
Universit�at Karlsruhe

Fakult�at f�ur Informatik

Henning Fernau:

Observations on

Grammar and Language Families

Henning Fernau

Lehrstuhl Informatik f�ur

Ingenieure und Naturwissenschaftler

Universit�at Karlsruhe (TH)

Am Fasanengarten 5

D-76128 Karlsruhe (Germany)

email: fernau@ira.uka.de

Interner Bericht Nr. 22/94

August 1993
erh�altlich unter (available through)

ftp ftp.ira.uka.de

cd papers/techreports/1994

bin

get 1994-22.ps.Z

1

Contents

1 Motivation by an Introductory Example 4

2 Turing Equivalence of Grammar Families and Decidability of Grammar

and Language Families 5

2.1 Turing Equivalence : 5

2.2 Decidability of Grammar Families : 6

2.3 Language and Partial Decidability : 8

2.4 E�ective Operations : 10

3 Constructible, Enumerable and Recursive Grammar Families 11

3.1 Constructible Grammar Families : 11

3.2 Recursive and Enumerable Grammar Families : : : : : : : : : : : : : : : : 12

3.3 An Exercise on Recursive Languages : 16

4 Examples from Literature 19

4.1 Programmed Grammars : 19
4.2 A Metatheorem of Hinz and Dassow : 21
4.3 A Study on the Chomsky Hierarchy : 24

5 Conclusions 26

2

Observations on Grammar and Language Families

Henning Fernau

Lehrstuhl Informatik f�ur

Ingenieure und Naturwissenschaftler

Universit�at Karlsruhe (TH)

Am Fasanengarten 5

D-76128 Karlsruhe

Germany

email: fernau@ira.uka.de

August 1994

Abstract: In this report, we emphasize the di�erences of grammar families and their
properties versus language families and their properties. To this end, we investigate gram-
mar families from an abstract standpoint, developping a new framework of reasoning. In
particular when considering decidability questions, special care must be taken when trying

to use decidability results (which are, in the �rst place, properties of grammar families) in
order to establish results (e.g. hierarchy results) on language families.

We illustrate this by inspecting some theorems and their proofs in the �eld of regulated
rewriting. In this way, we also correct the formulation of an important theorem of Hinz
and Dassow.

As an exercise, we show that there is no `e�ective' grammatical characterization of
the family of recursive languages. Moreover, we show how to prove the strictness of the
Chomsky hierarchy using decidability properties only.

Keywords: Formal languages, grammars, decidability, regulated rewriting.

C.R. Categories: F.4.2, F.4.3

Remark: Most of the material of this report will be published in `fundamenta informati-

cae', see also [Fer94].

3

1 Motivation by an Introductory Example

Naturally, the theory of formal languages investigates certain properties of language fami-

lies. Examples for such properties of a family L are:

� Is L closed under a certain language operation, e.g. set union?

� Hierarchy issues: What is the relation between L and another language family L0 ?
In particular, one is interested whether L and L0 are incomparable, or whether L is

included in L0 (or vice versa) and whether such an inclusion is proper or not.

Note that we did not list decidability issues in connection with language families, al-

though it is common practice to state something like \The word problem is decidable for

regular languages.". What do we mean by these words? Maybe, it is the following:

(1) For any regular language L, there is a Turing machine (TM) TL which, given a word

w, decides whether w 2 L or not.

Note that the above statement contains an existential quanti�er which needs not be

constructive in general. There is also another constructive interpretation of the sentence
\The word problem is decidable for regular languages.", namely:

(2) There is a TM which, given a description of a deterministic �nite automaton (DFA)
A and a word w, decides whether w is accepted by A or not.

Observe that in textbooks, this latter proposition (2) is usually proved. Of course,

proposition (2) implies proposition (1).
Note that proposition (2) is basically a proposition about DFA's, but proposition (1)

tells us something about the family of regular languages. Hence, an analogue to (2) needs
not be true any more for other description mechanisms characterizing the regular languages.

Consider the following class of automata which obviously describes exactly the class

of regular languages: A foolish �nite automaton (FFA) A is speci�ed by a quadruple
(T;Q;F; �), where T is the terminal alphabet, Q � N is a �nite set of states, F � Q is the
set of �nal states, and � is the transition function, as usual speci�ed �rst as a �nite function
� : T �Q! Q, and extended by �(uv; q) = �(u; �(v; q)) to a word function. The only thing

di�erent from ordinary DFA's is that we did not itemize the initial state explicitly in our

de�nition. Let us �x some g�odelization of TM's. Denote by T (n) the predicate \The TM
with number n does not halt, given the argument n.". For our FFA A, let S � Q denote

the set of numbers S = fn 2 Q jT (n)g. The language accepted by A is de�ned as

L(A) =

(
;; if S = ;
fw 2 T � j (9s 2 S)(�(w; s) 2 F)g if S 6= ;

For FFA's, the question \Is the empty word � contained in the language described

by an FFA?" is undecidable in general. This means that there is no TM that, given the

4

description of an FFA A, decides whether � 2 L(A) or not. Namely, for A = (T;Q;F; �),

� 2 L(A) i� there exists an n 2 F such that T (n) is true. It is easily seen that the empty

word problem for FFA's is Turing equivalent to the special halting problem [Odi89].

We see that in this interpretation (2), even such a special case of the word problem

actually depends on the description mechanism (grammar family) under consideration and

is not a property of the language family itself.

As a supplement to our list of problems treated within the theory of language families,

we may list some problems encountered with grammar families G. In this general setting,

we mean by grammar family a class of �nite texts which can be interpreted in a uniform way

as description mechanism for formal languages. If G 2 G, according to common praxis, we

write L(G) in order to denote the language described by G.1 Common questions include:

� Decidability issues, e.g. \Is there a TM which, given a grammar G 2 G and a word

w, decides whether w 2 L(G) or not?"

� E�ective versions of the typical problems for language families listed above. Below,

we will discuss this item more thoroughly.

2 Turing Equivalence of Grammar Families and De-

cidability of Grammar and Language Families

2.1 Turing Equivalence

One might argue that it is somewhat arti�cial to de�ne devices describing regular languages
in such a way that e.g. the word problem `becomes' undecidable for this class of devices.
But, what is a natural or reasonable way to describe languages? What makes DFA's more
reasonable than FFA's? In some sense, from the point of view of decidability, DFA's are
`easier' than FFA's. Is it possible to say that DFA's deliver the natural description of

regular languages since DFA's are the easiest description mechanism?
If one looks at tables in classical textbooks on formal languages containing lists of

decidability questions for certain language families [sic!], one sees that any classical question
is decidable for regular languages. More precisely, all these questions are decidable for

DFA's.

Remarkably, in [HD89], Hinz and Dassow gave an example of a problem which is un-
decidable for regular grammars, as they formulated.

Lemma 2.1 (Hinz/Dassow-Lemma) There is a �xed context-free language L0 such
that there is no TM which, given a DFA A, decides whether L(A) � L0 or not.

1Below, we will elaborate a more succinct language denotation.

5

We now consider another way to describe regular languages via �nite automata. An easy

�nite automaton (EFA) A is speci�ed by a sextuple (T;Q;F; �; s; f), where T , Q, F , � have

the same meaning as in FFA's (and DFA's), s is the initial state (i.e. L(A) = fw 2 T � j
�(w; s) 2 Fg) and f 2 f0; 1g is a
ag such that f = 1 i� L(A) � L0. One might look at

EFA's as DFA's additionally supplied with a very special oracle.

Obviously, the problem de�ned by Hinz and Dassow is decidable for EFA's. Moreover,

any problem decidable for DFA's is decidable for EFA's, too. Hence, in some sense EFA's

are indeed `easier' than DFA's. In other words, `easiness' is not necessarily a basis for

considering one way of describing a language family more natural than another.

Our opinion is that `naturalness' seems to be more of a philosophical or psychological

than a mathematical question. Therefore, we do not want to give further comments on

this issue. But, we can try to answer the following question rigorously: \When may we

call two grammar families equivalent (in a constructive or e�ective sense)?".

In order to do this, we adopt the ideas of Turing reducibility or equivalence from classical

recursion theory [Odi89].

De�nition 2.2 Let G and G0 be two grammar families.

� We term two grammars G 2 G and G0 2 G0 equivalent i� L(G) = L(G0).

� We call G Turing transformable to G0 i� there is a TM which, given a description

G 2 G as input, produces a grammar G0 2 G0 which is equivalent to G. As a
shorthand, we write G �T G0, and G `T G0.

� We call G and G0 Turing equivalent, G =T G
0 i� G �T G

0 and G0 �T G.

Note that �T is a re
exive and transitive relation, and that =T is an equivalence
relation.

One immediately sees that, if G �T G0, then, for the corresponding language families
L and L0, L � L0. Especially, if G =T G0, then L = L0.

Note that all `standard notions' de�ning the recursively enumerable sets (the largest
class of languages we consider here) are Turing equivalent in our sense, see e.g. [Odi89,
Chapter 1]. We mainly refer to TM's in this paper. More precisely, we refer to the following

model: A TM T computes a partial mapping � : N! ��; the language enumerated by T
is the range of �. If we like to have a perpetual enumeration (without input), we might

employ T by another TM using dovetailing.

2.2 Decidability of Grammar Families

Let P be some property of languages, e.g. \The considered language is empty.". Then,

P can be viewed as a question concerning grammars. If G 2 G, then we say that G
has property P , i� L(G) possesses the property P . We use the same wording when P is
additionally dependent on some parameter, e.g. in the general word problem, P depends

6

on the word v to be tested. In the following, we use the abbreviation Pw in order to address

the general word problem Pw(L; v) () v 2 L.

De�nition 2.3 We say that P is decidable for some grammar family G i� there is a TM

which, given a grammar G 2 G and possibly a list of parameters of P , decides whether G

has property P .

For example, the word problem Pw is decidable for the class of context-sensitive gram-

mars, since there is a TM which, given an arbitrary context-sensitive grammar G and

some word v (the list of parameters in our case), decides whether v 2 L(G) or not [Sal73,

Theorem I.9.1]. Observe that the statement \The word problem is decidable for the class

of DFA's." is equivalent to formulation (2) in the introductory section.

Lemma 2.4 If P is decidable for some grammar family G0 and G �T G0, then P is decidable

for G.

We will use this lemma in order to test whether the formalisms we considered so far
for describing regular languages are Turing equivalent or not.

It is easy to construct a TM which converts an EFA into an equivalent DFA. Hence,
we could write EFA �T DFA, where EFA and DFA have their obvious meanings.

On the other hand, if it were possible to transform any DFA into an equivalent EFA
(which obviously exists from a nonconstructive point of view), the Hinz/Dassow problem
mentioned above would become algorithmically solvable. Hence, EFA =T DFA is not
true, although the corresponding language classes coincide.

What about FFA's? Here, the situation is somewhat more complex.
Assume that there is a TM which, given the FFA A = (T;Q;F; �), constructs a DFA

A0 being equivalent to A. We show that the predicate T de�ned in the �rst section would
be recursive under this assumption. Given some number n, we consider the FFA A =
(fag; fng; fng; (a; n) 7! n). The equivalent DFA A0 would have the property L(A0) = ; i�
T (n) is false. Hence, there is no e�ective passage from A to A0.

Now, we want to show that DFA �T FFA. First, �x some g�odelization of TM's. Take

a coding c(n) of an n-state TM which loops in�nitely often in any of its states, disregarding
tape symbols.2 Let c be the coding of a TM which immediately stops, neglecting the input.

Given some DFA, we simply renumber its n states such that c is the initial state, and the

remaining n� 1 states are numbered c(1); : : : ; c(n� 1).
Hence, DFA �T FFA, but DFA =T FFA is false.

Remarkably, when we consider the `classical' mechanisms for the description of regular
languages like deterministic �nite automata, nondeterministic �nite automata, right-linear

grammars, and regular expressions, all these grammar families turn out to be Turing
equivalent, as any basic textbook on formal languages shows.

2In other words, we look for in�nitely many TM's which compute the nowhere de�ned function; their
existence immediately follows by the padding lemma [Odi89].

7

2.3 Language and Partial Decidability

Is the way in which we transferred problems on formal languages into questions about

grammars (or grammar families) the only possible one?

What do we usually mean when we call a language L `recursive' or when we say that

the general word problem is decidable for L? We mean (by de�nition!) that there is some

TM TL (generally dependent on L) which, given a word v, decides whether v 2 L or not.

This idea of transferring a language property into a property of grammar classes is

fundamentally di�erent from the decidability de�nition given above. Hence, we single out

this idea by a new de�nition.

De�nition 2.5 Let P be some property of languages, depending on a language L and, in

addition, on a list of parameters l. We say that P is language decidable for some grammar

family G i�, for any language L describable by some grammar from G, there is a TM TL
which, given a list of parameters l of P , decides whether P (L; l) is true or not.

For example, let us consider the following class G0 of TM's for the acceptance of lan-
guages. A TM, given some word w, either runs forever, hence rejecting the word w, or stops
in a rejecting state, hence rejecting w, or stops in an accepting state, hence accepting w.

By de�nition, a language L is recursive if there exists a TM that decides whether a given
word is member of the language or not. Within the acceptance mode just introduced for
TM's, this means that a language L is recursive i� there is a TM TL accepting L that stops
on all inputs. Let G � G0 be the maximal class of TM's accepting all recursive languages.
We just saw that the general word problem is language decidable for G.

We show that the general word problem is not decidable for G. Namely, assume the
general word problem were decidable for G. Then, let T be an arbitrary TM accepting
some language which needs not be recursive. Let w denote some word coding T . With
the help of T , an algorithm may construct another TM T 0 that accepts w if T accepts
its own description w, and rejects any other input. Obviously, the language L accepted

by T 0 is either fwg or ;, hence L is recursive anyway, and T 0 2 G. By assumption, the
question w 2 L is decidable, more precisely, there exists a TM that, given T 0 and w, decides
whether w 2 L(T 0) = L or not. This in turn would solve the special word problem for

TM's, contradicting our assumption.
We see that language decidability intrinsically contains an element of undecidability,

namely the generally nonconstructive existential quanti�er in the following sloppy but
easily understandable formalization of language decidability:

P language decidable for G () (8L 2 L(G))(9 TM TL)(8l)(P (L; l) decidable by TL)

This contrasts decidability for language families which might be formalized analogously

by
P decidable for G () (9 TM T)(8G 2 G)(8l)(P (L(G); l) decidable by T)

8

Obviously, language decidability does not depend on the grammar family but on the

corresponding language family. Instead of saying that P is language decidable for some

grammar family G we also say that P is decidable for the corresponding language family

L(G).
Observe that the statement \The word problem is decidable for the class of regular

languages." is equivalent to formulation (1) in the introductory section.

Note that if the attached list of parameters is empty or not used in the decidability

question, then language decidability is always trivial and hence solvable. Therefore, a

formulation like \The emptiness problem is solvable for the language family L." makes no

sense.

Comparing these two de�nitions (which, as we have seen, both occur in the standard

theory of formal languages), we are tempted to free language decidability from its bound

to formal languages, arriving at the following de�nition.

De�nition 2.6 Let P be some property of grammars, depending on a grammar G and, in
addition, on a list of parameters l. We say that P is partially decidable for some grammar

family G i�, for any grammar G 2 G there is a TM TG that, given a list of parameters l of
P , decides whether P (G; l) is true or not.

Of course, for any grammar family and any property P of languages (with parame-
ters!) partial decidability is equivalent to language decidability which in turn follows from
decidability. In some sense, we may look at properties without parameters as extreme
cases of properties with parameters (The TM may simply ignore the parameters.). Then,
any property without parameters is trivially language decidable, which makes the uncon-

structibility of these de�nitions quite clear. Finally, we might code any problem e.g. on
TM's into the list of parameters, which shows that there are (admittedly, rather arti�cial)
problems which are partially undecidable for any grammar family.

Since language decidability applies only to language properties, decidability, language
decidability and partial decidability are really di�erent and non-trivial notions in general.

Our observations are summarized in the following.

� Let P be some property of grammars (e.g. inherited by a property of languages). Let
G1 and G2 be two grammar families such that P is decidable for G1 but undecidable
for G2. Then, G1 and G2 are not Turing equivalent, G1 6=T G2 for short. Generally,

this fact does not tell us anything about the corresponding language families.

� Let P be some property (with parameters) of languages. Let L1 and L2 be two
language families such that P is decidable for L1 but undecidable for L2. Then,

L1 6= L2.

Finally, we state the following observation:

9

Lemma 2.7 Let P be some property (with parameters) of languages. Let L1 and L2 be

two language families with L1 � L2. If P is decidable for L2, then P is also decidable for

L1.

2.4 E�ective Operations

Let F be some n-ary operation on languages. For example, set union is a binary opera-

tion on languages. We term a grammar family G e�ectively closed under F i� there is a

TM which, given n grammars G1; : : : ; Gn 2 G, produces another grammar G 2 G which

describes the result of the operation on the languages corresponding to G1; : : : ; Gn.

We note that there is a slight di�erence between the transfer of closure properties (as

properties of language families) into e�ective closure properties (as properties of grammar

families) and the interpretation of predicates of languages as decidability questions con-

cerning grammar families. We illustrate this di�erence with the help of the following lemma

which contains a stronger premise than the analogous Lemma 2.4 regarding predicates of
languages.

Lemma 2.8 Let G;G0 be two Turing equivalent grammar families. If G0 is e�ectively closed
under a certain language operation, then G is e�ectively closed under that operation, too.

Proof. Let the operation in question be n-ary. Take G1; : : : ; Gn 2 G. By assumption, it is
e�ectively possible to transform these grammars into equivalent grammarsG0

1; : : : ; G
0
n 2 G

0.
Now, a TM may compute a grammarG0 2 G0 which describes the result of the operation on
the languages corresponding to G1; : : : ; Gn. By Turing equivalence, G0 2 G0 is e�ectively
transformable into an equivalent grammar G 2 G. Hence, G is e�ectively closed under the
given n-ary operation. 2

Observe that there are operations which are inherently ine�ective. Consider e.g. the

following operation under which any language family containing all �nite languages is
closed. Let a be some symbol. The predicate T describes the halting problem as de�ned
above. De�ne

F (L) =

8><
>:

L n fa3g [fa; a2g if jLj =1
fa; a3g if jLj = n ^ T (n)

fa2; a3g if jLj = n ^ :T (n)

Let FIN denote the family of grammars consisting of �nite lists of words. Let G be some
grammar family satisfying the following (rather weak) requirements:

� FIN �T G

� There is a TM which, given some G 2 G, enumerates the language described by G.

Then, F is not an e�ective operation for G, since otherwise we can construct a TM TM

solving the special halting problem: Given a number n, �rst, TM generates some language

10

containing n words, then, TM transforms this language into its grammatical representa-

tion, on which TM can e�ectively apply F yielding a grammar G; �nally, TM listens to a

simulation of G: T (n) is true i� the word a appears in the enumeration process.

It seems to be reasonable to rule out operations like the above-de�ned F when consider-

ing e�ectivity of operations. But we do not de�ne a proper class of `admissible' operations

in this paper, since we run into problems e.g. with the following operation:

F (L) =

(
(L n f�g)+ if L is recursive

f�g otherwise

The families of right-linear, context-free or context-sensitive grammars are e�ectively closed

under F , but the family of all phrase-structure grammars is not e�ectively closed under

F (although the corresponding family of languages is closed under F), since the encoded

ine�ectivity only applies in case of very powerful grammar families.

In the following, we only consider `classical' language-theoretical operations like (in-

verse, �-free) homomorphism/substitutions, catenation and its closure and Boolean oper-
ations. We term a grammar family G ine�ective i� the corresponding language family is
closed under some `classical' operation, but G is not e�ectively closed under that operation.

Observe there is again a subtle problem encountered with a formulation like \The

grammar family G is e�ectively closed under substitution of regular languages.", since there
are two ways to interpret this phrase. Either it is meant that for any substitution operation
induced by relating letters with regular languages, there is a TM which, given a grammar
G 2 G, produces another grammar G0 2 G whose language is just the substitution image
of L(G); or, we mean a uniform interpretation: There is a TM which, given a substitution

with regular languages and a grammar G 2 G, produces another grammar G0 2 G whose
language is just the substitution image of L(G). In the latter case, \given a substitution
with regular languages" is of course dependent on the chosen representation of regular
languages. We will apply the non-uniform interpretation throughout the present paper,
but we wanted to point out the possible di�culties in the uniform case.

3 Constructible, Enumerable and Recursive Gram-

mar Families

3.1 Constructible Grammar Families

The problems encountered with FFA's have also another reason: FFA's are unconstructible

in the following sense.

De�nition 3.1 Let G be some grammar family. We call G constructible i� there is a TM
(called G-universal machine) which, given a description G 2 G, enumerates L(G). G is
called unconstructible i� there is no G-universal machine.

11

Assume the FFA's were constructible via a universal machine. We show that, in this

case, the predicate T de�ned above is decidable. We start two TM's T1 and T2 in parallel.

T1 is just the n
th TM running on the input n. T2 is the TM enumerating the language of

the FFA A = (fag; fng; fng; (a; n) 7! n). T2 eventually halts and outputs some word i� T1
does not halt. Hence, either T1 or T2 halts, rendering our predicate T decidable.

Lemma 3.2 A grammar family G is constructible i�, for any G 2 G, there is a TM which,

given some word w, halts i� w 2 L(G).

Proof. If G is constructible, then there exists a TM T1 enumerating L(G). Construct a

TM T that, given as input w, `listens to' T1 until w appears in the enumeration and stops

in that case; if w does not appear in the enumeration, T will never stop.

Assume that there is a TM T2 that, given some word w, halts i� w 2 L(G). Construct

a TM ~T that tests, in a dovetailing manner, any word w using T2 and outputs w i� T2
eventually stops. 2

We could also view constructibility in terms of transformability:

Proposition 3.3 A grammar family G is constructible i� G is Turing transformable to

the family of TM's (viewed as language generators). 2

This immediately implies:

Corollary 3.4 The language family L characterized by a constructible grammar family

contains only enumerable languages.

Hence, we rule out devices which are `too powerful' by de�nition.
It is instructive to compare the notion of constructibility of grammar families with

notions introduced in the preceding section. Almost by de�nition, we obtain:

Remark 3.5 Let G be a grammar family for which the general word problem is decidable.

Then, G is constructible. Furthermore, the language family corresponding to G contains
only recursive languages.

We will come back to this topic at the end of this section.

3.2 Recursive and Enumerable Grammar Families

What do we mean by the term `grammar family'? Essentially, a grammar family may be
identi�ed with a certain meta-language de�ning the syntactic structure of the grammars
viewed as strings together with a formalism prescribing how to squeeze formal languages

out of grammars. More formally, any grammar family G is given by a pair (LG;IG), where
LG is the meta-language describing the syntactic structure of feasible grammars, and the
interpretation function IG maps words (grammars) from LG onto formal languages.

12

The idea of identifying grammar families with formal languages may look strange,

even a bit circuitous, but is perfectly accepted e.g. when de�ning the family of regular

expressions (mostly over a �xed �nite alphabet).

There is one minor problem with meta-languages: Generally, meta-languages are lan-

guages over countable alphabets. Even the restriction to some �xed �nite alphabet of

terminal symbols does not overcome this in�nity, since e.g. in context-free grammars, it

is not possible to restrict the number of nonterminal symbols without reducing the gener-

ative power. Using a suitable recursive coding of the countable alphabet, we can assume

the meta-language to be a language over a �nite alphabet. A word in a meta-language

represents an index of another formal language. Constructiblity means that, given such an

index, it is e�ectively possible to pass to the represented formal language, in other words,

the grammar family is e�ectively decodable.

How do we know that a certain word is actually interpretable as such an index? This

leads us to the next `natural' restriction on grammar families.

De�nition 3.6 We call a grammar family G = (LG ;IG) recursive i� LG is recursive.

Obviously, `indexness' may be tested algorithmically exactly for recursive grammar
families.

For example, it is easily seen that FFA and DFA are recursive, but EFA is not

recursive by the Hinz/Dassow-Lemma.

Lemma 3.7 A grammar family G = (LG;IG) is constructible and recursive i� the following
two functions are partial recursive:3

f(w;G) =

8><
>:
" if G 2 LG ^ w 62 IG(G)
1 if G 2 LG ^ w 2 IG(G)
2 if G 62 LG

g(G) =

(
0 if G 62 LG
1 if G 2 LG

Interestingly, it is sometimes possible to change an unconstructible grammar family
into a nonrecursive one and vice versa. For example, consider the grammar family G of

NSEFA's (not so easy fa's) derived from EFA's. Syntactically, there is no di�erence between

NSEFA's and EFA's, that is LG = LEFA. An NSEFA A = (T;Q;F; �; s; f) is based on the
DFA EA = (T;Q;F; �; s). We de�ne as interpretation function

IG(A) =

(
; if (f = 0 ^ IDFA(E) � L0) _ (f = 1 ^ IDFA(E) 6� L0)

IDFA(E) otherwise

Again, L0 denotes the context-free language constructed by Hinz/Dassow. G is recursive
but not constructible.

3Following Odifreddi, " means `unde�ned' or, concerning TM's, `not halting'.

13

Similarly, by adding a piece of information, it is sometimes possible to turn an uncon-

structible mechanism into a constructible one, e.g. FFA's into DFA's. It is even possible

that, by such an addendum, the considered mechanism `becomes' nonrecursive, e.g. turning

FFA's into EFA's.

Recall that we called a property P regarding grammars decidable for a particular gram-

mar family G i� there is a TM which, given a description G 2 G, decides whether G has

property P or not. When identifying G with a formal language, this is not quite the kind

of decidability questions tackled normally, since, as we have seen, a TM might not be able

to check whether its input word w corresponds to some grammar in G or not. Therefore,

we consider the following function induced by P and G:

PG(w) =

8><
>:

0 if w 2 G ^ w has :P
1 if w 2 G ^ w has P

2 if w 62 G

Presupposing that P is decidable for G and that G is recursive, we see that PG is recursive.
Moreover, if G0 is a recursive grammar family and G0 �T G, then PG0 �T PG in the classical
sense of Turing reducibility, since

PG0(w0) =

(
PG(w) if w0 2 G0 ^ w0 `T w

2 if w0 62 G0

Sometimes it is su�cient to presuppose that it is algorithmically possible to list all
grammars of a speci�c language family. We single out this property in the following
de�nition.

De�nition 3.8 We call a grammar family G = (LG ;IG) enumerable i� LG is enumerable.

Note that a constructible and enumerable grammar family G supplies us with an in-
dexing scheme of TM's enumerating just the languages generable by some G 2 G. More
precisely, we arrive at enumerable indices in this case [Odi89, p.226]. If G allows e�ective
complementation (with respect to a suitable alphabet), then we even obtain characteristic

indices. We will exploit this fact below.
Let G be an enumerable grammar family. This means that there is a TM that enumer-

ates any grammar in G at least once. Hence, there is an e�ective indexing scheme for G.
In this case, we simply write G = fG1; G2; : : :g. Of course, we may also list all words over
some �xed alphabet �, say w1; w2; : : :

By a standard diagonal argument, we obtain:

Lemma 3.9 If G is an enumerable and constructible grammar family with LG � �� for

some �nite alphabet �, then the diagonal language DG = fwi jwi 2 IG(Gi); Gi 2 LGg is
enumerable, but its complement is not describable by any G 2 G. 2

14

Theorem 3.10 If G is an enumerable and constructible grammar family characterizing

the enumerable languages with LG � �� for some �nite alphabet �, then �� nDG is not

enumerable. 2

Similarly, we see:

Lemma 3.11 Let G be an enumerable grammar family with LG � �� for some �nite

alphabet �. If the general word problem is decidable for G, then the diagonal language

DG = fwi jwi 2 IG(Gi); Gi 2 LGg is recursive.

Proof. By assumption, there is an enumeration G = fG1; G2; : : :g. Furthermore, it is

possible to list all words over � e�ectively, say �� = fw1; w2; : : :g. Since the general word
problem is decidable for G, the following function is total recursive:

f(i; j) =

(
0 if wj 62 IG(Gi)

1 if wj 2 IG(Gi)

The diagonal language DG is recursive: Given a word w, a TM may �rst compute an index
i such that w = wi, then generate Gi and check whether wi 2 IG(Gi). 2

Theorem 3.12 If G is an enumerable grammar family characterizing the enumerable lan-
guages with LG � �� for some �nite alphabet �, then the general word problem is unde-

cidable for G. 2

Note that our last two theorems are usually the basic steps in order to show Rice's

theorem e.g. for TM's [HU79]. What is lacking in order to show an analogue to Rice's
theorem for grammar families characterizing the enumerable languages? In general, we do
not have something like composition or the Snm theorem. On the other hand, if we knew
something like composition being e�ectively possible for a speci�c enumerable grammar
family and if we knew some non-trivial property of enumerable languages solvable for

that particular grammar class, then this grammar family cannot describe any enumerable
language.

We try to capture the above idea in the following theorem:

Theorem 3.13 Let G be a grammar family consisting of grammars that generate words
starting from some start symbol in such a way that the possible direct derivations are
independent of the number of the derivation step.4 Then, the following properties imply

that there is an enumerable language not describable (generable) by any grammar from G.

� G is enumerable.

4In case of such a dependence (as encountered for example in time-varying grammars and function-
limited systems [Fer91]), we are in need of a more envolved construction.

15

� G is e�ectively closed under A transductions. 5

� There is a language property P which is non-trivial for the familiy L of languages

describable via G but decidable for G.

More precisely, the above conditions imply that, for G, the general word problem is

decidable.

Proof. By assumption, there is a non-empty language L 2 L such that P (L) is true and

P (;) is false.6 Let L be generable via the grammar GL 2 G having S as its start symbol.

Let G be an arbitrary grammar from G and w be some word. By assumption, a TM may

construct another grammmar Gw 2 G generating fSg i� w 2 IG(G) and generating ;
i� w 62 IG(G) using a suitable A transduction. Now, another grammar G0

w may use Gw

and start to enumerate L simulating GL i� w 2 IG(G). By assumption, this coupling is

possible disregarding the number of the derivation step encountered when starting with

the simulation of GL. Hence, IG(G0
w) = L i� w 2 IG(G) and IG(G0

w) = ; i� w 62 IG(G).
Therefore, P (IG(G0

w)) i� w 2 IG(G). By assumption, the �rst property is e�ectively
testable. 2

A simple corollary of the above theorem is the fact that programmed grammars with
appearance checking are strictly more powerful than programmed grammars without ap-
pearance checking, since the emptiness problem is solvable for the latter grammar class.7

Note that this fact was proved quite recently [HD89] using other techniques.

3.3 An Exercise on Recursive Languages

As an example, we consider the family of recursive languages. It is an open question
whether there is a `natural' grammatical characterization of this language class. As we will

show in the following, any grammar family characterizing the recursive languages must
have some strange properties.

For the sake of convenience, we restrict ourselves to the consideration of languages over
a �xed alphabet �. In the following, we discuss any grammar family G under the next
aspects:

� Is G constructible (A) or unconstructible (B)?

� Is G recursive (a) or enumerable but nonrecursive (b) or even nonenumerable (c)?

� Is there a TM which, given a description G 2 G, computes a description G0 2 G such
that L(G0) = �� n L(G)? In other words: Is complementation e�ective? (1) Or is

complementation not e�ective? (2)

5Consult [HU79] on A transducers (generalized sequential machines that may react on �-inputs).
6If P (;) is true, just switch to :P instead of P in the above argument.
7As regards formal de�nitions, see below. Check [DP89] for the required properties.

16

This leaves us with twelve di�erent cases in total. We denote these cases, according to

the parenthesized symbols above, for example by (Ac2). We present solutions in ten cases:

Either we present a grammar family characterizing the recursive languages over � having

the required properties or we prove (in two cases) that such a grammar family cannot exist.

We were not able to solve the remaining two cases, namely (Aa2) and (Ab2). In particular,

the following question is open: Is there a constructible enumerable grammar family with

none�ective complementation that describes the recursive languages or not?

First, we present our negative result solving (Aa1) and (Ab1) in the form of a theorem.

Theorem 3.14 Let G be a constructible and enumerable grammar family characterizing

the recursive languages over �. Then, complementation is not e�ective.

In other words: Any constructible and enumerable grammar family characterizing the

recursive languages is ine�ective.

Proof. Let G be a constructible and enumerable grammar family with e�ective comple-

mentation characterizing the recursive languages over �.
This implies that there is a TM which, given a grammar G 2 G, produces a grammar

G0 2 G such that L(G) = �� n L(G0).
Therefore, the following function is computable (cf. Lemma 3.7):

f(w;G) =

8><
>:

0 if G 2 LG ^ w 62 IG(G)
1 if G 2 LG ^ w 2 IG(G)
" if G 62 LG

Assume f = �e for a suitable enumeration of the partial recursive functions f�eg. By
Snm theorem, g(w) = �S1

1
(e;G)(w) is the total recursive characteristic function of IG(G). This

allows us to specify the enumerable subset fS1
1(e;G) jG 2 LGg of the set of characteristic

indices of the recursive languages such that any recursive language is represented by at

least one index within our subset. This contradicts the e�ective Cantor theorem [Odi89]
(Proposition II.2.1 in connection with a remark on page 234). 2

(Ac1) A constructible, nonenumerable grammar family with e�ective complementation

characterizing the recursive languages: Consider as grammars pairs (T1; T2) of TM's such

that L(T1) = �� n L(T2). De�ne as interpretation I(T1; T2) = L(T1). It is easily seen that
this family is not recursive. If it were enumerable, we would have found an enumerable
set of characteristic indices listing all recursive languages, again contradicting the e�ective

Cantor theorem.

(Ac2) A constructible, nonenumerable grammar family with none�ective complementa-
tion characterizing the recursive languages: Consider as descriptions just the TM's which

enumerate some recursive language. By [Odi89, II.5.19], the set of the enumerable indices
of all recursive sets is nonenumerable.

(Ba1) An unconstructible, recursive grammar family with e�ective complementation

characterizing the recursive languages: Consider as descriptions pairs (T1; T2) of TM's.

17

De�ne the following interpretation function:

I(T1; T2) =

(
; if L(T1) 6= �� n L(T2)
L(T1) if L(T1) = �� n L(T2)

(Ba2) An unconstructible, recursive grammar family with none�ective complementation

characterizing the recursive languages may be obtained in the following way: Take as

descriptions TM's and de�ne as interpretation

I(T) =

(
; if L(T) is not recursive

L(T) if L(T) is recursive

Adding an additional
ag indicating whether the nth TM with input n halts or not

(n =`length of description'), we obtain the following two cases from (Ba1) and (Ba2),

respectively.

(Bb1) An unconstructible, nonrecursive but enumerable grammar family with e�ective
complementation characterizing the recursive languages.

(Bb2) An unconstructible, nonrecursive but enumerable grammar family with nonef-
fective complementation characterizing the recursive languages.

(Bc1) An unconstructible, nonenumerable grammar family with e�ective complemen-
tation characterizing the recursive languages: Consider as descriptions pairs (T1; T2) of
TM's that compute only total enumerations N ! ��. De�ne the interpretation function
as follows:

I(T1; T2) =

(
; if L(T1) 6= �� n L(T2)
L(T1) if L(T1) = �� n L(T2)

By [Odi89, page 146], the set of TM's computing only total enumerations is not enumerable.
(Bc2) An unconstructible, nonenumerable grammar family with none�ective comple-

mentation characterizing the recursive languages: Consider as grammars TM's computing
total enumerations of languages. We change the de�nition of the language described by
such a TM T as in case (Ba2).

As argued above, the language decidability of the general word problem is an intrinsic
(if you like: the intrinsic) property of the family of recursive languages. Is it possible that

there is a grammar family G characterizing the recursive languages such that the general

word problem is decidable for G? The next theorem shows that this is not possible, under
rather weak conditions.

Theorem 3.15 Let G be an enumerable grammar family characterizing the recursive lan-

guages over �. Then, the general word problem is undecidable for G.

Proof. Assuming the contrary, we may apply Lemma 3.11. By diagonalization, the
complement of the diagonal language is not describable by any G 2 G. 2

We might formulate the last theorem in the following manner:

18

� Let G be an enumerable grammar family describing only recursive languages over �.

If the general word problem is decidable for G, then there is a recursive language not

describable by any G 2 G.

Hence, the family of languages characterized by G is strictly contained in the family

of recursive languages.

In this way, we see that Theorem 3.15 also adds to Theorem 3.13, since we learned that

any grammar family satisfying the assumptions of Theorem 3.13 does not characterize the

recursive languages.

Interestingly, by this theorem we may use a decidability property of grammar families

in order to show that the corresponding language family is strictly contained in the family

of recursive languages. This applies especially to the family of context-sensitive languages

and to certain families de�ned via regulated rewriting. Later on, we will discuss these cases

in detail.

The following proposition links our last theorem with the preceding considerations on
complementation within grammar families characterizing the recursive languages.

Theorem 3.16 Let G be a constructible grammar family with e�ective complementation

describing recursive languages only. Then, the general word problem is decidable for G.

Proof. Given some grammar G, a TM T1 may compute another grammar G0 describing

the complement of IG(G). By assumption, two other TM's T2 and T3 may enumerate G
and G0, respectively. Hence, there exists another TM T4 that dovetails the enumerations
of T2 and T3 in order to decide the question whether a given word w is contained in IG(G)
(then it will be enumerated by T2) or not (then it will be enumerated by T3). 2

As an application of this theorem, we can derive Theorem I.9.1 in [Sal73] from the
recently proved fact [Sze88b, Sze88a, Imm88] that the family of context-sensitive grammars
allows e�ective complementation. It is not possible to reason `the other way round' coming
from the decidability of the word problem leading to e�ective complementation, as the

family of context-free grammars shows.
Note that the proof resembles Post's characterization of recursiveness. Furthermore,

the combination of our last two theorems yields another proof of Theorem 3.14.

4 Examples from Literature

Our considerations might look quite academic so far. In this section, we look for concrete
examples found in literature.

4.1 Programmed Grammars

A programmed grammar ([Ros69, Sto71, DP89]) is a construct G = (VN ; VT ; P; S), where

VN , VT , and S are, as in Chomsky grammars, the alphabet of nonterminal symbols, the

19

alphabet of terminal symbols, and the start symbol, and P is a �nite set of productions

of the form (r : � ! �; �(r); �(r)), where r : � ! � is a rewriting rule called core rule

labelled by r and �(r) and �(r) are two sets of labels of such core rules in P . By Lab(P)

we denote the set of all labels of the productions appearing in P . For (x; r1) and (y; r2) in

V �
G � Lab(P), we write (x; r1)) (y; r2) i� either

x = z1�z2; y = z1�z2; (r1 : �! �; �(r1); �(r1)) 2 P; and r2 2 �(r1) (1)

or

x = y; for some production (r1 : �! �; �(r1); �(r1)) 2 P; the rule r1 : �! �

is not applicable to x; and r2 2 �(r1) :

The set �(r1) is called success �eld and the set �(r1) failure �eld of r1. The language gener-

ated by G is de�ned as L(G) = fw 2 V �
T j (S; r1)

�
) (w; r2) for some r1; r2 2 Lab(P)g : The

family of languages generated by programmed grammars of the form G = (VN ; VT ; P; S)
containing only context-free core rules is denoted by L(P,CF; ac). When no appearance
checking features are involved, i.e. �(r) = ; for each rule in P , we are led to the families

L(P,CF). The special variant of a programmed grammar, where the success �eld and the
failure �eld coincide for each rule r in the set P of productions, is said to be a programmed
grammar with unconditional transfer . According to the notation which has been intro-
duced so far, we denote the class of languages generated by programmed grammars with
context-free productions and unconditional transfer by L(P,CF,ut).

Originally, Rosenkrantz considered programmed grammars with left derivations, i.e. �

is not contained in z1 in the de�nition (1) above. We denote the corresponding language
family e.g. by L(P-left,CF,ut). Following Stotskii, we call programmed grammars where
left derivation is not enforced in the derivation process programmed grammars under free
interpretation.

If erasing rules are forbidden, we replace the component CF by CF{� in that notation,

again, i.e. we get L(P,CF{�; ac); L(P,CF{�;ut); : : : . When talking about properties of
the corresponding grammar families, we write e.g. G(P-left,CF,ut).

For the convenience of the reader, we quote some results from [Ros69].

Theorem 4.1 The pre�x property is decidable for G(P-left,CF{�;ut); i.e. there is a TM

which, given some G 2 G(P-left,CF{�;ut) and some string x, decides whether there exists

a string y such that xy 2 L(G).

Theorem 4.2 Every recursively enumerable language can be generated with tails by some

G 2 G(P-left,CF{�; ac). This means that there is a TM that, given some phrase structure
grammar G0 with L(G0) � V �

T , can construct some G 2 G(P-left,CF{�; ac) such that

x 2 L(G0) i� xdcn 2 L(G) for some n > 0 (where c; d 62 VT).

Rosenkrantz correctly stated [Ros69, Corollary 4, page 128]:

20

Corollary 4.3 L(P-left,CF{�;ut) (L(P-left,CF{�; ac).

His very instructive argument goes as follows: Let M be some nonrecursive language

generated with tails by some G 2 G(P-left,CF{�; ac), i.e. M = fx jxdcn 2 L(G) for

some n > 0g. If the language families in question coincided, there would be a G0 2
G(P-left,CF{�;ut) such that L(G0) = L(G). The pre�x problem is decidable for G0. Hence,

there is a TM T which, given some word xd, outputs 1 i� xd is pre�x of some word of

L(G0) i� x 2 M . Therefore, there is a TM TM which, �rst, given some word x, appends

d and then uses T in order to solve the membership problem for M . Hence, the language

families cannot coincide.

Note that we need not obtain the grammar G0 e�ectively out of G.

Two years later, Stotskii continued the investigation of programmed grammars [Sto71].

He shows e.g. the following result:

Theorem 4.4 For every enumerable set M of natural numbers, it is possible to construct

a GM 2 G(P-left,CF{�;ut) with terminal alphabet VT = fa; b; d; eg such that L(GM)
possesses the following properties:

1. For every m 2M , we �nd a word of the form amdbne in L(GM) (with n > 0).

2. Any word of the form amdbne 2 L(GM) determines a number m 2M .

3. Any word in L(GM) which is not of the form amdbne does not end with e.

Stotskii stated [Sto71, Corollary 1, page 96]:

Corollary 4.5 L(P-left,CF{�;ut) is not closed under intersection with regular languages.

He gave the following correct proof: Fix some nonrecursive enumerable set of num-

bers M . If L(P-left,CF{�;ut) were closed under intersection with regular languages,
L = L(GM) \ fa; b; dg�feg would lie in L(P-left,CF{�;ut). Now, amd is a pre�x of some
word in L i� m 2 M . Using some grammar G generating L, a TM can check `m 2 M?'
employing the solvability of the pre�x problem for G.

Observe again that we need not obtain the grammar G e�ectively.

4.2 A Metatheorem of Hinz and Dassow

In 1989, Hinz and Dassow gave a nice metatheorem [HD89] stated in the following form:8

Claim 4.6 Let the emptiness problem of a language class L be decidable. Let L be closed
under intersection with regular languages.

8As de�ned in [HD89], V C(M0) is the set of valid computation of a speci�c �xed TMM0. The language
L0 considered in the Hinz/Dassow-Lemma is just the complement of V C(M0).

21

� Then V C(M0) 62 L. Moreover, if L contains the context-free languages, then L is

not closed under complement and not closed under intersection.

� If L0 is a language class such that every recursively enumerable language is the ho-

momorphic image of a language in L0, then is a language in L0 n L.

By this metatheorem, they solved the old problem in the �eld of regulated rewrit-

ing whether or not appearance checking enhances the descriptive power of programmed

grammars.9 Unfortunately, the formulation of the metatheorem contains one subtle draw-

back already encountered and analyzed in the previous section. First of all, we state two

correct versions of the metatheorem.

Correction 4.7 Let G be a grammar family with the following properties:

� There is a TM which, given some G 2 G, decides whether IG(G) = ; or not.

� There is a TM which, given some G 2 G and a DFA E, constructs a G0 2 G such

that IG(G
0) = IG(G) \ L(E).

Then, we �nd:

1. V C(M0) cannot be described by a grammar from G. If any context-free language can
be described by a grammar from G, then the corresponding language family L(G) is
neither closed under complementation nor under intersection.

2. Let G0 be another grammar family having the property that any enumerable language

is the homomorphic image of a language described by a grammar in G0. Then, there
is a language generable by some H 0 2 G0 that is not generable by any H 2 G.

3. There is a TM which, given some G 2 G and some word w, decides whether w 2
IG(G) or not. Hence, given some G 2 G, we know that IG(G) is recursive, since
we can construct two TM's that enumerate IG(G) and its complement, respectively.

Especially, G is constructible.

When analyzing the proof of this theorem, at �rst glance we seem to need more e�ective
closure properties, since the emptiness problem is a problem without parameters. In the
following formulation (and proof) of the theorem, it becomes clear that the predicate
used in the proof is indeed a predicate with parameters, hence allowing the separation of

language classes.

Correction 4.8 Consider the following predicate for languages:

P (L;E) =

(
true if E 2 DFA ^ L \ L(E) = ;
false otherwise

Assume that P is decidable for the language family L. Then, we �nd:

9Compare also to Theorem 3.13 above.

22

1. V C(M0) 62 L. If any context-free language is contained in L, then L is neither closed

under complementation nor under intersection.

2. Let L0 be language family such that every recursively enumerable language is the

homomorphic image of a language in L0. Then, P is not decidable for L0. Hence,

there is a language in L0 n L.

3. Every language in L is recursive.

Proof.

1. Assume that V C(M0) 2 L. Since P is decidable for L, there is a TM which, given

a DFA E, decides whether V C(M0) \ L(E) = ; or not. Since V C(M0) \ L(E) =

; () L(E) � L0, this contradicts the Hinz/Dassow-Lemma.

If L contains the context-free languages, L is not closed under complement and

not under intersection, because V C(M0) can be represented as the complement of a
context-free language or the intersection of two context-free languages.

2. Assume L0 � L. By Lemma 2.7, P is decidable for L0. It is known that there is a
TM which, given a DFA E, produces another DFA E0 with L(E0) � h�1(L(E)). Let

L0 2 L0 be such that h(L0) = V C(M0). By assumption, there is a TM which, given
E0, decides whether P (L0; E0) or not. But P (L0; E 0) () L0 \ h�1(L(E)) = ; ()
h(L0) \ L(E) = ; () L(E) � L0, which contradicts the Hinz/Dassow-Lemma.

3. Any word w can be e�ectively transformed into a DFA accepting only w. Now, a
TM can use the decidability of P for L in order to solve the word problem for L.

2

Since the family of programmed grammars without appearance checking (with or with-
out �-productions; with left derivation or free interpretation) satis�es the conditions of G
in the metatheorem, we may correctly conclude that the inclusion

L(P,CF{�) � L(P,CF{�; ac)

is proper, as stated in [HD89, Corollary 5]. Moreover, the corresponding language classes

are not closed under complementation and not closed under intersection.
Note that all grammar families considered in this section are both recursive and con-

structible. This means that none�ective components are not obviously included in these

families.

23

4.3 A Study on the Chomsky Hierarchy

If some predicate P is decidable for the language family L but not for L0, we can conclude

that L 6= L0. In this way, the strictness of the Chomsky hierarchy is proved below without

using the traditional pumping lemmata.

In order to distinguish regular and context-free languages, we consider the following

predicate Pr.

Pr(L;E) =

(
true if E 2 DFA ^ (�� n L) \ L(E) = ;
false otherwise

It is easily seen that Pr is decidable for DFA: Given two DFA's AL and E, a TM may

�rst construct a DFA A0
L accepting �� n L and then construct another DFA A accepting

the intersection of the languages L(A0
L) and L(E). Moreover, a TM may check whether

L(A) is empty or not. Hence, Pr is decidable for the class of regular languages L(REG).
In [HD89], Hinz and Dassow constructed a context-free language L0 � �� with the

property that there is no TM TL0 such that TL0, given some DFA E, decides whether
(�� n L0) \ L(E) is empty or not. Hence, Pr is not decidable for the class of context-free
languages L(CF).

Note that this result is true for any � containing more than one letter, although Hinz
and Dassow used a rather large alphabet in their proof. Namely, both the family of
DFA's and the family of context-free grammars is e�ectively closed under gsm mappings
and inverse gsm mappings, enabling an e�ective coding/decoding of large alphabets into
two-letter-alphabets.

Therefore, we have shown:

� The family of regular languages over � does not coincide with the family of context-
free languages over � if j�j > 1.

This result could also have been shown by the following argument. We consider the
following predicate P (L;E): P (L;E) is true i� the language accepted by the given DFA
E is contained in L.

It is well-known that there is a TM which, given as input two DFA's E0 and E, decides

whether L(E0) � L(E) or not. In other words, P is decidable for the grammar family
DFA. Therefore, P is decidable for the family of regular languages.

If P were decidable for the family of context-free languages, in particular, there would

be a TM which, given as input a DFA E, decides whether L(E) � L0 or not, where L0

is de�ned as in the Hinz/Dassow-Lemma. Obviously, this contradicts the Hinz/Dassow-

Lemma.
Furthermore, L0 is a concrete example of a non-regular context-free language.

Next, we consider the following predicate for languages:10 Pp(L; v) is true i� v is the

pre�x of some word in L.

10The idea to consider this predicate was taken from [Sto71].

24

First, we show that Pp is decidable for the class of context-free grammars. By [HU79,

Section 4.4], we know that a TM can transform any given context-free grammar G into

an equivalent one G0 containing no useless variables (if L(G) is not empty), additionally

indicating whether L(G) is empty or not. If L(G) is empty, v cannot be pre�x of L(G).

Otherwise, a TM may list all sentential forms of length < jvj+ k (where k is the length of

the longest right-hand side of a production in G0) derivable by G0 and check whether v is

pre�x of one of these sentential forms. If it is so, Pp(L(G); v) is true; otherwise, it is false.

Secondly, we show that Pp is not decidable for L(CS). It can be proved like [Sal73,

Theorem III.9.8] that any enumerable language L is `context-sensitive with tails', i.e. there

is a context-sensitive language M such that w 2 L i� wbai 2 M for some i � 0 (where

a; b are `new' symbols). Now, wb is a pre�x of a word in M i� w is contained in L,

where L may be nonrecursive. Hence, Pp is not decidable for the class of context-sensitive

languages. Again, note that the fact that in our proof the alphabet of the context-sensitive

languages contains at least three symbols is not essential and can be overcome by a suitable

coding/decoding.
Hence, we have proved:

� The family of context-free languages over � does not coincide with the family of

context-sensitive languages over � if j�j > 1.

Finally, consider the following properties of the family of context-sensitive grammars
G:

� G is a constructible and enumerable grammar family with e�ective complementation.
Then, Theorem 3.14 proves that G does not characterize the recursive languages over
�.

� G is a constructible and enumerable grammar family with e�ective complementa-
tion describing recursive languages only. By Theorem 3.16, the word problem Pw is

decidable for G.11 By Theorem 3.15, G does not characterize the recursive languages.

It is well-known that the word problem Pw is not decidable for the family of enumerable
languages L(RE), but it is decidable for L(REC) by de�nition.

This completes our proof of the strictness of the Chomsky hierarchy using decidability

arguments only.

11This was of course known before [Sal73].

25

5 Conclusions

We hope that this paper revives research regarding fundamentals of formal language theory.

Maybe, grammar families, formalized via a pair consisting of (1) a meta-language describing

the syntax of the grammars and (2) an interpretation function, can serve as a starting point

of such investigations. In particular, such research might re-connect the theory of formal

languages with recursion theory.

For someone viewing from the �eld of recursion theory, it might also be interesting

to consider relativizations of our observations. For example, the proof of Theorem 3.14

may be relativized (in the sense of recursion theory) leading to the following more general

result.

Theorem 5.1 Let m;n � 0, k := max(m;n). Let G be a grammar family characterizing

the languages over � recursive in ;(k). If IG is computable in ;(n) and LG is enumerable in

;(m), then complementation is not computable in ;(k). 2

As usual \computable in ;(0)" simple means computable. \Computable in ;(1)" means
that a TM, additionally endowed with a read-only tape (oracle) containing a 1 (0) on the
nth cell i� the TM with number n stops (does not stop) when working on the input n.
Since we can diagonalize the TM's computing in ;(1) as well, we also get oracle models for
computability in ;(2), ;(3) and so on. A language L is \enumerable in ;(n)" if there is a

TM enumerating L with the help of the oracle ;(n). A language L is \recursive in ;(n)" if
there is a TM which, given a word w, decides whether w 2 L or not, with the help of the
oracle ;(n).

Furthermore, it is interesting to pursue the question under which condition one should
reject a grammar family for being `none�ective' or `unnatural'. E.g., one might require that

if it is known that a language family is closed under some `natural' operation, any `natural'
grammar family characterizing this particular language family should be e�ectively closed
under this operation. With this de�nition in mind, we may conclude that there is no
`natural' grammar family characterizing the recursive languages.

Finally, it would be interesting to give an example of two recursive and constructible

grammar families characterizing the same language family but being Turing inequivalent.

Likewise, it would be intriguing to show that there is no such example.

Acknowledgements

We want to thank all our colleagues and formal language specialists with whom we had
stimulating discussions on this subject during the last months.

26

References

[DP89] J. Dassow and G. P�aun. Regulated Rewriting in Formal Language Theory, vol-

ume 18 of EATCS Monographs in Theoretical Computer Science. Berlin: Springer,

1989.

[Fer91] H. Fernau. On function-limited Lindenmayer systems. J. Inf. Process. Cybern.

EIK (formerly Elektron. Inf.verarb. Kybern.), 27(1):21{53, 1991.

[Fer94] H. Fernau. On grammar and language families. To appear in Fundamenta Infor-

maticae.

[HD89] F. Hinz and J. Dassow. An undecidability result for regular languages and its

application to regulated rewriting. EATCS Bulletin, 38:168{173, 1989.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages,

and computation. Reading (MA): Addison-Wesley, 1979.

[Imm88] N. Immerman. Nondeterministic space is closed under complementation. SIAM
Journal Comput., 17(5):935{938, 1988.

[Odi89] P. Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic and

Foundations of Mathematics. Amsterdam: North Holland, 1989.

[Ros69] D. J. Rosenkrantz. Programmed grammars and classes of formal languages. Jour-

nal of the Association for Computing Machinery, 16(1):107{131, 1969.

[Sal73] A. K. Salomaa. Formal Languages. Academic Press, 1973.

[Sto71] E.D. Stotskii. Formal~nye grammatiki i ograniqeni� na vyvod. Problemy pere-

daqi informacii, VII(1):87{101, 1971.

[Sze88a] R. Szelepcs�enyi. The method of forced enumeration for nondeterministic automa-
ta. Acta Informatica, 26:279{284, 1988.

[Sze88b] R. Szelepcs�enyi. The method of forcing for nondeterministic automata. EATCS
Bulletin, 33:96{100, 1988.

27

