the datasets

parameters used are the same as for the linear networks as indicated in section 3.3.1. Several interesting

observations can be made (please compare also with the discussion of the linear network results in

section 3.3.1):

1. The results for some of the problems are worse than those obtained using linear networks. This

is most notable for the gene problems and less severe for the horse problems and many of the

heart disease problems.

2. Not surprisingly, the standard deviations of validation and test set errors and the the tendency

to over�t are much higher than for linear networks in most of the cases.

3. The correlation of validation set errors with test set errors is quite small for some of the problems

(less than 0.5 for cancer3, card3, 
are3, glass1, heartac1, heartc1, horse1, horse2, soybean3). In

of di�erent stopping criteria. Those results, however, are not reported here.
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Problem Training Validation Test � Test set Over�t Total Relevant

set set set classi�cation epochs epochs

mean stddev mean stddev mean stddev mean stddev mean stddev mean stddev mean stddev

cancer1 2.87 0.27 1.96 0.25 1.60 0.41 0.81 1.47 0.60 4.48 4.87 152 111 133 97

cancer2 2.08 0.35 1.77 0.32 3.40 0.33 0.51 4.52 0.70 5.76 6.70 93 75 81 72

cancer3 1.73 0.19 2.86 0.11 2.57 0.24 0.28 3.37 0.71 3.37 1.32 66 20 51 16

card1 8.92 0.54 8.89 0.59 10.53 0.57 0.92 13.64 0.85 3.77 4.47 33 7 25 5

card2 7.12 0.55 11.11 0.32 15.47 0.75 0.53 19.23 0.80 3.32 1.03 32 8 22 6

card3 7.58 0.87 8.42 0.37 13.03 0.50 -0.03 17.36 1.61 3.52 1.46 37 10 28 9

diabetes1 14.74 2.03 16.36 2.14 17.30 1.91 0.99 24.57 3.53 2.31 0.67 196 98 118 72

diabetes2 13.12 1.35 17.10 0.91 18.20 1.08 0.77 25.91 2.50 2.75 2.54 119 42 85 31

diabetes3 13.34 1.11 17.98 0.62 16.68 0.67 0.55 23.06 1.91 2.34 0.65 307 193 200 132

gene1 6.45 0.42 10.27 0.31 10.72 0.31 0.76 15.05 0.89 2.67 0.49 46 9 29 6

gene2 7.56 1.81 11.80 1.19 11.39 1.28 0.97 15.59 1.83 2.12 0.44 321 698 222 595

gene3 6.88 1.76 11.18 1.06 12.14 0.95 0.95 17.79 1.73 2.06 0.50 435 637 289 508

glass1 7.68 0.79 9.48 0.24 9.75 0.41 0.33 39.03 8.14 2.76 0.71 67 44 45 39

glass2 8.43 0.53 10.44 0.48 10.27 0.40 0.72 55.60 2.83 4.27 1.75 29 9 20 7

glass3 7.56 0.98 9.23 0.25 10.91 0.48 0.54 59.25 7.83 2.68 0.47 66 46 45 41

heart1 9.25 1.07 13.22 1.32 14.33 1.26 0.97 19.89 2.27 2.83 1.89 65 16 43 12

heart2 9.85 1.68 13.06 3.29 14.43 3.29 0.98 17.88 1.57 3.27 2.34 57 19 38 13

heart3 9.43 0.64 10.71 0.78 16.58 0.39 0.67 23.43 1.29 3.35 3.72 51 10 37 9

heartc1 6.82 1.20 8.75 0.71 17.18 0.79 0.10 21.13 1.49 4.04 2.98 45 12 36 11

heartc2 10.41 1.76 17.02 1.12 6.47 2.86 0.83 5.07 3.37 4.05 1.89 29 14 21 11

heartc3 10.30 1.79 15.17 1.83 14.57 2.82 0.85 15.93 2.93 8.22 18.67 24 13 17 11

horse1 9.91 1.06 16.52 0.67 13.95 0.60 0.30 26.65 2.52 4.66 2.28 28 5 20 4

horse2 7.32 1.52 16.76 0.64 18.99 1.21 0.30 36.89 2.12 3.87 1.49 31 8 22 8

horse3 9.25 2.36 17.25 2.41 17.79 2.45 0.92 34.60 2.84 3.48 1.26 30 10 21 7

soybean1 0.32 0.08 0.85 0.07 1.03 0.05 0.54 9.06 0.80 2.55 1.37 665 259 551 218

soybean2 0.42 0.06 0.67 0.06 0.90 0.08 0.77 5.84 0.87 2.17 0.16 792 281 675 243

soybean3 0.40 0.07 0.82 0.06 1.05 0.09 0.33 7.27 1.16 2.16 0.13 759 233 639 205

thyroid1 0.60 0.53 1.04 0.61 1.31 0.55 0.99 2.32 0.67 3.06 3.16 491 319 432 266

thyroid2 0.59 0.24 0.88 0.19 1.02 0.18 0.85 1.86 0.41 2.58 1.07 660 460 598 417

thyroid3 0.69 0.20 0.97 0.13 1.16 0.16 0.91 2.09 0.31 2.39 0.43 598 624 531 564

Training set: mean and standard deviation (stddev) of minimum squared error percentage on training set
reached at any time during training.
Validation set: ditto, on validation set.
Test set: mean and stddev of squared test set error percentage at point of minimum validation set error.
�: Correlation between validation set error and test set error.
Test set classi�cation: mean and stddev of corresponding test set classi�cation error.
Over�t: mean and stddev of GL value at end of training.
Total epochs: mean and stddev of number of epochs trained.
Relevant epochs: mean and stddev of number of epochs until minimum validation error.

Table 8: Pivot architecture results of classi�cation problems
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Problem Training Validation Test � Over�t Total Relevant

set set set epochs epochs

mean stddev mean stddev mean stddev mean stddev mean stddev mean stddev

building1 0.63 0.50 2.43 1.50 1.70 1.01 0.96 31.93 44.07 394 602 329 529

building2 0.23 0.02 0.28 0.02 0.26 0.02 0.98 0.11 0.70 1183 302 1175 303

building3 0.22 0.02 0.26 0.01 0.26 0.01 0.93 0.42 1.09 1540 466 1408 505


are1 0.39 0.26 0.55 0.81 0.74 0.80 1.00 3.13 2.48 71 28 52 21


are2 0.42 0.16 0.55 0.43 0.41 0.47 1.00 3.20 3.73 60 15 42 10


are3 0.36 0.01 0.49 0.01 0.37 0.01 0.32 2.58 0.58 76 28 51 18

hearta1 3.75 0.76 4.58 0.81 4.76 1.14 0.95 4.98 7.85 46 16 34 13

hearta2 3.69 0.87 4.47 1.00 4.52 1.10 0.97 7.18 24.23 59 21 45 19

hearta3 3.84 0.66 4.29 0.73 4.81 0.87 0.97 5.34 14.19 45 13 35 13

heartac1 3.86 0.32 4.87 0.23 2.82 0.22 -0.06 3.98 2.25 44 23 34 21

heartac2 3.41 0.42 5.51 0.65 4.54 0.87 0.79 7.53 5.27 22 9 16 7

heartac3 2.23 0.57 5.38 0.37 5.37 0.56 0.80 4.64 2.96 38 10 30 10

(The explanation from table 8 applies, except that the test set classi�cation error data is not present here.)

Table 9: Pivot architecture results of approximation problems

two cases it is even slightly negative (card3, heartac1).

4. The correlation value also di�ers dramatically between the three variants of some of the problems

(card, 
are, heartac, heartc, horse).

5. However, low correlation does not necessary imply bad overall test error results (see cancer, card,


are, heartac, horse).

6. The training times exhibit dramatic 
uctuations in a few of the cases (building1, gene2, gene3,

thyroid3, and less severely cancer1, cancer2, diabetes3, glass1, glass3, thyroid1, thyroid2).

7. The other numbers of training epochs tend to be of the same order as for linear networks, with a

few exceptions that are much faster (most of the heart disease problems) or much slower (thyroid,

building2, building3).

8. The \inverse" error behavior observed for some of the linear networks is no longer present for

most of them (except cancer1, cancer2, card1).

As mentioned above, for some of the problems it might be more appropriate to work without shortcut

connections. To quantify the e�ect of training without shortcut connections, another series of 60 runs

per dataset was conducted using the same parameters as above. This time, however, the network

architecture used was modi�ed to include only connections between adjacent layers, i.e., no direct

connections from the inputs to the outputs and for networks with two hidden layers also no connections

from the inputs to the second hidden layer and from the �rst hidden layer to the outputs. I call these

architectures the no-shortcut architectures.

The results of these runs are shown in tables 10 (classi�cation problems) and 11 (approximation

problems). Once again, a few interesting observations can be made (compare also with the above

discussions of linear network and pivot architecture results):

1. Leaving out the shortcut connections seems to be appropriate more often than expected (see also

section 3.3.4).

2. The test error results for the gene problems are better than for linear networks (for pivot architec-

tures they were worse than the for linear networks). However, the classi�cation errors are worse

even than for the pivot architectures.
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Problem Training Validation Test � Test set Over�t Total Relevant

set set set classi�cation epochs epochs

mean stddev mean stddev mean stddev mean stddev mean stddev mean stddev mean stddev

cancer1 2.83 0.15 1.89 0.12 1.32 0.13 0.64 1.38 0.49 3.10 2.54 116 123 95 115

cancer2 2.14 0.23 1.76 0.14 3.47 0.28 0.14 4.77 0.94 3.82 1.90 54 31 44 28

cancer3 1.83 0.26 2.83 0.13 2.60 0.22 0.59 3.70 0.52 3.33 1.64 54 20 41 17

card1 8.86 0.41 8.69 0.26 10.35 0.29 0.25 14.05 1.03 3.54 1.25 30 7 22 5

card2 7.18 0.51 10.87 0.27 14.94 0.64 0.44 18.91 0.86 3.99 1.52 26 7 17 5

card3 7.13 0.62 8.62 0.46 13.47 0.51 0.41 18.84 1.19 4.81 3.24 29 7 22 6

diabetes1 14.36 1.14 15.93 1.04 16.99 0.91 0.95 24.10 1.91 2.23 0.53 201 119 117 83

diabetes2 13.04 1.27 16.94 0.91 18.43 1.00 0.76 26.42 2.26 2.50 0.50 102 46 70 26

diabetes3 13.52 1.46 17.89 0.90 16.48 1.16 0.91 22.59 2.23 2.32 0.59 251 132 164 85

gene1 2.70 1.52 8.19 1.33 8.66 1.28 0.91 16.67 3.75 2.46 0.53 124 58 101 53

gene2 4.55 2.60 9.46 1.95 9.54 1.91 0.97 18.41 6.93 2.29 0.28 321 284 250 255

gene3 4.99 2.79 9.45 2.17 10.84 1.93 0.97 21.82 7.53 2.33 0.39 262 183 199 163

glass1 7.16 0.65 9.15 0.21 9.24 0.32 0.13 32.70 5.34 2.69 0.64 71 31 52 27

glass2 8.42 0.66 10.03 0.27 10.09 0.28 0.37 55.57 3.70 4.00 1.80 30 9 22 8

glass3 7.54 1.06 9.14 0.24 10.74 0.52 0.73 58.40 7.82 2.97 1.17 60 30 46 26

heart1 9.24 0.82 13.10 0.65 14.19 0.64 0.89 19.72 0.96 3.16 2.38 57 15 38 12

heart2 9.73 1.24 12.32 1.09 13.61 0.89 0.88 17.52 1.14 3.56 3.47 51 15 36 12

heart3 9.46 0.88 10.85 1.39 16.79 0.77 0.93 24.08 1.12 3.91 4.42 46 13 32 10

heartc1 5.98 1.33 8.08 0.49 16.99 0.77 0.22 20.82 1.47 5.08 2.64 38 10 30 9

heartc2 9.85 1.16 16.86 0.70 5.05 1.36 0.40 5.13 1.63 4.83 2.34 25 10 18 9

heartc3 10.35 1.07 14.30 1.21 13.79 2.62 0.75 15.40 3.20 9.73 10.48 17 6 11 5

horse1 10.43 1.23 15.47 0.37 13.32 0.48 0.24 29.19 2.62 6.09 2.53 19 3 13 3

horse2 6.68 1.85 16.07 0.79 17.68 1.41 -0.19 35.86 2.46 4.28 1.67 25 7 18 6

horse3 10.54 1.68 15.91 1.19 15.86 1.17 0.88 34.16 2.32 5.51 3.89 20 5 14 5

soybean1 1.53 0.09 1.94 0.06 2.10 0.07 0.58 29.40 2.50 3.14 1.99 219 112 159 79

soybean2 0.46 0.19 0.59 0.13 0.79 0.22 0.96 5.14 1.05 5.06 6.49 417 222 362 202

soybean3 0.61 0.21 0.93 0.21 1.25 0.15 0.76 11.54 2.32 6.12 7.99 450 273 382 228

thyroid1 0.59 0.20 1.01 0.16 1.28 0.12 0.84 2.38 0.35 3.99 7.14 377 308 341 280

thyroid2 0.60 0.13 0.89 0.11 1.02 0.11 0.59 1.91 0.24 4.71 6.86 421 269 388 246

thyroid3 0.74 0.18 0.98 0.13 1.26 0.14 0.92 2.27 0.32 3.91 9.18 324 234 298 223

(The explanation from table 8 applies)

Table 10: No-shortcut architecture results of classi�cation problems

3. The test error results for the horse problems have also improved, yet are still worse than for linear

networks.

4. The correlations of validation and test error are sometimes very di�erent than for the pivot

architectures (see for example card, 
are, glass, heartac).

5. For 
are2 and 
are3, although the correlation is much lower, the standard deviations of test errors

are very much smaller, compared to pivot architectures.
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Problem Training Validation Test � Over�t Total Relevant

set set set epochs epochs

mean stddev mean stddev mean stddev mean stddev mean stddev mean stddev

building1 0.47 0.28 2.07 1.04 1.36 0.63 0.88 33.93 49.93 307 544 248 457

building2 0.24 0.15 0.30 0.19 0.28 0.20 1.00 0.14 0.78 1074 338 1044 330

building3 0.22 0.01 0.26 0.01 0.26 0.01 0.74 0.25 0.58 1380 350 1304 360


are1 0.35 0.02 0.35 0.01 0.54 0.01 0.10 3.02 0.90 48 20 35 16


are2 0.40 0.01 0.47 0.01 0.32 0.01 0.43 2.93 0.99 47 11 32 8


are3 0.37 0.01 0.47 0.01 0.36 0.01 0.34 2.53 0.47 57 21 32 11

hearta1 3.55 0.53 4.48 0.35 4.55 0.41 0.93 4.17 7.53 47 18 35 16

hearta2 3.45 0.56 4.41 0.21 4.33 0.15 0.55 2.91 0.75 54 22 41 20

hearta3 3.74 0.72 4.46 1.01 4.89 0.91 0.99 5.35 9.90 46 17 34 15

heartac1 3.59 0.24 4.77 0.32 2.47 0.38 0.21 3.78 1.85 42 22 32 18

heartac2 2.58 0.42 5.16 0.32 4.41 0.56 -0.15 6.43 4.43 24 7 18 7

heartac3 2.45 0.46 5.74 0.36 5.55 0.52 0.84 5.52 4.02 31 12 23 10

(The explanation from table 8 applies, except that the test set classi�cation error data is not present here.)

Table 11: No-shortcut architecture results of approximation problems

3.3.4 Comparison of multilayer results

Table 12 shows a comparison of the pivot architecture and no-shortcut architecture results presented

above. The comparison was performed with the ttest procedure of the SAS statistical software

Problem 1 2 3

building (|) N 2.1 P 7.8

cancer N 0.0 | |

card N 0.1 N 0.0 P 0.0

diabetes | P 2.9 N 2.1


are N 0.0 N 0.0 N 0.0

gene N 0.0 (N 0.0) (N 0.0)

glass N 0.0 N 0.1 N 3.2

heart N 1.6 N 0.6 |

hearta | | P 0.0

heartac N 0.0 | (P 0.0)

heartc | N 0.0 N 2.6

horse N 0.0 N 0.0 N 0.0

soybean P 0.0 (N 0.0) P 0.0

thyroid P 6.9 | P 0.1

Results of statistical signi�cance test performed for
di�erences of mean logarithmic test error between
pivot architectures (P) and no-shortcut architectures
(N). Entries show di�erences that are signi�cant on a
90% con�dence level plus the corresponding p-value
(in percent); the letter indicates which architecture
is better. Dashes indicate non-signi�cant di�erences.
Parentheses indicate unreliable test results due to
non-normality of at least one of the two samples. The
test employed was a t-test using the Cochran/Cox
approximation for the unequal variance case. 2.6%
of the data points were removed as outliers.

Table 12: t-test comparison of pivot and no-shortcut results

package. Since a t-test assumes that the samples to be compared have normal distributions, the

logarithm of the test errors was compared instead of the test errors themselves, because test errors

usually have an approximately log-normal distribution. This logarithmic transformation does not

change the test result, since the logarithm is strictly monotone; log-normal distributions occur quite

often and log-transformations are a very common statistical technique. Since a further assumption of

the t-test is equal variance of the samples, the Cochran/Cox approximation for the unequal variance
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case had to be used, because at least for some of the sample pairs (cancer1, gene1, hearta1) the

standard deviations di�ered by more than factor 2. Furthermore, a few outliers had to be removed

in order to achieve an approximate normal distribution of the log-errors: In the 2520 runs for the

pivot architectures, there were 4 outliers with too low errors and 61 with too high errors. For the

no-shortcut architectures, there were no outliers with too low errors and 66 outliers with too high

errors. Altogether this makes for 2.6% of outliers. At most 10% outliers, i.e., 6 of 60, were removed

from any single sample, namely from heartac2 and heartc3 (pivot) and from horse3 (no-shortcut).

A few of the samples deviated so signi�cantly from a log-normal distribution that the results of the

test are unreliable and thus must be interpreted with care. For the pivot architectures, these non-

normal samples were those of building1, gene2, and gene3, for the no-shortcut architectures they were

building1, gene3, heartac3, and soybean2. No outliers were removed from the non-normal samples.

The respective test results are shown in parentheses in the table in order to indicate that they are

unreliable. This discussion demonstrates how important it is to work very carefully when applying

statistical methods to neural network training results. When applied carelessly, statistical methods

can produce results that may look very impressive but in fact are just garbage.

For 10 of the sample pairs no signi�cant di�erence of test set errors is found at the 90% con�dence

level (i.e., signi�cance level 0.1). In 9 cases the pivot architecture was better while in 23 cases the

no-shortcut architecture was better. This result suggests that further search for a good network

architecture may be worthwhile for most of the problems, since the architectures used here were all

found using candidate architectures with shortcut connections only and just removing the shortcut

connections is probably not the best way to improve on them.

Summing up, the network architectures and performance �gures presented above provide a starting

point for exploration and comparison using the Proben1 benchmark collection datasets. It must be

noted that none of the above results used the validation set for training. Surely, improvements of the

results are possible by using the validation set for training in a suitable way. The properties of the

benchmark problems seem to be diverse enough to make Proben1 a useful basis for improved exper-

imental evaluation of neural network learning algorithms. Hopefully, many more similar collections

will follow.

A Availability of Proben1, Acknowledgements

The Proben1 benchmark set (including this report) is available for anonymous FTP from

the Neural Bench archive7 at Carnegie Mellon University (machine ftp.cs.cmu.edu, directory

/afs/cs/project/connect/bench/contrib/prechelt) and from machine ftp.ira.uka.de in direc-

tory /pub/neuron. The �le name in both cases is proben1.tar.gz. This �le contains the complete

directory tree, including all data, documentation, and the techreport. The size of the �le is about

2 MB8. When unpacked, the Proben1 benchmark set needs about 20 MB disk space. Of these, the

actual data �les consume about 15 MB.

The present report alone is available for anonymous FTP from machine ftp.ira.uka.de in directory

/pub/papers/techreports/1994 as �le 1994-21.ps.Z.

The original datasets on which the Proben1 datasets are based are included in the tar �les.

Their sources are the UCI machine learning databases repository and the energy predictor shootout

7Maintained by Scott Fahlman and collaborators. Many thanks to them for their service.
8The �le is a GNU gzip'ed Unix tar format �le. The GNU gzip compression utility is needed to uncompress it.
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archive. The UCI machine learning databases repository is available by anonymous FTP on machine

ics.uci.edu in directory /pub/machine-learning-databases. This archive is maintained at the

University of California, Irvine, by Patrick M. Murphy and David W. Aha. Many thanks to them

for their valuable service. The databases themselves were donated by various researchers; thanks

to them as well. See the documentation �les in the individual dataset directories for details. The

building problem is from the energy predictor shootout archive at ftp.cs.colorado.edu in directory

/pub/distribs/energy-shootout.

If you publish an article about work that used Proben1, it would be great if you dropped me a note

with the reference to prechelt@ira.uka.de.

B Structure of the Proben1 directory tree

The Proben1 directory tree that results from unpacking the archive �le has the following structure.

The top directory is called proben1; it contains a README �le for a quick overview, a Doc subdirectory,

a Scripts subdirectory, and one subdirectory per problem, named like the problem itself.

The Doc directory contains this report as both a TEX dvi �le and as a Postscript �le.

The Scripts directory contains a number of small Perl scripts that I have used during the preparation

of the datasets. I include them in the Proben1 distribution for all those people who want to generate

additional datasets in the Proben1 �le format or who want to change the representation used in

one of the original Proben1 problems. These scripts are not needed for normal use of the Proben1

datasets.

Each problem subdirectory for a problem xx contains the following �les: README gives an overview

of the �les in the directory plus a short description of the attribute encoding used in the Proben1

representation of the problem compared to the original representation. xx1.dt, xx2.dt, and xx3.dt

are the actual data �les. The only di�erence between them is that the examples are in a di�erent

order (which is always a random permutation, except for building1 and thyroid1). raw2cod is the

Perl script that was used to convert the original data �le into the Proben1 data �le. This script is

the de�nitive documentation of the problem representation used (with respect to the original data).

The problems heart, hearta, heartac, and heartc are all in the directory heart.

C Proben1 �le format and data encoding

The following is what a data �le looks like (example from glass1.dt):

bool_in=0

real_in=9

bool_out=6

real_out=0

training_examples=107

validation_examples=54

test_examples=53

0.281387 0.36391 0.804009 0.23676 0.643527 0.0917874 0.261152 0 0 1 0 0 0 0 0

0.260755 0.341353 0.772829 0.46729 0.545966 0.10628 0.255576 0 0 0 1 0 0 0 0

[further data lines deleted]
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Each line after the header lines represents one example; �rst the examples of the training set, then

those of the validation set, then those of the test set. The sizes of these sets are given in the last

three header lines (the partitioning is always 50%/25%/25% of the total number of examples). The

�rst four header lines describe the number of input coe�cients and output coe�cients per example. A

boolean coe�cient is always represented as either 0 (false) or 1 (true). A real coe�cient is represented

as a decimal number between 0 and 1. For all datasets, either bool in or real in is 0 and either

bool out or real out is 0. Coe�cients are separated by one or multiple spaces; examples (including the

last) are terminated by a single newline character. First on each line are the input coe�cients, then

follow the output coe�cients (i.e., each line contains bool in + real in + bool out + real out

coe�cients). Thus, lines can be quite long.

That's all.

The encoding used in the data �les has all inputs and outputs scaled to the range 0 : : :1. The scaling

was chosen so that the range is at least almost (but not always completely) used by the examples

occurring in the dataset. The gene datasets are an exception in that they use binary inputs encoded

as �1 and 1.

D Architecture ordering

The following list gives for each problem the order of architectures according to increasing squared

test set error. Of all architectures tried (as listed in section 3.3.2) only those are listed whose test

set error was at most 5% larger than the smallest test set error found in any run. Architectures with

linear output units can occur twice, because two runs were made for them and each run is considered

separately.

building1 : 2+2l, 4+2l, 4+4l, 4+0l, 16+0l.

building2 : 16+8s, 16+8l, 8+4s, 16+8l, 32+0s, 32+0l.

building3 : 8+8s, 32+0s, 4+4l, 32+0l, 16+8s, 8+4s.

cancer1 : 4+2l.

cancer2 : 8+4l.

cancer3 : 4+4l, 16+8l, 16+0l.

card1 : 4+4l, 8+8l, 8+8l, 16+0l, 8+4l, 8+0l, 16+8l, 4+2l, 4+4l, 32+0l, 4+2l, 8+4l, 16+0l, 2+0l, 4+0l,

24+0l.

card2 : 4+0l, 16+0l, 16+8l, 24+0l, 2+2l, 8+4l, 4+4l.

card3 : 16+8l.

diabetes1 : 2+2l, 2+2l, 4+4l, 4+4l, 32+0l, 8+4l, 16+0l, 4+0l, 16+8l, 8+0l, 24+0l, 16+0l.

diabetes2 : 16+8l, 24+0l, 8+0l, 8+4l, 4+4l.

diabetes3 : 4+4l, 8+0l, 32+0l, 24+0l, 8+8l, 24+0s, 2+2l, 32+0l, 8+8l.


are1 : 4+0s, 2+2l, 4+0l, 2+2s, 2+0l, 32+0s, 4+2l, 2+2l, 2+0s, 4+0l, 16+0s.


are2 : 2+0s, 4+0s, 8+0s, 8+8s, 16+0s, 2+2s, 24+0s, 2+0l, 4+0l, 32+0s, 4+0l, 2+0l, 4+2s, 4+4l,

8+4s.


are3 : 2+0l, 2+0l, 2+0s, 4+0s, 2+2s, 2+2l, 2+2l, 4+4s, 16+0s, 16+0l, 4+0l, 4+4l, 8+0l, 24+0s,

8+8l.

gene1 : 2+0l, 2+0s, 4+0l, 2+2l, 2+0l, 2+2l, 4+0l, 4+2l.

gene2 : 4+2s.

gene3 : 4+2s.

glass1 : 8+0l, 16+8l, 4+0l, 32+0s, 8+4l.

glass2 : 32+0l, 2+2s, 16+0s, 32+0s, 2+0l, 16+8l, 4+4s, 8+0s, 16+8s, 4+0s, 16+8l, 16+0l, 2+0s.

glass3 : 16+8l, 2+0s, 16+0l, 16+0l, 8+4s, 16+8s, 8+8s, 8+4l, 2+0l, 16+8l.
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heart1 : 8+0l, 24+0l, 4+0l, 32+0l, 16+8l, 8+4l, 32+0l, 8+8l, 16+0l, 4+2l, 4+0l, 4+4l, 8+4l, 24+0l,

2+2l, 4+4l, 8+0l, 16+8l.

heart2 : 4+0l, 16+0l, 32+0l, 4+0l, 8+0l, 32+0l, 4+4l, 8+8l, 2+2l, 8+4l, 16+8l, 2+0l, 2+2l, 24+0l,

2+0l, 4+2l, 4+2l, 16+0l, 24+0l, 8+8l, 4+4l.

heart3 : 16+8l, 2+0l, 32+0l, 4+0l, 8+0l, 2+2l, 32+0l, 8+8l, 16+0l, 4+2l, 4+4l, 16+0l, 16+8l, 4+4l,

8+4l, 8+4l, 4+2l, 24+0l, 24+0l.

hearta1 : 32+0s, 8+4l, 4+0l, 4+4s, 32+0l, 2+0l, 8+0l, 8+4l, 8+8l, 16+8l, 8+0l, 4+0l, 2+2l, 32+0l,

24+0l, 4+2l, 4+4l, 16+0l, 16+8s, 8+8s.

hearta2 : 2+0l, 8+4l, 16+0l, 4+2s.

hearta3 : 4+0s, 16+0l, 4+4l, 4+0l, 8+0l, 4+4l, 8+4l, 8+0l, 2+0l, 32+0l, 4+2s, 24+0l, 8+8l, 16+8l,

4+2l, 16+8l.

heartac1 : 2+0l.

heartac2 : 8+4l.

heartac3 : 4+4l, 8+4s, 8+0l, 4+0l, 24+0l, 16+8s, 4+0s, 16+0s, 8+0s.

heartc1 : 4+2l, 8+8l, 16+8l.

heartc2 : 8+8l, 2+2l, 4+0l.

heartc3 : 24+0l, 32+0l, 8+8l, 16+8l.

horse1 : 4+0l, 4+4l, 4+4l, 4+2s, 2+2l, 8+0s, 16+8l, 4+0s, 16+0l.

horse2 : 4+4l, 4+0l, 8+0s, 2+2s, 8+4l, 4+4s, 8+0l, 2+2l, 8+8l, 4+4l, 2+0l, 4+2l, 16+0l, 16+8l, 8+0l,

16+8l, 2+0s, 16+8s, 4+0l, 8+8s, 4+2s, 8+4s.

horse3 : 8+4l, 8+0l, 8+4s, 4+0l, 4+4s, 2+0l, 8+8l, 16+0l, 4+4l, 4+4l, 32+0l, 24+0s, 4+2s, 8+0l,

16+8l.

soybean1 : 16+8l.

soybean2 : 32+0l.

soybean3 : 16+0l.

thyroid1 : 16+8l, 8+8l.

thyroid2 : 8+4l.

thyroid3 : 16+8l, 8+4l, 8+8l.
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