
On Computational Interpretations of the Modal Logic S4

II. The �evQ-Calculus

Jean Goubault-Larrecq
Institut f�ur Logik, Komplexit�at und Deduktionssysteme

Universit�at Karlsruhe, Am Fasanengarten 5, D-76128 Karlsruhe�y

Jean.Goubault@pauillac.inria.fr, Jean.Goubault@ira.uka.de

August 29, 1996

Abstract

A language of constructions for minimal logic is the �-calculus, where cut-elimination is encoded as

�-reduction. We examine corresponding languages for the minimal version of the modal logic S4, with

notions of reduction that encodes cut-elimination for the corresponding sequent system. It turns out that

a natural interpretation of the latter constructions is a �-calculus extended by an idealized version of

Lisp's eval and quote constructs.

In this Part II, we repair the non-computational defect of the �S4-calculus of Part I by deriving an

entirely di�erent interpretation. Quotation closures are not provided ex abrupto, but are built from more

primitive combinators. There is almost no freedom of choice here, and we are forced to use variants of the

��-calculus, i.e. descriptions of interpreters as formal languages. We end up de�ning an in�nite tower of

interpreters, which provides an interesting analogy with Lisp's reexive tower. This is another argument

backing the thesis that the meaning of modal constructions in S4 corresponds to eval and quote.

1 Plan

The box with for notation of part I installs a barrier that blocks substitutions from going down past

` signs, and we still have to implement this in our calculus. The main feature of this notation is that it
represents some substitutions explicitly inside the terms. Explicit substitutions are the main feature of calculi
like the ��-calculus, i.e. the �-calculus with explicit substitutions of Abadi et al. [ACCL90], and in fact our
calculus will be a variant of the ��*-calculus [HL89], augmented with pairs (to build stacks), terminal object
(the empty stack), eval and quote.

We develop the �evQ-calculus from these principles in Section 2, motivating each step. We then show
in Section 3 that cut elimination, or equivalently reduction in the ��S4-calculus, can be simulated in �evQ,
although the latter does not have any commutative conversion rule. We extend both �S4 and �evQ to handle
so-called modal �-like rules in Section 4; these rules do not eliminate cuts, but also simplify proofs. In
Section 5, we examine other possible ways of eliminating cuts in minimal S4 proofs, and argue that they are
unreasonable.

We don't prove any conuence or termination property of the new calculi. We shall examine them in Part
III.

2 Eliminating Cuts by Explicit Substitutions

There are two ways of understanding how we shall build our new language, the �evQ-calculus. The �rst is
logical, and consists in decomposing, or precompiling the e�ect of the (2R) rule. The second is computational,

�Research partially funded by the HCM grant 7532.7-06 from the European Union. This work started in July 1994 while I

was at Bull, and was �nished while I was at the university of Karlsruhe.
yOn leave from Bull Corporate Research Center, rue Jean Jaur�es, F-78340 Les Clayes sous Bois.

1

and comes from the idea stated above that box closures actually implement explicit substitutions that would
be best represented in a form of �-calculus with explicit substitutions.

Logically, what we are going to do is push up instances of the (2R) rule in proofs, replacing it by simpler
rules that (Cut) will be able to cross without problems. In the natural deduction system, this means pushing
up instances of (2I). For example, consider the case where the last rule above (2I) is ()E):

2� ` u : �1)�2 2� ` v : �1

()E) 2� ` uv : �2

(2I) 2�;�0 ` (uv)` : 2�2

Then we create a new operator ? and a new typing rule:

� ` u : 2(�1)�2) � ` v : 2�1

(2)E) � ` u ? v : 2�2

which is a valid deduction rule (take u?v as an abbreviation of box xy with u; v for x; y). Now we can rewrite
the former proof into:

2� ` u : �1)�2 2� ` v : �1

(2I) 2�;�0 ` u` : 2(�1)�2) (2I) 2�;�0 ` v` : 2�1

(2)E) 2�;�0 ` u` ? v` : 2�2

One (2I) (or (2R)) rule has been eliminated. The rule that corresponds to (2)E) in sequent style would
be:

�; x : 2�2 ` w : � � ` v : 2�1

(2) L) �; y : 2(�1)�2) ` w[y ? v=x] : �

and this rule does not exhibit any pathological behaviour any longer with respect to (Cut).
There are some di�culties with this approach, however. Notably, it is not clear how to push instances

of (2I) above instances of ()I), because in the premises of ()I) there is an additional free variable in the
assumption list, and it may not have a boxed typed: this prevents us from pushing (2I) upwards. But one
thing is clear: ? is a combinator, and we can only succeed in pushing all instances of (2I) upwards if we
can translate all �-terms into a combinatory system. These combinators should then be able to represent all
reductions in the �-calculus; and they should be typed by rules such as (2)L) above, i.e. rules that are not
pathological with respect to (Cut).

We shall be guided into �nding this miracle combinatory system by our second, computational intu-
ition: that we have to represent explicit substitutions in some way. The �-calculi with explicit substitutions
[ACCL90] are just combinatory systems that have the required properties. There are many variants of them,
so we shall explain the basic constructions on some simple variant of Curien's system of categorical combin-
ators �rst [Cur86]. Before we embark on building our language, we wish to make a few comments on the
relation with Lisp.

The traditional solution to implement eval in Lisp is to include an interpreter for the language itself,
wrapped inside the eval primitive. What can we understand by \interpreter" in a �-calculus setting? In a
broad sense, we need a general evaluationmechanism,whether it is a syntax-directed interpreter, or a bytecode
interpreter, or even a system that compiles a piece of text and executes it at run-time: in the recursion-theoretic
sense, what we mean by an interpreter is a machine. Abadi et al. [ACCL90] argue that the ��-calculus is
precisely a way of understanding the �-calculus from an machine-oriented point of view. In fact, they show
how to derive, with minimal e�orts, a machine | an interpreter | for implementing the �-calculus from
the rules of the ��-calculus. Notice in particular that a term of the form box u with v1; : : : ; vn for x1; : : : ; xn
represents a program u, in the context of a stack with n entries containing v1, : : : , vn respectively, and
packaged as a syntactic object. (Abadi et al. separate the stack from the substitution in the machine, but we
can see them as two parts of a global substitution or stack.)

A natural question we can ask is whether we could use some other system of combinators, for example
Sch�on�nkel and Curry's S and K (whose types are the Hilbert axioms (s) and (k)). The answer is, un-
fortunately, no: SK-reduction, or weak reduction, fails to reduce some translations of �-terms that would
be reduced by the �-rule. Proof-theoretically, SK-reductions do not eliminate all cuts. It may be possible

2

to correct this by �nding a proof-theoretic equivalent of Curry's equations [Bar84], but it does not seem
rewarding: Curry's equations are inscrutable and will hardly give us any insight into what happens during
cut-elimination. We are therefore committed to using categorical combinators or, in general, ��-calculi.

2.1 Categorical Combinators

We �rst provide a quick tour through categorical combinators, and explore the di�culties that await us, then
we vindicate and explain our solution.

Because Curien's (CCL�) is simpler than other �-calculi with explicit substitutions, we shall explain the
intuitions behind our constructions by using a formalism of categorical combinators very much like (CCL�).
We shall then develop our constructions for real in Section 2.4.

Our language of categorical combinators will be based on the following constants and operators, at least
so far as , (unbox) and ` (box) are not concerned. Do remember, when considering the typing rules we give,
that we are trying to construct terms u` of type 2� in a systematic way from the structure of u of type �.

Because the categorical combinators manipulate not only terms but also stacks of terms, we need additional
logical connectives for typing stacks: �rst, we need the type > of the empty stack (alternatively, the value
\true", or the terminal object in a cartesian closed category); then, we need to express how to extend a stack
s : S by pushing an element a : A onto it: this will be a couple (a; s) of type A � S, where � introduces
product types (alternatively, conjunction; we did not denote it by ^, as this conjunction may be totally
di�erent from any conjunction we might wish to add to the original logic). Another adjustment we have to
make is the following: we introduce a new binary connective

2

), and consider 2� as being an abbreviation for
>

2

) �. (2 is no longer a primitive connective in the logic.) Conversely, 	
2

) � will be logically equivalent
to 2()�).

The combinators are as follows:

� If u is a term of type �1��2
2

) �3, then �?u is a term of type �2
2

) �1)�3. (�
? is the curri�cation,

or abstraction operator; this is the � operator of the ��-calculus.)

� If u is a term of type �1
2

) �2) �3, and v is a term of type �1
2

) �2, then u ? v is a term of type
�1

2

) �3. (? is the application operator, also called the evaluation operator in categorical circles; don't
confuse it with the , evaluation operator. This is also called application in ��.)

� If u is a term of type �2
2

) �3 and v is a term of type �1
2

) �2, then u � v is a term of type �1
2

) �3.
(The composition operator. In ��, this would also be the explicit substitution application operator.)

� If u is a term of type �1
2

) �2 and v is a term of type �1
2

) �3, then u�?v is a term of type
�1

2

) �2 ��3. (The pairing combinator, or cons in ��, which pushes u on top of stack v.)

� "? is a constant of type �1 ��2
2

) �2 (the shift operation, which pops the top of stack in ��), 1? is a
constant of type �1��2

2

) �1 (the operation 1 that gets the top of stack, in ��), and id? is a constant
of type �

2

) � (this plays the rôle of the \placeholder for stacks" id in ��, and also of the empty stack).

We also adopt the following handy abbreviations. First, we assume that � associates to the right, i.e. �0 �

�1 � : : :� �n � 	 = �0 � (�1 � : : :� (�n �) : : :). Then, we also write popn for ("? � ("? � : : : � "?) : : :)| {z }
n times

if

n � 1, or for id? if n = 0. We write getn for 1? � popn if n � 1, or for 1? if n = 0.
The reduction rules, adapted from Curien's (or from Abadi et al.'s), are the following:

(�) (u � v) �w! u � (v �w)

(�id?) u � id? ! u

(id?�) id? � u! u

("?) "? � (u�?v)! v

(1?) 1? � (u�?v)! u

3

(�?) (�?u) ? v ! u � (v�?id?)

(�?) (u�?v) �w ! (u �w)�?(v �w)

(?) (u ? v) �w! (u �w) ? (v �w)

(�?) (�?u) �w ! �?(u � (1?�?(w � "?)))

Operationally speaking, these rules can be seen as describing a stack machine for evaluating �-terms,
as already announced. Read u � v as \u in the context of stack v" or as \do v then u", according
to context. We can derive the rule geti � (v0�

?(v1�
? : : :�?(vi�

?u) : : :)) �!� vi, so that we can read
geti as the instruction that reads stack location i (the top of stack is at index 0). We can also de-
rive the rule popi � (v0�

? : : :�?(vi�1�
?u) : : :) ! u, so popi is the instruction that pops i stack loca-

tions. Finally u�?w pushes u on stack w and returns the resulting stack. The (�?) rule describes �-
reduction: to evaluate a �-expression applied to v, push v on the current stack and evaluate the body
u of the �-expression in this new stack. (In particular, if we evaluate (�?u) ? v in the stack w, then
((�?u) ? v) � w

(�?)
�!(u � (v�?id?)) � w

(�)
�!u � (v�?id?) � w)

(�?)
�!u � ((v � w)�?(id? � w))

(id?�)
�! u � (v � w�?w), i.e.

we evaluate u in the stack formed by pushing the value of v in stack w onto stack w.) The last three rules
express the fact that to evaluate an expression in a stack, we have to evaluate its constituents in the same
stack, or (last rule) in some extended stack.

Now, given a pure �-term u, we build u` by translating u into a categorical combinator form using the
constructions above. The translation is de�ned as follows. We use an environment �, which is a map from
variable names to integer indices; we de�ne u` as u`[], where [] is the empty environment, and in general
de�ne u`� by:

� x`� =

�
getn�i�1 if �(x) = i

Qx if �(x) is unde�ned
where n is the cardinality of �;

� (uv)`� = (u`�) ? (v`�);

� (�x � u)`� = �?(u`�[x 7! n]), where �[x 7! n] is � with the binding x 7! n added, and n is the cardinality
of �.

The environment � is used to keep track of the positions allotted to each local variable in the run-time stack.
The additional operator Q is such that:

� if x has type �1
2

) �2, then Qx has type �3
2

) �1
2

) �2.

De�ning the Q operator of this type is legal, intuitively, because if we understand
2

) as meaning 2()),
the type (�1

2

) �2)) (�3
2

) �1
2

) �2) is inhabited. Indeed, using the functional interpretation for the

Hilbert-style system, we may understand Qx as the analogue of `K ?kwote x. This Q operator is mostly the
analogue of kwote in the categorical combinator algebra.

It then happens that the following reduction rule:

Qu � v ! Qu

is legal from the type perspective, and we add it.

2.2 Adding Eval

This translation is �ne for forming quotations of pure �-terms, but what about �-terms that already contain
some quotations or evaluations? And what about quoting or evaluating categorical combinator terms (i.e.,
quoted terms)?

We �rst deal with ,. This incurs two separate problems: we have to de�ne how , applies to quoted terms,
and we have to provide a translation of terms of the form ,u to quote them.

First, de�ne the reduction rules of , applied to quoted objects. Reducing ,(�?u) poses a problem, in that
we would like it to reduce to �x � e(u; x), where e is some evaluation function for u in the context x. We

4

are therefore forced to trade the unary operator , for a binary operator ev? that takes a quoted expression
to evaluate and a context in which to evaluate it. (This is also a classical way of de�ning an interpreter in
Lisp.) Therefore, from now on, we shall consider ,u as an abbreviation for ev?u(), where () : > denotes the
empty stack (and >, the type of the empty stack, is the logical constant true).

We also have the choice of de�ning ev? as a binary function, taking a term to evaluate and a stack; or as
a unary function, taking a term and returning a function from stacks to terms; or as a constant, or : : : We
shall consider ev? as a binary function: we shall see in Section 2.4 that otherwise conuence would not hold.
(See the discussion on rule (ev *`).)

So, the typing rule for ev? is:

� if u : 	
2

) � and v : 	, then ev?uv : �,

And the reduction rules come along:

(ev�?) ev?(�?u)w! �x � ev?u(x;w)

(ev?) ev?(u ? v)w ! (ev?uw)(ev?vw)

(ev�) ev?(u � v)w ! ev?u(ev?vw)

(ev�?) ev?(u�?v)w ! ev?uw � ev?vw

(ev"?) ev?"?w !" w

(ev1?) ev?1?w ! 1w

(evid?) ev?id?w ! w

(evQ) ev?(Qu)w ! u

where we have had to add new couple � and projection operators ", 1 to account for evaluations of �? and
"?, 1? respectively. Their types are: u � v has type �1 � �2 whenever u has type �1 and v has type �2;
whenever u has type �1 ��2, " u has type �2 and 1u has type �1. (That is, we add a conjunction � to the
original �-calculus.)

It is clear that we should have (" u)`� = "?�u`�, (1u)`� = 1? �u`�, and (u � v)`� = (u`�)�?(v`�). Quoting
() is a bit trickier. Looking at types, ()`� should be of type �

2

)>, that is, it should throw away the whole
stack, of type �, and produce the empty stack, of type >. But a stack of height n will have a type � of the
form �1 � : : :� �n � >, so popn has the desired type. We therefore de�ne:

� ()`� = popn where n is the cardinality of �;

Because the stack is of height n, ()`� produces the empty stack by just popping n elements o� the stack. This
way, we avoid introducing new constants, and simplify later calculi. (This works not so much because we are
in a typed universe, but because scoping is lexical: new constants would have to be introduced in non-lexical
languages.)

Then, we have to de�ne how we quote terms of the form ev?uv. We could use the following trick: ev?

alone is a perfectly valid function, of type (�1
2

) �2)) �1) �2. It is valid because its type is indeed
provable in S4, provided we understand �1

2

) �2 as 2(�1)�2). Now, 	
2

) ((�1
2

) �2))�1)�2) is also
provable, which means that we can posit the existence of a special constant ev??, with the following typing
rule:

� ev?
? : 	

2

) (�1
2

) �2))�1)�2

If ev? was just a constant, we might then quote ev?uv by reading this term as the application of ev? to u

and v, introducing a new constant ev?? and using the translation:

� ev?`� = ev?
?

We shall see in Section 2.3 that using this kind of trick is not really enough, and we shall do otherwise.

5

2.3 Adding Quote

Adding quote is again the hardest task at hand. To see what we have to do, notice that the typing rules for
�?, ?, �?, "?, 1?, id? are some kind of an internal natural deduction system. By \internal" we mean that this
system handles sequents by representing them inside the very language of formulas: consider the symbol

2

)

as the analogue of the ` sequent formation arrow, and read >��n� : : :��0
2

) � as the internalized version
of the sequent �n; : : : ;�0 ` �. We then have the following correspondence:

�? typing rule � Internal ()I)
? typing rule � Internal ()E)
� typing rule � Internal cut
�? typing rule � Internal (�I)
"? typing rule � Internal weakening and (�E)
1? typing rule � Internal (Ax) and (�E)
id? � Internal (Ax) and (>I)
ev?

? typing rule � Internal (2E)

The last one is less clear than the others: notice that if u : �0 � : : : � �n � >
2

) 2�, where 2� is an
abbreviation for >

2

) �, then ev?
? ? u ?Q() : �0� : : :��n �>

2

) �, which is indeed the internal version of
(2E). Also, most other rules need to be weakened to �nd back the full version of the original rules.

A main di�erence between (external) sequents and formulas are that the left-hand sides of sequents are
sets, whereas left-hand sides of

2

)-formulas are lists of formulas. The gap between sets and lists is �lled
in by the conjunction rules, which handle all chores of permuting, contracting or dropping assumptions (the
so-called structural rules of logic).

Given this view of
2

)-formulas as internal sequents, it is now easy to see what kind of rule we have to
�nd, namely an internal version of (2I):

� if u is a term of type 2�0� : : :�2�n�>
2

) �, then `
?u is a term of type 2�0� : : :�2�n�>

2

) 2�
(� (2I) without weakening, internally; and `

? is then the internal quote operator).

The `
? operator poses several problems. First, its computational content is not trivial, since `

? does not
operate on a mere part of the formula, but has to check that the left-hand side of

2

) really is a conjunction
of > and of boxed formulas. But there is another problem: compositions � are the internalized version of the
cut rule, and to eliminate such internalized cuts in the presence of an internal quote operator `

? is the same
task as eliminating ordinary cuts in the presence of the quote operator `. (Apart from the fact that cuts with
an axiom, namely weakenings, or from the computational viewpoint, the getn variable-fetching instructions,
cannot be eliminated).

Since the problems posed by the `
? operator are exactly the same as those posed by the ` operator, we

shall adopt the same solution: consider the operators �?, ?, �, �?, "?, 1?, id?, Q and ev? as being operators
at level 1, and write them �1, ?1, �1, �1, "1, 11, id1, Q1 and ev1; then add similar operators �2, ?2, �2, �2, "2,
12, id2, Q2 and ev2 at level 2 with similar reduction rules. We shall again have the same problem encoding
quote in the new embedded calculus, so we create new operators with a 3 superscript, then a 4, a 5, and so
on. This creates in�nitely many operators, corresponding to in�nitely many levels of computation (operators
at level ` compute under ` boxes).

This in�nite regression of embeddings of combinatory systems | of interpreters | is also visible in Lisp:
this is the so-called reexive property of Lisp systems. In Lisp, we can produce a syntactic representation |
a piece of data | of the code for an interpreter; if we evaluate this code (say, by compiling it and executing
it), we get the Lisp interpreter. If we submit this same code to the thus obtained Lisp interpreter, we get a
level 2 interpreter. Then we can interpret this code again by the level 2 interpreter to get a level 3 interpreter,
and so on. (This leads to drastic losses in performance, but this is not the point of this paper.) There are
still di�erences between Lisp and our language. One of them is that, in Lisp, we only need one interpreter to
implement the in�nite tower of interpreters. On the other hand, in Lisp, we never evaluate under a quote,
although we are allowed to do this in our language. If we only used weak notions of reductions, where we
don't reduce under � or under `, we would only need one evaluator, namely rules (ev�?) through (evev?). At
least, we could dispense with having in�nitely many operators, as Lisp does, by encoding operators at level

6

2 and up with �nitely many constants, but this brings little bene�t for the study of both the calculus and the
deduction system.

2.4 The �evQ-Calculus

To sum up, we have arrived at our �nal language of constructions, in its (yet) untyped form. This is an
extension of the ��*-calculus: a special operator *

` is used to wrap stacks that have been pushed under a �,
and there are two sorts of terms, the elementary terms and the stacks. This forces us to split �, ev and Q in
two versions, one when their �rst argument is an elementary term, and one where it is a stack.

De�nition 2.1 (�evQ) The set of �evQ-terms is de�ned by the following syntax, where x, y, z, : : : denote

(elementary) term variables taken from an in�nite set V. Terms s, t, u, v, w, : : : are elements of the

language T [S, where T is the language of elementary terms and S is that of explicit substitutions or stacks:

T ::= V j �V � T j TT j 1S j �`T j T ?` T j T �`T S j 1` j ev`TTS j Q
`
TT

S ::= () j T � S j" S j S �`S S j id
` j T �` S j"`j*` S j ev`SSS j Q

`
SS

modulo �-renaming, and where ` varies among all integers � 1.
By extension, we also write u �0 v for u � v, and u ?0 v for uv. Moreover, we shall write �` for either �`S

or �`T , ev
` for either ev`S or ev`T , and Q` for either Q`

S or Q`
T ambiguously: the sorts will tell which one is

intended.

Although this language contains sorts, we shall also sometimes refer to it as the untyped �evQ-calculus. This
is in contrast with the typed calculus, which we introduce in De�nition 2.2.

Notice that if we forget about the ` subscript, u �`T v is u[v] of the ��-calculus, and u �`S v is u � v. Notice
also that, if ev`T is similar to Lisp's eval, then ev`S is Lisp's evlis. In the sequel, we shall happily leave the
sorts implicit whenever possible, writing �`, ev`, Q`.

There is no apparent reason why we split terms into elementary terms and stacks, and we might have
reunited them for good. However, we shall be interested in an extension of the calculus with so-called �-like
rules (see Section 4). This will be an extension of the ��-calculus instead of the ��*-calculus. The latter
calculus is only conuent when only elementary term variables, and no stack varibles, are allowed. Since we
need elementary term variables (as bound variables in �)-abstractions, we need to separate elementary terms
from stacks.

In fact, just having two sorts, T and S, will not be enough to get a well-behaved calculus. Indeed, the part
that propagates substitutions down in this calculus does not terminate (see Part III). In fact, the calculus
with the �-like rules won't be conuent either. Our e�orts to re�ne the sorts T and S have led to a calculus
that is almost the following typed system, so we consider the typed system directly:

De�nition 2.2 (Types) The set T of term types, the set S of stack types and the set M of metastack
types are de�ned as follows:

T ::= B j T) T j S
2

) T

S ::= > j T � S

M ::= S j S
2

)M

We call types or formulas any term, stack or metastack types.

We denote types by �, 	, : : : , (possibly primed or subscripted), term types by � , � 0, : : : , stack types by &,

&0, : : : , and metastack types by �, �0, : : :Observe that every type is either a term type or a metastack type,

and not both at the same time.

We use the following convention. For every `-tuple &` of stack types (&1; : : : ; &`), we write &`
2

)	 for

&1
2

) &2
2

) : : : &`
2

) 	 (or simply 	 if ` = 0).
The typing rules are then given in Figure 1, where contexts � are �nite sets of assumptions of the form

x : � , where x is a term variable and � is a term type; furthermore, in rules (2`2E), (2`2I) and (2`Cut),
the operators ev`, Q` and �` denote ev`T , Q

`
T and �`T respectively if and only if � is a term type � , and

denote ev`S , Q
`
S and �`S respectively if and only if � is a metastack type �.

7

Alternatively, we consider this as a natural deduction system for S4 (with nested sequents), extended by using
2

) in place of 2 (and of ` in nested sequents). The idea is that the type of elementary terms will be a term
type, and the type of stacks will be a metastack type.

Notice that all the rules at levels 1 and up are actually almost Hilbert-style rules. From the deductive
point of view, the (2` *) rule is superuous. On the other hand, useful rules from the deductive point of
view and which are derivable from the rules of Figure 1 are:

� ` u : &`�1
2

)&
2

) �

� ` u�` "`: &`�1
2

)� � &
2

) �

(a weakening rule) where �` is �`T if � is a term type, and �`S if � is a metastack type; and:

(2` �E)

� ` u : &`
2

)� � &

� ` 1` �`T u : &`
2

)�

(resp. � `"` �`Su : &
` 2

)&)

which are boxed conjonction elimination rules. Notice that the typing rules use explicit boxed cut rules;
The idea of adding an explicit cut-rule to a natural deduction system to represent a calculus with explicit
substitutions is originally due to Hugo Herbelin and Bruno Pagano.

The translation rules from terms of the �S4-calculus to the new language are given in Figure 2. The
G-translation uses an auxiliary quotation function u 7! u`�, where � is an environment mapping variables
to integer indices. The cardinality of � is the number of variables that it binds. Because of our conventions
that ?0 = ? and �0=�, we could have dispensed with the statement of the translations of application uv and
pairing u � v. We have left them for clarity.

The G-translation is well-de�ned:

Lemma 2.1 For every �S4-term u, G(u) is a term of sort T . Moreover, for every environment �, the

quotation function u 7! u`� maps terms of sort T to terms of sort T , and terms of sort S to terms of sort S.

Proof: We �rst show that u 7! u`� maps terms of sort T to terms of sort T , and terms of sort S to terms
of sort S. This is a routine check.

We now prove that G(u) is a term of sort T for every u, by structural induction on u. The only non-
trivial case is when u is of the form box w with v1; : : : ; vn for x1; : : : ; xn. By induction hypothesis, G(w) is of

sort T , hence (G(w))`[] is of sort T . By induction hypothesis again, G(v1), : : : , G(vn) are of sort T , hence

((G(w))`[])[G(v1)=x1; : : : ; G(vn)=xn] is well-sorted again, and of sort T . 2

The reduction rules that we need are given in Figure 3, and Figure 4. Intuitively, the rules of Figure 4
are sorting rules, and allow terms of lower levels ` to go down through terms of higher levels L until they

come to their proper place, in a context of level `. These rules are needed to simulate cut elimination in S4
(see Section 3.2).

The reduction rules are to be read by replacing every ev`, �` and Q` by their respective versions with
an S or T index, so that the rules are well-sorted, i.e. so that both sides are valid untyped �evQ-terms of
the same sort (S or T). For example, rule (�`) actually denotes two rules: (u �`T v) �`S w ! u �`T (v �`S w)
and (u �`S v) �

`
S w! u �`S (v �

`
S w). We have done this so as to be able to state the rules in as little space as

possible: doing otherwise would not contribute any signi�cant information anyway. This won't be too much
of a nuisance, as the S and T subscripts have little inuence on how rewriting proceeds.

Some rules could have been stated as one schema instead of two: if we overlook the constraints of the
form 1 � ` < L, then (ev?`) and (ev �`) are (ev`?L) and (ev` �L) respectively, with L = `. As announced,
group (B) is more complicated than what we presented in Section 2.1, because it is now a variant of the
��*-calculus.

Moreover, notice how we have stated rule (ev *`). For simplicity, consider the case when ` = 1. Had we
stated it as ev1(*1 u)w! (1w) � (ev1u(" w)), we would lose conuence. Consider indeed ev1(*1 id1)w: by
rules (* id1) and (evid1), this reduces to w, while it reduces to (1w) � (" w) by using the latter formulation
of (ev *1) and rule (evid1). This would then suggest the rule (1w) � (" w)! w, i.e. surjective pairing, which
destroys conuence [Klo80]. This is also the main reason why ev` is a binary operator, and not a unary one:

8

Level 0:

(Ax)
�; x : � ` x : �

()E)

� ` u : �1) �2
� ` v : �1
� ` uv : �2

()I)
�; x : �1 ` u : �2

� ` �x � u : �1) �2

(�E)

� ` u : � � &

� ` 1u : �
(resp. � `" u : &)

(�I)

� ` u : �
� ` v : &

� ` u � v : � � &

(>I)
� ` () : >

Level ` � 1:

(2`Ax1)
� ` 1` : &`�1

2

)� � &
2

) �
(2`Ax2)

� ` id` : &`�1
2

)&
2

) &

(2`W1)
� `"`: &`�1

2

)� � &
2

) &

(2`)E)

� ` u : &`
2

)�1) �2

� ` v : &`
2

)�1

� ` u ?` v : &`
2

)�2

(2`) I)
� ` u : &`�1

2

)�1 � &
2

) �2

� ` �`u : &`�1
2

)&
2

) �1) �2

(2` *)
� ` u : &`�1

2

)&01
2

) &02
� `*` u : &`�1

2

)� � &01
2

) � � &02
(2` � I)

� ` u : &`
2

)�

� ` v : &`
2

)&

� ` u �` v : &`
2

)� � &

(2`2E)

� ` u : &`�1
2

)&
2

) �

� ` w : &`�1
2

)&

� ` ev`uw : &`�1
2

)�

(2`2I)

� ` u : &`�1
2

)&
2

) �

� ` Q`u : &`�1
2

)

&0
2

) &
2

) �

(2`Cut)
� ` u : &`�1

2

)&01
2

) � � ` v : &`�1
2

)&02
2

) &01
� ` u �` v : &`�1

2

)&02
2

) �

Figure 1: Typing rules

9

G-translation, from �S4-terms to �evQ-terms:

G(x) = x G(uv) = G(u)G(v) G(�x � u) = �x �G(u)
G(unbox u) = ev1TG(u)()

G(box u with v1; : : : ; vn for x1; : : : ; xn) = (G(u)`[])[G(v1)=x1; : : : ; G(vn)=xn]

Quotation `� in an environment � (of cardinality n):

x`� = Q1
Tx if �(x) is unde�ned

x`� = 11 �1T ("
1 �1S("

1 �1S : : :�
1
S "

1) : : :)| {z }
n�1��(x) times

otherwise

()`� = id1 if n = 0

()`� = "1 �1S("
1 �1S : : :�

1
S "

1)| {z }
n times

if n 6= 0

(1u)`� = 11 �1T u`�

(" u)`� = "1 �1Su`�

(u � v)`� = u`� �1 v`�

(uv)`� = (u`�) ?1 (v`�)

(�x � u)`� = �1(u`�[x 7! n])

(id`)`� = id`+1

(1`)`� = 1`+1

("`)`� = "`+1

(u �` v)`� = (u`�) �`+1 (v`�)

(u ?` v)`� = (u`�) ?`+1 (v`�)

(�`u)`� = �`+1(u`�)

(*` u)`� = *`+1 (u`�)

(ev`Tuw)
`� = ev

`+1
T (u`�)(w`�)

(ev`Suw)
`� = ev

`+1
S (u`�)(w`�)

(u �`T v)`� = (u`�) �`+1T (v`�)

(u �`S v)
`� = (u`�) �`+1S (v`�)

(Q`
Tu)

`� = Q`+1
T (u`�)

(Q`
Su)

`� = Q`+1
S (u`�)

Figure 2: Translation rules

10

were it unary, we would be forced to say ev1(*1 u)! �w � (1w) � (ev1u(" w)), which would lead to the same
problem.

Notice also how close the reduction rules for ev` are to those of �`�1 (in particular, observe the interaction
with *` in rules in groups (B) and (C)). This follows our intuition that �`�1 is the application of a substitution,
while ev` applies a substitution to an elementary term, which it also evaluates to some term at the lower level
` � 1.

To conclude on the proof-theoretical level, the (2R) rule and the quote operator are convenient short-
hands for producing quoted objects and boxed types, but this deceptively simple rule hides a full tower of
interpreters for the language at hand. To put it another way, whereas execution is cut-elimination, the �evQ
perspective is that preprocessing the language for its implementation| or compilation| is the decomposition
of the problematic (2R) rule in atomic steps.

3 Interpreting Cut Elimination in �evQ

We �rst prove some properties we can expect from a well-behaved calculus: in Section 3.1, we show that we
can check whether an untyped �evQ-term is typable in polynomial time, that every typable �evQ-term has a
principal type, and that the types are preserved by rewriting. Section 3.2 is a long and rather tedious series
of results that we use in Section 3.3 to prove that every valid cut-elimination step in LS4 can be simulated
by a sequence of reduction steps in the typed �evQ-calculus.

3.1 Typing

Theorem 3.1 (Typability) Deciding whether a given �evQ-term is typable in the system of Figure 1 is

decidable in polynomial time. Moreover, if u is typable, then it has a most general type.

Proof: The main di�culty is the fact that we have both term types and metastack types. We recast this by
saying that the algebra of formulas is order-sorted, using two disjoint sorts T andM, and a subsort S � M.

Write � :: s to say that formula � has sort s, and for any n-ary type constructor f , write f :: s1; : : : ; sn ; s

to say that whenever �1 :: s1, : : : , �n :: sn, then f(�1; : : : ;�n) :: s. The signature of the algebra of formulas
and types is given by the following declarations:

� � ::; T , for any base type �;

�) :: T ; T ; T ;

�
2

):: S; T ; T and
2

):: S;M;M;

� > :: S;

� � :: T ;S ; S.

We also add meta-variables � of sort either T orM.
We claim that this signature is regular , i.e. any formula � has a least sort s(�) (for the � ordering). This

is clear, since every formula is either a term type or a metastack type, but not both.
We then claim that this signature is coregular , i.e. for every n-ary type constructor f , and for any sort s,

the set of n-tuples (s1; : : : ; sn) of sorts such that f :: s1; : : : ; sn ; s0 for some s0 � s has at most one greatest
element (for the componentwise extension of � to n-tuples). This is clear for base types and for >. In the �
case, if s isM or S, then the greatest couple of argument sorts is (T ;S), otherwise the set of argument sorts
is empty. In the implication case, then the greatest couple is (T ; T) if s is T , otherwise there is no possible
argument sort. In the

2

) case, then the greatest couple is (S; T) if s = T and (S;M) if s =M.
And the sort signature is downward-complete, i.e. the set of sorts smaller than two given sorts is either

empty or has a greatest element: this is also clear.
Since the signature is regular, coregular and downward-complete, uni�cation in the order-sorted algebra

of formulas is unitary , i.e. any uni�cation problem has at most one more general solution, and uni�cation
can be done in polynomial time [JK90].

11

(A) Computation rules (level 0):

(�) (�x � u)v ! u[v=x]
(") " (u � v)! v

(1) 1(u � v)! u

(B) Computation rules (level `, ` � 1):

(�`) (�`u) ?` v ! u �` (v �` id`)

(�id`) u �` id` ! u (1 *`) 1`�` *` u! 1`

(id�`) id` �` u! u (1 * �`) 1` �` (*` u �` v)! 1` �` v

(�`) (u �` v) �` w! u �` (v �` w) ("*`) "` �` *` u! u�` "`

("`) "` �`(u �` v)! v ("* �`) "` �`(*` u �` v)! u �` ("` �`v)

(1`) 1` �` (u �` v)! u (**`) *` u�` *` v !*` (u �` v)

(�`) (u �` v) �` w! (u �` w) �` (v �` w) (** �`) *` u �` (*` v �` w)!*` (u �` v) �` w

(�`) (�`u) �` w ! �`(u�` *` w) (*�`) *` u �` (v �` w)! v �` (u �` w)
(?`) (u ?` v) �` w! (u �` w) ?` (v �` w) (* id`) *` id` ! id`

(Q�`) Q`u �` v ! Q`u

(C) Evaluation rules (level `! `� 1, ` � 1):

(ev�`) ev`(�`u)w!

�
�x � ev`u(x � w) if ` = 1

�`�1(ev`(u�`�1 "`�1)(1`�1 �`�1 (w�`�1 "`�1))) if ` > 1
(ev?`) ev`(u ?` v)w ! (ev`uw) ?`�1 (ev`vw)

(evid`) ev`id`w! w

(ev�`) ev`(u �` v)w ! ev`u(ev`vw)

(ev "`) ev` "` w!

�
" w if ` = 1
"`�1 �`�1w if ` > 1

(ev1`) ev`1`w!

�
1w if ` = 1

1`�1 �`�1 w if ` > 1

(ev �`) ev`(u �` v)w ! (ev`uw) �`�1 (ev`vw)
(ev *`) ev`(*` u)(w1 �

`�1 w2)! w1 �
`�1 (ev`uw2)

(1ev *`)

�
1(ev1(*1 u)w) !1w if ` = 1

1`�1 �`�1 ev`(*` u)w!1`�1 �`�1 w if ` > 1

(" ev *`)

�
" (ev1(*1 u)w) !ev1u(" w) if ` = 1
"`�1 �`�1ev`(*` u)w!ev`u("`�1 �`�1w) if ` > 1

(ev **`) ev`(*` u)(ev`(*` v)w)! ev`(*` (u �` v))w
(evQ`) ev`(Q`u)w! u

Figure 3: Reduction rules

12

(D) Substitution in terms at higher levels (1 � ` < L):

(�L�`) (�Lu) �` w! �L(u �` w)
(?L�`) (u ?L v) �` w! (u �` w) ?L (v �` w)

(idL�`) idL �` w! idL

(�L�`) (u �L v) �` w! (u �` w) �L (v �` w)
("L �`) "L �`w!"L

(1L�`) 1L �` w! 1L

(�L �`) (u �L v) �` w ! (u �` w) �L (v �` w)
(*L �`) (*L u) �` w!*L (u �` w)

(QL�`) (QLu) �` w! QL(u �` w)
(evL�`) (evLuv) �` w! evL(u �` w)(v �` w)

(E) Simpli�cation of ev`-terms (1 � ` < L):

(ev`�L) ev`(�Lu)w! �L�1(ev`uw)
(ev`?L) ev`(u ?L v)w ! (ev`uw) ?L�1 (ev`vw)

(ev`idL) ev`idLw! idL�1

(ev`�L) ev`(u �L v)w ! (ev`uw) �L�1 (ev`vw)
(ev` "L) ev` "L w!"L�1

(ev`1L) ev`1Lw! 1L�1

(ev` �L) ev`(u �L v)w ! (ev`uw) �L�1 (ev`vw)
(ev` *L) ev`(*L u)w!*L�1 (ev`uw)
(ev`QL) ev`(QLu)w! QL�1(ev`uw)
(ev`evL) ev`(evLuv)w! evL�1(ev`uw)(ev`vw)

(F) Quoting (1 � ` < L):

(Q`�L) Q`(�L�1u)! �L(Q`u)
(Q`?L) Q`(u ?L�1 v)! Q`u ?L Q`v

(Q`idL) Q`idL�1 ! idL

(Q`�L) Q`(u �L�1 v)! Q`u �L Q`v

(Q` "L) Q` "L�1!"L

(Q`1L) Q`1L�1 ! 1L

(Q` �L) Q`(u �L�1 v)! (Q`u) �L (Q`v)
(Q` *L) Q`(*L�1 u)!*L (Q`u)
(Q`QL) Q`(QL�1u)! QL(Q`u)
(Q`evL) Q`(evLuw)! evL+1(Q`u)(Q`w)

Figure 4: Reduction rules (continued)

13

We can then use a simple modi�cation of Hindley's algorithm for the simply-typed �-calculus [Hin69] |
except that uni�cation is now order-sorted uni�cation on the algebra of formulas. Indeed, the computation
of the most general type proceeds by structural induction on u, as at most one typing rule can apply at each
step, introducing meta-variables of the right sort to represent unknown formulas, and using uni�cation to
resolve constraints (as in Ax1, Ax2). Notice that there is no ambiguity in the rules (2`2I), (2`2E) and
(2`Cut): whether � must be of sort T or M is given by the index, T or S, of the topmost operator of the
term to type. 2

The algorithm is better known as (a subset of) the typing algorithm for ML programs [Mil78], except that
we don't need to generalize type variables. (The order-sorted trick is the way that equality-admitting and
imperative types are handled in Standard ML [MTH90].) On the other hand, this shows that not only the
�,` and the �S4-calculus, but also the �evQ-calculus are suitable extensions of the type discipline of ML.

Theorem 3.2 (Subject Reduction) Let u be a term of the �evQ-calculus. If � ` u : � is derivable, and

u �!� v, then � ` v : � is derivable.

Proof: By induction on the number of rewriting steps from u to v. We need to do a case analysis on the
rule used at each step, and to check that whenever the left-hand side is well-typed, the right-hand side has
the same type under the same context. The summary of the types for each rule of Figure 3 is in Figures 5
and 6, where we have shown the most general typings for the left-hand side of the rules: the second column
denotes the type of the assumptions, and the third column is the type of the left-hand side. We have shown
on a second line what the most general typing of the right-hand side was, when di�erent. (The level ` is any
integer such that ` � 1.) Also, when some types have been left as �, or �0, or etc., then whether it is a term
type or a metastack type is determined by the variant of the rule that we examine (i.e., the omitted indices
on ev`, �` and Q`).

The only unexplained case is rule (�): there u[v=x] gets some most general type � (a term type); a simple
induction on the derivation of : : : ; x : �2 ` u : �1 then shows that �1 is an instance of � , so u[v=x] has type �1
as well.

Similarly, the types for each rule of Figure 4 are given in Figures 7 and 8, where 1 � ` < L. We
have adopted the convention that any text of the form : : : &0

2

) �m
2

) : : :
2

) �n
2

) � : : :, which is already
meaningful when m � n, means : : : &0

2

) � : : : when m = n+ 1. 2

Before we continue, we introduce some useful notation:

De�nition 3.1 Let n be a natural integer.

We let pop`n be id` when n = 0, and "` �`("` �`(: : :�` "`) : : :)| {z }
n times

when n � 1.

We de�ne get`n as 1` when n = 0, and as 1` �` pop`n otherwise.

Finally, for every term w, we de�ne popn;
`w as w if n = 0, and as "` �`(popn�1;

`w) if n � 1. We de�ne

getn;
`w as 1` �` (popn;

`w). And we de�ne w[popn]
` as w if n = 0, and as w �` pop`n otherwise.

The following says that whenever we take a �,`-term u, quoting it changes its type in the expected way:

Theorem 3.3 (Quoting) Let � be a boxed context, i.e. mapping variables to term types of the form &
2

) � .

Let u be a �evQ-term such that the sequent:

�; x1 : �1; : : : ; xn : �n ` u : �

is derivable in the system of Figure 1. Then u`[x1 7! 0; : : : ; xn 7! n�1] has type �n�(�n�1�: : : (�1�&) : : :)
2

)

� under context �, for any stack type &.

Proof: By structural induction on u, using the de�nitions of Figure 2.
If u is a variable other than x1, : : : , xn, then u`[x1 7! 0; : : : ; xn 7! n � 1] = Q1u indeed has type

�n � (�n�1� : : : (�1 � &) : : :)
2

) � under context �. (In fact, any type &0
2

) �.) Indeed, � is a boxed context,
so � is boxed and we can apply the typing rule for Q1.

If u is xi, then u`[x1 7! 0; : : : ; xn 7! n� 1] = get1n�1�i, which has type �n � (�n�1 � : : : (�1 � &) : : :)
2

) �i

under context �, and the claim is valid in this case, too.

14

Rule Assumptions Type

Group (A)

(�) (: : : ; x : �2 ` u : �1); v : �2 �1
rhs: (: : : ; u[v=x] : �) �

(") u : �; v : & &

rhs: v : & &

(1) u : �; v : & �

rhs: u : � �

Group (B)

(�`) u : &0`�1
2

)�1 � &
2

) �2; v : &0
`�1 2

)&
2

) �1 &0`�1
2

)&
2

) �2

(�id`) u : &0`�1
2

)&
2

) �0 &0`�1
2

)&
2

) �0

rhs: u : � �

(id�`) u : &0`�1
2

)&1
2

) &2 &0`�1
2

)&1
2

) &2
rhs: u : & &

(�`) u : &0`�1
2

)&3
2

) �; v : &0`�1
2

)&2
2

) &3; &0`�1
2

)&1
2

) �

w : &0`�1
2

)&1
2

) &2

("`) u : &0`
2

)�; v : &0`
2

)& &0`
2

)&

rhs: v : &0 &0

(1`) u : &0`
2

)�; v : &0`
2

)& &0`
2

)�

rhs: u : � 0 � 0

(�`) u : &0`�1
2

)&1
2

) �; v : &0`�1
2

)&1
2

) &3; &0`�1
2

)&4
2

) � � &3

w : &0`�1
2

)&4
2

) &1

(�`) u : &0`�1
2

)�1 � &1
2

) �2; w : &0`�1
2

)&2
2

) &1 &0`�1
2

)&2
2

) �1) �2

(?`) u : &0`�1
2

)&1
2

) �1) �2; v : &0
`�1 2

)&1
2

) �1; &0`�1
2

)&2
2

) �2

w : &0`�1
2

)&2
2

) &1

(1 *`) u : &0`�1
2

)&1
2

) &2 &0`�1
2

)� � &1
2

) �

rhs: &0`�1
2

)� � &1
2

) �

(1 * �`) u : &0`�1
2

)&1
2

) &2; v : &0
`�1 2

)&3
2

) � � &1 &0`�1
2

)&3
2

) �

rhs: v : &0`�1
2

)&3
2

) � � &1 &0`�1
2

)&3
2

) �

("*`) u : &0`�1
2

)&1
2

) &2 &0`�1
2

)� � &1
2

) &2

("* �`) u : &0`�1
2

)&1
2

) &2; v : &0
`�1 2

)&3
2

) � � &1 &0`�1
2

)&3
2

) &2

(**`) u : &0`�1
2

)&1
2

) &2; v : &0
`�1 2

)&3
2

) &1 &0`�1
2

)� � &3
2

) � � &2

(** �`) u : &0`�1
2

)&1
2

) &2; v : &0
`�1 2

)&3
2

) &1 &0`�1
2

)&4
2

) � � &2

w : &0`�1
2

)&4
2

) � � &3

(*�`) u : &0`�1
2

)&1
2

) &2; v : &0
`�1 2

)&3
2

) � &0`�1
2

)&3
2

) � � &2

w : &0`�1
2

)&3
2

) &1

(* id`) &0`�1
2

)� � &
2

) � � &

rhs: &0`�1
2

)&0
2

) &0

(Q�`) u : &0`�1
2

)&1
2

) �; v : &0`�1
2

)&3
2

) &4 &0`�1
2

)&3
2

) &1
2

) �

rhs: u : &0`�1
2

)&1
2

) � &0`�1
2

)&3
2

) &1
2

) �

Figure 5: Checking subject reduction (part 1)

15

Rule Assumptions Type

Group (C)

(ev�`) u : &0`�1
2

)�1 � &
2

) �2; w : &0`�1
2

)& &0`�1
2

)�1) �2

(ev?`) u : &0`�1
2

)&1
2

) �1) �2; v : &0
`�1 2

)&1
2

) �1; w : &0`�1
2

)&1 &0`�1
2

)�2

(evid`) w : &0`�1
2

)& &0`�1
2

)&

rhs: w : &0 &0

(ev�`) u : &0`�1
2

)&1
2

) �; v : &0`�1
2

)&3
2

) &1 &0`�1
2

)�

w : &0`�1
2

)&3

(ev "`) w : &0`�1
2

)� � & &0`�1
2

)&

(ev1`) w : &0`�1
2

)� � & &0`�1
2

)�

(ev �`) u : &0`�1
2

)&1
2

) �; v : &0`�1
2

)&1
2

) &2 &0`�1
2

)� � &2

w : &0`�1
2

)&1

(ev *`) u : &0`�1
2

)&1
2

) &2; w1 : &0
`�1 2

)�; w2 : &0
`�1 2

)&1 &0`�1
2

)� � &2

(1ev *`) u : &0`�1
2

)&1
2

) &2; w : &0`�1
2

)� � &1 &0`�1
2

)�

rhs: w : &0`�1
2

)� � &1 &0`�1
2

)�

(" ev *`) u : &0`�1
2

)&1
2

) &2; w : &0`�1
2

)� � &1 &0`�1
2

)&2

(ev **`) u : &0`�1
2

)&1
2

) &2; v : &0
`�1 2

)&3
2

) &1; &0`�1
2

)� � &2

w : &0`�1
2

)� � &3

(evQ`) u : &0`�1
2

)&1
2

) �; w : &0`�1
2

)&3 &0`�1
2

)&1
2

) �
rhs: u : �0 �0

Figure 6: Checking subject reduction (part 2)

16

Rule Assumptions Type

Group (D)

(In all rules except the rhs of (idL�`); ("L �`); (1L�`); w : &0`�1
2

)&00`
2

) &0` is assumed.)

(�L�`) u : &0L�1
2

)�1 � &0L
2

) �2 &0`�1
2

)&00`
2

) &0`+1
2

) : : :
2

) &0L
2

) �1) �2

(?L�`) u : &0L
2

)�1) �2 &0`�1
2

)&00`
2

) &0`+1
2

) : : :
2

) &0L
2

) �2

v : &0L
2

)�1

(idL�`) &0`�1
2

)&00`
2

) &0`+1
2

) : : :
2

) &0L
2

) &0L

(�L�`) u : &0L�1
2

)&1
2

) � &0`�1
2

)&00`
2

) &0`+1
2

) : : :
2

) &0L�1
2

) &3
2

) �

v : &0L�1
2

)&3
2

) &1

("L �`) &0`�1
2

)&00`
2

) &0`+1
2

) : : :
2

) � � &0L
2

) &0L

(1L�`) &0`�1
2

)&00`
2

) &0`+1
2

) : : :
2

) � � &0L
2

) �

(�L �`) u : &0L
2

)�; v : &0L
2

)& &0`�1
2

)&00`
2

) &0`+1
2

) : : :
2

) &0L
2

) � � &

(*L �`) u : &0L
2

)& &0`�1
2

)&00`
2

) &0`+1
2

) : : :
2

) � � &0L
2

) � � &

(QL�`) u : &0L�1
2

)&0L
2

) � &0`�1
2

)&00`
2

) &0`+1
2

) : : :
2

) &0L�1
2

) &
2

) &0L
2

) �

(evL�`) u : &0L�1
2

)&0L
2

) � &0`�1
2

)&00`
2

) &0`+1
2

) : : :
2

) &0L�1
2

) �

v : &0L�1
2

)&0L

Group (E)

(In all rules except the rhs of (ev`idL); (ev` "L); (ev`1L); w : &0`�1
2

)&0` is assumed.)

(ev`�L) u : &0L�1
2

)�1 � &0L
2

) �2 &0`�1
2

)&0`+1
2

) : : :
2

) &0L
2

) �1) �2

(ev`?L) u : &0L
2

)�1) �2 &0`�1
2

)&0`+1
2

) : : :
2

) &0L
2

) �2

v : &0L
2

)�1

(ev`idL) &0`�1
2

)&0`+1
2

) : : :
2

) &0L
2

) &0L

(ev`�L) u : &0L�1
2

)&1
2

) � &0`�1
2

)&0`+1
2

) : : :
2

) &0L�1
2

) &3
2

) �

v : &0L�1
2

)&3
2

) &1

(ev` "L) &0`�1
2

)&0`+1
2

) : : :
2

) &0L�1
2

) � � &
2

) &

(ev`1L) &0`�1
2

)&0`+1
2

) : : :
2

) &0L�1
2

) � � &
2

) �

(ev` �L) u : &0L
2

)� &0`�1
2

)&0`+1
2

) : : :
2

) &0L
2

) � � &

v : &0L
2

)&

(ev` *L) u : &0L
2

)& &0`�1
2

)&0`+1
2

) : : :
2

) � � &0L
2

) � � &

(ev`QL) u : &0L�1
2

)&0L
2

) � &0`�1
2

)&0`+1
2

) : : :
2

) &0L�1
2

) &
2

) &0L
2

) �

(ev`evL) u : &0L�1
2

)&0L
2

) � &0`�1
2

)&0`+1
2

) : : :
2

) &0L�1
2

) �

v : &0L�1
2

)&0
L

Figure 7: Checking subject reduction (part 3)

17

Rule Assumptions Type

Group (F)

(Q`�L) u : &0L�2
2

)�1 � &0L�1
2

) �2 &0`�1
2

)&
2

) &00`
2

) : : :
2

) &0L�1
2

) �1) �2

(Q`?L) u : &0L�1
2

)�1) �2 &0`�1
2

)&
2

) &0`
2

) : : :
2

) &0L�1
2

) �2

v : &0L�1
2

)�1

(Q`idL) &0`�1
2

)&
2

) &0`
2

) : : :
2

) &0L�1
2

) &0L�1

(Q`�L) u : &0L�2
2

)&1
2

) � &0`�1
2

)&4
2

) &0`
2

) : : :
2

) &0L�2
2

) &3
2

) �

v : &0L�2
2

)&3
2

) &1

(QL "`) &0`�1
2

)&3
2

) &0`
2

) : : :
2

) &0L�2
2

) � � &0L�1
2

) &0L�1

(QL1`) &0`�1
2

)&3
2

) &0`
2

) : : :
2

) &0L�2
2

) � � &0L�1
2

) �

(Q` �L) u : &0L�1
2

)�; v : &0L�1
2

)&1 &0`�1
2

)&2
2

) &0`
2

) : : :
2

) &0L�1
2

) � � &1

(Q` *L) u : &0L�1
2

)&1 &0`�1
2

)&2
2

) &0`
2

) : : :
2

) � � &0L�1
2

) � � &1

(Q`QL) u : &0L�1
2

)� &0`�1
2

)&2
2

) &0`
2

) : : :
2

) &0L�2
2

) &3
2

) &0L�1
2

) �

(Q`evL) u : &0L�1
2

)&1
2

) � &0`�1
2

)&3
2

) &0`
2

) : : :
2

) &0L�1
2

) �

w : &0L�1
2

)&1

Figure 8: Checking subject reduction (�nal)

If u isQ`v, then � must be of the form &`�1
2

)&0
2

) &00
2

) �000, and we must have derived �; x1 : �1; : : : ; xn :
�n ` v : &`�1

2

)&00
2

) �000. Let � be [x1 7! 0; : : : ; xn 7! n � 1]. By induction hypothesis, we can derive

� ` v`� : �n�(�n�1�: : : (�1�&) : : :)
2

) &`�1
2

)&00
2

) �000. Then, � ` Q`+1(v`�) : �n�(�n�1�: : : (�1�&) : : :)
2

)

&`�1
2

)&0
2

) &00
2

) �000 is also derivable, and we conclude by noticing that u`� = Q`+1(v`�).
All other cases work similarly. We deal with the case of �-abstractions, which are a bit delicate, since

they introduce variables; then we deal with the �` case, as an example of the process for all other cases. First,
�-expressions. If:

�; x1 : �1; : : : ; xn : �n ` �x � u : �

is derivable, then � has the form � 0) � 00 and:

�; x1 : �1; : : : ; xn : �n; x : �
0 ` u : � 00

is derivable. So, by induction hypothesis, � ` u`[x1 7! 0; : : : ; xn 7! n� 1; x 7! n] : � 0� (�n� (�n�1� : : : (�1�
&) : : :))

2

) � 00 is derivable. Hence, � ` �1(u`[x1 7! 0; : : : ; xn 7! n�1; x 7! n]) : �n� (�n�1� : : : (�1� &) : : :)
2

)

� 0) � 00 is derivable, and we conclude by noticing that the latter term is (�x � u)`[x1 7! 0; : : : ; xn 7! n� 1].
All the other cases work similarly to the �` case. If:

�; x1 : �1; : : : ; xn : �n ` u �
` v : �

is derivable, then � must have the form &`�1
2

)&0
2

) �0, and:

�; x1 : �1; : : : ; xn : �n ` u : &`�1
2

)&00
2

) �0

�; x1 : �1; : : : ; xn : �n ` v : &`�1
2

)&0
2

) &00

must have been derived. By induction hypothesis, if we let � be [x1 7! 0; : : : ; xn 7! n � 1] and �n be

�n � (�n�1 � : : : (�1 � &) : : :), we know that u`� has type �n
2

) &`�1
2

)&00
2

) �0 under context � and that v`�

has type �n
2

) &`�1
2

)&0
2

) &00 under �, hence (u`�)�`+1(v`�), that is (u �` v)`�, has type �n
2

) &`�1
2

)&0
2

) �0

under context �. 2

Hence quoting ` times yields formulas at the `th level in the sense that it is of some type &`
2

)�, where &1,
: : : , &` are sets of assumptions from sequents that we have embedded into the formula.

18

3.2 Properties of Eval and Quote

Our next goal is to prove that any cut-elimination step in LS4 can be simulated by reductions in the simply-
typed �evQ-calculus. We establish this by proving a series of lemmas, the goal of which is in fact to show
that we can simulate the reduction rules of the �S4-calculus. The rest of this section uses the language of the
untyped �evQ-calculus; as already announced, we won't mention any sorts either.

First, we de�ne what we mean by the level of a term:

De�nition 3.2 (Level) We de�ne the out-level, or simply level L(u) of a �evQ-term u as follows:

� The level of a variable x is 0.

� Terms of the form �x � u, uv, (), " u, 1u, or u � v are at level 0.

� For any `, ` � 1, �`u, u ?` v, "`, 1`, u �` v, id`, u �` v, *` u and Q`u are at level `.

� For any `, ` � 1, the level of ev`uw is ` � 1.

First, we show that the G-translation respects the equivalence relation � on �S4-terms. To show this,
we temporarily come back on our decision to equate �-equivalent or �-equivalent terms. Equality is now
syntactic equality until further notice.

Lemma 3.4 Let u be a �evQ-term, and x and y be two distinct variables, with x not free in u. Then, for

every environment � of cardinality n, (u[x=y])`(�[x 7! n]) = u`(�[y 7! n]).

Proof: We prove the more general statement that for any � of cardinality n, for any variables y1, : : : , ym
not in the domain of � and distinct from x and y:

(u[x=y])`(�[x 7! n; y1 7! n+ 1; : : : ; ym 7! n+m]) = u`(�[y 7! n; y1 7! n+ 1; : : : ; ym 7! n+m])

This is needed because of the case of �-expressions.
If u is a variable, then we have �ve cases. In the �rst case, u is y, and both sides of the equation are

11 �1("1 �1("1 �1 : : :�1 "1) : : :)| {z }
m times

. In the second case, u is a variable yi, 1 � i � m, so both sides are equal to

11 �1("1 �1("1 �1 : : :�1 "1) : : :)| {z }
m�i times

. In the third case, u is a variable in the domain of �, so both sides are equal

to 11 �1("1 �1("1 �1 : : :�1 "1) : : :)| {z }
j times

, with j � m + 1. In the fourth case, u is variable outside the domain of �,

and distinct from x, y, and yi, 1 � i � m, then both sides are equal to Q1u �1 ("1 �1("1 �1 : : :�1 "1) : : :)| {z }
n+m+1 times

. In

the �fth and �nal case, u is x; but this is impossible since x was assumed not to be free in u.
If u is a �-abstraction �z � u0, then by induction hypothesis (u0[x=y])`(�[x 7! n; y1 7! n + 1; : : : ; ym 7!

n + m; z 7! n + m + 1]) = (u0)`(�[y 7! n; y1 7! n + 1; : : : ; ym 7! n + m; z 7! n + m + 1]); indeed, by the
variable naming convention z 6= x, so that x is not free in u0. The claim follows.

All other cases are trivial uses of the induction hypothesis on the subterms. 2

Lemma 3.5 If u and v are �-convertible �evQ-terms, then u`� = v`� for every environment �.

Proof: By structural induction on u (or equivalently, v). The only di�cult case is when u = �x � u0; then

v = �y �v0. If x = y, then u0 is �-convertible to v0, so we can apply the induction hypothesis: u0`(�[x 7! n]) =

v0`(�[x 7! n]), where n is the cardinality of �. If x 6= y, then x is not free in v0 (otherwise, x would be free in v,
hence in u since u and v are �-convertible; this cannot happen, by the variable naming convention) and v0[x=y]

is �-convertible to u0, so again we apply the induction hypothesis: u0`(�[x 7! n]) = (v0[x=y])`(�[x 7! n]), where

n is the cardinality of �. By Lemma 3.4, and since x is not free in v0, (v0[x=y])`(�[x 7! n]) = v0`(�[y 7! n]).

In both cases, �1(u0`(�[x 7! n])) = �1(v0`(�[y 7! n])), i.e., (�x � u0)`� = (�y � v0)`�. 2

19

Lemma 3.6 Let u be a �evQ-term, with free variables x1, : : : , xm, and let x01, : : : , x
0
m be pairwise distinct

variables. Then:

(i) fv(u`[]) = fv(u);

(ii) (u`[])[x01=x1; : : : ; x
0
m=xm] = (u[x01=x1; : : : ; x

0
m=xm])

`[].

Proof: We prove by structural induction on u the more general result (i0):

fv(u`[y1 7! 0; : : : ; yn 7! n� 1]) = fv(u) n fy1; : : : ; yng

and (ii0):
(u`[y1 7! 0; : : : ; yn 7! n � 1])[x01=x1; : : : ; x

0
m=xm]

= (u[x01=x1; : : : ; x
0
m=xm])

`[y1 7! 0; : : : ; yn 7! n � 1]

where x1, : : : , xm, y1, : : : , yn are pairwise distinct and contain all the free variables of u.
If u is a variable, then either u is one of the yi's, 1 � i � n, so that u`[y1 7! 0; : : : ; yn 7! n � 1] is

11 �1("1 �1("1 �1 : : :�1 "1) : : :)| {z }
n�i times

, which is closed (so (i0) follows); since yi[x
0
1=x1; : : : ; x

0
m=xm] = yi, (ii

0) holds,

too. If u is not one of the yi's, the only free variable in u`[y1 7! 0; : : : ; yn 7! n � 1] is u itself, which is not
an yi, so (i

0) holds; then, u must be some xi, 1 � i � m, so:

(u`[y1 7! 0; : : : ; yn 7! n� 1])[x01=x1; : : : ; x
0
m=xm]

= Q1xi �
1("1 �1("1 �1 : : :�1 "1) : : :)| {z }

n times

[x01=x1; : : : ; x
0
m=xm]

= Q1x0i �
1("1 �1("1 �1 : : :�1 "1) : : :)| {z }

n times

= Q1(xi[x
0
1=x1; : : : ; x

0
m=xm]) �

1("1 �1("1 �1 : : :�1 "1) : : :)| {z }
n times

= (xi[x
0
1=x1; : : : ; x

0
m=xm])

`[y1 7! 0; : : : ; yn 7! n � 1]

so (ii0) follows.

If u is a �-abstraction �z � u0, then by induction hypothesis, part (i0), fv(u0`[y1 7! 0; : : : ; yn 7! n� 1; z 7!
n]) = fv(u0) n fy1; : : : ; yn; zg. But the former is just fv(u`[y1 7! 0; : : : ; yn 7! n � 1], and the latter is just
fv(u) n fy1; : : : ; yng, so that (i

0) follows. Similarly, by induction hypothesis, part (ii0), (ii0) follows.
All other cases are trivial uses of the induction hypothesis. 2

Lemma 3.7 Let u be a �S4-term with free variables x1, : : : , xm, and let x01, : : : , x
0
m be pairwise distinct

variables. Then:

(i) fv(G(u)) = fv(u);

(ii) G(u)[x01=x1; : : : ; x
0
m=xm] = G(u[x01=x1; : : : ; x

0
m=xm]).

Proof: By structural induction on u, using Lemma 3.6 when u is a box term. 2

Lemma 3.8 If u and v are �-convertible �S4-terms, then G(u) and G(v) are �-convertible.

Proof: By structural induction on u (resp. v). The only di�cult cases are:

� When u is an abstraction �x � u0; then v = �y � v0, and u0 and v0[x=y] are �-convertible. By induction
hypothesis, G(u0) and G(v0[x=y]) are �-convertible, hence G(u) = �x �G(u0) and G(v) = �y �G(v0) =
�y �G(v0[x=y])[y=x] are �-convertible. Indeed, G(v0) = G(v0[x=y])[y=x] follows from Lemma 3.7 (ii).

20

� When u is a box term:
box u0 with u1; : : : ; un for x1; : : : ; xn

Then:
v = box v0 with v1; : : : ; vn for y1; : : : ; yn

where ui and vi are �-convertible for every i, 1 � i � n, and u0 and v0[x1=y1; : : : ; xn=yn] are �-
convertible. By induction hypothesis, G(u0) and G(v0[x1=y1; : : : ; xn=yn]) are �-convertible, hence

(G(u0))`[] = (G(v0[x1=y1; : : : ; xn=yn]))`[] by Lemma 3.5. By induction hypothesis again, G(ui) and

G(vi) are �-convertible for every i, 1 � i � n, so G(u) = ((G(u0))`[])[G(u1)=x1; : : : ; G(un)=xn]

and ((G(v0[x1=y1; : : : ; xn=yn]))`[])[G(v1)=x1; : : : ; G(vn)=xn] are �-convertible. The latter is, in

turn, �-convertible to (((G(v0[x1=y1; : : : ; xn=yn]))`[])[y1=x1; : : : ; yn=xn])[G(v1)=y1; : : : ; G(vn)=yn]. By

Lemma 3.6 (ii), this is ((G(v0[x1=y1; : : : ; xn=yn][y1=x1; : : : ; yn=xn]))`[])[G(v1)=y1; : : : ; G(vn)=yn]. Be-
cause of the variable naming convention, for each i, 1 � i � n, either xi = yi or xi is not free in v0, so
that the latter is exactly v.

2

Theorem 3.9 (�) Let u and v be two �S4-terms (not classes modulo �-equivalence). If u � v, then G(u)
and G(v) are �-convertible.

Proof: Recall that � is the smallest congruence containing � and the commuting conversion. We prove the
claim by induction on the length of a proof of u � v using the axioms of reexivity, symmetry, transitivity and
congruence (stability by context application) for �, and the rules of �-conversion and commuting conversion.

If u = v (reexivity), the claim is obvious.
If u � v because we have a shorter proof of v � u (symmetry), this is again obvious.
If u � v follows from shorter proofs of u � w and w � v for some term w (transitivity), this is again

obvious.
If u � v follows from a congruence argument, i.e. for example if u = u1u2, v = v1v2 and we have

shorter proofs of u1 � v1 and u2 � v2, then this is obvious, except in the case where u and v are quo-
tations. Then, u = box u0 with u1; : : : ; un for x1; : : : ; xn, v = box v0 with v1; : : : ; vn for x1; : : : ; xn, and we
have strictly shorter proofs of u0 � v0, u1 � v1, : : : , un � vn. By induction hypothesis, G(u0) and

G(v0) are �-equivalent. By Lemma 3.5, (G(u0))`[] = (G(v0))`[], so ((G(u0))`[])[G(u1)=x1; : : : ; G(un)=xn]

and ((G(v0))`[])[G(v1)=x1; : : : ; G(vn)=xn] are �-convertible, by using the induction hypothesis n times. The
result follows.

If u � v because u and v are �-convertible, then by Lemma 3.8, G(u) and G(v) are �-convertible.
Finally, if u � v comes from the fact that

u = box u0 with u1; : : : ; un for x1; : : : ; xn

and
v = box u0 with u�(1); : : : ; u�(n) for x�(1); : : : ; x�(n)

for some permutation �, then

G(u) = (u0`[])[G(u1)=x1; : : : ; G(un)=xn]

and
G(v) = (u0`[])[G(u�(1))=x�(1); : : : ; G(u�(n))=x�(n)]

But these two terms are the same, since the substitutions we apply are the same. 2

Therefore, the G transformation is well-de�ned on �-equivalence classes of �S4-terms. Notice in particular
how the commuting conversion of �S4 corresponds to the fact that (implicit, usual) substitutions can be
written in any order we wish.

We now resume reasoning modulo equivalences of the various systems: �-equivalence for �S4, �-
equivalence for �evQ.

We then show that rules (gc) and (ctract) are interpreted as equalities in �evQ.

21

Lemma 3.10 (gc) If xi 62 fv(u), then:

G(box u with v1; : : : ; vn for x1; : : : ; xn)
= G(box u with v1; : : : ; vi�1; vi+1; : : : ; vn for x1; : : : ; xi�1; xi+1; : : : ; xn)

Proof: Trivial consequence of Lemma 3.7. 2

Lemma 3.11 (ctract) When vi = vj for some i 6= j:

G(box u with v1; : : : ; vi; : : : ; vj; : : : ; vn for x1; : : : ; xi; : : : ; xj; : : : ; xn)
= G(box u[xi=xj] with v1; : : : ; vi; : : : ; vj�1; vj+1; : : : ; vn for x1; : : : ; xi; : : : ; xj�1; xj+1; : : : ; xn)

Proof: Trivial. 2

Although we won't need the following notions right away (we could be less precise, and use �! intead

of
,
`

�!), we shall need them in Sections 5 and in Part III. In particular, we shall need to identify notions of
residuals of rules in groups (C), (E) or (F). To do this, we enrich our language with operators ev`� and Q`

�,
where the star marks the residual. We let (C`

�), (E
`
�) be the set of rules obtained from (C) (at level exactly `)

and (E) (at levels ` exactly, and L, for all L > `) by replacing textually all occurrences of \ev`" by \ev`�" (for
instance, the rules (ev`evL) for all L > ` become rules (ev`�ev

L: ev`�(ev
Luv)w ! evL�1(ev`�uw)(ev

`
�vw)).

We let (F`�) be the set of rules obtained from (F) (at levels ` exactly, and L, for all L > `) by replacing
textually all occurrences of \Q`" by \Q`

�" (for instance, the rules (Q
`QL) for all L > ` become rules (Q`

�Q
L):

Q`
�(Q

L�1u) ! QL(Q`
�u)). In practice, we will adopt the convention that the star is a mere decoration of

certain occurrences of ev` or of Q`.

De�nition 3.3 (�`, ``,
,
`) For every ` � 1, let �` be the set of all rules in group (B) at level ` except (�`),

plus all rules in group (D) at levels ` and L for all integers L > `. Let
�`
�! be the associated reduction

relation,
�`
�!+ its transitive closure and

�`
�!� its reexive transitive closure.

Let `` be the set of rules in group (F`�). Let
``
�! be the associated reduction relation,

``
�!+ its transitive

closure, and
``
�!� its reexive transitive closure.

Let ,` be the set of:

� all rules in group (C`
�),

� all rules in group (E`�),

� if ` = 1, then rules ("), (1) and (�1),

� if ` > 1, then all rules of �`�1 and rule (�`).

Let
,
`

�! be the associated rewrite relation,
,
`

�!+ its transitive closure and
,
`

�!� its reexive transitive closure.

We have the expected fact that ev1 operates as a left inverse to `. This will be used to show that rule
(unbox) can be simulated in �evQ.

Theorem 3.12 (Evaluation) Let �n be the environment [x1 7! 0; x2 7! 1; : : : ; xn 7! n� 1], and u, w0, w1,

: : : , wn be n+ 2 �evQ-terms.

Then:

ev1(u`�n)(wn � (wn�1 � : : : � (w1 � w0) : : :)) �!
+ u[w1=x1; w2=x2; : : : ; wn=xn]

More precisely:

ev
1
�(u`�n)(wn � (wn�1 � : : : � (w1 � w0) : : :))

,
1

�!+u[w1=x1; w2=x2; : : : ; wn=xn]

Proof: By structural induction on u, using the de�nition by structural recursion of u`�n.
Most cases are boring, and merely propagate the induction from the subterms to the term. We examine

the cases of variables, of �-abstractions and of �`-abstractions, which are the most interesting. Let wi be the
stack wi � (wi�1 � : : : � (w1 � w0) : : :), and let �i be the substitution [w1=x1; : : : ; wi=xi].

22

If u is a variable x other than the xi's, then x`�n = Q1x. By rule (ev�Q
1), ev1�(x`�n)w

n
,
1

�!x = u�n.

If u is one of the xi's, then x`i�n = 11 �1("1 �1("1 �1 : : :�1 "1) : : :)| {z }
n�i times

, so:

ev1�(x
`
i�n)w

n
,
1

�!�ev1�1
1 (ev1� "

1 (: : :ev1� "
1| {z }

n�i times

wn) : : :) by (ev��
1) n� i times

,
1

�!+1 (" (: : : "| {z }
n�i times

wn) : : :) by (ev�1
1) once and (ev� "

1) n� i times

,
1

�!1 (" (: : : "| {z }
n�i�1 times

wn�1) : : :) by (")

,
1

�!1 (" (: : : "| {z }
n�i�2 times

wn�2) : : :) by (")

: : :
,
1

�!1wi

,
1

�!wi by (1)
= u�n

If u is �xn+1 � v, then ev1�(u`�n)w
n is ev1�(�

1(v`�n+1))wn, where �n+1 = �n[xn+1 7! n]. This rewrites
by rule (ev��

1) to �x � ev1�(v`�n+1)(x � w
n). By induction hypothesis, this rewrites in at least one step to

�x � v[w1=x1; : : : ; wn=xn; x=xn+1], i.e. u�n.
If u is �`v, ` � 1, then u`�n = �`+1(v`�n). Then ev1�(u`�n)w

n rewrites to �`(ev1�(v`�n)w
n) by rule

(ev1��
`+1), then to �`(v�n), i.e. u�n, by induction hypothesis.

All other cases work in exactly the same way as the latter. 2

Lemma 3.13 For any �S4-terms u, v1;: : : , vn, we have:

G(u[v1=x1; : : : ; vn=xn]) = G(u)[G(v1)=G(x1); : : : ; G(vn)=G(xn)]

Proof: By structural induction on u. This is clear for variables, and for all cases but box terms. If
u = box u0 with w1; : : : ; wm for y1; : : : ; ym, this follows by the induction hypothesis on w1, : : : , wm, because
by de�nition no xi can be free in u0, nor in G(u0)`[] by Lemmas 3.7 and 3.6. 2

Corollary 3.14 (unbox) For any �S4-terms u, v1;: : : , vn, we have:

G(unbox (box u with v1; : : : ; vn for x1; : : : ; xn)) �!
+ G(u[v1=x1; : : : ; vn=xn])

Proof:
G(unbox (box u with v1; : : : ; vn for x1; : : : ; xn))

= ev1((G(u)`[])[G(v1)=x1; : : : ; G(vn)=xn])() by de�nition

Now, by Theorem 3.12, and erasing all star marks, ev1(G(u)`[])() reduces to G(u). By induction on the length

of the latter derivation, (ev1(G(u)`[])())[G(v1)=x1; : : : ; G(vn)=xn] reduces to G(u)[G(v1)=x1; : : : ; G(vn)=xn].
By Lemma 3.13, the latter is exactly G(u[v1=x1; : : : ; vn=xn]). 2

Before we prove Theorem 3.18 (below), we �rst have to prove a few technical lemmas:

Lemma 3.15 For every p 2 IN, for every term w, we let *`
p
(w) be w if p = 0, and *` (*`

p�1
(w)) otherwise.

Then:

(i) for every n 2 IN, for every term w, pop`n �
` w �!� popn;

`w; (using only rules (id�`) and (�`))

(ii) for every n; p 2 IN, for every term w, popn+p;
` *`

p
(w) �!� popn;

` (w[popp]
`); (using only rules ("*`),

("* �`) and (�`))

23

(iii) for every m;n; p 2 IN, popn+p;
` *`

p
(pop`m) �!

� pop`m+n+p; (using only rules ("*`), ("* �`), (id�`) and

(�`))

(iv) for every n; p 2 IN, with n < p, for every term w, popn;
` *`

p
(w) �!� *`

p�n
(w)[popn]

`; (using only

rules ("*`), ("* �`) and (�`))

(v) for every n; p 2 IN, with n < p, for every term w, getn;
` *`

p
(w) �!� get`n. (using only rules ("*`),

("* �`), (1 *`) and (�`))

Proof:

(i) If n = 0, then this follows by using (id�`). If n � 1, this follows by applying rule (�`) n� 1 times.

(ii) If p = 0, then the left-hand side equals the right-hand side. If p 6= 0, then:

popn+p;
` *`

p
(w)

= "` �`("` �` : : : ("` �`| {z }
n+p times

(*`
p
(w))) : : :)

�! "` �`("` �` : : : ("` �`| {z }
n+p�1 times

(*`
p�1

(w)�` "`)) : : :) by ("*`)

�! "` �`("` �` : : : ("` �`| {z }
n+p�2 times

(*`
p�2

(w) �` ("` �` "`))) : : :) by ("* �`)

�!+ "` �`("` �` : : : ("` �`| {z }
n+p�3 times

(*`
p�3

(w) �` pop`3)) : : :) by ("* �`); (�`) twice

: : : : : :

�!+ "` �`("` �` : : : ("` �`| {z }
n times

(w �` pop`p)) : : :) by ("* �`); (�`) p� 1 times

= popn;
` (w[popp]`)

where the steps that use ("* �`) are skipped if p = 1.

(iii) By (ii), popn+p;
` *`

p
(pop`m) �!

� popn;
` (pop`m �

` pop`p). By (i), this reduces to popn;
` (popm;

` pop`p),

which is exactly pop`m+n+p.

(iv) If n = 0, then the left-hand side is equal to the right-hand side. If n � 1, then:

popn;
` *`

p
(w)

= "` �`("` �` : : : ("` �`| {z }
n times

(*`
p
(w))) : : :)

�! "` �`("` �` : : : ("` �`| {z }
n�1 times

(*`
p�1

(w)�` "`)) : : :) by ("*1)

�!+ "` �`("` �` : : : ("` �`| {z }
n�2 times

(*`
p�2

(w) �` ("` �` "`))) : : :) by ("* �`); (�`)

�!+ "` �`("` �` : : : ("` �`| {z }
n�3 times

(*`
p�3

(w) �` pop`3)) : : :) by ("* �`); (�`) twice

: : : : : :

�!+ *`
p�n

(w) �` pop`n by ("* �`); (�`) n � 1 times

= *`
p�n

(w)[popn]
`

where the steps that use ("* �`) are skipped if n = 1.

(v) getn;
` *`

p
(w) = 1` �` (popn;

` *`
p
(w)) reduces to 1` �` (*`

p�n
(w)[popn]

`) by (iv). If n = 0, this reduces
to 1` = get`0 by (1 *

`). If n � 1, this reduces to 1` �` pop`n = get`n by (1 * �`).

24

2

De�nition 3.4 (�) Let � be the set of all rules but (�), (�`), ` � 1,
�
�! be the associated reduction relation,

�
�!+ its transitive closure and

�
�!� its reexive transitive closure.

Lemma 3.16 Let v be a �evQ-term, m 2 IN, and � be an environment of cardinality n. Then, for any

variables y1, : : : , ym outside the domain of � and not free in v:

(v`�)[popm]
1 �1
�!+v`(�[y1 7! n; : : : ; ym 7! n+m� 1])

Proof: The claim is obvious when m = 0. Otherwise, we prove it by structural induction on v. In fact, we
prove the following more general statement (this is necessary because of �-abstractions, see later), that for
any m � 1 and for any p 2 IN:

v`(�[x1 7! n; : : : ; xp 7! n+ p� 1]) �1 *1
p
(pop1m)

�1
�!+v`(�[y1 7! n; : : : ; ym 7! n+m� 1; x1 7! n+m; : : : ; xp 7! n+m + p� 1])

for every p 2 IN and every variables x1, : : : , xp, where no yi is free in v.
If v is at level L0, L0 � 1, then we use the rules in Group (D) with ` = 1, L = L0 + 1 (resp. L = L0 + 2

if v is of the form evL
0+1v0w0; recall that since v is at level L0, its quoted version is at level L0 + 1); then,

we apply the induction hypothesis straightforwardly. For example, if v = �L
0

w, then v`(�[x1 7! n; : : : ; xp 7!

n+ p� 1]) = �L
0+1(w`(�[x1 7! n; : : : ; xp 7! n+ p� 1])), so v`(�[x1 7! n; : : : ; xp 7! n + p� 1]) �1 *1

p
(pop1m)

rewrites by rule (�L
0+1�1) to �L

0+1(w`(�[x1 7! n; : : : ; xp 7! n + p � 1]) �1 *1
p
(pop1m)), which rewrites by

induction hypothesis to �L
0+1(w`(�[y1 7! n; : : : ; ym 7! n +m � 1; x1 7! n +m; : : : ; xp 7! n +m + p � 1])),

i.e. v`(�[y1 7! n; : : : ; ym 7! n+m� 1; x1 7! n+m; : : : ; xp 7! n+m+ p� 1])).
If v is at level 0, we have several cases:

� If v is of the form ev1v0w0, then we use rule (ev2�1) and apply the induction hypothesis.

� If v is a variable inside the domain of �, say �(v) = i, with 0 � i � n� 1, then v`(�[x1 7! n; : : : ; xp 7!

n+ p � 1]) is get1n+p�i�1, that is, 1
1 �1 pop1n+p�i�1. Then:

v`(�[x1 7! n; : : : ; xp 7! n+ p� 1]) �1 *1
p
(pop1m)

= (11 �1 pop1n+p�i�1) �
1 *1

p
(pop1m)

�1
�!11 �1 (pop1n+p�i�1 �

1 *1
p
(pop1m)) by (�1)

�1
�!+11 �1 pop1m+p+n�i�1 by Lemma 3.15 (iii)

= get1m+p+n�i�1

= v`(�[y1 7! n; : : : ; ym 7! n+m� 1; x1 7! n+m; : : : ; xp 7! n+m + p� 1])

� If v is a variable outside the domain of � and other than the xi's, then it is also a variable x other
than any yi, since yi is not free in v. Then, v`(�[x1 7! n; : : : ; xp 7! n + p � 1]) is Q1x. Therefore
v`(�[x1 7! n; : : : ; xp 7! n + p � 1]) �1 *1

p
(pop1m) reduces to Q1x by rule (Q�1), and the latter equals

v`(�[y1 7! n; : : : ; ym 7! n+m� 1; x1 7! n+m; : : : ; xp 7! n+m + p� 1]) by de�nition.

� If v is one of the xi's, 1 � i � p, then v`(�[x1 7! n; : : : ; xp 7! n + p � 1]) = get1p�i, so v`(�[x1 7!

n; : : : ; xp 7! n+p�1])�1*1
p
(pop1m) rewrites by rule (�

1) and Lemma3.15 (i) to getp�i;
1 *1

p
(pop1m), then

by Lemma 3.15 (v) to get1p�i. The latter is equal by de�nition to v`(�[y1 7! n; : : : ; ym 7! n+m�1; x1 7!
n+m; : : : ; xp 7! n+m + p � 1]).

� If v is (), then v`(�[x1 7! n; : : : ; xp 7! n+ p� 1]) is pop1p. By Lemma 3.15 (iii), v`(�[x1 7! n; : : : ; xp 7!

n+p�1])�1*1
p
(pop1m)

�1
�!+pop1m+p, and the latter is precisely v`(�[y1 7! n; : : : ; ym 7! n+m�1; x1 7!

n+m; : : : ; xp 7! n+m + p � 1]).

� If v is of the form uw, then (uw)`(�[x1 7! n; : : : ; xp 7! n + p � 1]) �1 *1
p
(pop1m) is ((u`(�[x1 7!

n; : : : ; xp 7! n + p � 1])) ?1 (w`(�[x1 7! n; : : : ; xp 7! n + p � 1]))) �1 *1
p
(pop1m), which rewrites to

(u`(�[x1 7! n; : : : ; xp 7! n+p�1])�1 *1
p
(pop1m))?

1 (w`(�[x1 7! n; : : : ; xp 7! n+p�1])�1 *1
p
(pop1m)) by

25

rule (?1), hence to (u`(�[y1 7! n; : : : ; ym 7! n+m�1; x1 7! n+m; : : : ; xp 7! n+m+p�1]))?1(w`(�[y1 7!
n; : : : ; ym 7! n + m � 1; x1 7! n + m; : : : ; xp 7! n + m + p � 1])) by induction hypothesis, that is to
v`(�[y1 7! n; : : : ; ym 7! n+m� 1; x1 7! n+m; : : : ; xp 7! n+m + p� 1]).

If v is " u, 1u, or u � v, the argument is similar: we use rule (�1) in the �rst two cases, and rule (�1)
in the third case.

� If v is of the form �x�u, then v`(�[x1 7! n; : : : ; xp 7! n+p�1])�1*1
p
(pop1m) is �

1(u`(�[x1 7! n; : : : ; xp 7!

n + p � 1; x 7! n + p])) �1 *1
p
(pop1m), which rewrites to �1(u`(�[x1 7! n; : : : ; xp 7! n + p � 1; x 7!

n+p]))�1*1
p+1

(pop1m) by rule (�
1), therefore to �1(u`(�[y1 7! n; : : : ; ym 7! n+m�1; x1 7! n; : : : ; xp 7!

n + p � 1; x 7! n + p])) by induction hypothesis, that is to v`(�[y1 7! n; : : : ; ym 7! n + m � 1; x1 7!
n+ 1; : : : ; xp 7! n+ p]).

2

Lemma 3.17 For every environment � of cardinality n, for every terms u and v, for every variable x outside

the domain of �:

(u`(�[x 7! n])) �1 (v`� �1 id1)
�
�!�(u[v=x])`�

Proof: Because of the way that �-abstractions are quoted, we shall prove a more general result, namely
that for every integer m � 0, for every variables y1, : : : , ym outside the domain of � and not free in v, and
for every variable x outside the domain of �:

(u`(�[x 7! n; y1 7! n+ 1; : : : ; ym 7! n+m])) �1 *1
m
(v`� �1 id1)

�
�!�(u[v=x])`(�[y1 7! n; : : : ; ym 7! n+m� 1])

We prove this by structural induction on u.
All cases except the one where u is a variable or a �-abstraction are trivial, and simply propagate the

induction hypothesis inwards, using the rules in group (B) (except (�`)) and in group (D) to propagate the
composition inwards.

The case of a �-abstraction works as follows. Let u be �y�w, then u`(�[x 7! n; y1 7! n+1; : : : ; ym 7! n+m])
is �1(w`(�[x 7! n; y1 7! n + 1; : : : ; ym 7! n + m; y 7! n + m + 1])), so (u`(�[x 7! n; y1 7! n + 1; : : : ; ym 7!
n + m])) �1 *1

m
(v`� �1 id1) rewrites to �1((w`(�[x 7! n; y1 7! n + 1; : : : ; ym 7! n + m; y 7! n + m +

1])) �1 *1
m+1

(v`� �1 id1)) by rule (�1). By induction hypothesis, the latter rewrites to �1((w[v=x])`(�[y1 7!
n; : : : ; ym 7! n +m � 1; y 7! n +m])), since by our naming conventions y is not free in v. And the latter is

precisely (u[v=x])`(�[y1 7! n; : : : ; ym 7! n+m� 1]).
When u is a variable, we have four cases:

� When u is a variable other than x, y1, : : : , ym, and outside the domain of �, u`(�[x 7! n; y1 7!

n + 1; : : : ; ym 7! n + m]) is Q1u, so u`(�[x 7! n; y1 7! n + 1; : : : ; ym 7! n + m]) �1 *1
m
(v`� �1 id1)

rewrites by (Q�1) to Q1u. But the latter is precisely (u[v=x])`(�[y1 7! n; : : : ; ym 7! n+m � 1]), since
u is a variable other than x (so that u[v=x] = u) and u is a variable other than y1, : : : , ym.

� When u is in the domain of �, then u`(�[x 7! n; y1 7! n + 1; : : : ; ym 7! n + m]) is get1m+1+j , with

j � 0. Then, u`(�[x 7! n; y1 7! n + 1; : : : ; ym 7! n + m]) �1 *1
m
(v`� �1 id

1) rewrites by (�1) and
Lemma 3.15 (i) to 11 �1 (popm+1+j ;

1 *1
m
(v`� �1 id1)), hence to 11 �1 (pop1+j;

1 (v`� �1 id1)[popm]
1)) by

Lemma 3.15 (ii). Then, this rewrites to 11 �1 (pop1+j ;
1 (v`�[popm]

1 �1 pop1m)), by rule (�
1) if m � 1 (if

m = 0, this is equal to this term). By rule ("1), this rewrites to 11 �1 (popj ;
1 pop1m), and this is equal

to get1j+m if m � 1, or rewrites to it by (�id1) if m = 0. But, since u is a variable that cannot be x,

this is precisely (u[v=x])`(�[y1 7! n; : : : ; ym 7! n+m� 1]).

� When u is yi, 1 � i � m, then u`(�[x 7! n; y1 7! n + 1; : : : ; ym 7! n +m]) is get1j with j < m. Then,

u`(�[x 7! n; y1 7! n + 1; : : : ; ym 7! n + m]) �1 *1
m
(v`� �1 id1) rewrites by (�1) and Lemma 3.15 (i)

to getj;
1 *1

m
(v`� �1 id1), then by Lemma 3.15 (v) to get1j , that is, to (u[v=x])`(�[y1 7! n; : : : ; ym 7!

n+m � 1]). (Recall that u = yi is a variable other that x.)

26

� When u is x, by the same argument, u`(�[x 7! n; y1 7! n+ 1; : : : ; ym 7! n +m]) �1 *1
m
(v`� �1 id1) =

get1m �
1 *1

m
(v`� �1 id1) rewrites to 11 �1 (popm;

1 *1
m
(v`� �1 id1)) by (�1) and Lemma 3.15 (i). The

latter rewrites to 11 �1 (v`� �1 id1)[popm]
1 by Lemma 3.15 (ii). The latter is (when m = 0), or rewrites

by (�1) (when m � 1) to 11 �1 (v`�[popm]
1 �1 pop1m), which rewrites by (11) to v`�[popm]

1. Finally,

the latter rewrites to v`(�[y1 7! n; : : : ; ym 7! n + m � 1]) by Lemma 3.16, that is to (u[v=x])`(�[y1 7!
n; : : : ; ym 7! n +m � 1]).

2

The following says that reduction works (more precisely, can be simulated) under quotations. To handle

residual marks, we adopt the convention that (ev`�uv)
`� = ev`+1� (u`�)(v`�), and (Q`

�u)
`� = Q`+1

� (u`�).

Theorem 3.18 (Reduction Under Quote) Let R be either the set of all �evQ-rules, or �, or �`, or ``,
or ,` (for some given ` � 1). Let R` be the set of all �evQ-rules, or �, or �`+1, or ``+1, or ,`+1 respectively.

For all �evQ-terms u and v (possibly with star marks), if u
R
�!v, then u`�

R`
�!+v`� for all environments

�.

In particular, if u
R
�!�v, then u`�

R`
�!�v`�.

Proof: The latter claim follows from the former by induction on the length of the R derivation from u to
v. We now prove the former claim by structural induction on u. The base case is when u is itself the redex,
and the induction case is by case analysis on u.

The induction case is mostly trivial: we deal with applications, as all other cases are similar. If u is
not the redex that is reduced to v and u is an application u0u00, then v = v0v00, where either u0 = v0 and
u00 �! v00, or u0 �! v0 and u00 = v00. Then u`� = (u0`�) ?1 (u00`�), which rewrites by induction hypothesis to

(v0`�) ?1 (v00`�) = u`�.
We now turn to the base case, namely when u is itself the redex that is reduced to yield v. If the rule

that was used is anything but (�) or (ev�1) (or (ev��
1)), then we can draw the more precise conclusion that

u`� �! v`� (in one step). The correspondence between the rule R used to rewrite u into v and the rule R`

used to rewrite u`� into v`� is as follows: if R = ("), then R` = ("1); if R = (1), then R` = (11); if R is a
rule in groups (B), (C) (except for (ev�1)) at level `, then R` is the same rule at level ` + 1 (it is a bit less
obvious for rules (ev "`), (ev1`), (1ev *`) and (" ev *`)); if R is a rule in groups (D), (E) or (F) at levels `
and L, 1 � ` < L, then R` is the same rule at levels `+ 1 and L+ 1.

If u is a (�)-redex that reduces to v (this applies only to the case where R is the set of all rules), then

u = (�x � u0)u00 and v = u0[u00=x], and u`� = (�1(u0`(�[x 7! n]))) ?1 (u00`�). The latter rewrites by (�1) to

(u0`(�[x 7! n])) �1 (u00`� �1 id1), which rewrites by Lemma 3.17 to (u0[u00=x])`�, that is, v`�.
The last case is when u is an (ev�1)-redex (or (ev��

1)-redex: this applies when R is the set of all rules or
,
1). Let's deal with the (ev��

1) case, the (ev�1) case is similar. Then u = ev1�(�
1u0)w, v = �x �ev1�u

0(x � w),

and u`� = ev2�(�
2(u0`�))(w`�). This rewrites by rule (ev��

2) to �1(ev2�((u
0`�)�1 "1)(11 �1 w`��1 "1)). But,

by Lemma 3.16 (with m = 1), (u0`�)�1 "1 reduces to u0`(�[x 7! n]) and (w`�)�1 "1 reduces to w`(�[x 7! n]),

so that u`� reduces to �1(ev2�(u
0`(�[x 7! n]))(11 �1 w`(�[x 7! n]))), i.e. to v`�. 2

Corollary 3.19 Let R and R` be as in Theorem 3.18.

Let u and v be arbitrary �evQ-terms (possibly with star marks), and � be an arbitrary substitution.

If u
R
�!�v, then (u`[])�

R`
�!�(v`[])�.

Proof: Apply Theorem 3.18 with � = []. Then, notice that if u1
R
�!�u2, then u1�

R
�!�u2�, by induction on

the length of the derivation. (The only non-trivial case is for (�) steps, which are handled by the variable
naming convention.) 2

For the next results, we need the following notion, which is independent of being typable. Recall that we
have adopted Barendregt's naming convention. We ignore star marks in this de�nition: more precisely, this
de�nition considers the star-erasures of terms.

De�nition 3.5 (Well-staged) We de�ne the in-level `(u) of non-variable �evQ-terms u as follows:

27

� The in-level of �x � u, uv, (), " u, 1u, u � v is 0.

� The in-level of �`u, u ?` v, "`, 1`, u �` v, id`, u �` v, *` u, ` � 1, is `.

� The in-level of ev`uv or of Q`u, ` � 1, is `� 1.

We de�ne the immediate subterms of any non-variable term as: u and v are those of uv, u � v, u ?` v,

u �` v, u �` v, or ev`uv; u is the only immediate subterm of �x � u, " u, 1u, �`u, *` u, or Q`u; all other

terms have no immediate subterm.

We say that a �evQ-term u is well-staged if and only if for every non-variable subterm v of u, for every

immediate subterm v0 of v, the out-level of v0 is at least the in-level of v, i.e. L(v0) � `(v).

This de�nition is justi�ed by the following lemmas:

Lemma 3.20 Let u be a term at level `, ` � 0, and � be an environment.

Then u`� is at level `+ 1.

Proof: An easy case analysis on the de�nition of ` in Figure 2. 2

Lemma 3.21 Let u be a well-staged term, v1, : : : , vn be n well-staged terms, and x1, : : : , xn be pairwise

distinct variables.

For every environment �, (u`�)[v1=x1; : : : ; vn=xn] is well-staged.

Proof: By structural induction on u, using Lemma 3.20. The only non-trivial cases are when u is a variable,
or a �-abstraction.

If u is a variable in the domain of �, then (u`�)[v1=x1; : : : ; vn=xn] is get1i for some integer i, which is
well-staged. If u is a variable outside the domain of �, and is not one of the xi's, then (u`�)[v1=x1; : : : ; vn=xn]
is Q1u, which is well-staged (the condition on Q1u, that u be at level at least 0, is vacuously satis�ed).
Finally, if u is xi for some i, 1 � i � n, and is outside the domain of �, then (u`�)[v1=x1; : : : ; vn=xn] is Q

1vi,
which is again well-staged, because vi is well-staged (and at level at least 0).

If u is a �-abstraction �x � v, then u`� = �1(v`(�[x 7! n])), where n is the cardinality of �. Now, since u
is well-staged, v is also well-staged and by induction hypothesis v`(�[x 7! n]) is well-staged. Moreover, it is
at level at least 1 by Lemma 3.20, so u`� is also well-staged.

All other cases are trivial. For example, if u = �`v, then by well-stagedness of u, v is well-staged and at
level at least `. Now, u`� = �`+1(v`�), where v`� is well-staged by induction hypothesis, and at level at least
` + 1 by Lemma 3.20, so that u`� is well-staged. 2

Finally:

Lemma 3.22 Every translation of a �S4-term by the rules of Figure 2 is well-staged.

Proof: By structural induction on the �S4-term, using Lemma 3.21 for the case of quotations, i.e. terms of
the form box u with v1; : : : ; vn for x1; : : : ; xn. 2

Not all typable terms are well-staged: for example, Q2x is not well-staged, since its in-level is 1, but x is at
level 0; and it is typable of type �1

2

) �2
2

) �3
2

) �4, as soon as x is assumed of type �1
2

) �3
2

) �4.
(Quoting x twice, on the other hand, yields Q2(Q1x), which is both typable and well-staged.) Conversely,
not all well-staged terms are typable: for example, xx is well-staged but not typable.

Moreover, although typability is preserved by the reduction rules, well-stagedness is not, as most rules in
Group (E) produce ill-staged terms. For example, by rule (ev1�2), ev1(�2u)w reduces to �1(ev1uw), which
is not well-staged.

Before we can prove that �evQ can simulate rule (box), we have to de�ne another notion:

De�nition 3.6 A �evQ-term u is said to be Q1-pure if and only if, for every subterm of u of the form Q1v,

v is a variable.

Lemma 3.23 Let u be any �evQ-term. Then, for every environment �, u`� is Q1-pure.

28

Proof: By structural induction on u. All cases are trivial, except when u is a variable x. Then u`� is either
get1n for some integer n, which is Q1-pure; or it is Q1x, which is again Q1-pure. 2

Lemma 3.24 For any well-staged and Q1-pure �evQ-term u of level at least 1 (and without star marks),

Q1u �!+ u`[].
More precisely, Q1

�u
`1
�!+u`�[], where u`�� is de�ned as u`�, except in the case where u is a variable x

outside the domain of �, where we de�ne x`�� as Q1
�x.

Proof: The former result follows from the latter by star erasure. So, let's prove the latter claim, by
structural induction on u.

Most cases are trivial: for example, if u = v �` w, ` � 1, then Q1
�u

`1
�!(Q1

�v) �
`+1 (Q1

�w) by rule
(Q1

� �
`+1). Since u is well-staged, v and w are well-staged and at level at least `, in particular at least

1. Moreover, v and w are Q1-pure. We can therefore apply the induction hypothesis, and conclude that

Q1
�u

`1
�!+(v`[]) �`+1 (w`[]) = (v �` w)`[] = u`[]. The argument is similar for all other cases (except when

u = Q1v, with v at level 0).

If u = Q1v, with v at level 0, then v must be a variable since u is Q1-pure. Then, Q1
�u

`1
�!Q2(Q1

�v) by

rule (Q1
�Q

2); but the latter is precisely (Q1v)`
�
[]. 2

Lemma 3.25 Let u be a �evQ-term, and � be an environment whose domain does not contain any free

variable of u. Then u`� = u`[], and u`�� = u`�[].

Proof: By star erasure, it is enough to prove the latter claim.
We prove the more general result that for any such environment �, and for any variables y1, : : : , ym

outside the domain of �:

u`�(�[y1 7! n; : : : ; ym 7! n+m � 1]) = u`�[y1 7! 0; : : : ; ym 7! m � 1]

where n is the cardinality of �, by structural induction on u.
If u is a variable, then we have two cases. If u is some yi, 1 � i � m, then both sides are get1m�i.

Otherwise, u is not in the domain of �[y1 7! n; : : : ; ym 7! n +m � 1] (since it is not in the domain of �) or
of [y1 7! 0; : : : ; ym 7! m� 1], so both sides are Q1

�u.
If u is a �-abstraction �x � v, then by induction hypothesis v`�(�[y1 7! n; : : : ; ym 7! n + m � 1; x 7!

n+m]) = u`�[y1 7! 0; : : : ; ym 7! m� 1; x 7! m], hence the result. All other cases are trivial induction cases.
2

Lemma 3.26 Let u be a �evQ-term, v be a well-staged and Q1-pure term of level at least 1, x be a variable.

Let � be an environment whose domain does not contain x or any free variable of v.

Then (u`�)[v=x] �!+ (u[v=x])`�.

More precisely, (u`��)[v=x]
`1
�!+(u[v=x])`

�
�.

Proof: By structural induction on u.
When u is x, since x is not in the domain of �, u`�� = Q1

�x; so (u`�)[v=x] = Q1
�v rewrites by Lemma 3.24

to v`�[]. By Lemma 3.25, the latter is equal to v`��.
When u is another variable, this is trivial. All other cases of the induction are straightforward. Observe

that we need the generality on � in the case of �-abstractions. 2

Theorem 3.27 (box) Let u, v1, : : : , vn be n+1 �S4-terms, x1, : : : , xn be n distinct variables. If for some

i, 1 � i � n, vi is of the form box v with w1; : : : ; wm for y1; : : : ; ym, then:

G(box u with v1; : : : ; vn for x1; : : : ; xn)
`1
�!+G(box u[v`=xi] with v1; : : : ; vi�1; w1; : : : ; wm; vi+1; : : : ; vn for x1; : : : ; xi�1; y1; : : : ; ym; xi+1; : : : ; xn)

in �evQ.

29

Proof: Since vi is a box-term, write it box v with w1; : : : ; wm for y1; : : : ; ym. By de�nition,

G(box u with v1; : : : ; vn for x1; : : : ; xn)

equals:

((G(u))`[]) [G(v1)=x1; : : : ; G(vi�1)=xi�1;

((G(v))`[])[G(w1)=y1; : : : ; G(wm)=ym]=xi;
G(vi+1)=xi+1; : : : ; G(vn)=xn]

Because of the variable naming convention, this is also equal to:

((G(u))`[]) [G(v1)=x1; : : : ; G(vi�1)=xi�1; (G(v))`[]=xi; G(vi+1)=xi+1; : : : ; G(vn)=xn]
[G(w1)=y1; : : : ; G(wm)=ym]

that is, to:

((G(u))`[]) [(G(v))`[]=xi][G(v1)=x1; : : : ; G(vi�1)=xi�1; G(vi+1)=xi+1; : : : ; G(vn)=xn]
[G(w1)=y1; : : : ; G(wm)=ym]

By Lemmas 3.22 and 3.21, (G(v))`[] is well-staged; by Lemma 3.20, it as at level at least 1; by Lemma 3.23,

(G(v))`[] is Q1-pure. So Lemma 3.26 applies with � = [], and G(box u with v1; : : : ; vn for x1; : : : ; xn) reduces
to:

((G(u)[(G(v))`[]=xi])
`
[]) [G(v1)=x1; : : : ; G(vi�1)=xi�1; G(vi+1)=xi+1; : : : ; G(vn)=xn]

[G(w1)=y1; : : : ; G(wm)=ym]

which is also equal, because of the variable naming conventions, to:

((G(u)[(G(v))`[]=xi])
`
[]) [G(v1)=x1; : : : ; G(vi�1)=xi�1;

G(w1)=y1; : : : ; G(wm)=ym;
G(vi+1)=xi+1; : : : ; G(vn)=xn]

Finally, the result follows by Lemma 3.6. 2

A side note: we might have chosen to have typed Q` in the more restrictive way: Q`u : 	`�1 2

) >
2

)

�1
2

) �2 provided u : 	`�1 2

) �1
2

) �2. Rule (Q�
`) would have to be suppressed, and Lemma 3.25 would

not be valid, but all other results (including Lemma 3.26 and Theorem 3.27) would still be. In fact, the
termination and conuence results of the following sections would also hold, and we would get �-like rules by
adding the rule ev`+1(Q`u �` v)w ! u �` w to the �-like rules in the sequel. (This is what we did in a �rst
version of this paper.) However, we feel that our choice here is slightly more natural.

3.3 Simulating Cut Elimination

Similarly to the categories S4 and S4 of Part I, the �evQ-calculus de�nes a category, provided that we
consider terms with enough type annotations:

De�nition 3.7 The set of typed �evQ pre-terms is the set of �evQ-terms built on typed variables (that is,

variables x� having a unique term type � annotating them), and where subterms of the form 1`, "`, id`, *` u
and Q`u are annotated with formulas. We won't usually show these types, unless confusion might arise; if u

is annotated with formula �, we shall also write it (u)�.
The typed �evQ terms are the typed �evQ pre-terms that are typable when every variable x� is assumed

of type � , and where every annotated subterm (u)� has type �.
The category �evQ has as objects all typed �evQ-terms, and as morphisms all derivations between terms.

That every typed �evQ-term has a unique type is immediate. It is also clear that typed �evQ-terms are in
bijection with natural deduction proofs in the system of Figure 1, modulo weakenings. What is less clear is the
set of rewrite rules that de�ne derivations between typed terms. Consider for example the untyped rule (1 *`):
1`�` *` u ! 1`. In the typed case, this rule must be written as (1`)

&`�1
2

)��&
2

)�
�` (*` u)

&`�1
2

)��&0
2

)��&
!

30

(1`)
&`�1

2

)��&0
2

)�
. Given the types decorating subterms in the left-hand side, the type decorating the right-

hand side is determined uniquely. It is routine to check that, for each rule, given a decoration of subterms of
the left-hand side, there is a unique decoration of subterms of the right-hand side so that the right-hand side
has the same type as the left-hand side. The most complicated case is rule (ev�`) with ` � 2, which is:

ev`(�`u)w! �`�1(ev`(u �`�1 ("`�1)
&`�2

2

)�1�&`�1

2

)&`�1

)

((1`�1)
&`�2

2

)�1�&`�1

2

)�1
�`�1 (w �`�1 ("`�1)

&`�2
2

)�1�&`�1

2

)&`�1

)))

where the type of u is &`�1
2

)�1 �

varsigma0
2

) �2, and the type of w is &`�1
2

)

varsigma0 .
Interpreting cut-elimination in S4 inside �evQ means �nding a translation of S4 proofs to �evQ-terms,

and another translation from cut-eliminations in S4 (morphisms in S4, resp. S4) to derivations in �evQ.
That is, an interpretation of cut-elimination in S4 into �evQ is a functor from S4 (resp. S4) to the category
�evQ. As suggested by the theorems of Section 3.2, the G-translation will be this interpretation. It just
remains to prove that types are preserved by G:

De�nition 3.8 We let G operate on types in the following way: G(A) = A for every basic type A, G(�1)

�2) = G(�1))G(�2), G(2�) = >
2

) G(�).

Observe that every G-translated type is a term type. Then:

Theorem 3.28 If � ` u : � is provable in the natural deduction system for S4 (Figure 4, Part I), then

G(�) ` G(u) : G(�) is provable in the natural deduction system of Figure 1.

Proof: By structural induction on the natural deduction proof. The only di�culty is the translation of the
(2I) rule (that is, of quotations). In this case,

�0 ` box u with v1; : : : ; vm for x1; : : : ; xm : 2�

has been derived from:
x1 : 2�1; : : : ; xm : 2�m ` u : �

and �0 ` vi : 2�i, 1 � i � m.
By induction hypothesis, we have therefore derived the following sequent:

x1 : >
2

) G(�1); : : : ; xm : >
2

) G(�m) ` G(u) : G(�)

By Theorem 3.3 with n = 0, and since the context � above is boxed, (G(u))`[] has type >
2

) G(�) in context
�, i.e. � ` G(u`) : >

2

) G(�) is derivable in the natural deduction system of Figure 1.
Then, by induction hypothesis again, the sequents G(�0) ` G(vi) : >

2

) G(�i) have also been derived for
every i, 1 � i � m. It follows by substitution that the following sequent is derivable:

G(�0) ` ((G(u))`[])[G(v1)=x1; : : : ; G(vm)=xm]

which is exactly what we were after. 2

We need a language for describing derivations, or at least single steps in �S4. For any rule (R) transforming

a contractum u into a contracted term v, we denote this step by u
(R)
�!v. In general, for any context C (i.e.

a term with exactly one hole []; C[s] then denotes this term with the hole �lled in with s), we denote by

C[u]
C[(R)]
�! C[v] the reduction of the redex located at the position of the hole in C.

Theorem 3.29 (Simulation of Cut Elimination) The G-translation induces a functor from S4

(resp. S4) to the category �evQ, de�ned as follows. The action of G on objects is given by Figure 2; the

action of G on morphisms is given by (using a vector notation as abbreviation of lists of terms or variables):

� G((�x � u)v
(�)
�!u[v=x]) = G((�x � u))

(�)
�!G(u[v=x]);

31

� if u is an (unbox)-redex whose contractum is v, then G(u
(unbox)
�! v) is given by Corollary 3.14;

� if u is a (box)-redex whose contractum is v, G(u
(box)
�! v) is given by Theorem 3.27;

� if u
d
�!v is a morphism in S4 (resp. S4), then

G(box u with ~w for ~x
box d with ~w for ~x

�! box v with ~w for ~x)

is de�ned from the morphism G(u
d
�!v) by applying Corollary 3.19;

� if u
d
�!v is a morphism in S4 (resp. S4), and C is a context of height one, i.e. of

the form �x � [], []w, w[], unbox [] or box w with w1; : : : ; wi�1; []; wi+1; : : : ; wn for x1; : : : ; xn, then

G(C[u]
C[d]
�!C[v]) = G(C)[G(u

d
�!v)], where G(C) is respectively �x � [], []w, w[], ev1T [] () or

((G(w))`)[G(w1)=x1; : : : ; G(wi�1)=xi�1; []=xi; G(wi+1)=xi+1; : : : ; G(wn)=xn].

Proof: Objects of S4 (resp. S4) are equivalence classes modulo �, so to show that G is well-de�ned on
objects of this category, we have to show that if u � v, then G(u) = G(v). This follows from Theorem 3.9
and Lemmas 3.10 and 3.11.

G is well-de�ned on morphisms: �x a particular representative for each equivalence class (each object of
S4, resp. S4) by taking their common (gc); (ctract)-normal form, then the de�nition of G on morphisms is a
well-founded de�nition by structural induction on the representatives.

Finally, the de�nition de�nes a unique functor G: for each derivation u0 ! u1 ! : : :! un, its image by
G is the concatenation of the G-translations of each step from ui�1 to ui, 1 � i � n. 2

Although G is unique once we have settled for the particular reductions given in Theorems 3.12, 3.27 and
in Corollary 3.19, these reductions are not the only ones that prove the corresponding simulation theorems.
That is, we have the choice between several possible choices for de�ning G so that it indeed simulates cut-
elimination. This shows that G is not an isomophism of categories. G does not even preserve reductions,
and the best we can show (see Part III) is that G de�nes a conservative extension of �S4 inside �evQ, in the
sense that G(u) and G(v) are interconvertible in �evQ if and only if u and v are interconvertible in �S4.

4 �-Like Rules

4.1 What �-Like Rules Are

We �nish this Part II by examining other ways of simplifying proofs in minimal S4. One such way consists

in �nding �-like rules associated with the modal operators. �-like rules come into play to represent the
replacement of subproofs (�) ending in tautologous sequents �; x : � ` u : � by an instance of (Ax), leading
to �; x : � ` x : �. This produces rules that rewrite some term u where x may occur free into x itself.

The prominent such rule is the �-rule of the �-calculus: �y �xy ! x, where x and y are distinct variables
(the general case �y � uy ! u, where y is not free in u, follows by applying the substitution [u=x]). This rule
arises from the case when � is an implication, and the subproof (�) ends in an application of ()L) followed
by an application of ()R).

In the �evQ-calculus, this would mean adding the rules:

(�) �x � ux! u if x 62 fv(u)

(��`) �`(u ?` 1`)! v if v�` "`
�`
�!

�� �`
 �u

for example. The (��`) rule is inspired by [R��o93] and the work of Th�er�ese Hardin. (We won't prove anything
here on �evQ augmented with this rule; although we conjecture that it holds, subject reduction already is
not trivial.) We might also consider a variant on Briaud's [Bri95] simpler rule:

(�0�`) �`(u ?` 1`)! u �` (?` �` id`)

32

where ?` is a new constant of sort T with the new rule: ?` �` u ! ?`; and naturally all rules of the
form ev`?`w ! ?`�1, ?L �` w ! ?L, ev`?Lw ! ?L�1 and Q`?L�1 ! ?L, for every 1 � ` < L. The
interpretation of this �-rule as a proof simpli�cation step is then lost, however.

Similarly, in the case of (�L) followed by (�R), we get surjective pairing, namely the following rules (for
�evQ):

(� �) (1u �" u)! u

(� �`) 1` �`"`! id`

(� � �`) (1` �` u) �` ("` �`u)! u

And in the case of (2L) followed by (2R) (the only case that really matters to us here), we wish to replace
a proof of the form:

(�)
...

�; y : � ` y : �
(2L) �; x : 2� ` unbox x : �

(2R) �; x : 2�;�0 ` (unbox x)` : 2�

where � is a boxed context, by:
(Ax) �; x : 2�;�0 ` x : 2�

4.2 The �S4H-Calculus

To simulate this in �S4, we extend it as follows:

De�nition 4.1 The �S4H -calculus is the �S4-calculus plus the rule:

(�box) box unbox xi with v1; : : : ; vn for x1; : : : ; xn! vi

for any 1 � i � n.

We shall spend the rest of Section 4.2 proving the following:

Theorem 4.1 Just as for the �S4-calculus, we have the following properties for the �S4H -calculus:

� The reduction rules have the Church-Rosser property.

� Subject reduction holds.

� All typed terms are strongly normalizing.

To show that the �S4H-calculus is conuent, we do exactly as for the �S4-calculus in Part I, De�nitions 5.1
and 5.2. We de�ne a �S4

0
H-calculus and a �S4

0
H

�
-calculus, which are respectively the �S4

0-calculus and the
�S4

0�-calculus of Part I, plus the (�box) reduction rule.

Lemma 4.2 Let u and v be two �S4
0
H

�
-terms, such that u is well-formed, the weighting of u is decreasing,

and u reduces to v in one step. Then:

(i) v is well-formed.

(ii) W (u) � W (v), and W (u) > W (v) unless the contracted redex is of the form

unbox (box s with t1; : : : ; tn for z1; : : : ; zn)

where every zi, 1 � i � n, is a proxy variable.

(iii) The weighting of v is decreasing.

33

Proof: As in Part I, Lemma 5.3. Claim (i) is trivial, and claim (iii) is proved by the same argument.
The only thing that changes for claim (ii) is when the contracted redex �1 in u is an (�box) redex

box unbox zi with t1; : : : ; tn for z1; : : : ; zn. Its weight is that of ti, plus the sum of the weights of t1, : : : , tn,
which is always greater than the weight of the contractum ti. 2

Theorem 4.3 The notion of reduction in �S4
0
H is strongly normalizing.

Proof: As for Theorem 5.5 in Part I, using Lemma 4.2 instead of Lemma 5.2, Part I. 2

Lemma 4.4 The �S4
0
H-calculus is conuent.

Proof: By Theorem 4.3, it is enough to prove that it is locally conuent. The critical pairs that we have
not already considered in Lemma 5.6, Part I, are as follows:

� Between (unbox) and (�box):

unbox (box unbox xi with v1; : : : ; vn for x1; : : : ; xn)

reduces in one step to (unbox xi)[v1=x1; : : : ; vn=xn] by (unbox), but also to unbox vi by (�box). These
two terms are equal.

� Between (box) and (�box):

box unbox xi
with v1; : : : ; vj�1; (box u with w1; : : : ; wm for y1; : : : ; ym); vj+1; : : : ; vn
for x1; : : : ; xj; : : : ; xn

If i 6= j, then this reduces to vi by (�box), and to:

box unbox xi
with v1; : : : ; vj�1; w1; : : : ; wm; vj+1; : : : ; vn
for x1; : : : ; xj�1; y1; : : : ; ym; xj+1; : : : ; xn

by (box); but the latter reduces to the former by (�box).

If i = j, it reduces to box u with w1; : : : ; wm for y1; : : : ; ym by (�box), and to:

box unbox (u`)
with v1; : : : ; vi�1; w1; : : : ; wm; vi+1; : : : ; vn
for x1; : : : ; xi�1; y1; : : : ; ym; xi+1; : : : ; xn

by (box). The latter reduces to:

box u with v1; : : : ; vi�1; w1; : : : ; wm; vi+1; : : : ; vn for x1; : : : ; xi�1; y1; : : : ; ym; xi+1; : : : ; xn

by (unbox), hence to box u with w1; : : : ; wm for y1; : : : ; ym by n � 1 applications of (gc), since by the
well-formedness constraints, the free variables of u are among y1, : : : , ym. This completes the conuence
diagram.

� Between (box) and (�box) again:

box u with v1; : : : ; vi�1; (box unbox yj with w1; : : : ; wm for y1; : : : ; ym); vi+1; : : : ; vn
for x1; : : : ; xi; : : : ; xn

reduces in one step to:

box u with v1; : : : ; vi�1; wj; vi+1; : : : ; vn for x1; : : : ; xi�1; xi; xi+1; : : : ; xn

34

by (�box), or to:

box u[box unbox z with yj for z=xi] with v1; : : : ; vi�1; w1; : : : ; wm; vi+1; : : : ; vn
for x1; : : : ; xi�1; y1; : : : ; ym; xi+1; : : : ; xn

by (box).

But the latter reduces by (�box) to:

box u[yj=xi] with v1; : : : ; vi�1; w1; : : : ; wm; vi+1; : : : ; vn for x1; : : : ; xi�1; y1; : : : ; ym; xi+1; : : : ; xn

then by m � 1 applications of (gc) to:

box u[yj=xi] with v1; : : : ; vi�1; wj; vi+1; : : : ; vn for x1; : : : ; xi�1; yj ; xi+1; : : : ; xn

since y1, : : : , yj�1, yj+1, : : : , ym are not free in u[yj=xi]. This closes the conuence diagram, using
�-renaming.

� Between (�box) and (gc):
box unbox xi with v1; : : : ; vn for x1; : : : ; xn

reduces in one step either to vi by (�box), or to:

box unbox xi with v1; : : : ; vj�1; vj+1; : : : ; vn for x1; : : : ; xj�1; xj+1; : : : ; xn

by (gc), where j 6= i. The latter then reduces to vi again, by (�box).

� Between (�box) and (ctract). If j 6= k and vj = vk, then:

box unbox xi with : : : ; vi; : : : ; vj; : : : ; vk; : : : for : : : ; xi; : : : ; xj; : : : ; xk; : : :

reduces in one step to vi by (�box).

If i 6= k, then it also reduces in one step to:

box unbox xi with : : : ; vi; : : : ; vj ; : : : ; : : : for : : : ; xi; : : : ; xj; : : : ; : : :

by (ctract), which reduces to vi by (�box).

If i = k, then it reduces instead to:

box unbox xj with : : : ; vi; : : : ; vj; : : : ; : : : for : : : ; xi; : : : ; xj; : : : ; : : :

by (ctract). This reduces to vj by (�box). But by assumption vj = vk, and because i = k, vj = vi.
Again, the conuence diagram closes.

2

Theorem 4.5 The �S4H -calculus is conuent.

Proof: As for Theorem 5.7, Part I, using Theorem 4.3 instead of Theorem 5.5, Part I, and Lemma 4.4
instead of Lemma 5.6, Part I. 2

Theorem 4.6 Subject reduction holds in �S4H .

Proof: Compared with Theorem 5.8, Part I, we only have to check it for rule (�box). But again, this is a
trivial consequence of the identi�cation of proofs and typed terms. 2

Theorem 4.7 All typed �S4H -terms are strongly normalizing.

35

(H) (1 � `):

(�ev`) ev`+1(Q`u)w! u �` w

(� *`) *` w! 1` �` (w�` "`)
(� �) (1u �" u)! u

(� �`) 1` �`"`! id`

(� � �`) (1` �` u) �` ("` �`u)! u

Figure 9: Modal �-like reduction rules

Proof: As in Theorem 5.9, Part I, de�ne the following erasing transformation by structural induction on
the terms:

D(box u with v1; : : : ; vn for x1; : : : ; xn)=D(u)[D(v1)=x1; : : : ; D(vn)=xn]
D(unbox u)=D(u)

and D does nothing on other constructions. De�ne also the erasing transformation D(�) on formulas �, by
erasing all boxes 2, and similarly on contexts �.

Now, let u1 �! u2 �! : : : �! ui �! : : : be a reduction starting from the well-typed �S4-term u1. Then
D(u1)

=
�!D(u2)

=
�! : : :

=
�!D(ui)

=
�! : : : in the simply-typed �-calculus, where

=
�! is the reexive closure of

reduction in this calculus; again, every contraction by (�) translates by D into a contraction by the same
rule, and if ui �! ui+1 by some other rule, then D(ui) = D(ui+1).

The theorem then follows by strong normalization of the simply-typed �-calculus and Theorem 4.3. 2

4.3 The �evQ
H
-Calculus

Similarly, we can extend the �evQ-calculus with modal �-like rules. Translating rule (�box) above, we see
that we wish to have a new rule ev2(Q1u)id1 ! u. To ensure that reduction under quotes still works, we
have to generalize this to ev`+1(Q`u)id` ! u for every ` � 1.

We now �nd a few critical pairs. First, ev`+1(Q`u)id` �` v must reduce to u �` v by the above, but it also
reduces to ev`+1(Q`u)v by (ev`+1�`), (Q�`) and (id�`). So we add the following rule:

ev`+1(Q`u)w! u �` w

In turn, this rule generates new critical pairs. In particular, ev`+1(Q`(�`id`))w reduces to �`(*` w) by the
latter rule, and rules (�`) and (id�`); it also reduces to �`(1` �` (w�` "`)) by (Q`�`+1), (ev�`+1), the new
rule and (id�`). This suggests the rule *` w ! 1` �` (w�` "`). This, in turn, forces us to have surjective
pairing: for instance, *` id` reduces to id` (by (* id`)) and to 1` �`"` (by the new rule on *` and (id�`)).

Therefore:

De�nition 4.2 We de�ne the �evQH -calculus by the reduction rules of the �evQ-calculus (Figures 3 and 4),

plus group (H) (Figure 9).

The rules of group (H) will pose several technical problems. First, the termination of the rules of the �evQH-
calculus except (�) and (�`) is not at all obvious. Because of rule (� *`), the �evQH -calculus is not a variation
on the ��*-calculus any longer, but rather on the ��-calculus. The rules in group (B) except (�`), plus the
rules in group (H) except (�ev`), with ` �xed, already form a group of rules that propagate substitutions
downward in the ��-calculus; that they terminate is already a di�cult result. (For this particular case, we
can use Zantema's distribution elimination technique [Zan94], though.)

Second, conuence will also be hard to establish. Our system can be put in parallel with R��os' ��0-calculus
(see [R��o93], Section 1.7), which is not conuent on terms with substitution (stack) variables [CHL95]. It is
precisely the purpose of having terms of two disjoint sorts, T and S, to be able to forbid stack variables inside
terms, just as in the ��-calculus. In fact, we need more to get conuence, and quite probably to consider
only typed terms. Notice that we cannot forbid variables altogether (i.e. consider a ground rewrite system),
because (bound) term variables are introduced by the �x� abstraction operator.

36

Rule Assumptions Type

Group (H)

(�ev`) u : &0`�1
2

)&1
2

) � &0`�1
2

)&3
2

) �

w : &0`�1
2

)&3
2

) &1

(� *`) u : &0`�1
2

)&1
2

) &2 &0`�1
2

)� � &1
2

) � � &2
(� �) u : � � & � � &

(� �`) &0`�1
2

)� � &
2

) � � &

rhs: &0`�1
2

)&0
2

) &0

(� � �`) u : &0`
2

)� � & &0`
2

)� � &

Figure 10: Checking Subject Reduction (group (H))

Theorem 4.8 (Subject Reduction) Let u be a term of the �evQH-calculus.

If � ` u : � is derivable, and u �!� v in the �evQH-calculus, then � ` v : � is derivable.

Proof: As for Theorem 3.2. The table corresponding to the rules in group (H) is shown in Figure 10.
2

We extend Theorem 3.27:

Lemma 4.9 If x1 : 2�1; : : : ; xn : 2�n ` u : 2�, � ` v1 : 2�1, : : : , � ` vn : 2�n are derivable (in the

system of Figure 4, Part I), and:

box unbox xi with v1; : : : ; vn for x1; : : : ; xn! vi

by rule (�box) for some i, 1 � i � n, then G(box unbox xi with v1; : : : ; vn for x1; : : : ; xn) reduces to G(vi) by
rule (�ev1) in �evQH .

Proof: That the types check follows from Theorem 3.28: both G-translations then have types >
2

) G(�).
As far as the terms are concerned, we have:

G(box unbox xi with v1; : : : ; vn for x1; : : : ; xn) = ev2(Q1xi)[G(v1)=x1; : : : ; G(vn)=xn])id
1

= ev2(Q1(G(vi)))id
1

which reduces in one (�ev1) step to G(vi). 2

Theorem 3.18 also extends without any problem:

Lemma 4.10 For all �evQH -terms u and v, if u �! v by some rule in group (H), then u`� �! v`� by

some other rule in group (H), for all environments �.

Proof: As in Theorem 3.18, R` is (�ev`+1) if R is (�ev`), (� *`+1) if R is (� *`), (� � �1) if R is (� �),
(� �`+1) if R is (� �`), and (� � �`+1) if R is (� � �`). 2

From which the analogue of Corollary 3.19 follows, hence also that of Theorem 3.29:

Theorem 4.11 Let S4H (resp. S4H) be the category whose objects are those of S4 (resp. S4; see De�ni-

tion 5.8, Part I), and whose morphisms are all morphisms in S4 (resp. S4), all reductions by rule (�box),
and all compositions thereof.

Let �evQH be the category whose objects are typed �evQ-terms, with morphisms all reductions of the

�evQH-calculus.

We extend the action of G (see Theorem 3.29) to S4H (resp. S4H) morphisms by letting G(u
(�box)
�! v) be

de�ned as the reduction from G(u) to G(v) given by Lemma 4.9.

Then G is a functor from S4H (resp. S4H) to �evQH .

37

Proof: G is well-de�ned: the proof is the same as for Theorem 3.29, using Lemma 4.10 instead of Corol-
lary 3.19. That it is a functor is immediate. 2

Finally, note that the �evQH-calculus really uses many unneeded operators. We might replace rule (� *`)
by simply replacing every term of the form *` u by 1` �` (u�` "`), and replace group (B) by a variant of
the ��-calculus instead of the ��*-calculus. Rule (�ev

`) may also be dispensed with by letting u �` v be an
abbreviation of ev`+1(Q`u)v. Some rules (like (ev`1`)) have to be eliminated, and we end up with a mostly
unreadable system.

5 Other Ways of Simplifying Proofs

There are other ways of eliminating cuts or, in general, of simplifying proofs. We explore how we may simulate
these transformations by adding corresponding rules to �S4 or to �evQ. Let the reader be warned that the
results are not pretty.

5.1 Eliminating (2L)=(2R) Cuts

Consider cuts of the form:

(�01) (�02)
...

...
�1; y1 : 	2 ` u1 : 	1 �2; x : 	1 ` u : �

(2L) �1; x1 : 2	2 ` u1[unbox x1=y1] : 	1 (2R) �2;�
0
2; x : 	1 ` u` : 2�

(Cut) �1; x1 : 2	2;�2;�
0
2 ` u`[u1[unbox x1=y1]=x] : 2�

where � is boxed, and 	1 is inactive both in the (2L) and in the (2R) rule. When all free variables in u1 are
of boxed type, except possibly y1, we can consider that �1 is a boxed context, and rewrite the latter proof
into:

(�01) (�02)
...

...
�1; y1 : 	2 ` u1 : 	1 �2; x : 	1 ` u : �

(Cut) �1; y1 : 	2;�2 ` u[u1=x] : �

(2L) �1; x1 : 2	2;�2 ` u[u1=x][unbox x1=y1] : �

(2R) �1; x1 : 2	2;�2;�
0
2 ` (u[u1=x][unbox x1=y1])

` : 2�

This way of eliminating cuts can be implemented in �S4, by adding the following rule:

(R1) box u with : : : ; unbox v; : : : for : : : ; x; : : :! box u[unbox y=x] with : : : ; v; : : : for : : : ; y; : : :

where y is a fresh variable.
We do not know how to do it �evQ. First, we have to be careful: without the di�erence between

elementary terms and stacks, we would get an inconsistent calculus. So here the T and S annotations matter.
Indeed, we might be tempted to use the following argument: By (R1), box x with unbox x1 for x reduces to

(unbox x1)`. Translating this by G, Q1(ev1x1()) must reduce to ev2(Q1x1)id
1. Applying the substitution

[u=x1], it follows that Q
1(ev1u()) must reduce to ev2(Q1u)id1, whatever the term u. Let w be an arbitrary

stack, apply ev1 w on both sides and reduce: it follows that ev1u() and ev1uw must be convertible. Choose
u to be id1, and reduce: () and w must be convertible. As w is arbitrary, all terms must be equal. What we
have overlooked in this argument is that the ev1, ev2 and Q1 above are really indexed by T , and that u must
be of sort T : therefore, id1 cannot be substituted for it.

But the main problem is with the typed version of the calculus. Indeed, there is no way to orient the

untyped critical pair Q1(ev1u())
?
=ev2(Q1u)id1 so that it obeys subject reduction: the most general type of

the left-hand side is indeed &1
2

) &2
2

) �3 assuming u : >
2

) &2
2

) �3, and that of the right-hand side is
&1

2

) �4, assuming u : &1
2

) �4.

38

5.2 Eliminating Other Cuts

The pecularity that made the (2L)=(2R) cut elimination legal in the last subsection was that unbox x1, the
term which is to be substituted for y1, contains only one variable, x1, and that the latter must be of boxed
type. This is why the cut can be pushed over the (2R) rule, keeping x1 in the context above the (2R)
inference. The term unbox x1 is a product of using rule (2L) as the vis-a-vis of (2R). We cannot do the
same with any other rule with an inactive right-hand side | namely, (Cut) or ()L).

However, there is another case where we may permute (Cut) with (2R), and this is when the proof is:

(�02)

(�1)
...

... � ` u : �
�1 ` u1 : 	1 (2R) �;�0; x : 	1 ` u` : 2�

(Cut) �1;�;�
0 ` u`[u1=x] : 2�

where � is boxed and �1 is boxed . Then, we may transform this into the following:

(�1) x : 	1; (�
0
2)

...
...

�1 ` u1 : 	1 �; x : 	1 ` u : �
(Cut) �;�1 ` u[u1=x] : �

(2R) �;�1;�
0 ` (u[u1=x])` : 2�

We have not considered this a reasonable cut-elimination step from the computational standpoint in part
I of this paper (see case 2 of cut eliminations, Section 4.1.2 of Part I); since terms identify proofs modulo
weakening and permutation of cuts, this rule really means that when �1 is not boxed, we should explore the
whole proof (�1) to see whether (�1) is in fact the weakening of some other proof which only uses boxed
assumptions in �1.

Representing this in �S4 or in �evQ is therefore rather arduous.

5.3 Souped-Up �-Like Rules

We have seen in Section 4 that we could introduce an �-like rule by adding rule (�box) to the �S4-calculus,
or the rules of group (H) to the �evQ-calculus.

But rule (�box) looks contrived, in that the boxed term on the left-hand side must be of the form unbox xi
for a variable xi. It seems more natural to extend it to the following rule, which we call the souped-up �-like

rule:
box unbox u with v1; : : : ; vn for x1; : : : ; xn! u[v1=x1; : : : ; vn=xn]

which obeys subject reduction as well.
But adding this rule to the �S4-calculus breaks local conuence. Consider indeed the term

box unbox (box u with �) with �0. By (�box), this reduces to (box u with �)�0, that is box u with ��0, where
��0 is the composition of � and �0. On the other hand, it also reduces by (unbox) to box u� with �0.

Now, take u to be a variable x, � to be [yz=x] and �0 to be [y0=y; z0=z]. Then the critical pair is

box x with y0z0 for x
?
=box yz with y0; z0 for y; z, and both sides are normal but not equal modulo�-conversion

and �.
Joining the resulting critical pairs (in the untyped case) means adding the rule:

box u with �! (u�)`

which is quite unfortunate, since it entails that substitutions are allowed to go through the box barriers.
The latter would not bar anything, which means that the typed version of the calculus cannot obey subject
reduction (see the discussion of the �,`-calculus in part I). The resulting untyped calculus could also be

39

simpli�ed: it would be an extension of the �-calculus with two new constants unbox and box, such that
box (unbox u)! u and unbox (box u)! u.

Therefore, any (locally) conuent calculus extending �S4 and containing the souped-up �-like rule above
must include type annotations.

The situation for the �evQ-calculus is even worse, as it includes the cases of the previous sections. Indeed,
from our considerations on the �S4-calculus with the souped-up �-like rule, we have the following critical pair:

box u with ��0
?
=box u� with �0

Take �0 to be a substitution [v1=x1; : : : ; vn=xn], and a variable x that is not free in any vi, 1 � i � n. Let y
be some xi, 1 � i � n, and take � to be [unbox y=x]. The critical pair becomes:

box u with v1; : : : ; unbox vi; : : : ; vn for x1; : : : ; xn; x
?
=box u[unbox xi=x] with v1; : : : ; vn for x1; : : : ; xn

which is an unoriented version of rule (R1).
There are so many critical pairs, and most of them are non-orientable, that we shan't consider these

souped-up rules.

References

[ACCL90] Mart��n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques L�evy. Explicit substitutions.
In Proceedings of the 17th Annual ACM Symposium on Principles of Programming Languages,
pages 31{46, San Francisco, California 1990. January.

[Bar84] Henk Barendregt. The Lambda Calculus, Its Syntax and Semantics, volume 103 of Studies in

Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam,
1984.

[Bri95] Daniel Briaud. An explicit eta rewrite rule. In M. Dezani-Ciancaglini and G. Plotkin, editors, 2nd
International Conference on Typed Lambda-Calculi and Applications (TLCA'95), pages 94{108,
Edinburgh, UK, April 1995. Springer Verlag LNCS 902.

[CHL95] Pierre-Louis Curien, Th�er�ese Hardin, and Jean-Jacques L�evy. Conuence properties of weak and
strong calculi of explicit substitutions. Journal of the ACM, 1995. To appear; INRIA report
#1617, 1992.

[Cur86] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms and Functional Program-

ming. Pitman, London, 1986.

[Hin69] J. R. Hindley. The principal type scheme of an object in combinatory logic. Transations of the

American Mathematical Society, 146:29{60, 1969.

[HL89] Th�er�ese Hardin and Jean-Jacques L�evy. A conuent calculus of substitutions. In France-Japan

Arti�cial Intelligence and Computer Science Symposium, December 1989.

[JK90] Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract algebras: a rule-based
survey of uni�cation. Technical report, LRI, CNRS UA 410: Al Khowarizmi, March 1990.

[Klo80] Jan Willem Klop. Combinatory Reduction Systems. Number 27 in Mathematical Center Tracts.
Centrum voor Wiskunde en Informatica, 1980.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System

Sciences, 17:348{375, 1978.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. MIT Press, 1990.

[R��o93] Alejandro R��os. Contributions �a l'�etude des lambda-calculs avec substitutions explicites. PhD
thesis, �Ecole Normale Sup�erieure, December 1993.

40

[Zan94] Hans Zantema. Termination of term rewriting: Interpretation and type elimination. Journal of

Symbolic Computation, 17:23{50, 1994.

41

