On Computational Interpretations of the Modal Logic S4
[IIa. Termination, Confluence, Conservativity of Aev().

Jean Goubault-Larrecq
Institut fur Logik, Komplexitat und Deduktionssysteme
Universitat Karlsruhe, Am Fasanengarten 5, D-76128 Karlsruhe*!

Jean.Goubault@pauillac.inria.fr, Jean.Goubault@ira.uka.de

August 29, 1996

Abstract

A language of constructions for minimal logic is the A-calculus, where cut-elimination is encoded as
B-reduction. We examine corresponding languages for the minimal version of the modal logic S4, with
notions of reduction that encodes cut-elimination for the corresponding sequent system. It turns out that
a natural interpretation of the latter constructions is a A-calculus extended by an idealized version of
Lisp’s eval and quote constructs.

In this Part [Ila, we examine the termination and confluence properties of the Aev@ and Aev() ;-calculi.
Most results are negative: the typed calculi do not terminate, the subsystems ¥ and ¥y that propagate
substitutions, quotations and evaluations downwards do not terminate either in the untyped case, and the
untyped Aev() y-calculus is not confluent. However, the typed versions of >~ and £ g do terminate, so the
typed Aev@-calculus is confluent. It follows that the typed Aev(@-calculus is a conservative extension of
the typed Ags-calculus.

Part IIIb will cover the confluence of the typed Aev@Q y-calculus, which is not dealt with here.

1 Plan

Part Ila is organized as follows. In Section 2, we examine the properties of Aev(and AevQy related to
termination; in Section 3, we examine their confluence properties. And in Section 4, we use these results to
show that, in the typed case, (G induces an embedding of Ags inside Aev(@) that makes the latter conservative
extensions of the former. This also holds for Agap and AevQy, provided that the latter is confluent in the
typed case, a conjecture that will be the subject of part IIIb.

2 Termination

2.1 Termination
As far as termination is concerned, the answer is simple:
Theorem 2.1 (Melliés) Neither the typed AevQ-calculus nor the typed Aev(Q g -calculus terminates.

Proof: These calculi both include the typed Aog-calculus at level 1, therefore Paul-André Mellies’ counter-
examples to termination in typed Aoy apply [Mel94, Mel95]. O

As a corollary, the untyped calculus does not terminate, as well. But this was even clearer, as the latter can
simulate any reduction in the untyped A-calculus.

*Research partially funded by the HCM grant 7532.7-06 from the European Union. This work started in July 1994 while T
was at Bull, and was finished while I was at the university of Karlsruhe.
tOn leave from Bull Corporate Research Center, rue Jean Jaurés, F-78340 Les Clayes sous Bois.

We may be tempted to try and repair this. So we might choose another A-calculus with explicit substitu-
tions that terminates, say Lescanne and Rouyer-Degli’s Av [LRD94]; but it is only confluent on closed terms,
and we need confluence on open terms to get confluence on terms where A-bound variables occur. Then, we
may choose or Mufioz” Ac-calculus [MH96], which is confluent, terminating and simulates f-normalization
but not individual S-contraction steps. At the time of this writing, the holy grail of a confluent, strongly
normalizing simply-typed A-calculus with explicit substitutions that can simulate S-contraction is still to be
found.

The next question is whether the rules in X, i.e. all rules but (3) and (), terminate. We shall need this
in Section 3.1. The answer is simple in the untyped case:

Lemma 2.2 The rules of ¥ do not terminate in the untyped case.
This still holds if we restrict the untyped language to terms built with evy, ev: and id* only, and use

only rules (evtev?) and (evid').

Proof: The following loops:

evg(ev%id1 idl)(ev%id1 idl)

evg(evgidl(ev%id1 idl))(evgidl(ev%id1 idl)) by (eviev?)
— evg(ev%id1 idl)(evgidl(ev%id1 id")) by (ev'id)
— evg(ev%id1 idl)(ev%id1 idl) by (evlidl)

So much for the untyped case. We may then consider the following semi-stratified restriction of the
calculus. This cannot claim to be really untyped, but at least it allows terms of type T to remain mostly
untyped, and it gets around the counter-example of Lemma 2.2.

Definition 2.1 The semi-stratified AevQ-terms is the following sublanguage of AevQ-terms. Terms s, t, u,
v, w, ... are elements of the language T U U+O° St where T is the language of elementary terms and S?,
1 € IN, s that of explicit substitutions or stacks at level i

T VIAV - T|TT LSO | X | T+ T | 1| vl TS | T ol SE | QLT
S0 (017515 |evhs's®
SEon= idh Y T et SN S| evi SIHISITL (1< < (41)

| 500 ST (1<i<)]QsS™ (1<i<i—1)

modulo a-renaming, and £ ranges over all integers > 1.

This restriction is natural, in the sense that we can prove the following properties (proofs omitted): the G-
translation of every Ags-term is semi-stratified of sort 7'; The quotation function u — u‘p maps semi-stratified
terms of sort 7" to semi-stratified terms of sort 7', and semi-stratified terms of sort S* to semi-stratified terms
of sort S**1. for every ¢ € IN. The types preserve the semi-stratified sorts, in the sense that every typable
Aev(Q-term u is semi-stratified, that w« is of sort 7' if its type is a term type and of sort S7 if its type is a
metastack type of the form ¢/—1 =< for some j > 0. Moreover, we can decide in polynomial time whether
a term 1is semi-stratified, and what its unique sort is; this sort is preserved by the reduction rules, including
the n-like rules.
Unfortunately:

Lemma 2.3 The rules of ¥ do not terminate in the semi-stratified case.

Proof: The following loops:

evh(evi 1! idl)(eVTl1 ' e () X X

— evh(evh 1t (evi1' id" o ()))(eviid' (evi1' id" o ())) by (ev! evz)
— evT(l(ev 1M id" e ()))(evszdl(eVTl1 id" e ())) by (evl!)
— evh(evi1! zdl)(evszdl(ele1 id" e ())) by (1)

— evh(evi1! id")(evi1! id" e e () by (evidl)

Moreover, all terms in the derivation are semi-stratified. O

Therefore, we believe that types are crucial in making ¥ terminate. Since we also want to include the 7-like
rules, we define:

Definition 2.2 (Xy) Let Sy be the set of rules in X plus group (H), i.e. all rules but (B) and (5°).

From now on, we shall implicitly assume that all terms that we handle are typed, unless we say otherwise.

It turns out that showing that X g terminates is difficult. As Lemma 2.2 shows, the type information is
crucial. This explains why no classical termination argument for unsorted rewriting systems [Der87] applies.
In particular, recursive path orderings fail even where they would seem to be applicable (in groups (D), (E),
(F)), as we shall see in Section 2.2. Furthermore, the system is not left-linear (because of (1 ¢) and (1 e o%)),
it is not right-linear, it contains both collapsing and duplicating rules, in short it has no remarkable property
that would make its study simpler.

Moreover, take the rules in group (B) at some level, say £ = 1, and add rules (n 1), (n o!) and (e o). If
we consider the restriction of this system where (n f}1) is applied eagerly (just after (A1), we get the o-calculus
[ACCLI0], whose termination proofs are all difficult, to the exception of Zantema’s [Zan94]. But Zantema’s
proof rests on transformations of the rewrite system that do not preserve types (or even semi-stratified sorts);
but we have seen that types were essential to termination.

The proof that we show is intricate, and rather tedious. We proceed by showing that larger and larger
systems of rules are terminating, beginning with some parts where the sort information is not yet indispensible.

2.2 Behaviour of Q*Terms

Roughly, Xz can be separated in two parts: groups (A), (B), (C) and (H) (Figures 3 and 9, Part IT) on the
one hand, which propagate substitutions down terms at the same level; and groups (D), (E), (F) (Figure 4,
Part II), which push terms of lower levels below terms of higher levels. We start by studying the latter.

In groups (D), (E) and (F), there are basically three kinds of operators: ev® propagates down and decreases
the exponents of operators that it goes through; Q° instead increases the exponents of operators; and of leaves
them unchanged. For example, the (0%0o%) rule ((u of v) of w — (u of w) 0% (v of w)) pushes the of operator
with the lower exponent below the other one, leaving it unchanged.

Such rules are usually well handled by the recursive path ordering [Der87], which we now define. Recall
that a quast-ordering = 1s a reflexive and transitive relation, that its associated equivalence relation = is
defined by u & v if and only if v > v and v > u, and that its strict part > is defined by v > v if u = v
and v ¥ u. Recall also that a (finite) multiset of objects in A is a map from objects in A to integers (their
multiplicities), all but finitely many of which are 0. We let {z1,..., 25|} be the multiset containing z1, ...,
&, counted with their multiplicities, and @ denote multiset union. The multiset extension >""% of a strict
ordering > on a set A is defined as the transitive closure of the relation that rewrites M W {|Jz[} into M W M,
where z > &' for every @’ € M’. Consider now a set of first-order terms with a precedence (i.e., an ordering)
on function symbols »>. Then it induces a recursive path ordering on terms >,,,, together with associated
relations »,p, and =, as follows. Given two first-order terms s = f(s1,...,sm) and t = g(t1,...,%,), we
have s >,p, t if and only if:

1. s; =ppo t for some ¢, 1 < ¢ < m,
2. 0r fgand st forall j,1 <j<n,
3. or fa~gand {s,...,sm|} >f}fél {Ilt1, ..., tal}

Then, a rewrite system R over a set of first-order terms is terminating if and only if there exists a well-founded
quasi-ordering = on the set of function symbols such that ¢ >,,, u for every rule { — v in R [Der87].
Define the precedence by of = of whenever ¢ < £. Then (0%0of) is a decreasing rule. Moreover, if we
use only this rule, then the set of function symbols that can appear during a derivation is finite, so = is
well-founded: (o*o!) terminates.
Unfortunately, all the rules of group (F) create possibly new function symbols, with higher and higher

exponents, and which are therefore lower and lower with respect to =: > is not well-founded. We repair this

by applying a transformation to our terms, so that all exponent increments are encoded in advance (through
the use of the functions ¢; in the following definition):

Definition 2.3 We adopt the following reading convention for AevQ-terms. The AevQ-terms are considered
as first-order terms built with function symbols f7, j > 0, where we take for granted that 1u and 1 u stand
for 1°0%u and 1° o u respectively, consing e is o, application is %°, A\-headers Az- are some function symbols
AY and variables x are constants (i.e., 0-ary functions) z°(). The function symbols are then binary, unary
or zero-ary (constants).

Let q;, 1 > 1, be the functions defined as follows:

(eviue) = d e @) (@) fi<i—1 5o fai(w) ot qi(v) ifi<y
qﬂe‘”“”—{ew(qlﬂ(u))v gi-1<i]”)‘{qm(u) v ifj<i

j — f‘H—l((h()a ()) Zfl S] ;
4 (f7 (u,v)) = { y = for all binary operators f other than ev or o
(0) = {ﬂ”{ iy "< T
v 0 (g1 () ifj<i

(P = { 0] i<
piy=) F ifiéj
W= <

for all unary operators f other than 1

for f constant

where 7 > 0,
We define the following interpretation [], on terms:

[Q°uly = Q (ge([uly)) (£2>1)

[n¢ U]]q =1 (¢e([u]g)) (€>1)

[uo v]]q = q¢([u]y) ot [[v]]q

£,)] = FA([adgs - s [umly)

for all other operators f*, £ > 0.

Whereas quoted terms are modified by using ¢;, ev-terms in a sense decrease the level of their first argument
when it is high enough. To restore a balance, we therefore use ¢;41 instead of ¢; in the second case of the
definition of ¢; on ev-terms. The seemingly tortuous case of o/ terms is due to the fact that we wish u o/ w
to behave as ev/t!(Q/v)w, which is reasonable because of rule (nev?). And because of rule (n), we must
do some similar to {}7-terms.

To simplify the definition of ¢;, we shall make an abuse of notations and write, for every f other than ev,
o or {}, for every 57 > 0:

(7 (u Up)) = f]:-l—l(%(ul)a"w%(um)) ifi<j
W o)) = {) a) S

We shall also write v instead of the sequence vy, ..., vy

Lemma 2.4 For every 1 <€ < L, qgoqr—1=¢qs°qe-

Proof: Observe that o is just ordinary composition of functions here, not an operator in the language. We
prove that (ge o gz—1)(u) = (g2 o q¢)(u) for every 1 < £ < L, by structural induction on u.
If w= fI(vi,...,vm), f other than ev, o or 1, then we have three cases:

o j <l (qroge—1)(u) = 9e(f7(ge=1(v))) (because j < £L—1) = f/((ge o qc- 1)](

v)) (because j < £) =
ff((qﬁﬁ) o ¢7)(v)) (by induction hypothesis); and (gz o q¢)(u) = qﬁ(ff (q:(v))) = f7((qz o ge)(v)) (because
j< L.

o 0 < j<L—1: (qrogqe1)(w) = q(f(qe-1(v))) = (g0 ge-1)(v) = T ((gc 0 qe)(v)) (by
induction hypothesis); and (g¢ o q¢)(u) = qc(F 1 (qe(v))) = 711 (qe(v)) (because j + 1 < £).

[]
o
|
—_
AN
l
2
o~
(¢}
2
[

|
—
~—
—_
<
~—
(l
b
o~
—
=
+
—
—
2
[
|
—
—
<
~—
~—
~—
|
=
+
N
—
—
b
o~
(¢}
2
[
|
—
~—
—
<
~—
~—
o
D
s
o
w0
D
&~
AN
o
IN
o
+
~—

(because £ < j+1).
Similarly when u = ev/vw:

o j<l+1: (qu o}qg_l)(u) = qe(ev’ (g (v))w) (because j —1 < £ —1) = ev/((geg1 © qﬁ)(v))w (because
i—1< f) = ev? ((gz4+1 © get1)(v))w (by induction hypothesis); and (gz o ¢¢)(u) = ¢z(ev? (qo41(v))w) =
ev/ (g1 © gey1)(v))w.

e (+1<j<L: (o qﬁ_l)(q) = qg(evj(qg(v))w) (because j —1 < L —1) = evj‘H((qz 0 qz)(v))(qe(w))
(because £ < j — 1) = ev‘7+'1((q£+1 o q1)(v))(ge(w)) (by induction hypothesis); and (g2 o q)(u) =
qc(ev/* (qe(v)) (g0 (w))) = ev/ (g 41 © 40) () (ge(w)).

o L < (qroge—1)(u) = qz(evj‘H(qg_l(v)')(qg_l(w))) (because L—1 < j—1) = evj+2((qzoqﬁ_1)(v))((qzo
qc-1)(w))) (because'ﬁ <L <j)= ev3+2((q£ 0 ¢e)(v))((qz © qo)(w)) (by induction hypothesis); and
(42 0 qe)(u) = qc (e’ (ge(v))(qe(w))) = v+ ((4c 0 4)(v)) (4 © q2) (w)).

When v = v o? w:

o j <t (groge-1)(u) = qe(ge(v) ol w) (because j < L — 1) = (qe1 0 q2)(v) of w (because i<
=(qz+1 oqg+1)(v)pf w (by induction hypothesis, since £+1 < £); and (g2 0qe)(w) = ¢z (qes1(v)o? w) =
(gc41 0 qey1)(v) o/ w.

o (< j<L—1 (qogc1)(u) = qe(qc(v) ol w) (since j < £ —1) = (q¢ 0 q¢)(v) o9t go(w) (since
€< j) = (qe+1 0 q0)(v) 0?1 g4(w) (by induction hypothesis, since £ < £ + 1); and (g o q¢)(u) =
qc(qe(v) o HL go(w)) (since £ < j) = (qz41 0 qe)(v) /L go(w) (since j+ 1 < L).

o L—1<j: (qroge-1)(u) = qi(ge—1(v) o/t g1 (w)) (because £ —1 < j) = (qr0ge-1)(v) o2 (gr o
qc-1)(w) (because £ <L< G+ 1) = (qz 0 q0)(v) o2 (g2 o q0)(w) (by induction hypothesis); and
(g2 0 q0)(u) = gege(v) o/ H go(w) (since £ < L =1 < 7) = (g2 © qe)(v) o717 gz 0 o) (w).

And similarly when u ={}* v. O

Recall that a context C is a term with a unique distinguished occurrence called the hole and written [].
C[u] denotes the term obtained by replacing the hole by the term w. Recall that u — v is and only if there
is a rule { = r and a context C such that « = C[{] and v = C[r].

Applying the [_], transformation to the rules in groups (D), (E) and (F) yield new rules, shown in Figure 1.
Indeed:

Lemma 2.5 For any rule w — v in (D), (E) or (F), [u]y — [v]q is an instance of some rule in (D), (E')
or (F') respectively (see Figure 1).

Proof: By case analysis on the rule.

Rule (f%0%). The [J],-translation of the left-hand side is g¢o(f*([uilg, .-, [umlq)) o [wly =
FA Y (qeluily, - - - @efum]y) (since € < L), while the translation of the right-hand side is f*(ge[u1], o°
[[w]]qa) QZ[[um]]q of [[w]]q)'

Rule (ev o). The translated left-hand side is ge(ev® ([ulg, [v]4)) of [w]y = ev<H(ge[uly, ge[v]y) (since
¢ < £ — 1), while the translation of the right-hand side is ev* (ge[u], o [w]y, ge[v]q o [w]y).-

Rule (Q%0*). The left-hand side translates to q¢(Q* (qc[uly)) of [w]y = @< ((gs 0 q2)[u]y) of [w], (since
<L) = QT ((ge+41 © qo)[uly) of [w], (by Lemma 2.4, since £ < £ + 1). The right-hand side translates to
Q" (qc(ge[ulq o [wlyg)) = Q% ((ge41 © ge) [uly o [w]y)-

Rule (o“0of). Translating the left-hand side yields g,(q¢[u]q0” [v]4) o [w]y = ((g20 g2)[ulq 0= T qe[v],) o
[wl, (since £ < L) = ((ge+109¢)[ulgo* Tt qe[v]y) of [w], (by Lemma 2.4, since £ < £+1). And the right-hand
sideyields gz (ge[ul o* []q) o {aeloly o [wle) = ((ac 31 0 ae) ey o [iely) o (aelly o [iely) (sinee £ < £)

The case of tule (f* of) is similar.

The cases of rules (ev’f*) and (ev‘ev®) are trivial.

[F5o Ty FAF(ur, . um) of w — f5(ug of w, ..., uy, of w)
[evcot], (evitluv) ol w — ev® (uof w)(v ol w)

(@5, (@°+1u) o' w— Q% (uof) (D)
u o*t v) of w — (uof w) of (v ol w)
ﬂ£+1 u) ot w _)TTﬁ (u of w)

levif<l, evi(f“(ut,...,um))w — f5 1 (eviurw, ..., evtu,w)
[eviev], evi(evFuv)w — ev:~!(eviuw)(evivw)

[ev'Q*], ev (@ u)w — Q*~(eviuw) (E")
[evio], evi(uo® v)w — (eviuw) o*~! (evivw)

[evt 141, evi(t* w)w =+~ ! (eviuw)

[[szﬁ]]q QZ ﬁ(ula"'aum)) %fﬁ(QZula"szum)

==
=

=~

O

=~
R
<
—_—

V2

[Q° 1], @
Figure 1: Translating rules by []; (1 < ¢ < £, f other than ev, o, I, Q)

Rule (ev‘Q*). The left-hand side translates to ev(Q*(qc[uly))[w]y, while the right-hand side yields
Q5 ge—1 (v [ul [lg)) = @5~ (ev (ac[ulwl,) since €— 1< £ — 1.

Rule (evfo?). The translation of the left-hand side is ev®(qc[u], 0% [v]4)[w]y, while that of the right-hand
side is g1 (evi[u],[w]y) 0“7t (evt[v]4[w]y) = (evi(qe[uly)[wly) o~ (evi[v] [w],) since £ —1 < £ —1.

The case of rule (ev’ {}*) is similar.

Rule (Q°f*). The left-hand side translates to [Q*(f<~1(w))], = Qz(qz(fﬁ_l([[u—]]q))) = Q (f“(q:([uly))))
because £ < £ — 1. And the right-hand side yields [[fﬁ(QZul,%) ¢ = A (Q%q:([u]y)))-

Rule (Q‘ev*®). The left-hand side translates to [Q%(eviuw)], = Q% (qe(ev*[ul [w]y))
Q (ev T (qe([uly)) (g ([wly))) (because £ < £ —1). And the right-hand side yields [ev<+(Q%u)(Q w)],
v (@ ge([ud)@ (ge []).

Rule (Q°Q*). The left-hand side translates to [QY(Q*~ u)], = Q% (¢:(Q“ 1 (qc—1([uly)))) = QYUQ* ((gs 0
qc-1)([uly)) = QYUQ*((g¢ o g¢)([uly))) by Lemma 2.4. And the right-hand side yields [Q“(Q‘u)], =
Q%0 (@(ae[41)) = (@' ((ac o 40) ([ul,))).

Rule (Q%0*). The translation of the left-hand side is Q*(qe(qz—1[uly o“ 7 [v]y)) = Q*((g¢ © gc—1)[u]y o*
[v],) (since £ < £ —1) = Q%((qz o q¢)[uly o* [v],) by Lemma 2.4, since £ < £ — 1. And the right-hand side
translates to ¢¢(Q"(ae[ulo)) o (@ (aelely)) = Q((az o a0)[uly) o (@' (aele]y)) (sinee € < £).

The case of rule (Q° (%) is similar. O

Lemma 2.6 We let the set of g-functions be the smallest set containing the identity function on AevQ)-terms
and stable by composition with any q;, 1 > 1.
For every context C, there is a context [C], and a g-function qc such that, for every term t, [C[t]]q =

[Clalge ()]

Proof: TFirst observe that (*) for any context C, for any ¢-function ¢, there is a context ¢’ and a g-function
q’ such that ¢(C[t]) = C'[¢()] for any term ¢. Indeed, this is clear if ¢ is the identity; when ¢ is ¢; for some ¢,
then this is an easy structural induction on C, using Definition 2.3; and otherwise, this is an easy induction
on the length n of a given presentation of ¢ as composition of n ¢; functions.

Then we prove the lemma by structural induction on C. If C = [], we take [C], = [] and g¢ equal to the
identity function. If C = f*(uy,...,u;i—1,Ci,Uiy1, ..., Um), Where f is any operator but @, o or {}, where the
uj’s, 1 < j < m, j i, are terms and C; is a context, then [C], = f*(u1, ..., ui—1, [Cilg, wit1,- -, um) and
gc = q¢;-

If ¢ = QYCy), then let " be [Ci]y, ¢’ be gc, (using the induction hypothesis), so that [C[t]], =
Q% (q([C1[11])) = Q%(qe(C'[¢'(1)])). By remark (*), there is a context C” and a g¢-function ¢” such that
2(C'l¢ (D)) = Clg" (1), and we let [C], = Q*(Ch) and ge = ¢".

R 7i(R) when:
[[fﬁOZ]]q [[f£+1oz+1]]q 7 S Y

. R ¢;(R when:
[[fz-l'zlof]]q l;< 1< L [ev'o], [[e(vu)-1oﬁ+1]]q i< l—1
£t L/ §+]]1q 041 - [eviott1], (—1<i<L-1
[evto']y, [evitiotH], i<¥¢ [eviof] f—1<i
[evctiof], (<i<L-—1 ¢ r 01 e)
[ev=o] L—1<i [ev" %14 [[evZ o Jg i<i-1
[[Qﬁoz]] [[Q£+1Og+1]] i</ [evt 1 11], (—1< Z.S L£-1
! [Q5+10] ! (<i<C [ev’ 141, L—-1<
= s (@, @], i<t
[[QLZOZ]](] L<i 4q ol q =*
£ L1, 0+1 Y R+, t<i<C
o], [[O£+1Oz bois [Q“f~1, L£<i
t<i< L)
%Zﬁol]]o]]q r <Zi_ [[Qzevﬁ]]q [[Qﬁ+1ivﬁl+1]]q 1 < E
o], [t o, i<t [Qev 71y f<ist
Do, (<ise PV C el
<o, c<i ('), [oQ T, i<t
: , [Q‘Q“*'] (<i< L
levif<], [evttif<*t'], i<t-1 [0°04] 4 C<i
[evt F£+1], L—1<i<L—-1 [Q0°] [[QZ+1O£q+1]] i <<£z
ol o D[t t<i<k
[eviev], [evitlevitl], i<i—1 [00°] q i
[[eVZeVL:-I_l]]q -1 <1 S L-2 0 AL Z-(I)—l ql:-l—l . <7
e _ : @ 11y [=™, i<(
gl cols [Q‘ <], t<i<L
[[eVZQﬁ]]q [[eVZ-HQﬁ-H]]q i<l-1 [[Qz ﬂﬁ]] 4 [< .
[ev/Q*+], (—1<i<L-1 g !
[ev‘Q*], L—-1<1i

Figure 2: Applying ¢; to rules in (D), (E') and (F')

If C = C; of u for some u, then let €’ be [Ci]y, ¢' be e/ (using the induction hypothesis), so [C[t]], =
qe([C1[t]]q) o [ulq = qe(C'[q’ (1)]) o° [uly. By remark (*), there is a context € and a g-function ¢” such that
2:(C'[¢'(1)]) = C"[¢"(t)], and we let [C], = C"” o* u and g¢ = ¢".

And if € = wo® Cy, then we let [C], = qe(u) of [C1]4 and gc = qc, .

Finally, if C =fi* Ci, then let €’ be [Ci1],, ¢’ be gcr (using the induction hypothesis), so [C[t]], =1*
(qe([C1[t14)) =1 (ge(C'[¢'(1)])). By remark (*), there is a context C” and a g-function ¢ such that
2 (C'[¢'(1)]) = C"[¢"(1)], and we let [C], =fi* C" and gc = ¢". O

Lemma 2.7 For any rule v — v in (D'), (E') or (F'), for any context C, [C[u]], rewrites in one step to
[C[v]]q by the rules of group (D'), (E') or (F') respectively (see Figure 1).

Proof: First, if u — v is any rule R in Figure 1, then ¢;(u) — ¢;(v) is also an instance of some rule in
Figure 1, which we shall call ¢;(R). Indeed, check the table in Figure 2, where f is any operator except ev,
Q or o.

It follows that for any g-function f, for any rule « — v in Figure 1, f(u) — f(v) is also an instance of
some rule in Figure 1: this is by induction on the number of ¢;’s we compose to get f.

Now, let C be a context. By Lemma 2.6, [C[u]], = [C]4[gc(«)] and [C[v]]; = [Cl4lgc(v)]. By the above,

ge(u) — ge(v) is an instance of some rule in Figure 1. Therefore [C[u]], rewrites to [C[v]], in one step. O
Lemma 2.8 The set of function symbols occurring in any derwation in the system of Figure 1 1s finite.

Proof: For every term u, let F(u) be the set of function symbols f*, where f/ is any function symbol
occurring in u, and ¢ < j. For any w, F'(u) is clearly finite. Check that, if u rewrites in one step to v, then

F(v) C F(u). In any derivation ug — 43 — ... —> up —> ..., the set of function symbols that occur is
therefore (5 £ (u;) = F(ug), which is finite. O

It follows:

Lemma 2.9 Let = be the precedence defined by f' = ¢7 if and only if i < j, and let >, denote >,p,.
For any rule v — v in group (F'), u >, v. In particular, group (F) terminates.

Proof: Consider the [Qff*], rule. For every i, 1 < i < m, f“(u1,...,um) =rpo wi by clause 1 of the
definition of >,,,. By clause 3, it follows that Q*(f* (u1,...,um)) >rpo @ui. Since Q° = f<, it follows by
clause 2 of the definition of »=,,, that Q*(f* (u1,...,um)) =rpo f5(Q%u1,...,Qup). The three other rules
are treated similarly.

By Lemma 2.8, then, we can restrict ourselves to some fixed finite set of function symbols in any derivation
in group (F'), on which = is well-founded. Tt follows from the above that this system terminates. That group
(F) terminates then follows from Lemma 2.7 (in fact, this translation preserves the lengths of derivations). O

2.3 Behaviour of ev/-Terms

In Section 2.2, we have not considered the rules in groups (D) and (E). At first glance, it seems that we
could have used a similar trick to handle the decreasing of indices incurred by ev’ going down terms. This
would require us to define [evtuv], = ev’(es([u]y))[v]y, with in particular e; (f7 (@) = fi=1(e;(u)) if i < j
and e;(f/ () = f (m) if ¢ > j, for any f but o, @ or ev, and similar rules when f is o, Q or ev.
But then we would be forced to include rules such as ev®(ev’ ¢ £

uv)w — evt(eviuw)(evfvw) in the translated
system of Figure 1, which is not »,,,-decreasing. The problem lies in the fact that e; confuses indices:

ei(fiH (@) = e;(fi(@)) = fi(ei(u)). An entirely different solution is called for.

Definition 2.4 An infinite sequence s over some alphabet A is any total function from IN to A.

We write s; the letter at position i in s, which is s(i) by definition.

We denote by s; ; the finite sequence of all letters s;, s;y1, ..., 55; if ¢ > j, we take by convention s; ;
to be the emply word e. We denote by s; o the infinite sequence of all letters s;, s;y1, ...

For any letter x, let x* be the infinile sequence consisting only of x. If w is a finite sequence and w' is
an finite or infinite sequence, let w . w' be the concatenation of w and w’. Concatenation is associative and
has € as unit element.

Definition 2.5 Let , be the set of all infinite sequences v of non-negative integers containing only finitely
many non-zero integers. Fvery such sequence can be written as the concatenation of some finite sequence
Yo..x and of 0¥.

For every £ > 0, let C, (compose), FEy (eval), K, (kwote) be functions from IN to IN. Let also Py (pair)
be functions from IN x IN to IN, L, (lambda) be functions from N to IN, Fy (first), Sy (second), Uy (up), I,
(identity) be functions from IN to IN. Let finally 6 be some fived element of | .

We define the function []e- from AevQ-terms and elements of , to non-negalive integers as follows. To
save a few parentheses, we write [u]es . v instead of [u]e(s . v); Ce[u]ey instead of Co([u]ey), and similarly
with By and Qg (in this the v part is assumed to extend as far right as possible); and parentheses are used
to promote an integer n to a sequence (n) containing exactly the integer n.

[eviur]ey = [ulevo.e—1 - (Ee[v]evo. e—1-6) - e oo
[Q]y [ulevo. e=1 - (Keve) - Yet1..00

[uofvley = [ulevo.e . (Celulevo.c-6) . yeg1.co
[idTey = Yoz Yi + Le(ve)

[19ey = YivouzeYi + Felye)

[t7ey = Yoz Vit 5e(ve)

[ue v]ey = Po([u]ey, [v]ey)

[uxtv]ey = [ue v]ey

[[/\ZU]]e = Le([u]ev)

[[ﬂZ ulley = UZ([[IZ of (UOZ TZ)]]e'Y)

Finally, we define [u]eqy as being [[u]g]ey-

Say that a function f from IN to IN is superlinear if and only if f(n) > n for every integer n. Finally, a
function f from A x B to IN is superlinear if and only if it is superlinear in each of its arguments separately.

Define the ordering > on sequences pointwise, i.e. y > v if and only if y; > +/ for every ¢ > 0. Let v > 4/
denote v > 4" and v # +'. Similarly, define (a,b) > (a’,4') by a > o’ and b > ¥, and (a,b) > (a’,¥’) if and
only if (a,b) > (a’,¥’) and (a,b) # (o', V).

We say that a function f is monotonic if and only if @ > b implies f(a) > f(b), where > is defined on
naturals, sequences, or couples appriopriately.

We extend the ordering > to functions pointwise, i.e. f > ¢ if and only if f(a) > g(a) for every a in the
common domain of f and g. Then, any family (f;),., of functions is said to be increasing if and only if, for
all 0 <i<j, fi < f;. B

We shall assume the following properties in the sequel:

(P1) For every £ >0, K¢, Iy, Fo, Si, Py, L, Up are superlinear.
(P2) For every £ >0, Ey, Ky, Cy, Iy, Fo, Sp, Pi, L¢, Uy are monotonic.

(P3) (Eﬁ)zzm (Kﬁ)zzm (Cﬁ)zzm (Il)zzm (Fl)zz(w (Sf)zzm (Pl)zzm (Ll)zzo’ (Uf)zzo are increasing families
of functions.

These properties are easy to verify. Take for instance Fy(x) = K¢(2) = Cy(z) = Li(x) = Fo(x) = Se(z) =
Liw)=Ux) =+ L+ 1, Po(e,y) = +y+ L+ 1.

Lemma 2.10 For every term u, for every i € IN, for every v in , , [uley > vi-

Proof: By structural induction on u, using only property (P1) (superlinearity).

If u = evlow, then [u]ey = [v]evo. e—1 - (Ee[w]evo. e—1 - 8) - 7e..co. For every i < £, the claim follows by
the induction hypothesis, applied to v and index ¢. For every ¢ > £, it follows by the induction hypothesis
applied to v and index ¢ + 1.

The argument is similar if u = v of w.

If u = Q%, then [u]ey = [v]evo.e—1 - (KeYe) - Ver1.0o. For every i # £, the claim follows by induction
hypothesis applied to v and index . When ¢ = £, [u]ey > Ki(vy,) (by induction hypothesis) > v, (by
superlinearity of Kj).

If w = id®, then [u]ey = ijo,j;éz v; 4+ Ie(ye). For every i # £, notice that since I, is superlinear,
Ii(ye) > ve > 0, s0 [uley > ijo,j;éz ¥; > ¥i. And when i = £, then [u]cy > I(y¢) > 7¢ by superlinearity of
Iy.

The argument is similar when u = 1¢ or u =1¢.
twor u = v+t w, then [u]ey = Pi([v]ey, [w]ey). Since Py is superlinear in its first argument,
say, then [u]ey > [v]ey > 4 by induction hypothesis.

The argument is similar if u = Afv.

If u =) v, then [uley = Ug([1° o vof 1]cy) > [1° of vol 1+¥].y (by superlinearity of U;) > =~; (by
induction hypothesis). O

fTu=ve

Lemma 2.11 For every term u, for every v in , , for every i in IN, the function k — [u]evo -1 - (k) .
Yi+1.co 1S monotonic.

Proof: By structural induction on w, using property (P2). This is clear if u is id®, 1¢ or 1¢. In the sequel,
we assume m > n.
If u = evlvw, then there are two cases. If { > £, then:

[ulevo izt - (M) - ¥ig1. oo

= [v]evo.e—1 - (Eelwlevo.em1 - 6) - vei—1 - (M) - Yig1..00
> [v]levo. o1 - (Eelwlevo.e—1-6) -y i=1 - (R) - Vit1. 00 by induction hypothesis on v
= [uleyo.im1 - (7) - Yit1.00

And if ¢ < £, then:

[ulevo. izt - (M) - Yit1..c0

= [vlevoict - (m) - vigre—1 - (Be[wlevoic1 - (M) - ¥ig1.e-1 - 6) - Yoo

> [v]levo.i-1 - (7) - Yig1.0-1 - (Be[wleyo i—1 - (M) . ¥ig1.0-1 - 0) . Ye.co by induction hypothesis on v

> [v]levo.i-1 - (7) - Yig1.0-1 - (Be[w]evo i—1 - (R) - ¥ig1.0-1 -0) - V2.0 by induction hypothesis on w
monotonicity of Fy and
induction hypothesis on v

= [ullevo.5-1 - (7). Yig1. 0

If u = v o’ w, the argument is similar, except that the two cases are now ¢ > £+ 1 and i < £+ 1, and we
use the fact that Cy i1s monotonic.

If w = Q%, then we have three cases. If i > £+ 1 or i < £ —1, then the claim follows directly by induction
hypothesis on v. If i = £, then by monotonicity of K,, we have Ky(m) > K;(n) and the result follows by
induction hypothesis.

If u=v o' wor u= v+’ w, then we have two cases. If 1 > £ + 1, then:

[ulevo. izt - (M) - Yit1..c0

= Pr([v]levo.iz1 - (M)« ¥igt1.00, [W]evo izt - (M) . Yit1..00)

> Po([v]evo.5-1 - (M) - Yit1. 005 [W]eYo.i—1 - (M) . Vit1.00) by induction hypothesis
and monotonicity of Py

= [ullevo.5-1 - (7) - Yig1. 00

If v = Av, then the argument is similar, using the monotonicity of L,.
Finally, if u ={}%, then this follows directly from the induction hypothesis and the monotonicity of U,. O

Lemma 2.12 For any v in , , for any rule | — v in Figure 1, [{Jey > [r]ey. Moreover, the inequality is
strict except for rules in group (F').

Proof: By case analysis. We start by examining the rules in group (F'):

o [Qfev*]y:
ey = [[Qz(evu—luv)]]e'Y
= [ev*t uv]evo e—1 - (Keve) - Yett. o0
= [ulevo.e—1 - (Keve) - vexr.c - (EBepilvlevoo—1 - (Keve) - Yeg1.0 - 6) - Vo410
= [u]evo.0-1 - (Keve) - Yew1.c - (Ecr1[Q@%]evo. 2 - 8) - Yea1. oo
=[Q%]cv0. £ - (Ect1[Q@%]ev0.2 - 6) - Yet1. o
= [ev* Q") (Q)]y = [r]ey
4 [[QZQﬁ]]q:

ey = [[QZ(Qﬁu)]]e'Y

= [Q@“ulevo..c—1 - (Keve) - Yet1..00

=[elevo.o-1 - (Keve) - Yog1..0-1 - (Keve) - Y41 .00
= [Q%ulevo.c-1 - (Kvz) - Vo410

= [Q%(Q"w)]ey = [r]ey

o [Q%*], is similar to the previous two (and follows from the intuition that we treat u of v in the same
way as ev't(Q%u)v, changing K,F, into C}).
o [Qid“]y:
ey = [Q%d Tey = [id“Tevo.e-1 - (Keve) - Vo100
= izeize Vit Kelve) + Ie(ve)

> izeize Vit e+ 1o (ve)
since Ky is superlinear

= [[Z'dﬁ]]e"y = [[r]]ef-}/
and similarly for [Q*1%], and [Q° %],

10

o [Q° o]y
ey = [[QZ(U ot v)]ey
= [u o v]evo.—1 - (Keve) - Yet1..c0
= Pe([ulevo. =1 - (Keve) - Yet1..00, [V]evo.e=1 - (KeYe) - Yeg1..00)
= Pﬁ([[QZU]]e% [[QZU]]e'Y)
= [(Q%w) o* (Q“v)]ey = [r]ey

and similarly for [Q*x*], and [Q‘A*],.
o [QF ﬂﬁ]]q follows from the previous cases.

Then, group (E'). Be aware that the interpretations of ev® and o shift indices of the associated sequences.
o [eviev®],:

[ey = [ev (evFuv)w]ey
= [eviuv]evo.o-1 - (Be[w]eyo. e—1 - 6) - Ye..co
= [u]levo. o—1 - (Ee[wlevo -1 - 9) - e £—2
AEc[v]evo.e=1 - (Be[wlevo.e—1 - 0) - Ye.c—2 - 8) . Yo—1..00
> [ulevo.i—1 - (Ee[wlevo.e=1 - 8) . Yo c—2
AEcoav]evo. o1 - (Belw]evo.o—1 - 6) - ye.c—2 - 0) . Vo100
since (Ej),~ 1s increasing
= [ulevo o1 - (Eew]evo e—1 - 8) - Yo c—2 - (Ec—1[eviow]evo c—2 - 8) - Yo-1. oo
= [eviuw]evo. -2 - (Ec—1levivw]eyo. c—2 - 8) - Yem1 oo
= [evc L (eviuw)(evtvw)]ey = [r]ey
. [[evZQﬁ]]q:
[y = [ev* (Q“uw)w]ey
= [Q%u]evo.0-1 - (Ee[w]evo. e—1 - 3) - Ye..oo
= [ulleyo. e—1 - (Ee[wleyo =1 - 0) - Y. c—2 - (Kzye—1) - Ve .00
> [wlevo.o—1 - (Ee[wlevo.i-1 - 8) Yo c—2 - (Keo1y2-1) - Ve 00
since (Kj);, is increasing
= [eviuw]evo.co2 - (Keo1¥e-1) - V.00
= [Q“H(eviuw)]ey = [r]ey

e [ev‘o*], is similar to the previous two (and follows from the intuition that we treat u of v in the same
way as ev't!(Q%u)v, changing K, F1; into C).

o [evtid“],:
’ [y = [eviid“w]ey

= [id“evo.e—1 - (Ed[w]evo. -1 - 8) - Ye..co

= Zz’;ﬁﬁ_l ¥i + Ee([w]evo. o1 - 6) + Lz (ve-1)

> Zz’;ﬁﬁ_l ¥i + Ee([wlevo. e—1 - 0) + Tz—1(y2-1)
since (I;);5 1s increasing

> D ize—1 i tle—1(yc-1)
since Fy 1s non-negative

= [id“ " 'Jey = [r]er

and similarly for [[evzlﬁ]]q and [ev’ Tﬁ]]q~

11

o [evt 4],

[ev(u o~ v)w].y

= [u % v]evo. -1 - (Ee[w]evo.e—1 - 6) - Yoo

= Pe([ulevo..e—1 - (Eefwlevo.e—1 - 6) - Yeooos [W]evo.—1 - (Ee[w]evo..o—1 - 0) . Ye.co)

> Proq([u]evo.o—1 - (Eelw]evo.o—1 - 0) - Ye..o0, [v]eYo.0—1 - (Ee[w]evo.e=1 - 6) - Ye.00)
since (P;),s, 1s increasing

= P ([eviuw]ey, [evivw].y)

— [(ev'uw) o6~ (ev'vu)]ey = [rs

The case of [evix*], is the same, and that of [ev‘A*], is similar.
e [ev’ t*], follows from the previous cases.

Group (D') follows similarly, or by noticing that u o v behaves as evt*!(Q‘u)v, with K,E;y; replaced
by C,. O

Lemma 2.13 If [u].y > [vley (resp. >) for every v in ,, then for every context C, for every v in ,,
[Cluller > [Cleller (resp.).

Proof: We only treat the case of >, since the case of > follows easily. The proof is by structural induction
on C. If C =[], this is clear. Otherwise, we have several cases.

If ¢ = ev/Coow, then [Clulley = [Cilul]levo j-1 - (Ejlwlevo j-1 -) - oo > [Ci[v]levo j-1 -
(Ej[w]levo. j—1 -0) . ¥j. 00 (by induction hypothesis) = [C[v]]7.

If C = ev/wCy, then [Clu]].y = [wlevo. i1 - (E;[Ci[u]]evo. j=1 - 8) . ¥5. 00 and v the claim follows by the
induction hypothesis, monotonicity of £; and Lemma 2.11.

If C = Q’Cy, then the claim follows directly from the induction hypothesis. The cases where C has o/ as
top operator follows by similar arguments.

If C = Cy o w, then [Clu]]ley = Pj([Ci[u]le, [w]ey) > Pj([Ci[v]]e7, [w]ey) (by induction hypothesis and
monotonicity of P;) = [C[v]]ey. Similarly when C = w ¢/ Cy, or with 7 or A instead of /.

The case when C =f)/ C; follows again by similar arguments, noticing that it behaves just as 1/ o/ (C107 19).
O

Lemma 2.14 Let >, (resp. >.) be defined by u >. v (resp. >.) if and only if for every v in , , [u]ey > [v]ey
(resp. >).

Let >cq be (>¢,>¢),.,, €. the ordering defined by u >.q v if and only if u >c v, or u>. v and u >4 v.

Then, whenever u rewrites to v by some rule of groups (D'), (E') or (F'), then u >cq v.

Let .4 be defined by u »cq v if and only [u]q >eq [v]q. If u rewrites to v by some rule in groups (D),
(E) or (F), then u =4 v. Therefore, the rewrite system consisting of (D), (E) and (F) terminates.

Proof: If u rewrites to v by some rule of groups (D'), (E’) or (F”), then there exists a context C and a rule
! — r such that v = C[{] and v = C[r].

If this rule is in group (F'), then by Lemma 2.12, [>, r. By Lemma 2.13, v >, v. By Lemma 2.9,
U>q V. SO U >eq V.

If the rule is in (D') or (E’), then by Lemma 2.12, [>, r. By Lemma 2.13, u >. v, so u >4 v.

Now by Lemmas 2.5 and 2.7, if u rewrites to v by some rule in groups (D), (E) or (F), then [u], rewrites
to [v]y by some rule in groups (D’), (E') or (F'), so u »cq v.

Moreover, >, is clearly well-founded for derivations (i.e., the intersection of ., and the reduction pre-
ordering is well-founded, see [Der87]), so groups (D), (E) and (F) as a whole defined a terminating rewrite
relation. O

2.4 Going Further

The interpretation [].q of the last section actually proves that more rules are in fact decreasing. We start
with the following observation:

12

Lemma 2.15 For every term u, for every i > 1, for every n > 0, [¢:(v)]evo. i1 - (n) - Y500 > [u]ey-

Proof: By structural induction on u. We have several cases:
Case u = ev/vw. If i < j — 1, then ¢;(u) = evw/T1(g;(v))(g:(w)), so:

[[ql'(u)]]e'YO..i—l ~(n) i o
= [ev/*(¢s(v)) (q: (w))]eY0.i=1 - (1) - ¥ioco
= [gi(v)]evo.i=1 - (n) - vij—1 - (Ejpilai(w)]evo.i=1 - () - ¥ij=1-6) - Vj.co
> [vlevo =1 - (Ej4ales(w)]evo i1 - () - i1 .9) - Y. 00
by induction hypothesis
> [[v]]e’Yo..j—1 . (Ej+1[[w]]e’70..j—1 ~5) - Yj..00
by induction hypothesis, monotonicity of £, and Lemma 2.11
> [elevo. -1 - (Ej[wlevo.j=1-6) - ¥ .00
since (E¢),~ 1s increasing and by Lemma 2.11

= [ev/vw]ey = [u]ey
Ifi>j—1,ie. i>j, then ¢;(u) = ev/(g41(v))w, so:

[[Qi(u)]]e’m..i—1 . (n) - Yi.o0
= [ev? (git1(v))wlevo.iz1 - (7). ¥i oo
= [git1(v)]evo. -1 - (Ejlwlevo j=1-8) - v i—1 - (0) - ¥i oo
> [vlevoj-1 - (Bjlwlevo. j-1.6) - v oo
by induction hypothesis (note how indices were shifted)

= [evivuler = [uler
Case u = Qlv. If i < j, then ¢;(u) = Q7T1(g;(v)), so:

[[Qi(u)]]e’m..i—1 . (n) - Yi.o0
= [Q7 (¢i(v)]ev0.im1 - (1) - Yiooo
= lgi()]evoniz1 - (n) - vij-1 - (Kjp1vs) - Yitooo
> [elevo. =1 - (Kj+175) - Vj+1..00
by induction hypothesis
> [vlevo =1 - (K595) - ¥j+1. 00
since (K¢),s 18 increasing and by Lemma 2.11

= [[ij]]e'Y = [u]ey
If i > j, then ¢;(u) = Q7 (g:(v)), so:

[[Qi(u)]]e’m..i—1 . (n) - Yi.o0
= [Q7(¢i(v))]evo.i=1 - (7) - Vs..co
= lai()]evo.j—1 - (Bv5) - vi41i-1 - () - Viico
> [vlevo -1 - (Kj75) - 100
by induction hypothesis
= [Qv]ey = [uley

The case u = v o) w follows by similar considerations as the two previous cases.
Case u = id’. If ¢ < j, then:

[[Qi(u)]]e’m..i—1 . (n) - Yi.o0

= [id ™ evo i1 - (7)o

= Zk;ﬁj Vi + Lit1(yy) +n

> sy Vi T L () since n > 0

>3z Vi t1i(v) since (Iy),s is increasing

= [id']ey = [ulev

13

If ¢ > j, then:
lg:(w)]evo i1 - (R) - i oo
= [id’Jevo.i—1 - (0) - ¥i oo
= 2k Vi H i) 0
> kg Vi 1) since n > 0
= [[Zd]]]e'Y = [u]ey

and similarly in the cases u = 19 and u =1.
Case u = v o w. If i < j, then ¢;(u) = ¢:(v) ¢/*! ¢;(w), so:
X

[[QZ()]]670 d—1 n) - Yi.co
= [gi(v) @ gi(w)]evoi-1 - () - Vioco
=]+1([[QZ()]]670..2'—1 . (n) - Yi.oo) [[qi(w)]]ePYO..i—l . (n) . 7200)
> Piyi([vler, [w]ey)
by induction hypothesis and monotonicity of P;41

> P; ([[v]]e'Y [w]ev)

smce (Pr) s> 18 increasing
= [v o' wley = [uley

If ¢« > j, then:
[gi(w)]ev0.i-1 - () - Yiioo
= [gi(v) o ¢i(w)]evo.i=1 - (7) - Vi oo
= Pi([gi(v)]ev0.i=1 - (7)) - ¥i oo, [gi(w)]evo.iz1 - (7) - ¥i oo)
> Py([v]er, [w]ey)
by induction hypothesis and monotonicity of P;
= [v o wley = [u]ey
and similarly when v = v+ w and u = Mwv.
The case of u ={}7 v follows similarly, or noticing that this case works as for u = 1/ ¢/ (vod 7). O

It follows:

Lemma 2.16 If s rewrites to t by rule (evQ®), then s =4 t.

Proof: (evQ%): let s = Clev(Q uw)w], t = Clu]. Then, [s], = [Cl4lgc(ev(Q (q:([u]y)))[w]y)] and
[t]l; = [Clglgc([ulg)] (see Lemma 2.6). Now, g¢ can be written in the form ¢;, o ¢;, o ... 0¢;,, and by
Lemma 2.4 we may assume that i; < iy < ... < i, (otherwise we rewrite some ¢; o ¢; where ¢ > j into
g¢; © ¢i—1: this decreases the sum of all indices strictly, so the process must terminate). Let j be the greatest
index such that iy <...<i;_1 <f—1<14; <...i, (in particular, if j < p, then £ — 1 < 4;). Then:

[ge (ev*(Q* (ge([ul))) [w]y)]ey
= [(i, o -0 45,) (v (Q (qe([u]g)) [w]o)]ev
= [ev' " (g1, 0 0 g5,y © i1 0 qiy1) (Q(ge([u]g))))w' ey
where w' = '(qil o...oq,_,)([w]y)
= [ev" 1 QT (g1, 0. 0 qiyy 0 Gijg1 © - giyr1) (qe([u]) w ey
= [ev™ Q" (g5, 0. 0 qi,, 0 gijp1 0 qz,,+1 o qe)([uly)))w ’]]e'y
= [ev™ Q™ (g1, 0 -0 g1y 0 g0 iy o qi,) ([ulg)))w']ey
by Lemma 2.4 p — j + 1 times
= [ev" = HQ " ((qegj10¢i, 0. .0 i, 0 gi; 0. ..qi,)([ulg)))w']ey
by Lemma 2.4 j — 1 times (in the other direction)
= Lo (@ {grs 1 (ae ([ul)))w'Der
= [Q~ (qerj-1(ge ([l N]evo e4j—2 - (Beyj—1lwlero erj2 -) Yewj-1.c0
= [ge4j-1(ge([ulg)]evo e4j—2 - (Kepj—1Eeqj—1[w]evo ej—2 - 0) - Yetj—1.00

> [ge([ulg)]ey

by Lemma 2.15. By Lemma 2.13, it follows that [[[[C]]q[qc(evZ(QZ(qz([[u]]q)))[[w]]q)]]]e'y > [[CT4lqc ([ulq)]]er,
that is, [s]ey > [t]ey. O

14

We shall in the sequel assume the additional property:
(P4) for every £ >0, Epy1 > Co.
which is verified by our proposal of Section 2.3. Then:
Lemma 2.17 If s rewrites to t by rule (nev®), then s =4 t.

Proof: This works exactly as the rules in groups (D), (E) and (F). By the [_], translation, the rule becomes
[nevily: ev 1 (Qu)w — uotw. Moreover, ¢;([nevt],) is [nevi*i], if i < ¢ and [nev'], if i > £, so Lemma 2.7
extends to this case. Finally:

[ev ! (Q u)w]ey
= [Q%]evo.¢ - (Eerr[wlevo e - 6) - Yet1. 00
= [ulleyo. i1 - (Keve) - (Fegr[w]evo.c - 0) - yer1. .00
> [ullevo.e - (Eepr[w]evo.e - 0) - Yet1. .00
by superlinearity of K,
> [ulevo.e - (Ce[wlevo.e - 6) - Yeg1. o0
by (P4)
= [uot wlr

O
Lemma 2.18 If s rewrites to t by rule (n 0t*), then s =4 t.

Proof: The proof is again similar. The [], translation yields the rule [n {*],, which is just (n /) itself:
it w — 1° of (uo® 1f). Moreover, ¢;([n 1]) is [n 1T, if i < € and [n], if ¢ > ¢, so Lemma 2.7
again extends to cover this case. Finally, by definition [(¢ u].y = Us([1° ¢ (uo® 19)]ey) > [1° o° (w0’ 19)]ey
because Uy is superlinear. O

Lemma 2.19 If s rewrites to t by rule (evl®) or (ev 1Y), then s =4 t.

Proof: Notice because of our convention that 1u was an abbreviation for 1° 0¥ u (resp. 1 u of 19 0%u), these
rules can be written evi1fw — 171 of~1 w and ev’ 1 w =1~ o/~ 1w respectively, for every £ > 1. We deal
with (ev1?), as the other rule is similar.

By the [], translation, rule (ev1) becomes [ev1‘],: evi1‘w — 1° o= w. Then, ¢;([evl‘],) is [evl‘t!],
if7 <f£-—1, and [[evlz]]q if i > ¢, so again Lemma 2.7 extends to this case. Finally, [ev’ lzw]]e'y = [[lz]]e'yo“z_l .
(Eelwlevo o—1 - 0) - Ye.co > [Dev0.0=1 - (Co—i[w]evo =1 - 8) - e 0o (by property (P4) and Lemma 2.11)
— [[1Z OZ—l w]]67~ O

Lemma 2.20 If s rewrites to t by rule (o%), (ev o%), (%) or (evx), then s =, t.

Proof: By the [], translation, rule (o) becomes [¢],: (u ot v) of w — (u of w) ¢ (v of w). Then,

q:([0],) is [o“T1], if i < ¢, and [e¢], if i > ¢, so Lemma 2.7 again extends to this case. And:

[(u oft? v) of w]ey

= [u o v]evo. o . (Colwlevo.e - 6) - Yet1..c0

= Prpi([ulevo. e - (Colwlevo. o - 6) - veg1. o0, [W]ev0.e - (Celw]evo.e - 6) - Yeg1..00)

> Po([ulevo.e - (Celw]evo.e - 6) - et oos [W]ev0.e - (Celw]evo e - 6) - Yet1..00)
because (F;),, is increasing

= Py(Ju ot w]ey, [v ot w]ew)
= [[(u of w) of (U of w)]]e'Y

15

By the [], translation, rule (ev o‘) becomes rule [ev o], evi(u o v)w — (eviuw) o~! (evivw).
Lemma 2.7 again extends to this case, as ¢;([ev ¢‘],) is [ev o/*1], if i < £ —1 and [ev ‘], if i > {—1. And:

[ev(u ¢ v)w].y

= [u e’ v]evo. o-1 - (Ee[w]evo i—1-3) - Ve oo

= Pi([u]evo.om1 - (Eelwlevo.e—1 - 0) - Yoo, [V]ev0.0=1 - (Eelw]evo.e—1 - 8) - Ve .00)

> Proi([ulevo. o1 - (Belwlevo. o1 - 8) - Ve oo, [W]evo.0=1 - (Ee[w]evo. o1 - 8) - Ve .00)
because (F;),-, is increasing

= Py ([eviun]ey, [evivw]ey)

= [(evtuw) o~ (evtvw)].y

The cases of (*Z) and (ev*z) are identical. O

We can prove the following as well, although we won’t really need it in the end:
Lemma 2.21 If s rewrites to t by rule (of) or (Qot), then s =4 t.

Proof: Let’s give the intuitive idea first. Basically, _of _ is similar to ev**t1(Q*)_ with a few changes
(replacing Cy functions by E,, in particular).

In the first case, (u of v) of w is similar to eviT!(Q%(evt!(Q'u)v))w, which rewrites to
evitl(evt2(Q Q%) (Q%v))w by rule (Qfevitl), then to evit!(eviT}(QQ%w)w)(evt!(Q'v)w) by
rule (evitlevi®?), then to evit!(evit (Q1Q%)w)(ev T (Q%)w) by rule (Q'QH!), then to
evit (Qu)(ev T (Qv)w) by rule (evQ®), and the latter is similar to u of (v of w). So the argument for
proving that s >, ¢ in this case will be a mix of the arguments for all the rules above.

In the second case, Q‘u of w is similar to evi*'(Q‘Q‘u)w, which rewrites by rule (Q‘Q“*') to
ev Q1 QMu)w, then to Qu by rule (ev@Q®*!). Again, the argument for proving that s >., ¢ in this
case will be a mix of the arguments for these two rules.

Here we go. Consider rule (of) first, and let s be C[(u of v) of w], ¢ be Clu of (v of w)]. [s], =
[CLafac lae(aclad, o [+1) o [el)] = [Clalac (ae 0 40)[dy o+ aeloly) of [ied)] = [Clyfac((aess o ge)[uly o+
qe[v]g) of [wly)] by Lemma 24, and [ty = [Clylge(qeluly of (qelv]y of [wly))]. Let’s write ge as
@, ©...0@i;_, ©q;; ©...0q;,, where j is the greatest index such that 7y < ... <i4;_) < £ <d; <0 <.

Then:
Lac((qer1 © qe)[ullg o* qelvly) o [w]g)]ey '
=[(gi, 000, 9qi;41 0.0 qi,+1) ((qe1 © qe) [ulq o+ ge[v]g) o“F =1 w]ey
with w’ = (g;, 0 ... 0qs;_,)[w]y
=[((¢5i,0---0qi,_, ©di;42 0. qi,42 © qog1 © qo)[ulg o7 V') T =L W]y
with o' = (g;, 0 ... 0qi,_, o qe)[v]g
=[((ge1j 0 iy ©---0qi;_s i 410 - i1 © qe) [ulg o7 v') S FI =1 W]y
using Lemma 2.4 p times
= Llaers(af) o4 o) o+ w3
where u’ = (giyo...0qi;_,0qi,41 0. qi,41 0 qe)[uly
= [geqs (') o™ ']evo eqjmr - (Copjor[wlevo. erim1 - 0) - Yetj o
= [ge4(W)]evo.e4j—1 - (Copj—r[w]ev0.e45-1 - 9)
ACei[V]ev0 4j—1 - (Cogjr[wevo e4j—1-0) - 0) - Yerj oo
> [W]evo e4j—1 - (Copj[v]evoerj—1 - (Cogj1[w']evo oqj—1 -) . 6) - Vers o
by Lemma 2.15
> [w]evo.e4j—1 - (Copjm1[v]ev0.t4j—1 - (Corjo1[w]evo. oq4j—1 - 0) . 8) . Yetj oo
because (C}),s is increasing and by Lemma 2.11
while:

[ge (ge[uly of (geloly o [w]g))]ey '

=[(gi,0. - 0qi;_, 0qir1 0 gipgr 0 qe)[ulg o (qi, 0o iy) (qefvly of [wlg)]ey
= [w o= (gi, 0o qi;_,) (qev]g of [w]g)]en

iy o E(?“;ir 1 00l [l o7 (g1 000,) el

=o' oI (v oF TR w! ey

= [wTev0 t4j-1 - (Cogjr [V =L w Nevo e4j1 - 6) - Yetj oo

= [wlevo.eqj—1 - (Cexj—1[V']ev0. 0451 - (Cogjor1[wlevo. eri=1 - 6) . 8) . Yetj. oo

16

It just remains to apply Lemma 2.13 to get [s]eqy > [t]eqy, €. 8 =cq L.

Now on to rule (Qof). Let s be C[Q% of w] and ¢ be C[Qu]. Then [s], = [Cl4lac(qe(Q(ge[uly)) o
[wo)] = [Clalae (@ (ar 0 00 [ul) o [lg)] = [CLalac(Q+ ({aesr o a)[ully) o [wly)] by Lemma 2.4, and
[t14 = [Clqlac(Q*(ge[ulq))]- Let’s write g¢ as gi, ©...0¢;,_, ©¢;; ©...0¢;,, where j is the greatest index such
that i3 < ... <41 <£<4; <...<1dp. Then:

[9c (@ ((ge+1 © go)[u]g) o [wly)e ,
=[(giy0---0i;_1 ©qi;41 0.0 qi,+1)(Q T ((qeg1 0 o) [u]y)) o F =T w']ey
where w' = (¢;, o ... 0 q;,_,)[w]y
= [[QZ‘H((% ©...0qi,_; ©qi41©...0Gi,+1°qep1 0 qe)[ully) ofti—1 ']y
= [[QZ‘H(((M_H» 0 ©...0¢i,_,0G;i;0...0¢,0 qe)[ulq) oftti—1 W'y
by Lemma 2.4 p times
= [QF (g () o 7T W]y
With u' = (qi,0...0q,_,0qi;0...0q, oq)[ulg
= [Q (qe4; (W)]evo.e4j—1 - (Corjmr[wTevoerj—1 - 8) - Yewj oo
= [[QZ+j71(QZ+]_1U/)]]6'YO..Z+]'—1 ACerj—1[w'evo. e4j=1 -) - Yegj .00
> [QF = |evo. o4j—2 - (Cogjo1[w]evo. e4j=1 - 8) - Yetj .o
by Lemma 2.15
> [Q T eyo eqjn - (Yegi—1) - Yetjco = [QFF 71Ty
by Lemmas 2.10 and 2.11

while:
[9e (Q“ (ge[u]g))]ey
= [[QZ+‘?_1((Qi1 ©...0qi;_, 0qi;°...0qi, o q)[ulg)]ey
= [[QZ-H_lU/]]e'Y

Therefore, as before, s =.4 t. O

We shall now assume an extra property, namely:
(P5) for every £ >0, Cy > Ey.
which is verified by our proposal of Section 2.3.
Lemma 2.22 If s rewrites to t by rule (evo'), then s eq 1.

Proof: Again, basically _of _is similar to ev**!(Q*_)_, with a few changes (replacing C; functions by E, in
particular). Then ev’(u of v)w is similar to ev’(ev!t!(Q%u)v)w, which rewrites to ev’(evi(Q'u)w)(evivw)
by rule (evtevitl), then to eviu(evivw) by rule (evQ®).

Formally, let s be Clev’(u of v)w], t be Cleviu(evivw)]. [s], = [Clylgc(ev®(ge(u) of v)w)], and [t], =
[Clylac (eviu(evivw))]. Let’s write g¢ as ¢;, 0. ..o @i;_, ©¢i; ©...0q;,, where j is the greatest index such that
<<y <f-1<4 <. < 4. Then:

lac(ev (gelulq o [v]q)[w]g)]ey

= [ev't " ((gi,0.. .0 Gij—y ©qij4+10 -0 Gi41)(qefu]q of [v]g))w'ley
Whe're w' = (g;, 0...0q;,_,)[wlg

= [[evz+{_1((qi1 o...0¢, 1 0qi;41°...0qi+1)(qefulq o* [v]q))w']ey

= [[evZ‘H_l((qi1 ©...0¢i,_, 0qi,420...0¢i, 120 q)[uly ofti-1 v w' ey
where v = (g, 0...0q;,_,)[v]q '

= [[evzﬂ_l((qzﬂ'_l 0qi, 0...0qi,_, oqi 410 ...0¢;,41)[ulq ofti-1 v w' ey
using Lemma 2.4 p times

= [ev™ " (qeyj—1(u') oH =1)]y
where v’ = (q“ °...0q_, 0qi,410...0¢qi,41)[uly

= [ge4j—1 (') =10 levo o4jm2 - (EBerjo1[w'levo e4i—2 - 6) Yej—1.c0

= [gej—1(W)]evoej—2 - (Eerj—r[w]evo eqj—2 -) .
(Cogj-1lV]ev0 t4j—2 - (Eegj—1[wlevo e4j-2 - 0) - 6) - Yej—1.c0

> [wlevo eqj—2 - (Copim1[v]ev0 t4j-2 - (Begjo1[wTevo. 42 . 6) .) - Yegj—1. 00
by Lemma 2.15

17

> [w']evo.eqj—2 - (Brgj—1[v]ev0. 045-2 - (Begpj—1[w]eYo eqj—2 - 0) . 6) - Yeqj—1..00
by (P5) and Lemma 2.11

while:

[[‘JC(eVZ[[@]]q(evz[[v]]q[[w]]q))]]ﬂ

= [[evﬁﬂ_l((% OO fijy O i1 00 Gip 1) [ulg) (giy © -0 qi;_,) (e [o]lg[ew])]y
= %ev;‘?‘?tjg(q%? o qlzﬁl)(ev [v]alwlo))ley

= [ev"™ 7 U (evi T T v w) ey

= [wTevo.t4j-2 - (Begjo1levH 10w evo oqjma - 8) - Yetrj—1. oo

= [w]evo. eqj—2 - (Begjm1[v]ev0. evi—2 - (Eegrj—1[wTevo. e4j=2 - 6) . 6) . Yetij—1..00

It just remains to apply Lemma 2.13 to get [s]cqy > [t]eqy, 16 8 >eq t. O

Definition 2.6 Let (Sort) be the set of rules in groups (D), (E), (F), plus the rules (o%), (Qo%), (evo?),
(ev@"), (evl?), and (ev 1*).

Let (Sort) gy be (Sort) plus rule (n %), and (Sort)y be (Sort) 1 plus rule (nev®).

Finally, let (Sort)*, (Sort)%;, and (Sort)y; be these systems respectively plus the rules (o), (ev of), (%)
and (evx).

Recall that a convergent rewrite system is a terminating and confluent one. In particular, every term
has a unique normal form, and every reduction eventually leads to it in a convergent rewrite system. The
following lemma is not used in the sequel, but is interesting in its own right.

Lemma 2.23 (Sort), (Sort)m1, (Sort)mr, (Sort)*, (Sort)yy, and (Sort)yy terminate. (Sort), (Sort)m1, (Sort)®
and (Sort)yy, are convergent rewrite systems.

Proof: That (Sort)}; (hence the other systems) terminates is a consequence of Lemma 2.14, and Lem-
mas 2.16, 2.17, 2.18, 2.19, 2.20, 2.21 and 2.22.

Moreover, (Sort), (Sort) g1, (Sort)* and (Sort)dy, are locally confluent, as shown by a Knuth-Bendix-style
completion procedure (see Sections 4, 5, 6 and 7 of [GL95]). Since they are terminating, they are therefore
confluent, hence convergent. O

2.5 The [_]- Interpretation

So (Sort)$;, is terminating. But just adding (evid') turns it into a non-terminating system (see Lemma 2.2).
So it 1s here that types start to play a role.

We first make the following observation, which will allow us to cut down on the number of rules that we
have to examine:

Definition 2.7 Let the \evQ™ -terms be those \evQ-terms in the language defined by the following grammar:

Tt AT+ | TH A TH | T+ ob S+ | 18| evi TS+ | Q4T+
St ou= ST oL S [id' | TH o ST Nt ST evitSTST | QG St

where £ > 1.

Let X% (resp. X},) denote the subset of rules in ¥ (resp. Sy) defined as follows: all rules in group (B)
at levels € > 1 except (BY), all rules in group (C) at levels € > 2, all rules in group (D) at levels 1 < £ < L,
all rules in (E) and (F) at levels 2 < £ < L (resp. and (nev®) for £ > 2, plus (n 1Y), (n #°) and (n e o) for
£>1)

Observe that X and EE define rewrite rules on AevQT-terms, yielding Aev@QT-terms. In fact:

Lemma 2.24 Y. (resp. Sy) terminates on the set of typed AevQ-terms if and only if ¥T (resp. ¥F) ter-
minates on the set of typed AevQ™ -terms.

18

Proof: The only if direction is obvious. For the if direction, any infinite derivation in ¥ (resp. ¥p)
translates by u — u'p, where p is an environment [z; + 0,...,x, + n — 1], where 21, ..., ¥, contain
all the free variables in the derivation, into an infinite derivation in Xt (resp. EE) by Theorem 3.18 (resp.
Lemma 4.10), part II. (Check that the resulting quoted rule or sequence of rules is indeed in X7, resp. E}})
By Theorem 3.3, part 11, the quoted terms are also well-typed. Hence the claim. O

We now interpret typed AevQ™-terms into another typed calculus, the typed A@-calculus.
Definition 2.8 The positive f-types 07 and the negative 0-types 0~ are defined by the following grammar:

0t n=ol]0” — 0t
0= =T |0F x0~

where o 1s a distinguished base type.

We go from types to f-types by forgetting type arrows =, while converting 2 to —. This is summarized
as follows:

Definition 2.9 Call a signature ¥ any ezpression of the form 07 ,...,0, ~ 0, where n > 0 and 0 is either
a negative 0-type or o. Its arity s n. It is a term signature if § is o, and a stack signature otherwise.
Gwen a term signature ¥ = 07 ,...,0,; ~ o, let £* be the positive type 67 — ... = 0, — o. Also, write

0= ~ % for0=,07,...,0, ~o.
Define the following translation from Aev(@ types to signatures:

[6] = (~ o) for any base type b

[r1 = 7] =[] [<]= (~ [<]h)
[Th=T [r > <]i =I7]* x [s]
[¢= 7] =[]i~ [7]

Lemma 2.25 The [] translation on types is well-defined. Moreover, if T is a term lype, then [7] is a term
signature; if s is a stack type, then [<]1 is a negative type; and if p is a metastack type, then [u] is a stack
stgnature.

Proof: By structural induction on the argument @ of the translation. If ® is a base type b, then it is a
term type and a positive type, so [®] is a term signature. If ® is a function type 71 = 79, then it is a term
type; moreover, Ty is a term type, so by induction hypothesis [75], hence [®] is a term signature. If & is T,
then it is a stack type and a negative type; so [®]; is a negative type and [®] is a stack signature. If & is
7 % ¢, then it is a stack type, and by induction hypothesis [7] is a term signature and [¢]; is a negative type;
so [r]* is a Bositive type, and [®]; is indeed a negative type; it also follows that [®] is a stack signature.

If & is ¢ = 7, then it is a term type; by induction hypothesis [<]; is a negative type, [7] is a term signature,
so [®] is a term signature. And if @ is ¢ 2 41, then it is a metastack type and by a similar argument [@] is
a stack signature. O

Definition 2.10 For every Aev@ type ¥, define its arity a(®) as the arity of [P].
For every typed AevQ-term u, define its arity a(u) as the arity of its type.

Ob%erve Dthat the aé"ity of a term type ¢! =7 is at least £. It may be greater than £: for example, the arity of
=6 =>b=>¢ =0 is 3 not 2.

Definition 2.11 The Ad-calculus is the extension of the A-calculus with pairs (_,_), projections w1 and 72,
the unary operators € and «, the binary operators @ and A, and the n + 1-ary operator L, for each n > 1.
The application of L to n+ 1 arguments ty, ..., tn, t is written L(t1,.. ., tn;1).
The typing rules are given wn Figure 3, and the reduction rules are in Figure 5.

We omit type indices on variables when they should be obvious. For example, in rule (L), the variables z,
..., &y have the types of 1, ..., ¢, respectively as indices. Moreover, to make the notation lighter, we assume
that @ is right-associative, that is, s ®¢ @ r denotes s & (t @ r).

19

Fs:0~ =0 Ft:6- Fs:at
Fst: ot FAzg- -s: 07 — 67
Fs:0t x6- Fs:0t x6- Fs:0t Ft:0-
F s 6t Fmes i 07 F (s, t) : 6% x 6~
Fs:0- Fs:0- Fs:07 Ft:065
Fes: 0~ Fus: 0™ Fsdt:0;
Fsi:07 ...Fsp_1:0,_ 1 Fs,:0;

I-s:@f' I-t:@;'
F A(s,t) : 0F

Fs:i0 —...—0,_, = 0] x0; —0F

FL(S1,.-8n_1,5n;5) : 03

Figure 3: Typing the A@-terms

[evitiuv]sy ...s, = [u]s1...se(e[v]s1 .. 5¢)Set1 .- 5n
[Q%]s1 .. .50 = [ullsi...s0—1(5¢ D Se41)Se42 - - Sn
Tuof v]sy...sn = [ullsi...s0—1(s¢ D e[v]s1...5¢)Sex1---5n

IXulsy...sn = L(s1,...,s0 x1 ... 2 - [u]®y ... 2pseq1...5,)
[uxtv]si...s, = A([[u]]é;l...:;n,/\yz_|_19,l_Jr1 ~...~/\ym€,; [vlst- - seyetr - -
where v 7/, [T =07,...,0,,0,.... 0, ~o0
with m >/
[ueof v]si...s0 = L</\yz+1€,l—+1 — ~/\ym9,; ulst - Seyesr - Ym, [V]51 -
where w7/, [t =07,...,0;,,0'y,...,00, ~ o0
with m >/

[[idz]]sl Sp =1 B D sim1 D sg)

[19s1.. .5, = (81 B ... DSr—1 DSr)Seq1---5n

[t051 .. .se = ma(s1 @ ... D se—1 D s¢)

[N ullsy...s0 = mi(s1 @ ... B se), [ullsy...s0—1(se Dema(s1 ®...Bse)))

Figure 4: The []- interpretation (£ > 1).

20

ym)

.8£>

(L)

(LC)

3) (Az - s)t — s[t/x]

) mis,t) > s (®) (s@t)ydr—o>sd(tdr)
ma) mals,t)y > 1
nmw) (7S, mas) > s (¢em1) {mis,t) D sy — (s emas) B sy
-) sPt—>t (¢ema) (51 @ et(m18,1)) D sa — (51 D emas) B sa
€5 — s
15— s

L(ty, .. te, t[th /e, ot /e b1, - st S)
_>L(tla"'atkatlla"'at;natk-l-la"'atn;
Awy.oxpalxl gy Ty
STy . TR 41 - X))

for any term ¢ where x’w,l_, oz

mai— occur free,

m

the x"y are pairwise distinct and different from ¢,
and 0 <k <n, 0<m

and) 67, o Ft 0
L(tl,...,tn_l,t@t/;s)
= Lty .t bt Ay gz’ sy a1 (e B al))

L(tl,...,ti,...,tj_l,tj,tj+1,...,tn;8)
—)L(tl,...,ti,...,tj_l,tj+1,...,tn;

DY SN TN SRR J FR DY

LY T TR TR 77 SER I

iftiztj,1§i<j<n
L(ty,... to,etlta/ay, ..., tn/2L]; 9)
—)L(tl,...,tn;

ALy .y ST .. o1 (g Dema(T1 D ... B ay))

(el{m(z1® ... D xy),
Azl ..al ey cxp_1(zn Bema(z1 B ... D xn)))))

where for each i, 1 <i <n, Ft;:0;7, where zj = x},- are pairwise distinct

Figure 5: Reduction rules of the Ag-calculus

21

Definition 2.12 We define the A®-term [[t]s1ss . ..5,, for every typed AevQ-term t of type ® of arily n,
and for every sequence of n A®-terms sy of type 07, ..., 8o of type 0, where [®] = 07,...,0, ~ 0, as
shown wn Figure 4, where all A\-bound variables are assumed to be fresh.

Check that the definition is well-formed, i.e. that all the type constraints are verified. A side-effect of this
definition is that [{]sisz...s, has 6-type o if ¢ is of sort T, and that it has a negative type if ¢ is a stack.

It just remains to show that the typed Ad-calculus is terminating and that every rewrite in the typed
version of Y is interpreted as some sequence of rewrite steps in the typed A@-calculus.

Lemma 2.26 The typed A®-calculus has the subject reduction property, that is, whenever - s : 6 and
s —*t, then -1 : 8.

Proof: This is standard for rules (3) , (m1), (72) and (nm). This is obvious for rules (®—), (), (¢) and (¢).

In the case of rule (¢m1), to type the left-hand side we must have derived s : 91" x 07 ,t:05 and s1 : 05,
and the left-hand side then has type 05 ; then s@® emys has type 07, and the right-hand side has type 05 again.
Notice that we could not have simplified this rule to:

t{mys,t) — (s ® emas)

because then the left-hand side would have type 91" x 65, not 05 .

The argument and the remark are similar for rule (¢ma).

Consider rule (L). To type the left-hand side, we must have derived - ¢; : 87 for every i, 1 <¢ < n, and
ety /ey, ..t fal,] - 67 for some type 67. Moreover, we must have derived:

Fsi07 .. =0, 500 =0, — ... =0, —0F <0, —0f

and then the type of the left-hand side 1is 9;’. Because the types of x"y match those of t;’ for every j, 1 < j < m,
we can also derive k¢ : 87 . Then we have:

[OV TR T N S TSI U o
STy . TR 41 - X))
.- = 1= 1= - - + - +
e T e A T A R R S R S U A R

So the right-hand side also has type 9;’. Observe that this would not work if we allowed k& = n, hence the
more restricted condition k& < n.

Consider now rule (L&). We must have derived ¢, : 0, for every i, 1 <i<n—1, and alsot®t' :0;
for some 6. Therefore we must have derived ¢ : 7 and F ¢ : 6/ for some §~. Moreover, we must have
derived:

Fs:i0] —...—=0,_, —0f x0, —of

and the left-hand side then has type . Letting #1, ..., z,_1, * and 2’ have types 67, ..., 6, _,, 6~ and

n—1

91" x @ respectively, it follows that:
FQzy...opoiza’ -sey .o cxpi(z®) 0] — ... =0, =07 —>91|' x 0, —>9;’

so the right-hand side has type 9;’ as well.

The case of rule (LC') follows from similar considerations.

Consider finally rule (Le). To type the left-hand side, we must have derived & ¢ty /z}, ... t, /2] : 6~ for
some type 07, so we can also derive ¢ : #~. Moreover, we must have derived:

Fs:i0] — ... =0, =0 x0™ —6F
Let 2y, ..., #y_1, ©, have type 07, ..., 0, _; and 91" x 0, respectively. Then we have:

F e, @ema(er ®...Dwx,)) 0,

22

and:
Fle{m(zr ... 3 xy),
Azl ooxl ey cwpo1(kn Dema(1 D .. D xy))))
: 91" X 0~

so the expression Az ...z, -...on the right-hand side has type 0; — ... =0, _, — 91" x 07 — 9;’, and the
right-hand side has type 9;’. a

To prove the termination of the typed Aé-calculus, we shall use Jouannaud and Rubio’s higher-order
recursive path ordering »joppo [JR96]. This ordering uses a well-founded quasi-ordering on types, which we
shall simply take to be the identity. In this case, the definition of >j,rp, 18 exactly the same as for »,p,,
based on a precedence = (with strict part = and associated equivalence &), with the following provisos:

e for every bound variable z, Az- 1s viewed as a unary function symbol A, which 1is strictly less than any
other function symbol in the precedence »;

e every bound variable z is viewed as a constant (i.e., a zero-ary function symbol); any two bound
variables are equivalent under &, and are strictly less than any other constant;

The definition of the rpo can then be enriched by letting some operators having multiset status (as we did
before) or, say, lexicographic status. We let @ denote the (invisible) application of the A-calculus, and take
it to have lexicographic status. Two equivalent function symbols must have the same status. Moreover, two
equivalent function symbols of lexicographic status must have the same arity.

Then the definition of =porpo, =horpo a0d Rporpe is as follows. Given s = f(s1,...,8,) and t =
g(t1, ..., tn), we have s >porpo t if and only if:

1. 8 >horpo t for some ¢, 1 <7 <'m,
2. 0r fgand s >porpo £ forall j, 1 <j <n,

3. or f ~ ¢ has multiset status, and {|sy,...,sp[} =7 {lt1, ... ta},

horpo
4. or f ~ g has lexicographic status (then m = n), and for some i, 1 < i < n, $1 Rporpo t1, .-,
S$i—1 Rhorpo ti—la 54 >’ho7‘po tia s >’ho7‘po ti+1a ceey S >'horpo ty.

The main theorem of [JR96] is that, whenever > is well-founded, > 4orpo U is well-founded on typed terms.
Technically speaking, their types only include types built from some set of base types with the function arrow
only. This is not a problem: just take the set of all negative types as set of base types.

Recall also that >jorp, 1s monotonic: s =porpo t implies C[s] = porpo C[t] for every context C such that all
terms are well-typed. And that >jorp, has the subterm property: C[s] > horpo s for any context C other than
(. And finally that >jerp0 1s stable: if s = porpo t, then s6 > porpo to for any substitution o.

Lemma 2.27 The typed A®-calculus terminates.

Proof: Choose the following precedence:

whereas all variables (viewed as constants) are considered equivalent and incomparable with any other func-
tion symbol.

We let @ and @ have lexicographic status. L has a status that is a combination of the multiset and
lexicographic status; we let:

23

o L(s1,...,8m;8) >horpo L(t1,...,t5;1t) if and only if:

{st, oy smlt =mul ftq, . talb and L(st, ..., 8m;8) =horpo ¢
P
or
{Is1, .-, sm} zTo%o {Jt1, .-, tal} and s > poppo 1.
This is no real extension of the horpo: let L(sy,..., sm;s) be an abbreviation for Ls(L1(s1, ..., 8m), s), where

Ly has multiset status, L, is a binary operator with lexicographic status, and Ly and Ls take the place of L
in the precedence.
To prove the Lemma, it is enough to prove that the left-hand side of every rule but (5) is greater than
the right-hand side under >40po-
This is clear for rules (m1), (72), (n7), (B—), (€) and (¢), by clause 1 of the definition of > po.
Consider rule (B): s Bt >porpo s by clause 1, and (s B 1) B r = porpo t & r by clauses 1 and monotonicity;
so by clause 4 (with i = 1), (s @) B 7 = horpo s B (T B 7).
Consider rule (¢m1). We have: ¢(m15,1) > porpo 5 by clause 1. Because ¢ > w2, ¢ > € and ¢ > &, and using
clause 2, it follows that ¢(m15,1) > horpo 5 @ €mas. By monotonicity, (¢{m15,1)) B 51 > horpo (s B €M25) & 571.
Similarly for rule (¢ms): ¢{m15,1) > porpo T28, s0 by monotonicity (s1S¢(m15,1))PBs2 > horpo (51 PeET2s) D 5.
We now deal with rules (L), (L&), (LC) and (Le). We first claim that: (1) for every term ¢, for every
variable z, t =porpo #. Indeed, because the language of A@ does not contain any constants, { must contain
some variable y (free or bound) as a subterm. Therefore t =j0rp0 ¥ Rporpo <.
Rule (L). Because z}, ..., ., are all free in ¢, and because ¢ is neither of these variables we have
t =horpo # for every j, 1 < j < m, by the subterm property. By stability, t[t} /', ..., 1, /x5,] =horpo 1. Tt
follows that:

{|t1’ . 'atkat[tll/xll’ . 'at;n/x;n]atk-l-la .- atn|} >_Zﬁbolj'é)o {|t1a . 'atkatlla .- 'at;natk-l-la .- atn|} (2)

(Observe that this holds even when m = 0.) Let [denote the right-hand side of the rule. We have: (3)
[> horpo s by the subterm property; (4) { >porpo #; for every 4, 1 < i < n (indeed, ! > horpo t; by the subterm
property, and t; > porpo i by (1)); (5) { =horpo t. To prove (5), observe that by (1), t; =porpo) for every j,
1 < j < m; by stability, it follows that [t} /,...], /2] =horpo t, s0 by clause 1, [>jorp, t. By clause 2,
since L > @ and using (3), (4) and (5):

U horpo $%1 .. ZptTpyr ... Ty
Since L > A, and using clause 3:
/ /
U horpo AT1 ... BTy .. Ty Tpg1 .. B - ST1 .. TptZpgr ... 2y (6)

By (2) and (6), using clause 4, it follows that { is greater than the right-hand side of rule (L) in > poppo.
The argument is the same for rule (L®). For rule (LC'), letting ! be the left-hand side, we have:

U horpo AT1 .. %y . Zj_1%jq1 ... Tp - SB1 ... Lj .. . Tj_1LiT541...%n

by similar arguments, using the facts that L > @, L > X and t; =porpo ok for every k, 1 < k < n by (1).
Since the first group of arguments to L decreases in the multiset ordering, [is greater than the right-hand
side by clause 4.

Finally, consider rule (Le). Trivially, we have:

{|t1a <oyt Et[tl/xlla .- ,tn/l‘;]ﬂ’ >_Zﬁbolj'é)o {|t1a cotn |} (7)

By the subterm property: (8) { >horpo 5. By (1), t; »horpo #; for every i, 1 < i < n. By clause 1: (9)
l > horpo ; for every ¢. Since L = @, L > ¢ and L > w2, and using clause 2:

U horpo Tn @ ema(z1 B ... B) (10)

24

Moreover, t; =horpo & for every ¢ by (1) again, so by monotonicity ¢[t1/a}, ..., t,/2},] =horpo t. By clause 1,
I >horpot. Since L ¢, L= ¢, L>{(_,), L>m,L>&, L> X L>@and L > m, by clause 2:

U horpo €6 m(21 B ...0 &), (11)
Azl oooxl ey g1 (y Dema(e1 @ .. D xy)))

By (8), (9), (10), (11) and since L = A, L = @, [is greater than the big Az1 ... 2, ... on the right-hand side.
By (7) and clause 4, it follows that { is greater than the right-hand side. O

Lemma 2.28 For every typed AevQ-term u, for every Ad-terms sy, ..., s, of the correct types, s1, ..., Sn
are proper subterms of [u]sy .. .s,. Moreover:

[ullsi...sn = ([u]er...xn)[s1/21,. ., Sn/®n)
for every n distinct variables xq, ..., x,.
Proof: Easy induction on the definition of Ju]s; ...s,. The only difficulty lies in checking that sq, ..., s,

indeed occur as subterms of [u]sy ...s,: it is precisely the purpose of terms like s @ ¢ to represent ¢ while
keeping s around. O

It follows:
Lemma 2.29 [fs; —* s, (resp. s; —7 s) for some i, 1 < i < n, then:
[ullsi...si—18iSix1-..sn — " [u]s1...8i_18:Six1---5n
(resp. —T)
Another monotonicity property is the following:

Lemma 2.30 Let =) be defined by u >y v if and only u and v have the same O-type of arity n, and for
every si, ..., sp of the right 0-types, [u]s1...sp —>1 [v]s1...5, in the typed A®-calculus.
For every context C respecting the -types, if u =y v, then Clu] »=x C[v].

Proof: An easy induction on the context €. O

We can now proceed to examine how each rule in ¥, translates by the [] translation.

We say that a rule [— r is decreasing if and only if [{]sy...s, —T [r]s1...8, for every sy, ..., s, of
the right type. We say that it is non-increasing if [{s1...s, —* [r]s1...sn for every sy, ..., s, of the
right type.

Lemma 2.31

[ulsy...s0 = [1° o (uo® +9)]s1.. .50

Proof:
[1° of uot +]s1 ... sy
= ([17s1 .. .50, [uo®)51 ... 50)
=y (51D ... Dse) [ulls1...s0-1(se D e[1]s1 - .50))
=um(s1D ... Dse), [ullsy...se—1(se Dema(s1 ... D sp)))
=[N u]s1...s¢

Od

Lemma 2.32 Rule (evQ®) is decreasing for every £ > 2.
Proof: Let £ > 1, and consider the rule (ev@Q*t!):
[evtH(Q u)v]sy .. .5,

= [Q“ u]sy .. .se(e[v]sy...5¢)Se41--5n
=[elsy...se(e([v]s1-..50) D Seq1)Seq2---5n
— [uls1-..sn by (¢—)

25

Lemma 2.33 Rule (nevz) 1s non-increasing, for every £ > 1.

Proof:
[evtH(Qu)v]sy ... sn
= [Q%u]s1 .. .se(e[v]s1 .. 5¢)Set1---5n
=[els1...s0—1(se ®e[v]s1...80)8e41---5n
=[uofv]si...sp

Od

Lemma 2.34 Rule (Qo') is decreasing, for every £ > 1.

Proof:
[Q%u ot v]sy ... sp
= [Q%]s1 .. .50—1(50 @ €[v]s1...50)S041 - 5n
= [ulls1...s0—1((se @ efv]s1...s0) B Se41)Se42 - -n
— [ullsy...s0-1(s¢ D (e([v]s1...5¢) D Se41))Se42-.-5n by (D)
— [ulls1...s0-1(5¢ P Se41)Se42 - - - Sn by (®—)
= [Q%]s1 .. .sn

Od

To deal with the rules involving A, which are the most difficult, first prove a few auxiliary lemmas.

Lemma 2.35 For every term t where &), ..., xl, occur free, are pairwise distinct and none is t itself, with

0<k<n, 0<m:

L(ty, .. ti, t[th /e, ot e b1y oo b AL . B BT q1 . T - S)
— T Lty ottt e, et ATy g ey g - S 2])

Proof: By rule (L) and n + 1 applications of rule (3). O
Lemma 2.36 For every 0 < k <n:

L(ty, .. ti, 0 thyr, . tns AT XpB 8 g1 .. Xy - S)
—T Lty ot 6t g, -t ATy L TR D T T Ty - S[2) D Th/2])

Proof: By Lemma 2.35 if k < n, otherwise by rule (L&) and n applications of rule (). O
Lemma 2.37 Forevery 1 <i<j<n, ift; =1t;:

L(tl,...,ti,...,tj_l,tj,tj+1,...,tn;/\l‘l...l‘n ~8)
— T Ly, ooty b g, -
ATy .. Zj1Zj41 . Bp - S[E/25])

Proof: By rule (LC) and n applications of rule (7). O
Lemma 2.38

L(ty, ... tn,et[ta/ay, .. tn/ab; Aer .. @pg1 - 9)
— T L(ty, ..., tn;
ALy ..y S[Tn D ema(e1 B ... Dy /@,
e{m(x1 B ... 0 xy),
o1 /2o 12y, (20 © Tl @ .- 20)) /2] 1)

Proof: By rule (Le) and 2n + 1 applications of rule (§). O

Lemma 2.39 Rule (Q°\%) is decreasing, for every 1 < £ < L.

26

Proof:
[Q‘A*~1uw)]s1 .. .sn

= [\ Lu]s .. 80-1(80 B Spq1)Seq2 .. - 5n

=L(s1,.-.,80-1,80D Se41, 8042, -, Sc; A8y .oy - [uller . xoo1Sc41 .- Sn)
—T L(s1,...,50-1,50, 5041, 5042, - - -, 5¢;
DY ST TR E Y T RN I R
[uey .. wo—1 () D ab)@eqsr .. 218241 ---Sn) by Lemma 2.36
while:

I (Q%w)]s1 - . -5

=L(s1,..,sc; x1 ...z - [Q%u]xy .. . 2pscqr ... 5n)

=L(s1,...yse5A01 . ccxp - [uler . cxem1 (e B Xeg1)Toga o XLSLt1 - -5n)

These two terms are a-equivalent. O
Lemma 2.40 Rule (ev‘)*) is decreasing, for every 1 < £ < L.

Proof:

[evt (A u)v]sy ... sn
=[N ulsy...so—1(e[v]s1...50-1)s0.. .50

=L(s1,...y 80—, (e[v]s1-.-80—1), 8¢, -, Sc—1;
Ary...xp - [uller. . cxgse .. 8n)
— T L(s1, ..., 80=1, 81, ., S0-1,50, -, S£—1;

DY TI TREY I Y. TR N 7.
[uleq .. ze—q(e[v]e) .. x)_)xeq1 ... 2csc ... sp) by Lemma 2.35, which is applicable
because of Lemma 2.28
—T L(s1, ..., 80-1,50,.,8c-1;
DY TR TRRE TRR I 0
[u]ey ... ze—q(efv]er ... xo—1)@eqr .. - 22Se ... sp) by Lemma 2.37 £ — 1 times

while:
VL (eviuv)]sy ... sn
=L(s1,..,8c-1;Ax1 ... 2oy [eviuv]ey ... 2o 1sc. .. 5,)
=L(s1, ..y se—ns Ay coxpo - [uler . cmemq(ev]ey .o mem1)ae . po1Ss . 8n)

which 1s equal to the latter. O

Lemma 2.41 Rule (*o*) is decreasing, for every 1 < £ < L.

Proof:
[(Zfu) o w]sy ... sp
= [ev" L (Q (N u))w]sy .. .5y by Lemma 2.33
—t [evt T (AT (Qfu))w]sy .. .5, by Lemma 2.39
—t [N (ev L (Qu)w)]s1 - . . s by Lemma 2.40
= [N (uof w)]si...sn by Lemma 2.33
O

Lemma 2.42 Rule (evA*tl) is decreasing, for every £ > 1.

Proof:

[evcHt (At u)u]s; ... s,
= [MHu]sy .. se(e[v]st .. 50)S041 .- 5n
=L(s1,...,s0,€[v]s1...se; A1 cwpqr - [uller. . xeg1S041 - - 5n)
—T L(s1,..., 8¢
Ary .o [uler . cxem1(xe D ema(xr B ... B ay))
(el{mi(x1 D ... D xyp),
[v]ey. . xe—1(we @ ema(z1 D ... D 24))))
Se41---Sn) by Lemma 2.38

27

while:

[N (evi™t! (uof 1) (1° of wol)]st ... 5n

= [(evit (uot 14 (1 v))]s1 - . -5 by definition
=L(s1,..., s x1...xp - [ev T (uo Y (N v)]2r. . 2esoq1 .. 5n)
=L(s1,.., 80 x1 . ..xp - [uot t]zy .. xp(e[ff v]wr .. 20)S0q1 - 5n)
= L(s1,...,8¢;

AL .. .2y

Tulzy. . xo—1(ze @ ema(zy @ ... ® 20)) (e[V]2t .. . ze)seq1 ... 5n)

= L(s1,...,8¢;

AL .. .2y

[uley ... ei—1(xe Bema(er @ ... B)
(el{mi(x1 D ... 0 x4),
[v]zy. . xo—1(m B ema(z1 B ... D 24))))
Se41---5n) by Lemma 2.31

O

Lemma 2.43 Rule (Mo%) is decreasing, for every £ > 1.

Proof:
[Muof v]sy ... sp
[[evZ‘H(QZ(/\Z V)v]s1 ... sn by Lemma 2.33
= [Q (N u)]s1 .. .se(e[v]st .. 50)Sex1---5n
—t [[/\Hl(Qzu)]]sl . se(ef[v]s1...s0)Se41 .. Sn by Lemma 2.39
= [ev"H (X (Qu))v]sy . . .5,
—t [[/\Z(ev“'l(Qzqu TZ)(ﬂZ v))]s1.. .80 by Lemma 2.42 and Lemma 2.31
—7 [[/\Z(evz‘l'l()())]]51 .. .8p by Lemma 2.34
= M (u o (1 v))]s1 - - by Lemma 2.33
O

This ends the difficult cases involving A*. We now turn to the other, simpler cases.

Lemma 2.44 For every 1 < { < L,

[ev'(evuv)w]s ... s, = [ev" ! (eviuw)(evivw)]s; ... s,

Proof:

[evt(eviuv)w]sy ... sn

= [evFuv]sy ... s (e[w]si.. 50— 1) Se .

= [ulls1...se—1(e[w]s1...se—1)s¢.. .52 2([[v]]51 Se—1(efw]sy. . sp—1)Se ... Sz—2)Sp—1 ... 5n
while:

[evc—!(eviuw)(evivw)]s; .. .5,

= [evtuw]sy ...sp_o(c[evivw]sy .. .sc_2)sc_1 .. 5n

= [u]s1...se—1(e[w]sy...s0-1)s0.. .50 2(c[evivw]si .. .50 2)sz2-1...5,

= [uls1...se—1(efw]s1 .. .se—1)se...5c—2(e[v]s1...se—1(e[w]s1...850-1)S¢...8c—2)Sg—1...5n
Od

Lemma 2.45 For every 1 < {< L,

[QYUQ 'u)]s1 .. .50 —* [Q°(Q W)]s1 ... 5n

28

Proof:

[QYQ*tu)]s1 .. .5n

= [Q“ tulsy...s0_1(5¢ D Seq1)Se4a - 5n

_ { [ullsi...se—1((se ® seq1) B Se42)Se43---5n HL=¢0+1
Tl Tulst. - se—1(se B ser1)Seqa - Se—1(Se D Spq1)Scq2. .50 HL>L+2
while:

[Q(Q%w)]s1 - .. sn

= [Q%]s1...5c-1(5c ® sc41)Sct2---5n

_ { [ullsi...s0-1(5¢ P (Se41 D Se42))Se43---5n HL=¢0+1
Tl Tulst. - se—1(se B ser1)Seqa - Se—1(Se D Spq1)Scq2. .50 HL>L+2

These quantities are equal if £ > £+ 2, and the former reduces to the latter by (@) if L=£+1. O

Lemma 2.46 For every 1 < {< L,

[ev (Q%w)v]s1 .. .sn = [Q° ' (eviuv)]si ... 5n

Proof:

[evi(Q* u)v]sy . . .5,

= [Q%u]s1 .. .se—1(e[v]s1...50—1)50 . 50

= [ullsy...se—1(e[v]s1-.-850—1)Ss...8c—2(Sc—1 B S2)Sc41---5n
while:

[Q“(eviuv)]sy .. .sn

= [eviuv]sy...sc_a(Sc—1® Sc)Sc1 - Sn

= [ullsy...se—1(e[v]s1-.-850—1)Ss...8c—2(Sc—1 B S2)Sc41---5n
Od

Lemma 2.47 For every 1 < {< L,

[Q%(ev uv)]s1 ... sn = [ev*TH(Q) (Q)]s1 .. .5,

Proof:

[Q(evFuv)]sy .. .5,

= [evfuv]sy .. .s0—1(5¢ ® se1)Se42 - - - 5n

=[wls1...s0-1(8¢ B soq1)Se42..-Sc(e[v]sr.. se—1(se D Seq1)Se42---S£)S241 - - Sn
while:

[evc Q%) (Q)]st - . . sn

= [Q%u]sy .. .sc([Q%W]s1 .. .52)Sct1---5n

= [ulls1...s0—1(5¢ D sox1)seq2.--5c([QW]s1...52)8c41---5n

=[wls1...s0-1(8¢ B soq1)Se42..-Sc(e[v]sr.. se—1(se D Seq1)Se42---S£)S241 - - Sn
Od

Lemma 2.48 For every 1 < {< L,

[evi(uo® v)w]sy...sn = [(eviuw) o*~! (evlow)]s; ... s,

[Q(u ot v)]s1...sn —* [(Q%u) oF (Q*v)]s1 ... 5n

Proof:
[evt(u of v)w]sy ... sn
= [evt(ev 1 (Q u)v)w]sy .. .5, by Lemma 2.33
= [ev* (ev!(Q* u)w)(evivw)]s; .. . s, by Lemma 2.44
= [ev* (Q*~*(evtuw))(evtvw)]s; ...s, by Lemma 2.47
= [(eviuw) o=t (evtvw)]sy ... sn by Lemma 2.33

29

[Q (w0 =t v)]s1.. .50

= [Q%(ev* (Q*tu)v)]s1 . . .5n by Lemma 2.33
= [ev*tH(QY(Q*u))(Qv)]s1 .. .5, by Lemma 2.46
—* [ev* Q% (Q*w))(Q*v)]s1 .. .5, by Lemma 2.45
[(Q%u) o* (Q*v)]s1 .. 5n by Lemma 2.33

O

Lemma 2.49 For every 1 < {< L,

[(evFuv) of w]sy .. .s, [[ev (uof v)(v of w)]s1 ... sn
[(Q%w) ot w]sy...s, —* [[Qﬁ(u ot w)]

[(uo® v) ot wlsy...s, —* [(uofw)of (vof w)]si...sn

Proof:
[(evFuv) ot w]sy ... sp
= [ev" T (Q* (evFuv) w]]51 by Lemma 2.33
= [ev* ! (ev Q%) (QF))w]]51 .Sn by Lemma 2.47
= [ev” (evZ‘H(QZ)w)(evz‘l'l(QZ Jw)]s1...sn by Lemma 2.44
= [ev* (u of v)(v of w)]s; by Lemma 2.33
[(Q%w) of w]sy . ..sn
= [ev" 1 (QYQ* u))w]sy . . .5n by Lemma 2.33
—* [ev*" T (Q*TH(Qu))w]sy .. .5, by Lemma 2.45
= [Q* (evH(Qu)w)]s1 . . .5 by Lemma 2.46
= [Q%(uot w)]s1...5n by Lemma 2.33
[(uo* v) ot w]sy ...sp
[evtH(Q (u oF v))w]sy .. .5 by Lemma 2.33
—* [ev* T (Q%u o* L Qv)w]sy .. .5, by Lemma 2.48
= [(ev*tH(Qu)w) of (ev* 1 (Q'v)w)]s;1 ..., by Lemma 2.48
= [(uof w) of (volw)]si...s, by Lemma 2.33
O

Lemma 2.50 For every £ > 1,
[[evzidzw]]sl cospmg —T [w]sy .. seo

Proof: We have [[evzidzw]]sl c S = [[idz]]sl cooSspm(e[w]sy .. csi—1) = (1D D1 Dew]st. . se-1),
which rewrites in £ — 1 applications of ($—) to te[w]sy . ..s¢—1, then to [w]sy...s,—1 by rules (¢) and (¢). O

Lemma 2.51 For every £ > 1,

&

[wot id sy .. .50 —F [u]sy ...

n

Proof:
[wol id]sy ... sn
= [u]s1...s0-1(s¢ P e[[idz]]sl . 80)S041 .- -Sn
=[ulls1...s0-1(se Det(s1D...DS))Seq1---5n
— T [ulsi...se—1(ee(s1® ... & s0))se41...8n by (B—)
—* [u]s1...s0—1(€tSr)Seq1 ... 8n by (®—) £ —1 times
—T [ulsi...sn by (¢), (¢)

and where we have implicitly used Lemma 2.29 all along. O

30

Lemma 2.52 For every £ > 1,
[id" of u]sy...se —+ [ulsi...s¢

Proof: [[idZ of ullsy...sp = [[idz]]sl cooSe—1(seDefullsy...s0) = (1B .. . Dsi—1 DsgBefulsy...se) rewrites
to [ulls1...s¢ by (¢) and ¢ applications of (—). O

Lemma 2.53 For every £ > 1,

[1¢ ot (u o v)]s1...85n —F [ullsi...sn
[1¢ of(u o v)]s1...50 —F [v]s1...5

Proof:
[1¢ 0t (u o v)]s1.. .5
= [1]s1 .. Se—1(50 @ e[u ot v]sy...5¢)s041 ... 50
=7mi(s1D ... Dso_1 Dse®efuoet v]sy...50)s041 ... 5,
=m(s1® ... Dse—1Dse DAY - [u]ls1... 507, [v]s1...9¢))Se41 - Sn
—T m(ee(Ng - [ulsy. .. sy, [v]s1...80))Se41 - 5n by (&—) £ times
—T (Y - [ullsy. .. 509, [v]s1-..80))Set1 - -5n by (¢), (¢)
— (AY - [uls1...seY)Se41 - - Sn by (1)
— [ullsi...seSeq1-..5n by (5)
where ¥ abbreviates the appropriate sequence yp41, ..., yn of fresh variables of the right f-types.

For the second reduction, involving 1¢ instead of 1¢, the argument is similar, using () instead of (),
and noticing that n = ¢. O

Lemma 2.54 For every £ > 1,

[ev"t1 1%)]sy .. s, = [1° 0t w]sy...sp
[evit! 4 w]sy...s¢ = [T ow]sy ... s
Proof:
[evit 14 w]s; ... s,
= [141]s; .. se(efw]sy...se)Se41 - Sn
=m(s1®...s50Dew]sy...80)Se41---5n
=m(s1D...50-1D (50 B e[w]s1...9¢))Se41 - Sn
=[1]s: .. Se—1(se Defw]st...80)Se41 - Sn
=[1¢ ot w]sy .. .5,
and similarly for the other equation. O
Lemma 2.55 For every 1 <{< L,

[evit!(u ot v)w]s;...sc = [(evitluw) of (evitlvw)]s;...s¢
[evi i (u Tt v)w]s;...s, = [(evitluw) «* (eviTlvw)]sy ... s,
Proof:
[evitt(u o“H v)w]sy .. .s¢
= [u ot v]sy .. .se(efw]sy...5¢)s041 - 52
AT - [ulsy .. se(ewlsy. . se)seq1 - -scY, [v]s1 .. se(e[w]sy ... se)seq1...52)

= 1Ay - [evittuw]s; ...s.7, [evHivw]s;...sz)
= [(evttiuw) % (evitlvw)]s;...s.

where ¥y denotes an appropriate sequence of variables.
[evitt (u x~ 1 v)w]sy ... s,
= [ux*tv]sy ... se(e[w]sy...50)8041 - 5n
= A([u]lsy ... se(e[w]sy .. s¢)Seq1 .80, AT - [V]s1 ... se(e[w]s1 ... s¢)Set1...527)

= A([evittuw]sy ... s,, Ay - [ev T low]s; ... s.7)
= [(evttiuw) +* (evittvw)]s; ... sp

31

Lemma 2.56 For every 1 < {< L,

[Q(w o*~ Lt v)]s1...50 = [Q%u e Q%]sy...5¢
[Q(ux*"tv)]s1...5n = [Qux* QW]si...5,

Proof:
[Q(u o~ v)]s1...5¢
= [uo“ L v]sy...50_1(50 D Sex1)Se4a-..5¢
= (AT - [ulls1...8e—1(s¢e ® So41)S042 - --5c7, [v]s1 .- s0-1(5¢ D Se1)Se42-..52)
=107 [Q%u]sy .. .5:7, [QW]s1...5¢2)
= [Q%u oF Q%]s1...5¢

and similarly for the second equation. O

Lemma 2.57 For every 1 <{< L,

[(u o v) ot w]sy...s; = [(uofw)e* (volw)]si...s¢
[(ux* v) ot wlsy...sn = [(uof w)«* (vofw)]si...sp,
Proof:
[(u % v) of w]sy ...s¢
= [ev" L (Q%(u % v))w]sy .. .5z by Lemma 2.33
= [ev" L (Qu o1 Q) w]sy .. .5 by Lemma 2.56
= [(ev*H(Qfu)w) o (ev't(Q%v)w)]s1...s; by Lemma 2.55
= [(u o w) % (vof w)]sy...s¢ by Lemma 2.33

and similarly for the second equation. O
Lemma 2.58 For every 1 < {< L,

[Q1 sy ...5, —*[1%]s1.. 50
[QF sy ...sc — [1*]s1...5¢c
[Q%d“ sy ...50 —* [id“]s1...s¢c

Proof:
[Q15 sy .. .5
=[15"]s; .. .80—1(80 B S¢41)Se42 - .- 5n
=m(s1D... Dse—1 D (e DSeg1) DSeg2 D ... DSL)Scq1---5n
— (1B .. Bsi—1 DS DSey1 DSeqa B ... PSg)Scq1-.-5n by (D)
(in one step if £ > £+ 1, in no step otherwise)
= [1%]s1...5,

The other reductions are proved similarly. O
Lemma 2.59 For every 1 < {< L,

[evi1%w]sy .. .5y — [15 sy .. .8
[evi 1% w]si...s001 — [T st ... 8021
[[evzidﬁw]]sl .o.Sp1 — [[idﬁ_l]]sl ...Sc1

Proof:
[evi1“w]s; .. .5,
= [1%]s1 .. Se—1(efw]sy .. s0-1)80 ... 8n
=m(s1®... D1 D (e[w]sr...50-1) BseP...DS_1)Sc ...
— (1B .. DS 1B D...PS_1)Sc ... by (&-)
=[15"s1.. .5,

and similarly for the other reductions. O

32

Lemma 2.60 For every 1 < {< L,

[1% ot wlsy...sn —T [1%]s1.. .50
[1% ofw]sy...sc —F [1*]s1.. .52
[id" of w]sy...sp —F [id“]s1...5¢
Proof:
[1% of w]sy .. .5,
= [ev" 1 (Q"1%)w]s1 ...s, by Lemma 2.33
w]s1...s, by Lemma 2.58
— [1*]s1 ... 5n by Lemma 2.59

and similarly for the other rules. O
Lemma 2.61 For every ell > 1,

[1° &4)51 ...50 — [[idz]]sl)

Proof:
[1° o1]s1 .. .50
= o([1s1 .. .50, [T"]51 - - - 5¢)
=um(s1D ... Dsy),mas1 D ... D sg))
— (51D ... D syp) by (nm)
= [idTs1 ... s
Od

Lemma 2.62 For every £ > 1,

[(1° 0% u) of (1 o'u)]s1...50 — [u]si.. .50

Proof:
[[(1Z of u) of (1 ofu)]sy ... s
= o([1° o u]sy .. .50, [1F o u]s1 ... 50)
= L<[[1Z]]81 cooSe—1(se @ efu]lsy ... se),
[t4051 - se—1(s¢ @ €[u]si...s¢))
=umi(s1D ... B sp—1 D se B efulsy...s0),
ma(s1 B ... Dsr—1 D sy Defulsy...s0))
— (51D ... D1 D sy B efulsy...se) by (nm)
—t e[u]sy. .. s by (®—) ¢ times
—F [uls1...s¢ by (€), (¢)
Od

Lemma 2.63 For every £ > 1,
[(wof v) of wlsy...sn —F [uo® (vof w)]si...sn
Proof:

[(uof v) of w]sy...sy
= [uctv]sy...s0_1(s0 D e[w]sy.. s¢)S041 - 5n
= [uls1.. 5021
((se ®e[w]sy...s0) De[v]sy...s0—1(se De[w]s1...s¢))Se41---5n
—T [u]s1...s01
(se @ (ef[w]sy...s0) D e[v]sy...s0—1(se De[w]s1...s0))Se41---5n by (D)
—T [u]s1...s01
(se Defv]sy...s0-1(se D e[w]s1...8¢))Se41---5n by (®—)

33

where we have used Lemma 2.29 implicitly. On the other hand:

[uof (vol w)]sy ..
= [u]s1 ..
= [u]s1 ..

. Sn

Se—1(s0 ® efv]sy ..
Od

Lemma 2.64 For every £ > 2,

se—1(s0 @ €fv ot w]sy ...
Se—1(s0 B [w]sy ...

S¢)Se41 .- -8

n

n

$¢))Seq1 .8

[ev'(uof v)w]sy ...sn —T [eviu(evivw)]s: .. s,
Proof:
[evt(u of v)w]sy .. .s,
= [uot v]sy...so_1(e[w]sy...50-1)s¢.. 5
=[uls1...se—1((e[w]sy...se—1) B e[v]s1...se—1(e[w]s1...80-1))S¢ ... 5n

—F [uls1...se—1(e[v]s1 ..
= [u]s1...se—1(c[evivw]s; ..
= [evtu(evivw)]si ...s,

.se—1(efw]sy ..
.8¢)Sp...8

.80-1))Sz ... $n by (&-)

n

where we have again used Lemma 2.29 implicitly. O

Lemma 2.65 Rules (1 (%), (1o

Z)’ (Tﬂz)f (Tﬂ of

), (fre%), and (f idz) are decreasing, for every £ > 1.

Proof:
[150f ftf u]sy .. .5y
=[1° 0" (1° o uo® 1%)]s1...s, by Lemma 2.31
— T [1]s1 ... 5n by Lemma 2.53
M€ of (" wof v)]s1 .. .5
= [1F of ((1° o wo’ 1) ol v)]s1 ... 5, by Lemma 2.31
= 1 of (1% of v) &f ((uo® 1) o v))]s1...5, by Lemma 2.57
—t=[1¢ " v]s1.. .5, by Lemma 2.53
[1f of ff u]lsy...sn
= [1* of(1° &% uo)]sy ...5, by Lemma 2.31
—F [uot 151 ... s by Lemma 2.53
[1¢ ot (1 wobv)]sy ..
= [t o*((1° of uot TZ) o v)]]51 by Lemma 2.31
= [t o ((1° of v) o ((uof 1) of v))]]51 ...S, by Lemma 2.57
—t=(uot 1) of v]s1 .. .5, by Lemma 2.53
—t=[uof (1f otv)]s1 .. .54 by Lemma 2.63
[ue (0ot Wl
= [(1° ¢ uo® TZ) (v o w)]]51 ¢ by Lemma 2.31
= [(1° of (v of w)) o* ((uoZ TZ) (v o w))]]51 ...8; by Lemma 2.57
—t v o ((u oZ 1) of (v ot w))]sy1 .. .50 by Lemma 2.53
—>i %v oﬁ E . (T)]] v ot w)))]s1 - by Lemma 2.63
—7T v o* (uo w)]sy...s¢ by Lemma 2.53
[id sy . .. se
= [1¢ of ido! 1*]s1 ...s; by Lemma 2.31
—F 15 &4 sy ... sy by Lemma 2.52
—F [id]sy .. s by Lemma 2.61
O

34

Lemma 2.66 Rules (ev {*T!), (lev **1) are decreasing, for every £ > 1.

Proof: First observe that:

[ev (! w)w]sy ... s

= [evi (161 of+1 (wolt! +HH1)]sy .. .50 by Lemma 2.31
= [[(ev“’llz"'l(wl ol wy)) of (evitl(uo™t 4+)w)]s; .. .5, by Lemma 2.55
= [(1* o w) o (ev'+! (wo™+ 4+)w)]sy ... 5, by Lemma 2.54
—F (1 of w) o (evTlu(ev™! 1 w))]s; .. .5 by Lemma 2.64
—F [(1F of w) o (ev*Fu (1t ofw))]s ... s by Lemma 2.54

Tev L (1L w)(wy of wo)]sy ... se

—t [[(1Z of (wy o wy)) o (eviTlu(1t of(wy o ws)))]s1...s¢ by the remark above
—t [wy of (eviTlu(1t of(wy o w2)))]s1 ... 5¢ by Lemma 2.53
—t [wy of (eviTluws)]sy.. .50 by Lemma 2.53

[1 of ev™ 1 (Y w)w]sy . . . s,
—F 150 ((1° of w) of (ev' 1 u(1f ofw)))]s1...s, by the remark above
— Tt [ot w]sy ... s, by Lemma 2.53

[+ oz(ev“l(ﬂz"'1 w)w)]sy ... 8¢
—F [o (1% o w) of (ev T u(1? ofw)))]s1...5¢ by the remark
—F [evitu(1f ofw)]sy .. . s by Lemma 2.53

O

Lemma 2.67 The rules (evt *) and (i o%) are decreasing. Rule (Q° t*) is non-increasing.

Proof:
[evt (% w)w]sy .. .sc1
= [[evz(lﬁ oF (uo® M))w]sy .. .sc-1 by Lemma 2.31
= [[(evzlﬁw) oL (evi(uo” tX)w)]s1 ... 521 by Lemma 2.55
—t [1571 o<1 (evt(uo® 1%)w)]sy ... 521 by Lemma 2.59
= [[1£_1 oF1 ((evzuw) of—1 (evZ 1< w))]s1...sz—1 by Lemma 2.48
= [[1£_1 o~ ((eviuw)ot L P~ N]sy .. .50 by Lemma 2.59
=%~ (eviuw)]sy .. .s2-1 by Lemma 2.31
[QY N =t w)]sy...s¢
=[Q (157 &~ =1 (wo =1 +4=1))]s1 .. .5 by Lemma 2.31
= [(Q1571) ¢ (Qf(uo*~ =))]s1...sc by Lemma 2.56
—* 17 £ (QF (woX~t 7))]s1 ... 5c by Lemma 2.58
—* 1€ 0% (Q'uo” Q5" N]sy .. 5. by Lemma 2.48
—* 1% oF (Q uo” 1t9)]s1 ... 5¢ by Lemma 2.58
=" (Q*wW)]s1...5¢ by Lemma 2.31
[(* w) of w]sy...s¢
= [ev"H(Q (* w))w]sy ... sz by Lemma 2.33
—* [evt (5t (Qfu))w]sy...se by the above
—t [fF (ev™ L (Q u)w)]sy .. .5 by the above
= [f* (uot w)]sy...s¢ by Lemma 2.33
O

The remaining rules that involve {}* tend to involve rather heavy calculations. It is also here that the
strange rules (¢m1) and (¢73) are needed.

35

Lemma 2.68 For every £ > 1,

[wo 4 v]s1...s0 —F [(wol v)]s1 ... s

Proof:
[N wot 1 v]sy ... sy
=[N ullsy...se—1(s0 @ €[v]s1 ... 50)
= [ulsy...se—1(se @ er(mi(s1 @ ... Dse),[v]s1...50—1(5¢ D ema(s1 @ ... D s0))))
=um(s1D ... BsrBem(s1®...0se), [v]s1...50-1(s¢ Dema(s1 D ... B se)))),
[u]sy ... se—1 ((54 De{mi(s1®...Bse), [v]s1...s0-1(se Dema(s1 D ... D sg))))
Dema(s1D ... DseBe(mi(s1 ®...Dse), [v]s1...s0-1(s¢ Pema(s1D... B sz))>))>
—T mi(e{mi(s1 B ... B sp), [v]s1...50-1(5¢ P ema(s1 D ... D 50)))),
[u]sy ... se—1 ((54 De{mi(s1®...Bse), [v]s1...s0-1(se Dema(s1 D ... D sg))))
Dema(s1D ... DseBe(mi(s1 ®...Dse), [v]s1...s0-1(s¢ Pema(s1D... B sz))>))>
by (&—) £ times
— T Ym(mi(s1 B ... B se), [v]s1...s0-1(s¢ D ema(s1 B ... B s))),
[u]sy ... se—1 ((54 De{mi(s1®...Bse), [v]s1...s0-1(se Dema(s1 D ... D sg))))
Dema(s1D ... DseBe(mi(s1 ®...Dse), [v]s1...s0-1(s¢ Pema(s1D... B sz))>))> by (¢), (¢)
— m(51 D ... D se),
[u]sy ... se—1 ((54 De{mi(s1®...Bse), [v]s1...s0-1(se Dema(s1 D ... D sg))))
Dema(s1D ... DseBe(mi(s1 ®...Dse), [v]s1...s0-1(s¢ Pema(s1D... B sz))>))> by (1)
— T Umi(s1 D ... D se),
[u]sy ... se—1 ((54 De{mi(s1®...Bse), [v]s1...s0-1(se Dema(s1 D ... D sg))))
Dema(e{mi(s1 B ... B se), [v]s1...s0-1(s¢ Dema(s1 ®... B sz))>))>
by (&—) £ times
— T Umi(s1 D ... D se),
[u]sy ... se—1 ((54 De{mi(s1®...Bse), [v]s1...s0-1(se Dema(s1 D ... D sg))))
Dema(mi(s1 D ... D se), [v]s1.. . se—1(se Dema(s1 B ... P sz))>)> by (€), (¢)
— T Umi(s1 D ... D se),
[u]sy ... se—1 ((54 De{mi(s1®...Bse), [v]s1...s0-1(se Dema(s1 D ... D sg))))
@efv]sy...s0—1(se D ema(sy B ...@sz))» by (m2)
— T Umi(s1 D ... D se),
[u]sy ... se—1 ((54 Dema(sy B ... D s¢))
Defv]sy...se—1(se Dema(s1 B ... P sz)))> by (¢72)

while:
[N (wotv)]st... s
=umi(s1@ ... D sg), [uot v]sy...s0_1(s¢ D ema(s1 @ ... D s0)))
=um(s1 B ... P se),
[u]s1 ... 501 ((54 D ema(s1 B ... Dsy))
Defv]sy...s0-1(se Dema(s1 D ... B 5@)))>
Od

Lemma 2.69 For every £ > 1,
[ev T (Y w) (ev™ (Y H v)w)]s1 ... s0 —T [ev™ T (w ot v))w]si ... s

Proof:

36

[evt (4t w) (ev (4 v)w)]sy ... se
= [t usy .. .se(e[ev™ (N v)w]sy ... s0)
= [0 usy o ose(e[Y v]sy .. se(e[w]sy ... s0))
=[Nt usy . se(ee(mi(s1 @ ... @ 50 @ e[w]sy...s0),
[v]s1...se((e[w]st...s0) B ema(s1 ... D s P e[w]s1...50))))
=m(s1D... BsrBemi(s1®...0seDefw]sy...se),
[v]s1...se((e[w]s1...s0) Bema(s1 B ... D s D e[w]sy...s0)))),
[u]s1 .. .8[((6L<7T1(81 D...DsDe[w]sy...s0),
[v]s1...se((e[w]sy...s0) B ema(s1 D ... D s¢ P e[w]s1...50))))
Dema(s1 D ... DseBe(mi(ss B...DseDefw]sy...se),
[v]s1...se((e[w]s1...s0) Bema(s1 B ... D se D e[w]sy.. sz))>))>
—T i (e{mi(s1 B ... B s B e[w]sy...s0),
[v]s1...se((e[w]sy...s0) B ema(s1 D...Dse B e[w]sy...s0)))),
[u]s1 .. .54((&(71’1(51 D...Ds D e[w]sy...s0),
[v]s1...se((e[w]sy...s0) B ema(sy B ... D se D e[w]sy...s0))))
Dema(s1D ... DsrDe(mi(sy B ... 0 seDefw]sy...se),
[v]s1...se((e[w]sy...s0) Bema(s1 ... B se B e[w]sy.. sz))>))> by (&—) £ times
—T Ymi(mi(s1 B ... B s B e[w]sy...50),
[v]s1-..se((e[w]sy...s0) B ema(sy B ... D se D e[w]sy...s0))),
[u]s1 .. .54((&(71’1(51 D...Ds D e[w]sy...s0),
[v]s1...se((e[w]sy...s0) B ema(sy B ... D se D e[w]sy...s0))))
Dema(s1D ... DsrDe(mi(sy B ... 0 seDefw]sy...se),
[v]s1...se((e[w]sy...s0) Bema(s1 ... B se B e[w]sy.. sz))>))> by (¢), (¢)
— m (51 D ... D s D efw]sy...s0),
[u]s1 .. .54((&(71’1(51 D...Ds D e[w]sy...s0),
[v]s1...se((e[w]sy...s0) B ema(sy B ... D se D e[w]sy...s0))))
Dema(s1D ... DsrDe(mi(sy B ... 0 seDefw]sy...se),
[v]s1...se((e[w]sy...s0) Bema(s1 ... B se B e[w]sy.. sz))>))> by (1)
— T Umi(s1 D ... P se P efw]sy...s0),
[u]s1 .. .54((&(71’1(51 D...Ds D e[w]sy...s0),
[v]s1...se((e[w]sy...s0) B ema(sy B ... D se D e[w]sy...s0))))
Dema(e{mi(s1 B ... DB se D efw]sy...se),
[v]s1...se((e[w]sy...s0) Bema(s1 ... B se B e[w]sy.. sz))>))> by (&—) £ times
— T Umi(s1 D ... P se P efw]sy...s0),
[u]s1 .. .54((&(71’1(51 D...Ds D e[w]sy...s0),
[v]s1...se((e[w]sy...s0) B ema(sy B ... D se D e[w]sy...s0))))
Dema{mi(s1 B ... D s D efw]sy...s0),
[v]s1...se((e[w]sy...s0) Bema(s1 ... B se B e[w]sy.. .5@))>)> by (¢), (¢)
— T Umi(s1 D ... P se P efw]sy...s0),
[u]s1 .. .54((&(71’1(51 D...Ds D e[w]sy...s0),
[v]s1...se((e[w]sy...s0) B ema(sy B ... D se D e[w]sy...s0))))
Defv]s ... se((e[w]sy...se) Dema(s1 B ... D s D e[w]sy .. .54)))> by (m2)
— T Umi(s1 D ... P se P efw]sy...s0),
[u]s1 .. .8[((L<7T1(81 D...Ds D e[w]sy...s0),
[v]s1...se((e[w]sy...s0) B ema(sy B ... D se D e[w]sy...s0))))
Defv]s ... se((e[w]sy...se) Dema(s1 B ... D s D e[w]sy .. .54)))> by (¢)
— T Umi(s1 D ... P se P efw]sy...s0),
[u]s1 .. .54(((51 D.. D De[w]sy...s0) Pema(sy B ... 0 s D efw]sy...s¢))
Defv]s ... se((e[w]sy...se) Dema(s1 B ... D s D e[w]sy .. .54)))> by (¢m)
— T Umi(s1 D ... P se P efw]sy...s0),
[u]s1 .. .sz(((e[[w]]sl o Sp) Bema(s1 B ... Dse De[w]sy...se))
Defv]s ... se((e[w]sy...se) Dema(s1 B ... D s D e[w]sy .. .54)))> by (&—) £ times

37

while:
[ev L (1L (uoft v))w]sy ... s
= [(wot L v)]sy ... se(e[w]sy ... s¢)
=um(s1D ... B s Defw]sy...s0),
[uottt v]sy ... se((e[w]sy ..
=um(s1D ... B s Defw]sy...s0),

.80) Dema(s1 B ... D sy D efw]sy...s0)))

[u]s1 .. .sz(((e[[w]]sl L 80) Dema(s1 D ... B s De[w]sy...s0))
Defv]sy...se((e[w]sy.. . se) D ema(s1 D ... D s, B e[w]sy .. .54)))>

O

Lemma 2.70 For every £ > 1,

[wol (1" vof w)]si...se —F [(wo v) ot wlsy...s¢

Proof:
[N wof (ff volw)sy... s
= [0 ullsy...se—1(s0 @ €[t v ot w]sy...s0)
= [0 ullsy...se—1(se @ e[v]s1 .. .50-1(s0 @ e[w]s1...50))
= [0 ullsy...se—1(se @ er(mi(s1 @ ... D sp D ef[w]sy...s0),

[v]s1-.-se—1((se D e[w]s1...s0) Bema(s1 B ... Dse De[w]sy...s0))))

=m(s1D... BsrBemi(s1®...0seDefw]sy...se),

[v]s1...s0—1((s¢ D e[w]s1...50) Bema(s1 P ...
[ullsi...se—1((se D e{mi(s1 P ... B s¢De[w]sy...se),
[v]s1...s0—1((s¢ D e[w]s1...50) Bema(s1 P ...
Dema(s1D ... DB e{mi(s1 ... D s D efw]sy...
[v]s1...s0—1((s¢ D e[w]s1...50) Bema(s1 P ...
—T i (e{mi(s1 B ... B s B e[w]sy...s0),

[v]s1...se—1((s¢ B e[w]sy...s0) B ema(s1 b .
[ullsi...si-1((se De{mi(s1®...DseBe[w]sy...se),
[v]s1-.-se—1((s¢ B e[w]sy ..

[v]s1-.-se—1((s¢ B e[w]sy ..
by (®—) ¢ times
—T Ymi(mi(s1 B ... B s B e[w]sy...50),
[v]s1-.-se—1((s¢ B e[w]sy ..
[ullsi...si-1((se De{mi(s1®...DseBe[w]sy...se),
[v]s1-.-se—1((s¢ B e[w]sy ..

.S) Dema(s1 B ...
Dema(s1D ... DsrDe(m(s1 B ... P s Defw]sy...
.S) Dema(s1 B ...

.S) Dema(s1 B ...

.S) Dema(s1 B ...

D s Defw]sy...s

D s Defw]sy...s

SZ)a

D s Defw]sy...s

~~@5z@€[[w]]81..

SZ)a

Dema(s1D ... DseDe{m(s1 B ... P s D e[w]sy...s0)

[v]s1-.-se—1((s¢ B e[w]sy ..

— m (51 D ... D s D efw]sy...s0),
[ullsi...si-1((se De{mi(s1®...DseBe[w]sy...se),
[v]s1-.-se—1((s¢ B e[w]sy ..

[v]s1-.-se—1((s¢ B e[w]sy ..

— T Umi(s1 D ... P se P efw]sy...s0),
[ullsi...si-1((se De{mi(s1®...DseBe[w]sy...se),
[v]s1-.-se—1((s¢ B e[w]sy ..
Dema(e{mi(s1 B ... DB se D efw]sy...se),

[v]s1...850—1((s¢ ® e[w]s1...87) B ema(s1D ...

by (®—) ¢ times
— T Umi(s1 D ... P se P efw]sy...s0),
[ullsi...si-1((se De{mi(s1®...DseBe[w]sy...se),
[v]s1-.-se—1((s¢ B e[w]sy ..
Dema{mi(s1 B ... D s D efw]sy...s0),
[v]s1...se—1((s¢ B e[w]sy...s0) B ema(s1 b .

38

.S) Dema(s1 B ...

.S) Dema(s1 B ...
Dema(s1D ... DsrDe(m(s1 B ... P s Defw]sy...
.S) Dema(s1 B ...

.S) Dema(s1 B ...

.S) Dema(s1 B ...

Se),

SZ)a

~~@5z@€[[w]]81..

D s D 6[[10]]31 ..

D s D 6[[10]]31 ..

D s D 6[[10]]31 ..
D s D 6[[10]]31 ..

D s D 6[[10]]31 ..

D s D 6[[10]]31 ..

D s D 6[[10]]31 ..

D s D 6[[10]]31 ..

D s D 6[[10]]31 ..

D s D 6[[10]]31 ..

N
on)
D)
-50)))),
+50))))
se)))))

-5¢)))s
-50))))
500

by (), (1)

+50))))
se)))))

by (m1)

+50))))
se)))))

+50))))
se)))

by (), (1)

— T Umi(s1 D ... P se P efw]sy...s0),
[ullsi...si-1((se De{mi(s1®...DseBe[w]sy...se),
[v]s1-..8e—1((s¢ ® e[w]s1...50) B ema(s1D ... D s¢ B e[w]s1...50))))
Defv]sy ... se—1((se Defw]sy...s0) D ema(s1 D ... D s D efw]sy...s0)))) by (m2)
— T Umi(s1 D ... P se P efw]sy...s0),
[ullsi...se—1((ee{mi(s1 @ ... D se @ efw]sy...s0),
[v]s1-..8e—1((s¢ ® e[w]s1...50) B ema(s1D ... D s¢ B e[w]s1...50))))
Defv]sy ... se—1((se Defw]sy...s0) D ema(s1 D ... D s D efw]sy...s0)))) by (®—)
— T Umi(s1 D ... P se P efw]sy...s0),
[ullsi...so—1((e{m1(s1 D ... D s¢ D efw]sy...s0),
[v]s1-..8e—1((s¢ ® e[w]s1...50) B ema(s1D ... D s¢ B e[w]s1...50))))
Defv]sy ... se—1((se Defw]sy...s0) D ema(s1 D ... D s D efw]sy...s0)))) by (€)
— T Umi(s1 D ... P se P efw]sy...s0),
[ullsi...se—1(((s1® ... D se De[w]s1...s0) Dema(sy B ... 0 s D efw]sy...s¢))
Defv]sy ... se—1((se Defw]sy...s0) D ema(s1 D ... D s D efw]sy...s0)))) by (¢71)
—* Y mi(s1 D ... D s D e[w]sy...s¢0),
[ullsi...se—1(((se De[w]sy...se) Dema(sy B ... 0 s D efw]sy...s¢))
Defv]sy ... se—1((se Defw]sy...s0) D ema(s1 D ... D s D efw]sy...s0))))
by (®&—) £ —1 times
while:

[N (uofv) of w]sy...s
= [(wotv)]s1...s0-1(s0 ® e[w]sy...s¢)
=um(s1D ... B s Defw]sy...s0),
Tuof v]sy...se—1((s¢ @ e[w]sy...s50) Dema(ss @ ... 0 se D e[w]sy...s0)))
=um(s1D ... B s Defw]sy...s0),
[ullsi...se—1(((se ® e[w]sy...s0) Dema(sy B ... D st D efw]sy...s0))
Defv]sy ... se—1((s D ef[w]sy...s0) Dema(s1 D ... D sy B efw]sy...s0))))

Figure 6 and Figure 7 sum up the results. Read them as a short justification, for every rule R, of the fact
that whenever u rewrites to v by R, then u is greater than v in the lexicographic product of >, and 4. For
instance, if u rewrites to v by rule (o), then u =) v by Lemma 2.57, and u >e¢q v by Lemma 2.20. The >,
signs in Figure 7 come from Lemma 2.14. Observe that some >, signs are in fact not needed. It follows:

Theorem 2.71 ¥ and X g terminate.

Proof: =, is well-founded, because it is the non-empty intersection of orderings induced by Jouannaud
and Rubio’s higher-order recursive path ordering, and all these orderings are well-founded. Therefore the
lexicographic product of >, and >, is also well-founded. By the results summed up in Figures 6 and 7,
all rules in EE are decreasing in this ordering. By Lemma 2.24, ¥ g terminates, hence also X, which is a
subsystem of Xg. O

2.6 Comments

Can we relax the well-typedness condition on Aev@)-terms while still keeping X terminating? We don’t
know yet, but here is an idea. Observe that we didn’t really use the whole power of Aev(Q types: we only
used f-types, or skeletons of the real types, where every function type 7 = 75 has been abstracted away as
T (recursively).

This suggests endowing the Aev@-terms with a new type system based on #-types instead of real types.
The result is shown in Figure 8, where we abuse the notation by identifying signatures and #-types.

It is immediate that every typed Aev()-term also has a -type, namely the [J-translation of its type. Let’s
call stratified any Aev()-term that is typable in the system of Figure 8.

The whole proof of termination transfers to the stratified case, with the proviso that whenever u rewrites
to v in Aev@, we can use the f-type of u to compute the [_J-translation of v; or, in other words, provided

39

Group (B) (level £, £ > 1):

(0id?) =, (Lemma 2.51) (1% = (Lemma 2.65)
(ido*) >\ (Lemma 2.52) (1f0%) = (Lemma 2.65)
(o%) = (Lemma 2.63) »., (Lemma2.21) (11 = (Lemma 2.65)
(1) = (Lemma 2.53) (tfr o) = (Lemma 2.65)
(1Y >, (Lemma 2.53) (Y =x (Lemma 2.68)
(of) =, (Lemma 2.57) ., (Lemma2.20) (fifto’) > (Lemma 2.70)
(X9 = (Lemma 2.43) (fre%) = (Lemma 2.65)
(*) =, (Lemma 2.57) >, (Lemma2.20) (fid*) >, (Lemma 2.65)
(Qof) =i (Lemma 2.34) >cq (Lemma 2.21)
Group (C) (¢ > 1):

(ev AT = (Lemma 2.42)

(evxttt) =, (Lemma 2.55) »., (Lemma 2.20)

(evidz‘l'1 = (Lemma 2.50)

(evoltt) > (Lemma 2.64) »., (Lemma 2.22)

(ev 1£11) =, (Lemma 2.54) »., (Lemma 2.19)

(evl“’l) =, (Lemma 2.54) »., (Lemma 2.19)

(ev oftl) =, (Lemma 2.55) »., (Lemma 2.20)

(ev it = (Lemma 2.66)

(lev t**1) >, (Lemma 2.66)

(1 ev Ty =, (Lemma 2.66)

(ev Mi*1) =, (Lemma 2.69)

(ev@Qth) > (Lemma 2.32) ., (Lemma 2.16)

Figure 6: Termination of EE, part 1

40

Group (D) (1 <£< L):
(Afof) =) (Lemma 2.41) eq
(*ﬁoz) =) (Lemma 2.57) >4
(idﬁoz) = (Lemma 2.60) >,
(0%0f) =y (Lemma2.49) =,
(1% o) =y (Lemma 2.60) >4
(1%0* = (Lemma 2.60) >,
(o o) =\ (Lemma2.57) =
(1% of) = (Lemma2.67) >
(Q%o%) =\ (Lemma2.49) =,
(evfof) =) (Lemma 2.49) eq

Group (E) (2 << L):
(ev'Af) =, (Lemma 2.40) eq
(evz*ﬁ) =, (Lemma 2.55) >,
(evzidﬁ) > (Lemma 2.59) >,
(evto?) =, (Lemma 2.48) eq
(evZ Tﬁ) > (Lemma 2.59) >,
(evzlﬁ) > (Lemma 2.59) >,
(evZ oﬁ) =, (Lemma 2.55) >,
(evZ ﬂﬁ) = (Lemma 2.67) .4
(ev'Q*) =, (Lemma 2.46) eq
(evlev®) =, (Lemma 2.44) g

(F) Quoting (2 < £ < L):
(sz\ﬁ) = (Lemma 2.39) >,
(Qz*ﬁ) =) (Lemma 2.56) >4
(indﬁ) = (Lemma 2.58) >,
(Q%*) =, (Lemma2.48) >,
(Q°1%) =x (Lemma2.58) >,
(Qzlﬁ) = (Lemma 2.58) >,
(Q° o) =, (Lemma2.56) >,
(Q° %) =x (Lemma2.67) >4
(Q'Q*) =x (Lemma2.45) >,
(Qev®) =, (Lemma 2.47) eq

Group (H) (1 < £):

(nev®) =, (Lemma2.33) ., (Lemma 2.17)
(n 19 =, (Lemma 2.31) »., (Lemma 2.18)
(n %) =y (Lemma 2.61)
(neof) >, (Lemma 2.62)

Figure 7: Termination of EE, part 2

41

Level 0:

0tz 0t

,I—uzﬁ}':: o 0F b 0F
AL F e u:0F
, Fuv 6] ’ T2
Fu 8t x0- L gt
CFlu: 6t , Fv:6-

(resp., Ftu:67) CFuev: 0T x o~

, FO:T
Level £ > 1:

S F17:0,,.. .0, 07 x 0~ ~0F

CFT 6,0, 0T x 6 ~ 0

, Fu:ﬁf,...,@[vﬁf

n- - ot - +
L R 07,0 ~ 0F ’ Fﬁufl ."9'_"94—16;_91 2_9 “;fz
,I—u*zvzﬁl_,...,ﬁz_vﬁf ’ R R A
o - ot
SR O7 07,07 ~ 0" PO, O~ O
FﬂZU'H_ 0= 07 x 0 ~— 07 x 06— ,Fv:@l,...,ng\»g
) S ARRER FN N L ,I—uozvzﬁf,...,ﬁz_f\»9+><9_
y Puf, 0,0, ~ 0 w0y, 0,0, ~ 0
,Rw 0,0, ~ 0] , E Qw00
,I—evzuw:ﬁl_,...,ﬁz__lvﬁ 6=,0; ~0

cFw by, 0,0, ~ 0, Fu0], . . 0,0 ~ 0]
, Fuotvify, .0, 0 ~ 0

Figure 8: Stratifying by #-types

42

that subject reduction holds in the stratified calculus. Unfortunately, it does not, as the following derivation
shows:

0T kg0t :
Fhx-x: 07T I—u:@"
F Az -z)u: 6t

which rewrites to u, of f-type 9;’, not 47+,
For want of an intermediate type system which would allow us to interpret all untyped Aga-terms via G,
we shall therefore stick to the full type system of Aev(@, which only allows us to interpret the typed Agq-terms.

3 Confluence

3.1 Confluence

The results of this section are the following: the Aev@-calculus and the Aev@y-calculus are locally confluent,
whether untyped, semi-stratified or typed. In the typed case, the Aev@-calculus is also confluent. The
untyped and semi-stratified Aev@-calculi are not confluent. We conjecture that the typed Aev@-calculus
is confluent: this will be dealt with in part IIIb.

Lemma 3.1 The AevQ-calculus, the AevQ-calculus, X and X g are locally confluent.

Proof: The proof is easy but tedious: consider all critical pairs between all rules, and show that they
are joinable. As this job can be mechanized, we have built a computer program to check this automatically.
(Notice, however, that a standard Knuth-Bendix completion program won’t work, as all terms are indexed
by integer expressions subject to linear constraints of the form af < o/#' 4+ 3, where a, o’ are either 0 or 1,
and 3 is a relative integer.) The results are shown in a separate appendix [GL95]. O

To prove that Aev@ is confluent, we mimic the proof of [HL89]. The latter was inpired by [Yok89], and
1s in the spirit of the Tait-Martin-Lof method of parallel reductions:

Definition 3.1 Let ﬂ) be the relation on Aev(Q)-terms defined as follows:

P P N, Py N, P
uﬂm u—>u v——v u—u v—v up—>uy ... Uy —> Uy,
(Au) ¢ vﬂm’ of (v &f idz) (/\xu)vﬂ)u[v/x] f(ul,,un)ﬂ)f(u’l,,u;)

for every £ > 1 and every n-ary operator f, n > 0.

In the sequel, we shall use diagrams represent reductions. These diagrams are read as follows: for all
reductions represented as solid lines in the diagram, there are reductions represented as dashed lines such
that the diagram commutes.

Lemma 3.2 Let X denote the reduction relation i), ¥* denote its reflerive transitive closure, and X~ 5 X*

denote the composition of X%, ﬂ> and X*. Then:

Proof: The proof is as in [HL89], proposition 3.2. Because all rules are left-linear, we only have to consider

the critical pairs between ¥ and ﬂ) There are five interesting cases, which parallel the five critical pairs
between () and the rules of ¥ is Section 14 of [GL95]; there are no critical pairs with (3).

43

Case 1: u = ((/\Zul)*Z uz) ofus, v = (/\Zul ot u;:,)*z (us ot ug) is obtained by rule (*Z) and w = (u} ot (uh ot

. B B B
zdz)) of uf, where ulim’l, uzim’z and U3J>ug Then:

w = (uf of (uhy e idz)) ot u3
— uf o ((uh @ ldz) o” uj) by (o)
— uf of (uly of uf o id" ot uf) Dby (ef)
— ufy of (uh of uf o uby) by (ido?)
while:
v = (Auy of uz) #* (u2 ot U3)
— X (urof i ug) ¢ (ug of us) by (\f)
(a4) f (1 f uy ot i)
— uf of (P ufh of (uf ot u3 . zdz)) by (o)
— u’l of (uf oZ uly of uf of id") by (fre¢)
— uf of (uh of uf o uly) by (oidz)
Case 2: u = evi((Nuy) % uz)us, v = evi(Auy)us =1 evlusus is obtained by rule (ev«’) and w =
evl(uf of (uh o° id"))ul, where ulﬂm’b uzﬂmz and U3ﬁ—>U3 Then:
w = evi(u) of (uf o° idz))ug
— eviu (ev! (uh of id")uj) by (evo?)
—> ev ul(evzu’ ul o1 evtidiul) by (ev o)
— eviu (eviubub o'~ uj) by (evid")

(let the last term be called t), while if £ = 1:

v = (evi(Auy)us)(eviusus)
— (Az - eviug(z o uz))(eviugus) by (evAl)

L
—eviuf (eviubul o uf) =1

and if £ > 1:
v = evi(Muy)us +1 evlugus
— Xt (evt (ugof! Tz_l)(lz_1 ol ugzof=t A1) Wbt evfugug by (evA®)

ﬂ)(ev‘(u’loz‘l P16 o1 ot =1 $471)) o1 (evludndl of 1 id' 1)
— evi((u)ot! Tz_l) of—1 (evzu’ u’ o1 idt =ty

((1Z—1 =1 4,1 of=1 TZ 1) - 1(evzu’u’ ol—1 dﬁ 1)) by (evzoz 1)
— evt(u} of~ 1(TZ Lot~ evliubul o1 id"~ 1)))

((1Z 1 gl=1 41 o= 1TZ 1) - 1(evzu/2ué - 1Z~dﬁ—1)) by (OZ—l)
— s ev (1 ot=1 ~dZ—1)((1Z—1 ol 1 4yl ot—1 TZ 1) -1 (evzuzu ol 1 dZ 1)) by (TZ—l)
— evzu’l((lZ L of=1 gyl 0t=1 (R oz_1 (eviubuly o1 id"~ 1)) by (oidz_l)
— evzul(lZ Iot-1 (evzu’zug Y 1) 1 (uhot =1 E71) of 71 (eviubul of 7t idz_l)) by (‘1)
— eviu (eviubul o/~ (ufof =1 1471 o1 (eviubuf of ! id') by (1¢71)
— eviu (eviubul o/~ uf of =t (111 of L (eviubul ot id" 1))) by (o1)
— eviul (eviubul o7t uf ot idz_l) by (1¢71)
— eviu (eviubul o'71 uf) =t by (oidz_l)

Case 3: u = (ASuy * ug) of ug, with 1 < £ < L, v = (A uy of ug) #* (uz of u3) is obtained by rule (x%0of),

By By By
and w = (u} of (uh o id")) of ul, where u1—>u1, u2—>u2 and U3—>U3 Then:

w = (u] oF (uh oF id")) of uf
— (uf of uf) of ((uf o idﬁ) of ug) by (o%of)
— (u} of ub) of (uf ot u3 £ 3d* ot ul) by (e of)
— (] of ufy) of (uh of uf 0% id”) by (id“o")

while
v = (A uy of uz) #* (uz of u3)
— A5 (ug of uz) #% (ug of us) by (A*of)
ﬂ>(u’1 of ufy) of (uh of uly o id")
Case 4: u = evi(\uy #° uz)us, with 1 < £ < L, v = (evi(\ uy)us) ¥*~1 (evfusus) is obtained by rule

. g g g
(ev'*), and w = ev’(u) of (uf, o% id"))ub, where uy !, us—5uh and us—suh. Then:

W= e (uf of (uf oF id))
— (eviuluy) of 1 (e Z(u2 . zdﬁ)u?)) by (evto*)
— (eviufuly) o~ (eviubul =1 evlid“ul) by (ev' o)
— (eviuluy) of 1 (eviulul o<1 idﬁ_l) by (evzidﬁ)
while
v = (evi (A up)uz) #* 7! (eviusus)
— M eviuyug) £ (eviugus) by (evtA%)

ﬂ>(evzu’1ug) oF 1 (eviubuly o5t id" 1)

Case 5: u = Q (AN "Luy «*~Luy), with 1 <€ < £, v = Q*(V*~Luy) «* (Q%uz) is obtained by rule (@),
and w = Q' (u} o~ (uf o4~ id“ ")), where ulﬂm’l and uzﬂm’2 Then:
w = QZ(U/l of-1 (u/2 of—1 idﬁ—l))
— Qul of Q' (uh o1 id"™!) by (Q'0F)
— Q"uf o (Quy oF Q1idTT) by (Q° &)
— QM oF (Q'ul, oF id”) by (Q'id")

while
voo= QA T luy) 5 (Qus)
— A(Q 1) #* (Qfuz) by (QAF)

Qo (Quly oF id)

In any other case, 1t is readily verified that vﬂnf, where w rewrites in one step to ¢ by the same rule that
was used from u to v. O

Lemma 3.3 ﬂ) 15 strongly confluent. More precisely, the following holds:

Al
U——=uw
ﬁnl A

y
Y- =1
Al

Proof: ﬂ) is defined as a left linear system, and has no critical pairs. O

Lemma 3.4 In the typed case, we have:

Al

U

45

Proof: By induction on v(u), the length of the longest X derivation starting from w. Observe that by
Lemma 3.1 ¥ is confluent.

If v(u) = 0, then the result is clear. Otherwise, let the first reduction step from u to v rewrite u to uy,
with v(uy) < v(u). We have:

Al
U w
b)) (1) o
¥ Al ¥* oy
Up------= = Uy -----= = UG -----= = W1
o @y By @
v v v

where (1) follows from Lemma 3.2, (2) follows from the fact that X is confluent, (3) follows by induction
hypothesis, noticing that v(uz2) < v(u1) < v(u) and (4) follows from the confluence of X. O

Lemma 3.5 In the typed case, we have:

U w

v

that is, ¥* 3 X" 1s strongly confluent.

Proof: By induction on v(u) again. If the reductions from u to v and to w both begin by the 3| reduction,

then we have:
Al ¥+

U 1}1 g}
g1 (1) p (2) 3,2
oy ey

where (1) follows from Lemma 3.3, (2) and (3) follow from Lemma 3.4, and (4) follows from the confluence

of X.

Otherwise, we have:

46

U Ut Uz w
vt () 5 2) S §
O InCp y o
S1------= =80 = 83 (5) .
Zj*
v Xro
| Sg-----= = W1
(3) v o (4) | S
A RS NG I (b
| v Xr o
S5 -----= = W2
| S
oy w Al DO ok
Sg------= = S7 -2 > 88 - ----= > 89 -----= = 510 !
DL (6) ¥ (8) 1y (9)
; ; {
Vmmmmm oo =Vl g 2 - >
= A x

where (1) follows from the confluence of &, (2) and (3) come from Lemma 3.4, (4) comes from the induction
hypothesis, since v(s2) < min(v(u1),v(s1)) < v(u), (5) and (6) follow from the confluence of X, (7) and (8)
follow from Lemma 3.4, and (9) comes from the fact that ¥ is Church-Rosser. O

Theorem 3.6 The typed AevQ-calculus s confluent.

Proof: By Lemma 3.5, ¥* 3 X" is confluent. Furthermore, its reflexive transitive closure is exactly the
reduction relation for Aev(), hence the result. O

We now examine the question whether the Aev(@ g-calculus is confluent. Although we have taken some
precautions (namely, separating the terms into two sorts, and allowing variables only of sort 77), the untyped
Aev(@)y-calculus is not confluent. Indeed, we may embed variables of sort T in a stack by using, for example
o', and replay Klop or Hardin’s counterexample to confluence:

Theorem 3.7 The untyped AevQ)y-calculus is not confluent.

Proof: We replay, almost unchanged, Hardin’s proof [Har89]. The only difference is the introduction of the
operators 1!, ¢! and id" below.

Let P = Az-Ay-y((zx)y), and © = PP be Turing’s fixed point combinator; it is such that Ou —* u(Ou)
for every u. Let also:

I =Xz

U =Xz -y (11 ol (1((/\z z(zy)) o! idl) ot (A2 - zy) o idl))) (/\z ~I)
C =0U

B =0C

Check that I, U, C and B are of sort T' (in the untyped calculus; U is not a semi-stratified term).
Now, by definition of ©, (1) ¢ —* UC, and (2) B —* CB.
So for every term u, C'u rewrites to UCu by (1), hence by two applications of (5) to X (u), where:

X(u) = (11 om (1((/\z - 2(Cu)) o' id") of (A2 - 2u) o idl))) (/\z . I)

by definition. To sum up, (3) Cu —* X (u).

47

Then we have:

B —*CB by (2)
—" X(B) by (3)

- (11 ok, (1((/\z~z(C'B)) ol id') of (Az-zB) ol idl))) (r=-1)

> (11 ok (1((Az - 2(CB)) o' id") ot ((Az - 2(CB)) o idl)))(Az.f) by (2)
— (11 ok (Az - 2(CB)) ot idl))(Az 1) by (17 o)
— (Az - 2(CB))(Az - 1) by (1)
— (Az - 1)(C'B) by (8)
— 1 by (8)

So: (4) B —* I.

It follows: (5) B —* CI, by (2) and (4).

We now claim: (6) If AevQy has the unique normal form property (i.e., any two normal forms of the
same term are equal) and u has a normal form uy different from 7, then C'u and u have no common reduct.
Indeed, by (3) Cu —* X (u), and if Cu and u had a common reduct v, then:

X(u) —* (11 ok (1((/\z - zv) ot idl) ot ((/\z - zv) ot idl))) (/\z ~I) by rewriting C'u and u

— (11 o ((Az - zv) ot idl)) (Az-1) by (17 @)
— (Az - zv)(Az -) by (11
— (Az - D by (5)
T by (8)

but since Aev@Qy is assumed to have the unique normal form property, then ug = I, which contradicts the
assumption ug # 1.

We now claim that (8) if Aev@y has the unique normal form property, then C'I does not reduce to I.
Indeed, assume that Aev@y has the unique normal form property, and let R be a derivation from CT to I
using rule (7 o) the least many times. Now C'T has only one redex, namely the one in © = (Az-Ay-y((zx)y)) P.
So the first step in R must rewrite C' into Ay, where:

A=Ay y(PP)y)UT = (Ay - y(Oy))UI

Let R; be the the subsequence of R leading from A; to I. Since U and [are normal, the only possible
reductions in A; are to rewrite under Ay- in A; (in fact to rewrite @y) or to contract the outermost redex
(Ay - y(©y))U. Note that the outermost redex must eventually be contracted, because there is no such redex
in the end-term of Ry, namely I. So R; decomposes into, first, a reduction R} from Oy to some term that
we denote by A(y), and second a sequence Ra of rewriting steps from:

Ay = (\y -y A(y)UI
to I. Then if we choose R} to be of maximal length, R is:

A — U AU) I —" 1
N——’
Rs
Observe that A(U) can be obtained from OU, i.e. from C' by a sequence of rewriting steps, which we shall
again call R|. Rz may rewrite A(U), but by the same argument it must eventually contract the redex U A(U).

Without loss of generality, assume that Rs begins by contracting the latter. Then U A(U) I contracts to As,
where:

Az = (/\y . (11 om (1((/\z 2(A(U)y)) o idl) ot ((/\z zy) o! idl))) (/\z . I))I

48

Let R4 be the rest of the derivation. R4 may first rewrite A(U)y, so in general it has the form:

Ay —" (/\y~ (11 of (1((Az-2D) oL id") o ((Az - 2p) o' idl))) (r: .1))1:5‘_1/

Rs

where Rz does not start by reducing D, and where A(U)y —* D by some subsequence R of rewriting steps
in R4. Then (7) Cy —* D by R] followed by R}. Consider the first step of Rs: it may either contract
the outermost (3) redex or the inner (1 o) redex. In the latter case, we must have D = y, therefore by (7)
Cy —™* y, which is impossible by (6), since y is a normal form different from 7. So the first step of Rs
contracts the outermost (3) redex, leading to A4, where:

Ay = (11 of (1((Az-2D) oL id") ot (A= - 21) o idl))) (r=-1)

The only way that A4 can reduce to I involves making the part on the left of Az - T an (1 e) redex. So Rs
must eventually reduce D to I, then apply (n e). Consider the subderivation R§ of Rj5 reducing D to I. By
(7), the concatenation of R}, R} and Rf then reduces CT to I. This concatenation is a subderivation of R,
and uses at least one less instance of (7 o), contradicting the minimality of R.

So, if AevQy was confluent, by (4) and (5) C'T and I would have a common reduct, that is C'I would
reduce to I, since I is normal. Then, AevQ would also have the unique normal form property, so by (8) C'T
cannot reduce to I: this is a contradiction. O

The problem in the untyped Aev(@ ;-calculus is that we may mix operators from levels that have nothing to do
with each other. As already announced, we leave the question of the confluence of the typed Aev@)y-calculus
open until part I1Ib.

4 From Xev() To g,

Although reduction in AZ, (resp. AZ,,) can be simulated by reduction in Aev@) (resp. A\evQy), it is not
obvious that the converse holds. Ideally, we would like to show that the AevQ-calculus (resp. AevQy) is a
conservative m-extension of the Ag,-calculus (resp. Ag, ;). It is an m-extension [Har89] if and only if:

(1) G is injective from Ag, to Aev@),

(2) for every AZ,-terms u and v, u reduces to v in Ags (resp. Asay) if and only if G(u) reduces to G(v) in
Aev() (resp. AevQpy),

(3) and for every AF,-term u, if G(u) reduces to some term ¢ in Aev(@Q (resp. AevQy), then ¢ reduces to
some term of the form G(v), with v a AJ,-term.

And it is conservative if and only if:

(4) for every AF,-terms u and v, u and v are Ags-equivalent (resp. Asag-equivalent) if and only if G'(u) and
G(v) are Aev@-equivalent (resp. Aev@p-equivalent).

But G does not obey property (2). Whenever u reduces to v, then G(u) reduces to G(v), but the converse
fails: consider indeed u = unbox (xy)‘, where z : ®; = O®; and y : &, and v = (unbox z*)(unbox y*). We
have G(u) = ev!(Q'z ' Q1y)(), which rewrites by (evx!) to (ev!(Q'z)())(ev}(Qy)()) = G(v); but u does
not rewrite to v in Agq or Agqg: indeed, the only term to which u can rewrite is zy.

So we shall actually only prove that the AevQ-calculus (resp. AevQy) is a conservative extension of the
Agy-calculus (resp. AZ,), i.e. property (4).

We first prove property (1). Observe that we have chosen to see G as a function from AF,-terms, not
Aga-terms, to Aev(@)-terms. This is the only reasonable definition, because of Theorem 3.9 and Lemmas 3.10
and 3.11 in Part IT: we must interpret Ags-terms modulo (gc) and (ctract).

Lemma 4.1 For all n € IN, for every environment p of cardinality at least n, for every substitution o, if
(u'p)o = popl, then u = ().

49

Proof: If n = 0, then pop. = id'. Since u‘p cannot be a variable (see Figure 2, Part II), we must have
¢ c 1 R

u'p = id". But this can only happen when u = ().

If n > 1, we prove the result by induction on n. We use the fact that pop} =11, poprll_l_1 =11 olpopl,
n>1.

When n = 1, if (u‘p)e =11, then by the same argument as above u‘p =1!, and the only applicable
quotation rule entails that p has cardinality 1 and u = ().

Assume that the claim holds for n > 1, and prove it for n 4 1: let p have cardinality at least n + 1, and
poprll_l_1 = (u‘p)o. Since (u‘p)o has the form 11 ol ... inspection of the quotation rules shows that u must be

either () or of the form 1 «’ for some term u’ such that (*) popl = (u"p)a. In the latter case, we apply the

induction hypothesis, since the cardinality of p is greater than n, so «’ = (): then (u"p)a would be poprll_l_1
by definition of _°, contradicting (*). The only possible case is therefore the former, u = (). O

Before we continue, we introduce a family of variables &, for each term uw. More formally, let W be a given
set of variables, such that there are infinitely many variables outside of W. We build a family of variables &,
for every term u whose free variables are in W, in such a way that: &, 1s not in W, and v = v if and only if
gu = €v~

We say that a term is a £-term if and only if all its free variables are &-variables. A regular term is any
term whose free variables are all in W. We shall consider that W is so large that any Aev@-term that we
ordinarily use is regular.

We denote by ¢ the (infinite) substitution mapping &, to u. It maps £-variables to regular terms.

Lemma 4.2 For any environment p, for every term u, there is at most one &-term s such that u = (s°p)C.

Proof: By structural induction on u.

If u is of the form Q'v, then the only quoting rule that applies is that for variables, so the only possible
&-term s is & (and u is, more precisely, QLv).

If u is of the form, say, u; ! us, then if u = (s°p)o, then s must be of the form s, so, with u; = (sélp)c
and ugy = (s;p)c By induction hypothesis, there 1s at most one &-term s; and at most one &-term sy such

that uy = (sélp)c and us = (s;p)c, so s 1s unique.

All other cases are similar, except when w is of the form Alv or v o!

w. In the first case, we have to
apply the induction hypothesis with p[z — n] instead of p, where # is some new variable (in W) and n is the
cardinality of p.

In the last case, where u = v o! w, u may be the translation of a variable in the domain of p, or of (), or
of a projection lu’ or 1 «’. In any case, let n be the cardinality of p.

If v =11, then we have two possibilities, namely s = () or s =t «/. But these possibilities are exclusive:
if s = (), then u = popl; and if s =1 «’, then by Lemma 4.1 u cannot be popl. So, either u = popl and the

1

only possible s is (), or u # pop}. In this latter case, s must be 1 «/, and we must have w = (u"p)C: by
induction hypothesis, u’ is unique, hence also s =1 u’.

If v = 1!, then u may be the quotation of a variable in the domain of p, or of a 1 projection.

If w = pop;, with 0 < k < n — 1, we claim that s cannot be a projection: indeed, if s = 1u’/, then
u= ((lu’)‘p)c, SO w = (u"p)C, and since w = popj. by assumption, by Lemma 4.1 using the fact that n > k,
we must have v/ = (). But then w = popi = pop}, which is impossible since k # n. So s can only be a
variable, namely that which p maps to n — 1 — k. So s is unique.

And if w # pop;, for every 0 < k < n — 1, then s must be of the form 1u/, so w = (u"p)C. But then u’,
hence s, is unique by induction hypothesis. O

Lemma 4.3 G, as a function from A3, to Aev(), is injective.

Proof: We have to prove that every Aev@-term u is the image of at most one term by GG up to =, and we
prove it by structural induction on wu.

If w is a variable, observe that u cannot be of the form (s‘p)o for any s, p and &, so the only AZ,-term v
such that G(v) = u is u itself.

If u is of the form wujus, similarly « cannot be a quotation. So, if u = G/(v) for some v, then v has the
form vyve, where w3 = G(v1) and ua = G(v2), and we apply the induction hypothesis. The cases of the
A-abstractions and of ev!-terms is similar.

50

In all other cases, if © = G(v), then v must be of the form box w with . Then u must equal
((G(w))‘[])G(O'), where (o) is defined as the substitution mapping # to G(zc). Without loss of gener-
ality, we may assume v to be in (gc), (ctract)-normal form. In particular, the domain of ¢ is exactly the set
of free variables of v, and ¢ is one-to-one. Build the renaming substitution » mapping each free variable of v

to £G(eo)- Because o is one-to-one, r is also one-to-one. So, u must equal ((G(w))‘)rr_lG(O').

By Lemma 3.6 of Part II, property (i), ((G(w))‘
the free variables of G(w)r and of (G(w)r)‘[] are the same, namely those in the domain of r=1G(e). Since
r~1G(o) agrees with ¢ on this set, it follows that v must equal ((G(w)r)‘[])c Notice also that G(w)r is a
&-term.

By Lemma 4.2, there is a unique é-term s such that G(v) = (s°[])¢, so G(w)r must equal s. Hence,
G'(w) must equal sr=1, and by induction hypothesis w is unique. Now, for every free variable « of w, £G(zo)
is also determined uniquely as the variable zr. So G(zo) is determined uniquely for each z. By induction
hypothesis, zo is itself determined uniquely. Since ¢ is (gc)-normal, o itself is determined uniquely.

To sum up, w and ¢ are determined uniquely up to a renaming substitution r, i.e. up to a-equivalence.
Thus the claim is proved. O

Mr = (G(w)r)‘[]. By Lemma 3.6 again, property (i),

We also observe that G transforms normal forms into normal forms. This is Lemma 4.5 below.

Lemma 4.4 For every AevQ@-terms u, vy, ..., vn, if u, v1, ..., vy are AevQ-normal (resp. AevQy-
normal with w not of the form evizw where x is some variable), and vy, ..., v, are at level 0, then
(u'p)[vi/z1, ..., vn/2s] is AevQ-normal (resp. AevQ gz-normal) for any environment p.

Proof: By structural induction on u. Let ¢ be the substitution [vi/21,...,v,/@,]. If w is a variable «
outside the domain of p, then (u‘p)o = Q*(zc). Since zo is at level 0, Q'(xc) is not a redex. Since moreover
zo is normal, Q! (zc) is normal. If u is a variable inside the domain of p, then (u‘p)o = get! for some some
¢ > 0, which is normal.

If u is an application vw, with v and w normal and v not a A-abstraction, then (u‘p)oe = (v‘p)ox! (w'p)e,
where by induction hypothesis (vp)o and (w'p)o are normal. If (u‘p)o was not normal, then it would itself
be a redex. The only possibility is that it is a (3') redex. Then (v‘p)e would have the form A!v/) and the
only possibility for this to happen is for v to be a A-abstraction, which is impossible.

The argument is similar when « is 1v or 1 v.

If u is a A-abstraction Az - v, with v normal, then (u‘p)e = A ((v"p[z — n])o), where n is the cardinality
of p, and by induction hypothesis (v*p[z + n])o is normal. No rule can apply at the top of u‘p, so u'p is
again normal.

If u has the form v e w, the argument is similar.

If u has the form evlvw, then (u‘p)o = ev?(v'p)o(w'p)o, where by induction hypothesis (v‘p)o and
(wp)o are normal. So if (u‘p)o is not normal, it is itself the redex. In Aev(Q), this means that (v'p)o is
at level at least 2, hence that v is at level 1, but then v would be a redex as well, which is impossible. In
AevQy, if (u’p)o is not normal, there is the other possibility that it is an (nev!) redex, namely that (v‘p)o
is of the form Q'v;. By inspection of the rules of Figure 2, Part II, the only possibility is that v be some
variable z outside the domain of p and v; = zo; but then u would be ev!zw, which was precisely excluded
in the assumptions.

In all other cases, u if of the form f¢(vy,...,v,), where £ > 1 (£ > 2if f = ev) and n > 0, with vy, ..., v,
normal. By induction hypothesis (v;p)a, o (v;p)a are also normal, so if (u‘p)o = f”l((v;p)a, o (v;p)a)
was not normal, some rule in groups (B) through (F) (resp. through (H)) would apply at the top. Then the
same rule taken at levels decreased by one would also apply at the top of u, which is impossible since u 1s
normal. O

Lemma 4.5 For every Aga-term u, if u is Agq-normal (resp. Asag-normal), then G(u) is Aev@Q-normal
(resp. AevQ g -normal).

Proof: By structural induction on u. If u 1s a variable, an application or a A-abstraction, then this is clear.

If w = unbox v, where v is normal and not a box-term, then G(u) = ev!G(v)(). By induction hypothesis,
((v) is normal. Moreover since v is not a box-term, G/(v) must be of the form z, v1v2, Az - vy or evivi(): in
any case G(v) is at level 0. But no rule of AevQ; applies in these cases, so G(u) is normal.

51

In the final case, u = box v with wq,...,w, for x1,...,#,, where v is normal (resp. and not of the form

unbox x; for any 1 < i < n), 1, ..., &, are exactly the free variables of u, wy, ..., w, are normal, not
box terms and are pairwise distinct. By induction hypothesis, G(v) is normal, and G(w1), ..., G(w,) are
normal. Furthermore, since wy, ..., w, are not box terms, G(wy), ..., G(wy,) are at level 0.

3

Then, in the Aev(@ case, by Lemma4.4 ((G(v)) [)[G(w1)/®1, ..., G(wy)/x,] is normal,i.e. G(u) is normal.

In the Aev@y case, in addition we know that v is not of the form unbox z; for any 1 < i < n. If G(v) was
of the form ev'zw for some variable # and some term w, then v would be of the form unbox v’ by inspection
of Figure 2, Part II, where v/ = x. But u = box unbox z with wy, ..., w, for z1,..., z, is only well-formed
if z 18 some z;, 1 < ¢ < n, and this is impossible by assumption. So again Lemma 4.4 applies, showing that
G(u) is normal. O

We have the following property, which is stronger than property (3), but would be equivalent to it if (2)
held.

Theorem 4.6 For every typed AT, -term u, if G(u) reduces to some term t in AevQ), then t reduces to some
term of the form G(v), for some AZ,-term v such that u reduces to v in Asa.

Similarly, under the conjecture that the typed AevQp-caleulus is confluent, if G(u) reduces to some term
t in AevQp, then t reduces to some term of the form G(v), for some AZ,-term v such that u reduces to v in
Asap-

Proof: By Theorem 5.1, in Part T (resp. 4.1, in Part IT), « has a unique normal form v in Agq (resp. Asag).
By Theorem 3.29, Part II (resp. 4.11), G(u) reduces to G(v) as well. By confluence, G(v) and ¢ then have a
common reduct. By Lemma 4.5, however, G(v) is normal, so ¢ must reduce to G(v). O

Finally:

Theorem 4.7 (Conservativity) The typed AevQ-calculus is a conservative extension of the typed A\F,-
calculus, 1.e. for every typed Asq-terms u and v, u and v are interconvertible modulo the rules of Ag4 if and
only if G(u) and G(v) are interconvertible modulo the rules of Aev(Q.

Simalarly, under the conjecture that the typed AevQ y-calculus is confluent, it 1s a conservative extension
of the typed \G, ;;-calculus.

Proof: The only if direction comes from Theorems 3.29 and 4.11, Part II. As for the if direction, assume
that G(u) and G(v) are interconvertible. Let u’ and v’ be the respective unique normal forms of u and v
in Agq (resp. Asag). Then G(u') and G(v') are interconvertible. By confluence, there is a Aev@)-term ¢
such that G/(v') and G(v') both reduce to t. By Lemma 4.5, both G(u') and G(v') are Aev@-normal (resp.
Aev(@) g-normal), so G(u') = G(v'). By Lemma 4.3, o/ = ¢'. In particular, « and v are interconvertible
modulo the rules of Agq (resp. Agap). O

Theorem 4.6 and Theorem 4.7 were only stated for the typed version of the calculus. In both, we use
the strong normalization property of the typed Ags (resp. Agag) calculus. The proof techniques that we have
used generalize to different type systems, for example in the spirit of System F [Gir71, GLT89], provided that
only term types, and not metastack types, are quantified over. However, the same results in the untyped case
are still open. In particular, we don’t know whether Aev(Q-equivalence is conservative over Agq-equivalence
in the untyped case.

References

[ACCLI0] Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit substitutions.
In Proceedings of the 17th Annual ACM Symposium on Principles of Programming Languages,
pages 31-46, San Francisco, California 1990. January.

[Der87] Nachum Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3:69-116, 1987.

[Gir71] Jean-Yves Girard. Une extension de l'interprétation de (Godel & ’analyse, et son application
a I’élimination des coupures dans 'analyse et la théorie des types. In J.E. Fenstad, editor,

52

[GL95]

[GL TS89

[Har89]

[HL89]

[JRI6]

[LRD94]

[Mel94]

[Mel95]

[MH96]

[Yok89]

[Zan94]

Proceedings of the 2nd Scandinavian Logic Symposium, pages 63-92. North-Holland Publishing
Company, 1971.

Jean Goubault-Larrecq. Proof of local confluence of the Aev@-calculus. Technical report, Bull

S.A., 1995.

Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of Cambridge Tracts
wn Theoretical Computer Science. Cambridge University Press, 1989.

Thérése Hardin. Confluence results for the pure strong categorical logic CCL. Lambda-calculi as
subsystems of CCL. Theoretical Computer Science, 65, 1989.

Thérese Hardin and Jean-Jacques Lévy. A confluent calculus of substitutions. In France-Japan
Artificial Intelligence and Computer Science Symposium, December 1989.

Jean-Pierre Jouannaud and Albert Rubio. A recursive path ordering for higher-order terms com-

patible with gn-reductions. In RTA 96, 1996.

Pierre Lescanne and Jocelyne Rouyer-Degli. From Ao to Av: a journey through calculi of explicit
substitutions. In Proceedings of the 21st Annual ACM Symposium on Principles of Programmaing
Languages, 1994.

Paul-André Mellies. Typed lambda-calculi with explicit substitutions may not terminate. In
Proceedings of the CONFER workshop, Munchen, April 1994.

Paul-André Mellies. Typed lambda-calculi with explicit substitutions may not terminate. In
M. Dezani-Ciancaglini and G. Plotkin, editors, 2nd International Conference on Typed Lambda-
Calculi and Applications (TLCA’95), pages 328-334, Edinburgh, UK, April 1995. Springer Verlag
LNCS 902.

César Augusto Munoz Hurtado. Confluence and preservation of strong normalization in an explicit
substitutions calculus. In Proceedings of the 11th ACM/IEEE Symposium on Logics in Computer
Science, 1996. Long version available as INRIA Research Report 2762, December 1995.

Hirofumi Yokouchi. Church-Rosser theorem for a rewriting system on categorical combinators.

Theoretical Computer Science, 65(3):271-290, 1989.

Hans Zantema. Termination of term rewriting: Interpretation and type elimination. Journal of
Symbolic Computation, 17:23-50, 1994.

53

