
Implementing Tableaux by Decision Diagrams

Jean Goubault-Larrecq

Institut f�ur Logik, Komplexit�at und Deduktionssysteme

Universit�at Karlsruhe, D-76128 Karlsruhe�y

Jean.Goubault@frcl.bull.fr

August 29, 1996

Abstract

Binary Decision Diagrams (BDDs) are usually thought of as devices engineered specially for classical
propositional logic. We show that we can build on one of their variants, Minato's zero-suppressed BDDs,

to build compact data structures that encode whole tableaux. We call these structures tableaux decision

diagrams (TDDs), and show how tableaux proof search is implemented in this framework. For this to be
e�cient, we have to restrict to canonical proof formats (in the sense of Galmiche et al.) to be able to take

advantage of sharing in TDDs. Sharing is fundamental, not because it reduces memory consumption,

but because it allows us to expand or close many tableaux paths in parallel, with corresponding gains in
e�ciency. We provide some empirical evidence that this is indeed e�cient, by illustrating the method on

a well-chosen system for propositional intuitionistic logic.

1 Introduction

Binary Decision Diagrams, or BDDs, are simple data structures that represent both the sets of models and of
counter-models to a given propositional formula. They have enjoyed great popularity in hardware veri�cation
circles since their (re-)invention by Bryant in 1986 [1], and in other domains as well, including automated
deduction [19, 10, 11]. However, BDDs only apply to classical propositional logic, excluding important logics
like intuitionistic logic or modal logics.

On the other hand, tableau and sequent calculi o�er a
urry of methods for solving the satis�ability
problem in classical and non-classical logics [5]. But it is unclear how to adapt BDDs to the latter. It is
precisely the purpose of this paper to show one possible solution: we use Shin-Ichi Minato's zero-suppressed
BDDs [16], augmented by a new reduction rule that closes paths, to represent whole tableaux in memory.

The plan of this paper is as follows. In Section 2, we recap a few basic notions about zero-suppressed
binary decision diagrams, and introduce our approach to implement tableaux by using similar structures,
which we call Tableau Decision Diagrams (TDDs). In Section 3, we then proceed to develop a method based
on TDDs for �nding proofs in propositional intuitionistic logic. We take the latter as a case study, because it
is one of the most important non-classical logics. This method is in fact applicable to many other logics, but
crucially relies on the existence of a Gentzen system for the logic with many nice combinatorial properties,
i.e. permutabilities and invertibility of rules, to make full use of the potential for parallelism o�ered by TDDs.
We validate our approach in Section 4 by testing it on several benchmark problems, compare our approach
to other works in Section 5, and conclude in Section 6.

�Research partially funded by the HCM grant 7532.7-06 from the European Union. Most of the research done in this paper

was done while I was still at Bull S.A.
yOn leave from Bull Corporate Research Center, rue Jean Jaur�es, F-78340 Les Clayes sous Bois.

1

2 Zero-Suppressed Binary Decision Diagrams

2.1 Formulas, Paths, Tableaux

We consider a vocabulary of propositional formulae �, 	, : : : built from propositional variables or atoms A,
B, C, : : : using operators & (conjunction), _ (disjunction), ? (false), � (implication). We let �� stand for
� � ?.

A signed formula s� is either +� or ��, where � is a formula and s 2 f+;�g is a sign. A path p is a
�nite set of signed formulae. A tableau t is a �nite set of paths.

A tableau calculus is a �nite set of rules that transform paths into zero, one or more paths. To prove
a formula �, we start with the tableau ff��gg, and rewrite paths in the tableau until we get the empty
tableau (in which case � is proved), or until we have explored all tableaux that are reachable from the initial
tableau without obtaining the empty tableau (in which case � is unprovable); otherwise, the process does not
terminate.

Searching for a proof is a non-deterministic process: we have to �nd whether there exists a derivation
of the empty tableau from the initial tableau. This non-determinism may be implemented in several ways,
but the most usual one is by backtracking : if we can rewrite a tableau T into several possible tableaux T1,
: : : , Tn, then try to reach the empty tableau from T1, then from T2 if we did not succeed, then : : : from Tn
if we did not succeed earlier. This kind of implementation does not require that we keep whole tableaux in
memory, as only paths are changed from one tableau to the next. Therefore, we only keep paths (even only
signed formulas in classical logic) during the whole tableau search process. This uses very little memory, but
it is also the reason why tableaux seem to redo the same proof work over and over on di�erent branches of
the search tree.

Another way of implementing tableaux would be to keep whole tableaux in memory, and to share their
paths in some way, so as to be able to reason on several paths in parallel even on a sequential machine. That
is, if several paths share a common subpath, and this subpath is provable (we can reach the empty tableau
from it), then closing this one subpath will close all the paths that contain it at once. Moreover, if there is
enough sharing among paths, the penalty for keeping whole tableaux in memory will be o�set somewhat.

The latter approach is quite similar to that of binary decision diagrams [1], or BDDs. In classical propos-
itional logic, we can try to prove a formula by non-deterministically searching for an invalidating assignment:
either by backtracking (as in the Davis-Logemann-Loveland, better known as the Davis-Putnam method [2]),
or by representing all assignments in memory, and mapping each to the value of the given formula under the
assignment. The latter is precisely what BDDs do.

2.2 Zero-Suppressed BDDs

Zero-suppressed BDDs, or 0-sup-BDDs, are a slight modi�cation of the binary decision diagram data struc-
ture, and are due to Minato [16]. Their use is not in representing formulas (up to propositional equivalence),
but in representing sets of cubes, where a cube is a conjunction of Boolean variables. They provide a com-
pact representation of sets of cubes, which have successfully been used in hardware circles to compute sets
of prime implicants of or essential prime implicants of impressive sizes (op.cit.)

Our aim here is to use 0-sup-BDDs to represent tableaux, i.e. we trade propositional variables for signed
formulas. We present 0-sup-BDDs in this framework. Most de�nitions are due to Minato, and the only new
technique in this section is the closing reduction rule (2).

Let 1 (truth) and 0 (falsehood) be two new symbols. A binary decision diagram, or BDD F , is de�ned
inductively as either 1, 0 or a triple (s�; F0; F1). Graphically, we write the latter as in Figure 1, where the
second component F0 (the 0 branch) is linked to the root by a dotted line, and the third component F1 (the
1 branch) is linked to the root by a solid line. In plain text, we shall write s� �! F1=F0 for this triple. We
shall also call s� a kernel of the BDD | we won't use kernels as propositional variables, as is usual, hence
the new name.

Any BDD represents a tableau, as follows:

De�nition 1 Given a BDD F , the tableau T (F) associated with F is de�ned as follows: T (1) is the tableau
f;g that only contains the empty path, T (0) is the empty tableau ;, and T (s� �! F1=F0) = ffs�g [p j p 2
T (F1)g [T (F0).

2

@
@
@

..........

F0 F1

s�

Figure 1: A node in a BDD

BDDs are shared , that is, they are implemented not as trees, but as directed acyclic graphs. We use
a global hash-table uniq recording all previously allocated BDD nodes. Then, to allocate a BDD node
s� �! F1=F0, we �rst look uniq up to see whether there is a node with all three matching components; if
so, we return this node, otherwise, we generate a new node containing s�, F0 and F1, add it to the uniq
hash-table, and return it.

Ordered BDDs, or OBDDs, are BDDs such that on any path from the root to the leaves, kernels are sorted
in increasing order with respect to a given total ordering <. Apart from sharing, the choice of ordering is
the most important factor for getting small BDDs for large tableaux. We shall delay the question of �nding
good orderings until Section 4, and shall assume that all our BDDs are ordered by a given ordering.

A zero-suppressed BDD is a BDD that is reduced by the following reduction rule:

(s� �! 0=F0) �! F0 (1)

Observe that the tableaux of the left-hand and right-hand sides are identical.
Because the kernels of BDDs are signed formulas, we wish to �nd another reduction rule that would

automatically eliminate closed paths from a BDD's tableau. To this end, we shall assume that the BDD
ordering is of the form: : : : < +�0 < ��0 < +�1 < ��1 < : : : < +�k < ��k < : : :, i.e. that < is the
lexicographic ordering on signed formulas that compares the formulas �rst (with respect to some ordering),
and then the signs. That + < � is not essential, and we might have chosen � < + instead. What is
important is that the kernels +�k and ��k are next to each other. This allows us to make sense of the
following reduction rule:

(+� �! (�� �! F2=F1)=F0) �! (+� �! F1=F0) (2)

which eliminates all paths that contain both +� and ��. Therefore, a BDD which is irreducible by rule (2)
has a tableau that contains no closed path. We call this rule the closing reduction rule. This leads to our
�nal notion of BDD:

De�nition 2 Let < be a given total strict ordering on formulas. Write again < the strict ordering on signed
formulas de�ned by: s� < s0�0 i� � < �0, or � = �0, s = + and s0 = �.

A zero-suppressed BDD, or 0-sup-BDD, is a BDD that is shared, ordered by < and reduced by rule (1).
A tableau decision diagram, or TDD F , G, H, : : : is a 0-sup-BDD that is reduced by rule (2) as well.

The crucial observation here is that the closing reduction rule closes several, possibly many paths in exactly
one step: imagine that F2 contains, say, 1000 unclosed paths (which is perfectly reasonable), then instead of
closing all paths p;��;+� where p ranges over the 1000 paths in F2, the closing reduction rule closes them
all in parallel. This parallelism in the implementation of tableau rules in TDDs is exactly what we are after:
TDDs automatically close paths in parallel, and we shall see how we can apply most other tableau rules in
parallel as well in Section 3, on a case study on propositional intuitionistic logic.

To make precise the relation between TDDs and tableaux, we de�ne an inverse to T as follows:

De�nition 3 Let D be the function from tableaux to 0-sup-BDDs de�ned as follows: D(;) = 0, D(f;g) = 1,
and if t is a tableau containing at least one signed formula, let D(t) be s� �! D(t1)=D(t0), where s� is the
least (for <) signed formula occurring in t, t0 is the set of all paths in t not containing s�, and t1 is the set
of all paths p n fs�g, where p ranges over all paths in t containing s�.

3

Observe that the de�nition is well-founded, as it proceeds by recursion over the number of signed formulas
that occur in the tableau.

Lemma 1 For any tableau t, T (D(t)) = t.

Proof: By induction on the number of signed formulas that occur in t. If t = ;, then T (D(t)) = T (0) = t;
if t = f;g, then T (D(t)) = T (1) = t. Otherwise, let s� be the least signed formula occurring in t. Then
D(t) = s� �! D(t1)=D(t0) as in De�nition 3, and T (D(t)) = ffs�g [p j p 2 T (D(t1))g [T (D(t0)) by
De�nition 1. By induction hypothesis, T (D(t)) = ffs�g [p j p 2 t1g [t0 = t by de�nition of t0 and t1. 2

Lemma 2 For any 0-sup-BDD F , D(T (F)) = F .

Proof: By induction on the number of kernels in F . If F = 0, then D(T (F)) = D(;) = F ; if F = 1, then
D(T (F)) = D(f;g) = F . Otherwise, F is of the form s� �! F1=F0, with s� less than any kernel occurring
in F0 or F1. Then T (F) = ffs�g [p j p 2 T (F1)g [T (F0) by De�nition 1. Because F is reduced by rule 1,
F1 is not 0, hence T (F1) is not empty. So s� occurs in T (F), and is necessarily the least signed formula
occurring in T (F). Therefore D(T (F)) = s� �! D(T (F1))=D(T (F0)), which is equal to s� �! F1=F0 by
induction hypothesis, that is to F . 2

We may conclude:

Theorem 3 The pair D, T de�nes a bijection between tableaux and 0-sup-BDDs. Moreover, it de�nes a
bijection between tableaux with no closed paths and TDDs.

Proof: The �rst part of the claim follows directly from Lemmas 1 and 2. As for the second part, let F be
an arbitrary 0-sup-BDD. If T (F) has a non-closed path p;+�;��, then there is a subBDD of F with root
kernel +� through which this path goes: this BDD has the form +� �! (�� �! F2=F1)=F0 with F2 6= 0,
hence F is reducible by rule (2). Conversely, if F is reducible by this rule, then there is a subBDD of F of
the form +� �! (�� �! F2=F1)=F0, and F2 6= 0 since F is reduced by (1): it follows that there is a path
p in F2, and therefore that there is a path p0;+�;��; p in F , which is not closed. 2

2.3 Implementing TDDs

Assume that we have a function BDDalloc that takes a signed formula s� and two BDDs F0 and F1, and
returns a shared node s� �! F1=F0. Then the following function (written in pseudo-Standard ML):

fun TDDnode (s�; F0;0) = F0 (* reduction by (1) *)

| TDDnode (s�; F0; F1) =

if s = + andalso F1 = �� �! F3=F2 for some F2, F3
then TDDnode (s�; F0; F2) (* reduction by (2) *)

else BDDalloc (s�; F0; F1)

builds the reduced form of the BDD s� �! F1=F0, when F0 and F1 are already reduced, and s� < s0�0

for any s0�0 occurring in F0 or F1. Check also that it terminates. (In fact the only recursive call could be
expanded by unfolding the de�nition once, and then the recursion disappears, since F2 cannot have �� as
topmost kernel.)

The tableau ffs�gg is built by:

fun TDDmake (s�) = BDDalloc (s�;0;1)

The following functions TDDsubset1, TDDsubset0, TDDunion and TDDinter were already de�ned by
Minato.

The subset of paths pnfs�g such that p 2 T (F) contains a given signed formula s� is given by TDDsubset1
(F; s�), where TDDsubset1 is de�ned by:

memofun TDDsubset1 (0;) = 0

| TDDsubset1 (1;) = 0

| TDDsubset1 (s0�0 �! F1=F0; s�) =

4

if s0�0 = s�
then F1

else if s0�0 < s�
then TDDnode (s0�0; TDDsubset1 (F0; s�); TDDsubset1 (F1; s�))

else 0

where the keyword memofun denotes the declaration of a memoizing function, that is, a function that keeps
a private hash-table mapping previous arguments to the result of the computation on them. On each call
to a memoizing function, the function �rst checks whether its private hash-table contains an entry for the
supplied arguments; if so, it returns the previous result, and otherwise it computes the result, stores it into
the hash-table, and returns it.

Similarly, the subset of paths in T (F) that do not contain a given signed formula s� is given by
TDDsubset0 (F; s�), where TDDsubset0 is de�ned by:

memofun TDDsubset0 (0;) = 0

| TDDsubset0 (1;) = 1

| TDDsubset0 (F as s0�0 �! F1=F0; s�) =

if s0�0 = s�
then F0

else if s0�0 < s�
then TDDnode (s0�0; TDDsubset0 (F0; s�); TDDsubset0 (F1; s�))

else F

Computing the union of two tableaux is done as follows:

memofun TDDunion (0; F 0) = F 0

| TDDunion (F;0) = F

| TDDunion (1;1) = 1

| TDDunion (1; s0�0 �! F 0
1=F

0
0) =

TDDnode (s0�0; TDDunion (1; F 0
0); F

0
1)

| TDDunion (s� �! F1=F0;1) =

TDDnode (s�; TDDunion (F0;1); F1)
| TDDunion (F as s� �! F1=F0; F

0 as s0�0 �! F 0
1=F

0
0) =

if s� = s0�0

then TDDnode (s�; TDDunion (F0; F 0
0); TDDunion (F1; F 0

1))
else if s� < s0�0

then TDDnode (s�; TDDunion (F0; F 0); F1)
else TDDnode (s0�0; TDDunion (F; F 0

0); F
0
1)

Computing the intersection of two tableaux is done as follows:

memofun TDDinter (0; F 0) = 0

| TDDinter (F;0) = 0

| TDDinter (1; s0�0 �! F 0
1=F

0
0) = TDDinter (1; F 0

0)
| TDDinter (s� �! F1=F0;1) = TDDinter (F0;1)
| TDDinter (F as s� �! F1=F0; F

0 as s0�0 �! F 0
1=F

0
0) =

if s� = s0�0

then TDDnode (s�; TDDinter (F0; F
0
0); TDDinter (F1; F

0
1))

else if s� < s0�0

then TDDinter (F0; F
0)

else TDDinter (F; F 0
0)

We shall also need to compute the shu�e t @ t0 of two tableaux, where t @ t0 is de�ned as fp [p0 j p 2
t; p0 2 t0g. Computing the shu�e of T (F) and T (F 0) is intuitively done by the following function:

memofun TDDshuffle (0; F 0) = 0

| TDDshuffle (F;0) = 0

5

| TDDshuffle (1; F 0) = F 0

| TDDshuffle (F;1) = F

| TDDshuffle (F as s� �! F1=F0; F
0 as s0�0 �! F 0

1=F
0
0) =

if s� = s0�0

then TDDnode (s�;TDDshuffle (F0; F 0
0);

TDDunion (TDDshuffle (F0; F 0
1);

TDDunion (TDDshuffle (F1; F 0
0);

TDDshuffle (F1; F 0
1))))

else if s� < s0�0

then TDDnode (s�; TDDshuffle (F0; F 0); TDDshuffle (F1; F 0))
else TDDnode (s0�0; TDDshuffle (F; F 0

0); TDDshuffle (F; F 0
1))

However, observe that TDDshuffle only computes the shu�e of two decision diagrams when TDDnode builds
zero-suppressed BDDs, i.e. when the additional closing reduction rule is not implemented. Otherwise, when
given two TDDs in argument, TDDshuffle computes their shu�e minus all resulting closed paths.

Tableau calculi need another auxiliary function for replacing a signed formula s� in a TDD F by a
TDD F 0. More precisely, this operation replaces every path p in T (F) that contains s� by a set of paths
(p n fs�g) [p0, where p0 ranges over the paths in T (F 0). For example, consider the following tableau rule of
classical propositional logic, where comma denotes union:

p;�(�1 & �2)
p;��1 j p;��2

We can implement it on TDDs by replacing �(�1 & �2) in F by the tableau ff��1g; f��2gg, and this will
e�ect it at once on all paths containing �(�1 & �2) in the whole tableau. This operation is de�ned as:

fun TDDreplace (F; s�; F 0) =

TDDunion (TDDsubset0 (F; s�);
TDDshuffle (TDDsubset1 (F; s�); F 0))

Iterating through all paths in F , and applying a function f to each can be done in several di�erent ways.
Assuming that f returns a result, or raises an exception if it fails, then calling TDDiter (f; F; []), where []
is the empty list will either return the �rst result f(p) where f does not fail, or raise an exception. The
third argument to TDDiter is a representation of the path that will be submitted to f , represented as a list
of signed formulas in decreasing < order.

exception TDDITER (* declare an exception for failure *)

fun TDDiter (f;1; p) = f(p)
| TDDiter (f;0; p) = raise TDDITER (* fail *)
| TDDiter (f; (s� �! F1=F0); p) =

TDDiter (f; F0; p) handle _ => TDDiter (f; F1; s� :: p)

where raise raises an exception, e handle _ => e0 evaluates e, and if an exception is raised, evaluates e0;
and a::l builds the list whose �rst element is a and whose rest is l.

The TDDiter functional, as it is, sweeps through all paths from left to right in the TDD F . There are
clearly many other, including more clever, possibilities.

Note that, in the case of TDDs with lots of paths but few nodes (hence highly shared), iterating through
all paths destroys most of the interest of TDDs. In the sequel, the reader should keep in mind that applying
TDDiter is likely to be costly, while other operations are not if TDDs remain of manageable size (which is
likely).

3 Intuitionistic Logic

3.1 A Tableau System

Consider the tableau calculus of Figure 2. The rules have a numerator (above the bar) and possibly several
denominators (below the bar), which are paths. Read as a set, the path p; p0 denotes the union of p and p0,
and p;� where � is a signed formula denotes p [f�g.

6

(Ax)
p;+�;��

(�?)
p;�?
p

(+?)
p;+?

(�&)
p;�(�1 & �2)

p;��1 j p;��2

(+&)
p;+(�1 & �2)
p;+�1;+�2

(�_)
p;�(�1 _�2)
p;��1;��2

(+_)
p;+(�1 _�2)

p;+�1 j p;+�2

(� �)
p;�(�1 � �2)
p+;+�1;��2

(+ �)
p;+(�1 � �2)

p;+(�1 � �2);��1 j p;+�2

Figure 2: Tableau rules for intuitionistic logic

(Ax)
�;� .�;�

(?R)
� .�

� .?;�
(?L)

�;? .�

(&R)
� .�1;� � .�2;�

� .�1 & �2;�
(&L)

�;�1;�2 .�
�;�1 & �2 .�

(_R)
� .�1;�2;�
� .�1 _�2

(_L)
�;�1 .� �;�2 .�

�;�1 _�2 .�

(� R)
�;�1 .�2

� .�1 � �2;�
(� L)

�;�1 � �2 .�1;� �;�2 .�
�;�1 � �2 .�

Figure 3: A sequent system for intuitionistic logic

Because sets are hard to work with, we shall consider paths as multisets of signed formulas and tableaux
as multisets of paths. The comma will then denote multiset union instead of set union. In practice, the
multiplicity of signed formulas in paths, or of paths in tableaux, will be irrelevant, and we shall erase them,
i.e. we shall consider paths and tableaux as sets again in the implementation; this is because the rule of
contraction will be admissible (this will be Lemma 9).

In each rule, the distinguished occurrences of formulas above the line are called the principal formu-
las; symmetrically, the distinguished occurrences of formulas below the line are called the active formulas.
Moreover, for any path p, we write p+ the set of formulas with sign + in p.

Of these rules, only those concerned with implication are peculiar to intuitionistic logic. The (+ �) rule
duplicates its principal formula +(�1 � �2) on its left denominator, while (� �) erases all non-principal
negative formulas by the p 7! p+ operation.

This system is a translation of the Gentzen system of Figure 3, where sequents �1;�2; : : : ;�m .

�m+1; : : : ;�m+n are translated to paths +�1;+�2; : : : ;+�m;��m+1; : : : ;��m+n, and the direction of in-
ference rules is reversed. This Gentzen system is a variant of Dummett's system ([3], p.228), and is easily
seen to be equivalent to it. See [4] for a discussion of various sequent systems for intuitionistic logic.

To prove a formula �, set up the initial tableau ff��gg, and apply the rules of Figure 2 to paths non-
deterministically, until we get the empty tableau (then � is proved). If we cannot get the empty tableau, then
� is unprovable. We shall also say that a path p or a tableau t is provable if and only if the empty tableau is
reachable from fpg, resp. t.

We can reduce the amount of non-determinism by noticing that most of the rules are invertible: a rule is
invertible if, whenever its numerator is provable, then all its denominators are provable as well. As noticed
by Dyckho� ([4], pp.801{802), all the rules but (� �) are invertible.

7

Moreover, the search for a proof from the goal may go on forever, because the left denominator of the
(+ �) rule contains its numerator. For instance, the search for a proof of ((A � B) � A) � A (Pierce's
formula) goes on like this:

�((A � B) � A) � A

+(A � B) � A;�A
+(A � B) � A;�A;�A � B j �A;+A

which then goes on expanding +(A � B) � A forever. (In fact, this formula is not provable in intuitionistic
logic.) We can forbid this by making the search fail whenever it generates a path twice in the same sequence
of expansions. This loop-check [6] is enough to ensure that the search for a proof terminates, since there are
only �nitely many possible paths | when paths are viewed as sets, whence the importance of showing that
contraction is eliminable. (There are still at most 4j�j paths that can arise from considering all sets of signed
subformulas of a given formula � | 2j�j by making a more careful analysis, and this is quite large.)

We would like to use a tableau expansion strategy like the following: because all rules but (� �) are
invertible, apply them eagerly on the current tableau until none is applicable, then try to apply (� �) non-
deterministically, and continue. However, because (+ �) may loop, we don't know whether we have to apply
it once, twice or more before applying (� �). Moreover, although applying any rule except (� �) preserves
provability, we are not sure that this draws us closer to an actual proof. For all these reasons, we also have
to consider the combinatorics of proof permutabilities in addition to invertibility properties.

3.2 Invertibility, Permutabilities and Canonical Proofs

We develop the theory of permutabilities in our deduction system formally. This seems not to have been done
at this level of detail before. To simplify matters, we �rst observe the following:

Lemma 4 Call an instance of (Ax) on principal formula � atomic if and only if � is an atomic formula
other than ?.

Then, every provable sequent has a proof in which all instances of (Ax) are atomic.

Proof: We claim that every sequent �;�.�;� has such a proof. We prove the claim by structural induction
on �. If � is atomic and di�erent from ?, this is clear. This is also clear if � is ?, since then �;� .�;� is
an instance of ?L. Otherwise, if � is an implication �1 � �2, by induction hypothesis there is a proof �1 of
�;�1 � �2;�1 .�1;�2 and a proof �2 of �;�1;�2 .�2 with only axioms operating on atomic formulas, so:

�1 �2
...

...
�;�1 � �2;�1 .�1;�2 �;�1;�2 .�2

(� L) �;�1 � �2;�1 .�2

(� R) �;�1 � �2 .�1 � �2;�

is a proof as claimed. If � is a conjunction or a disjunction, the cases are similar.
Now, if � .� is a provable sequent, let � be some proof: the lemma follows by structural induction on �,

using the previous claim when coming to instances of (Ax). 2

Because of Lemma 4, we may without loss of generality assume that (Ax) is restricted so that its principal
formula � is atomic and not ?. We shall tacitly assume this in the rest of this section.

We also observe that we can de�ne some quite benign transformations on proofs, that is, some transform-
ations that do not alter in an essential way the skeleton of the proof. In particular, they do not increase the
height of the proof, and do not introduce new instances of proof rules in the middle of the proof. Alternat-
ively, we can see most of the following de�nitions as re�nements of the fact that all rules in the intuitionistic
calculus above, except (� R), are invertible.

De�nition 4 (�;�) For any proof � of � .�, and any formula �, let the weakening on the right �;� of �
by � be the proof of � .�;� de�ned by adding � consistently on the right of every sequent until we come up

8

to an instance of (Ax) or (� R). More formally, if � is:

�0

...
�0;�1 .�2

(� R) �0 .�1 � �2;�0

then �;� is:
�0

...
�0;�1 .�2

(� R) �0 .�1 � �2;�0;�

And if � ends with any other rule R, i.e. it is of the form:

�1 : : : �n
...

...
�1 .�1 : : : �n .�n

(R) �0 .�0

then �;� is:
�1;� : : : �n;�
...

...
�1 .�1;� : : : �n .�n;�

(R) �0 .�0;�

Similarly, we de�ne the weakening on the left of � by � as the proof �; � obtained by consistently adding
� to the left of every sequent.

De�nition 5 ([�1 �]�) If � is a proof of a sequent of the form �;�1 � �2 .�, then we let [�1 �]� be the
proof of �;�2 .� de�ned as follows. If � is of the form:

�1 �2
...

...
�0;�1 � �2 .�1;�0 �0;�2 .�0

(� L) �0;�1 � �2 .�0

then [�1 �]� is just �2, and if � is:

�1 : : : �n
...

...
�1;�1 � �2 .�1 : : : �n;�1 � �2 .�n

(R) �0;�1 � �2 .�
0

where R is not (� L) or the principal formula is not �1 � �2 on the left, then [�1 �]� is:

[�1 �]�1 : : : [�1 �]�n
...

...
�1;�2 .�1 : : : �n;�2 .�n

(R) �0;�2 .�
0

9

De�nition 6 ([�1_]�, [_�2]�) If � is a proof of a sequent of the form �;�1 _ �2 .�, then we let [�1_]�
(resp. [_�2]�) be the proof of �;�2 .� (resp. �;�1 .�) de�ned as follows. If � is of the form:

�1 �2
...

...
�0;�1 .�0 �0;�2 .�0

(_L) �0;�1 _�2 .�0

then [�1_]� is just �2 (resp. [_�2]� is �1), and if � is:

�1 : : : �n
...

...
�1;�1 _�2 .�1 : : : �n;�1 _�2 .�n

(R) �0;�1 _�2 .�0

where R is not (_L) or the principal formula is not �1 _�2 on the left, then [�1_]� is:

[�1_]�1 : : : [�1_]�n
...

...
�1;�2 .�1 : : : �n;�2 .�n

(R) �0;�2 .�0

and similarly for [_�2]�.

De�nition 7 (�[�1 _�2]) If � is a proof of a sequent of the form � .�1 _�2;�, then we let �[�1 _�2] be
the proof of � .�1;�2;� de�ned as follows. If � is of the form:

�1
...

�0 .�1;�2;�0

(_R) � .�1 _�2;�0

then �[�1 _�2] is �1; if � is of the form:

�1
...

�0;�3 .�4

(� R) �0 .�3 � �4;�1 _�2;�0

then �[�1 _�2] is:
�1
...

�0;�3 .�4

(� R) �0 .�3 � �4;�1;�2;�0

and if � is:
�1 : : : �n
...

...
�1 .�1 _�2;�1 : : : �n .�1 _�2;�n

(R) �0 .�1 _�2;�0

where R is not (� R), and R is not (_R) unless the principal formula is not �1 _ �2 on the right, then
�[�1 _�2] is:

�1[�1 _�2] : : : �n[�1 _�2]
...

...
�1 .�1;�2;�1 : : : �n .�1;�2;�n

(R) �0 .�1;�2;�0

10

De�nition 8 ([�1 & �2]�) If � is a proof of a sequent of the form �;�1 & �2 .�, then we let [�1 & �2]�
be the proof of �;�1;�2 .� de�ned as follows. If � is of the form:

�1
...

�0;�1;�2 .�0

(&L) �0;�1 & �2 .�0

then [�1 & �2]� is just �1, and if � is:

�1 : : : �n
...

...
�1;�1 & �2 .�1 : : : �n;�1 & �2 .�n

(R) �0;�1 & �2 .�0

where R is not (&L) or the principal formula is not �1 & �2 on the left, then [�1 & �2]� is:

[�1 & �2]�1 : : : [�1 & �2]�n
...

...
�1;�1;�2 .�1 : : : �n;�1;�2 .�n

(R) �0;�1;�2 .�0

De�nition 9 (�[�1&], �[&�2]) If � is a proof of a sequent of the form �.�1 & �2;�, then we let �[�1&]
(resp. �[&�2]) be the proof of � .�2;� (resp. � .�1;�) de�ned as follows. If � is of the form:

�1 �2
...

...
�0 .�1;�0 �0 .�2;�0

(&R) �0 .�1 & �2;�0

then �[�1&] is �2 and �[&�2] is �1; if � is of the form:

�1
...

�0;�3 .�4

(� R) �0 .�3 � �4;�1 & �2;�0

then �[�1&] is:
�1
...

�0;�3 .�4

(� R) � .�3 � �4;�2;�
0

and similarly for �[&�2]; and if � is:

�1 : : : �n
...

...
�1 .�1 & �2;�1 : : : �n .�1 & �2;�n

(R) �0 .�1 & �2;�0

where R is not (� R), and R is not (&R) unless the principal formula is not �1 & �2 on the right, then
�[�1&] is:

�1[�1&] : : : �n[�1&]
...

...
�1 .�2;�1 : : : �n .�2;�n

(R) �0 .�2;�0

11

and similarly for �[&�2].

De�nition 10 (�[?]) If � is a proof of a sequent of the form �.?;�, then we let �[?] be the proof of �.�
de�ned as follows. If � is of the form:

�1
...

�0 .�0

(?R) �0 .?;�0

then �[?] is �1; if � is of the form:

�1
...

�0;�1 .�2

(� R) �0 .�1 � �2;?;�0

then �[?] is:
�1
...

�0;�1 .�2

(� R) � .�1 � �2;�0

and if � is:
�1 : : : �n
...

...
�1 .?;�1 : : : �n .?;�n

(R) �0 .?;�0

where R is not (� R), and R is not (?R) unless the principal formula is not ? on the right, then �[?] is:

�1[?] : : : �n[?]
...

...
�1 .�1 : : : �n .�n

(R) �0 .�0

De�nition 11 Any of the transformations of De�nitions 4, 5, 6, 7, 8, 9, 10 is called an elementary benign
transformation.

A benign transformation is any composition of elementary benign transformations.

Observe that [�1 �]�, [�1_]�, [_�2]�, �[�1 _ �2], etc. are well-de�ned only because � was assumed to
contain only atomic instances of (Ax). Otherwise, doing these transformations might well turn an instance
of (Ax) into something else.

One reason why these transformations are benign is the following:

De�nition 12 The size j�j of a proof � is the number of occurrences of rule instances in it. More formally,
the size of an instance of (Ax) or (?L) is 1, and the size of a proof:

�1 : : : �n
...

...
�1 .�1 : : : �n .�n

(R) � .�

is j�1j+ : : :+ j�nj+ 1.

12

R2 � L � R _L _R &L &R ?L ?R
R1 (+ �) (� �) (+_) (�_) (+&) (�&) (+?) (�?)
� L (+ �) p np� p p p p � p

� R (� �) np � np c p c � c

L (+) p p p p p p � p

R (�) p � p p p p � p

&L (+&) p p p p p p � p

&R (�&) p � p p p p � p

?L (+?) c c c c c c � c

?R (�?) p � p p p p � p

Figure 4: Permutabilities in the intuitionistic calculus

Lemma 5 Let � be a proof and �0 be a benign transformation of �. Then j�0j � j�j.

Proof: This holds for the empty benign transformation (�0 = �) and for every elementary benign trans-
formation, as shown by an easy structural induction on the proof �. The lemma then follows by induction on
the number of elementary benign transformations that compose the given transformation, 2

Following Kleene [13], in spirit at least, we say that a sequent rule R1 permutes under a rule R2, or that
R2 permutes over R1, if and only if, whenever we have a proof of the form:

�1 : : : �n
...

... �0
2 : : : �0

m

�1 .�1 : : : �n .�n

...
...

(R1) �0
1 .�

0
1 �0

2 .�
0
2 : : : �0

m
.�0

m

(R2) � .�

where the active formulas of R2 are not the principal formulas of R1, then we can transform it to a proof of
the same sequent with R1 below R2, i.e. to a proof of the form:

...
...

�00
1 .�

00
1 : : : �00

n
.�00

n

(R1) � .�

where each �00
i
. �00

i
, 1 � i � n, is either the conclusion of an instance of R2 whose premises are among

�1, : : : , �n, �
0
2, : : : , �

0
m

or their benign transformations, or is directly the conclusion of one of the latter
subproofs, or a benign transformation of one of these proofs.

When all the �00
i
.�00

i
, 1 � i � n, are conclusions of �1, : : : , �n, �0

2, : : : , �
0
m
, or of benign transformations,

i.e. when R2 simply disappears during the permutation, we say that R1 cancels R2.
Then, the table of permutabilities for the system of Figure 3 is given in Figure 4. Entries in row R1

and column R2 are to be read as follows: p means that R1 permutes under R2, np means that R1 does
not permute under R2, c means that R1 cancels R2, and � means that R1 is never in permutation position
over R2. Entries marked np� are special cases that have some nice properties not directly apparent from
permutabilities. The proof is given in Appendix A.

The important observation is that we may read o� permutabilities from the table and deduce e�cient
strategies for proof-search in the proof system, as noticed by Galmiche and Perrier [7]. In this paper, we
consider only tableaux-style proof search, that is, proof search that proceeds backwards from the goal to the
axioms.

Then, any rule R whose row does not contain np can be freely permuted down in the sequent proof (up
in the tableau proof), which is to say that we may apply it eagerly. This is the case with all non-implicational
rules, so we shall expand every non-atomic formula that is not an implication as soon as we can.

13

Rule (� L) can also be permuted down, except that it cannot be permuted past (� R). However, whenever
we have a proof of the form:

�1 �2
...

...
�;�1 � �2;�3 .�1;�4 �;�2;�3 .�4

(� L) �;�1 � �2;�3 .�4

(� R) �;�1 � �2 .�3 � �4;�

we can complicate the proof by adding an instance of (� L) on the same principal formula �1 � �2 on the
left below the (� R) instance:

�1 �2
...

... �2

�;�1 � �2;�3 .�1;�4 �;�2;�3 .�4

...
(� L) �;�1 � �2;�3 .�4 �;�2;�3 .�4

(� R) �;�1 � �2 .�1;�3 � �4;� (� R) �;�2 .�3 � �4;�
(� L) �;�1 � �2 .�3 � �4;�

Notice that this also duplicates the subproof �2, and demands that we now apply (� R) twice as well. While
this would be detrimental to a tableau theorem prover that expands paths sequentially, this will be less so in
our method, where we may expand several paths at the same time. Notice also that we could have just added
the new instance of (� L) below (� R) simply because (� L) is invertible.

The other di�culty with this is that there is no upper bound on the number of times that we might
duplicate the instance of (� L) from above to below the instance of (� R). I.e., we might want to apply
(� L) eagerly, but this leads to non-termination. In fact, in a sequence of expansions by rules other than
(� R) (i.e., (� �)), we never need to expand the same left implication twice. Indeed, otherwise, we might
permute them with other rules so that they come next to each other, producing the following con�guration:

�1 �2
...

... �3

�;�1 � �2 .�1;�1;� �;�2 .�1;�
...

(� L) �;�1 � �2 .�1;� �;�2 .�
(� L) �;�1 � �2 .�

But then, look at the subproof �1: its end sequent is �;�1 � �2.�1;�1;�. Since contraction is admissible in
this system, we may transform �1 into a proof of �;�1 � �2 .�1;�. We only have to check that eliminating
contraction does not reintroduce another instance of (� L) above (� R), or anything more complicated. In
fact, we have to show that we can eliminate contraction from canonical proofs, yielding yet other canonical
proofs.

It is now time to de�ne an appropriate notion of canonical proofs, taking into account the permutabilities
of Figure 4 and the above remarks on (� L) and (� R). (Our de�nition is probably not as general as we
could make it, but it is simple and su�cient.)

De�nition 13 Let � be the smallest transitive relation such that, for every sign s in +;�, for every formulas
�, �1, �2:

� s(�1 & �2) � s�1, s(�1 & �2) � s�2,

� s(�1 _�2) � s�1, s(�1 _�2) � s�2,

� +(�1 � �2) � +�2, +(�1 � �2) � ��1,

� s� � �(�1 � �2), provided that s� is not a negative implication.

14

Observe that � is a strict ordering. Let > be any total strict ordering extending �.
For any sequent � . �, write +�;�� the multiset of formulas +� with � 2 � and �� with � 2 �.

Denote by p1 n p2 the multiset di�erence of p1 and p2.
We say that a proof � of � .� in the system of Figure 3 is >-canonical if and only if:

� either � .� is an instance of (Ax);

� or � ends in an instance of (� R):

�1
...

�;�1 .�2

(� R) � .�1 � �2;�

and �1 is canonical.

� or � ends in an instance of some other rule R, and is of the form:

�1 : : : �n
...

...
�1 .�1 : : : �n .�n

(R) � .�

where s� > s1�1, : : : , s� > sn�n, where s� is the principal formula in � .�, s1�1 is the principal
formula in �1 .�1, : : : , sn�n is the principal formula in �n .�n, and �1, : : : , �n are canonical proofs.

This de�nition in particular formalizes the fact that we don't wish to expand a left implication twice in a row,
because +(�1 � �2) 6� +(�1 � �2). This de�nition also forces a particular class of expansion strategies,
through the use of the ordering �. Because of permutabilities, we wish that � has negative implications
��1 � �2 less than all other signed formulas, i.e., we expand negative implications as late as possible.

Then, contraction on the right is eliminable, but we can actually say a bit more.

Lemma 6 If � .�;�;� has a >-canonical proof, then � .�;� has a >-canonical proof of no greater size,
and with the same �nal principal formula.

Proof: By induction on the depth of the proof � of � . �;�;�. If � is an instance of (Ax) or of (� R),
then this is obvious.

Otherwise, if � ends in another rule R, whose principal formula is not the duplicated formula ��, then
contraction just permutes up in the sequent proof and we apply the induction hypothesis.

Finally, if � ends in some non-(Ax) non-(� R) rule R whose principal formula is the duplicated formula
��, then again contraction permutes over R, and we apply the induction hypothesis. 2

Benign transformations are also benign in that they preserve canonicity:

Lemma 7 Let � be a >-canonical proof, and �0 be a benign transformation of �. Then �0 is >-canonical.

Proof: By induction on the number of elementary benign transformations from � to �0, it remains to show
that this holds when �0 is the result of an elementary benign transformation of �.

In any case, we claim the stronger result that �0 is a >-canonical proof whose �nal principal formula is
no >-greater than the �nal principal formula of �.

If �0 = �;� for some formula �, this is clear. In fact, in this case the �nal principal formula of �0 is the
same as that of �.

If � is a proof of �;�1 � �2 .� and �0 = [�1 �]�, then the induction proceeds as follows. If � ends
in an instance of (� L) with principal formula +�1 � �2, with left subproof �1 and right subproof �2 (see
De�nition 5), then �0 = �2. Because � is >-canonical, �2 is >-canonical and its �nal principal formula is <
than +�1 � �2, so the claim is proved. If � ends in some other rule or in (� L) on some other principal
formula, then the claim follows from the induction hypothesis applied to the premises.

15

When �0 is [�1_]�, or [_�2]�, or any other elementary benign transformation of �, the same kind of
argument applies. 2

It follows:

Theorem 8 Every provable sequent has a >-canonical proof.

Proof: Let � be a proof where all instances of (Ax) are atomic: we prove the result by induction on the
number of subproofs �0 of � that do not obey the conditions of De�nition 13. If this number is 0, then we are
done. Otherwise, consider some �0 that is highest in �. We claim that we can transform �0 into a >-canonical
proof of the same sequent such that its end sequent has a principal formula that is not >-greater than the
principal formula of the end sequent of �0. The lemma then follows from the claim.

Let's prove the claim. �0 is a proof of the form, as above:

�1 : : : �n
...

...
�1 .�1 : : : �n .�n

(R) � .�

where R is neither (Ax) nor (� R); �1, : : : , �n are >-canonical proofs (since �0 is highest); and letting s� be
the principal formula in � .�, s1�1 be the principal formula in �1 .�1, : : : , sn�n be the principal formula
in �n .�n, then s� 6> s1�1 or : : : or s� 6> sn�n. Assume without loss of generality that s� 6> s1�1.

If R is not (� L), then all the active formulas in R are strictly less than s�, by de�nition of �, so s1�1 is
not the active formula. Therefore, if R1 is the last rule applied in �1 above R, R1 and R are in permutation
position. If R1 is (Ax), then �1 is in both �1 and �1, and therefore is also both in � and �: we can replace
�0 by an instance of (Ax) with +�1 and ��1 as principal formulas. Otherwise, R1 cannot be (� R), because
otherwise its principal formula s1�1 (a negative implication) would be less than s� (which is not a negative
implication, since R is not (� R)) by de�nition of �. It follows that R1 permutes under R (see Figure 4).
For instance, if R is (&R) and R1 is (� L) on the left premise of R, then �0 has the form:

�0
1 �0

2

...
... �0

3

�0;�1 � �2 .�1;�3;�0 �0;�2 .�3;�0
...

(� L) �0;�1 � �2 .�3;�
0 �0;�1 � �2 .�4;�

0

(&R) �0;�1 � �2 .�3 & �4;�0

where by assumption ��3 & �4 6> +�1 � �2 | hence ��3 & �4 � +�1 � �2 by totality of >, so we
transform it into:

�0
1 �0

3;�1 �0
2 [�1 �]�0

3

...
...

...
...

�0;�1 � �2 �0;�1 � �2 �0;�2 .�3;�0 �0;�2 .�4;�0

.�1;�3;�0 .�1;�4;�0

(&R) �0;�1 � �2 .�1;�3 & �4;�0 (&R) �0;�2 .�3 & �4;�0

(� L) �0;�1 � �2 .�3 & �4;�0

Call �00 the latter proof, �00
1 the subproof of �00 that ends in the left-hand application of (&R), and �00

2 that
which ends in the right-hand application of (&R). Observe that j�0j = j�0

1j+ j�
0
2j+ j�

0
3j+2. Observe also that

j�00
1 j = j�0

1j+ j�
0
3;�1j+1 � j�0

1j+ j�
0
3j+1 (by Lemma 5) < j�0j, and j�00

2 j = j�0
2j+ j[�1 �]�0

3j+1 � j�0
2j+ j�

0
3j+1

(by Lemma 5) < j�0j. Observe also that �0
1 and �

0
2 are >-canonical, and that �0

3;�1 and [�1 �]�0
3 as well by

Lemma 7. So we can apply the induction hypothesis on �00
1 and �00

2 , getting new proofs �000
1 and �000

2 , so that
�00 transforms into:

�00
1 �00

3

...
...

�0;�1 � �2 .�1;�3 & �4;�
0 �0;�2 .�3 & �4;�

0

(� L) �0;�1 � �2 .�3 & �4;�0

16

where the principal formula in the end-sequent of �00
1 (resp. �00

2) is no greater than ��3 & �4 | hence is �
than +�1 � �2. That is, the latter subproof is >-canonical. All other cases work similarly to this one, or in
simpler ways.

If R is (� L), then the only di�erence with the previous case is that s1�1 may still be active, although
s� = +(�1 � �2) 6> s1�1: this happens exactly when s1�1 = +(�1 � �2), and �0 is:

�1 �2
...

... �3

�;�1 � �2 .�1;�1;� �;�2 .�1;�
...

(� L) �;�1 � �2 .�1;� �;�2 .�
(� L) �;�1 � �2 .�

But then, looking at �1 and using Lemma 6, we get a >-canonical proof �0
1 of �;�1 � �2.�1;� of no greater

size and ending in the same �nal principal formula as �1. Because �0
1 is >-canonical, the latter formula is

then < than +�1 � �2. Hence the proof:

�0
1 �3
...

...
�;�1 � �2 .�1;�1;� �;�2 .�

(� L) �;�1 � �2 .�

is a >-canonical proof, as desired. 2

Then, contraction is an admissible rule at the end of canonical proofs. This completes Lemma 6.

Lemma 9 If �;�;� . � has a canonical proof, then �;� . � has a canonical proof. And similarly for
� .�;�;� and � .�;�.

Proof: The \similar" case is just Lemma 6, so we just deal with contraction on the left.
We prove the more general statement that there is such a canonical proof of no greater size than the

original proof and ending in the same principal formula. This is proved by induction on the size of the proof
� of �;�;� .�. If � is an instance of (Ax), this is obvious.

Otherwise, if � ends in another rule R, whose principal formula is not the duplicated formula +�, then the
result is obvious: contraction just permutes up in the sequent proof and we apply the induction hypothesis.

Finally, if � ends in some non-(Ax) rule R whose principal formula is the duplicated formula +�, then
we have the following cases. If R is any other rule other than (� L) or (Ax), then this appeals directly to the
induction hypothesis (contraction permutes over R).

The only non-trivial case is when � ends in an instance of (� L), where +� is the duplicated formula,
i.e. � is:

�1 �2
...

...
�;�1 � �2;�1 � �2 .�1;� �;�1 � �2;�2 .�

(� L) �;�1 � �2;�1 � �2 .�

But by induction hypothesis, there is a >-canonical proof �0
1 of �;�1 � �2 . �1;� of no greater size and

having the same �nal principal formula as �1. Similarly, [�1 �]�2 can be transformed into a >-canonical
proof of �;�2 .� of no greater size and having the same �nal principal formula. Therefore:

�0
1 �0

2

...
...

�;�1 � �2 .�1;� �;�2 .�
(� L) �;�1 � �2; .�

is the desired proof. 2

17

Lemma 9 justi�es the fact that, although the calculus is de�ned in terms of multisets, we may implement it
in terms of sets.

We now wish to apply Theorem 8 so as to �nd proofs, starting from the goal to prove. This will be done
according to a strategy (also called a selection function in model elimination, for example). But observe that
the (mostly arbitrary) total ordering > that we have used to de�ne >-canonical proofs can be used in a more
precise manner to de�ne a strategy:

De�nition 14 Call a <-segment any downwards-closed set I of signed formulas, i.e. any set I such that
whenever s� 2 I and s� > s0�0, then s0�0 2 I.

We say that a signed formula is ready provided that it is not atomic and not a negative implication. We
say that a sequent � .� is I-ready whenever there is a ready formula in I \ (+� [��).

Intuitively, given a non-atomic sequent � .� that we wish to prove, we would like to apply some rule other
than (� R) �rst. This is possible exactly when there is a ready formula in the sequent. Now assume that
I is the set of all signed formulas: then our strategy is to choose the >-maximal signed formula among the
ready formulas of +�;��.

The index set I is used to constrain proof search so that only >-canonical proofs are looked for. Assume
that we have obtained the sequent � .� by expanding some ready formula s�: then we wish to �nd a ready
formula to expand in the sequent, but it must also be < than s�. Therefore we let I be fs0�0 j s� > s0�0g,
so that we can apply some rule other than (Ax) or (� R) exactly when the sequent is I-ready; then we choose
the >-maximal formula in +�;�� which is also in I, and expand it.

More formally, we de�ne the following way of searching for >-canonical proofs. We de�ne the following
non-deterministic procedure search1(� .�; I; S). To prove � .�, we call search1(� .�; I0; ;), where I0 is
the set of all signed formulas. We use the convention that all formulas are contracted �rst, or alternatively
that � and � are sets. The value of search1(� .�; I; S) is de�ned as:

� If � .� is an instance of (Ax), then return true.

� Otherwise, if � .� is in S, then return false (loop check).

� Otherwise, if �.� is I-ready, then let s� be the >-maximal I-ready formula in +�;��, and �1.�1, : : : ,
�n .�n be the premises of the unique rule that has s� as principal formula. If search1(�i .�i; fs0�0 j
s� > s0�0g; S [f� .�g) returns true for every i, 1 � i � n, then return true; otherwise return false.
(Apply some non-(Ax) non-(� R) rule deterministically.)

� Otherwise, the only non-atomic formulas in � .� and in I are implications on the right-hand side, i.e.
negative implications ��i � �0

i
, 1 � i � m. If search1(�;�i . �0

i
; I0; S [f� . �g) returns true for

some i, 1 � i � m, then return true; otherwise, return false. (Non-deterministically �nd some way of
applying (� R).)

Using S and I is redundant, however: as long as we only expand ready formulas, there cannot be any
loops, because we expand formulas that are lower and lower with respect to the > ordering. Therefore, it
is enough to check for loops in the last point of the procedure. We therefore de�ne the following re�nement
search(� .�; I; S) of search1:

� If � .� is an instance of (Ax), then return true.

� Otherwise, if � .� is I-ready, then let s� be the >-maximal I-ready formula in +�;��, and �1 .�1,
: : : , �n.�n be the premises of the unique rule that has s� as principal formula. If search(�i.�i; fs0�0 j
s� > s0�0g; S) returns true for every i, 1 � i � n, then return true; otherwise return false.

� Otherwise, if � .� is in S, then return false (loop check).

� Otherwise, the only non-atomic formulas in � .� and in I are implications on the right-hand side, i.e.
negative implications��i � �0

i
, 1 � i � m. If search(�;�i.�

0
i
; I0; S[f�.�g) returns true for some i,

1 � i � m, then return true; otherwise, return false. (Non-deterministically �nd some way of applying
(� R).)

18

This observation on loop-checks has also allowed us to replace S [f� . �g in the I-ready case by just S.
This is bene�cial in that the procedure will have to check loops much less often per number of inferences.

Observe also that we have not been precise as to how everything here should be implemented. The set
S, a set of sequents, can e�ciently be implemented as a zero-suppressed BDD, and in fact as a TDD, since
it only contains non-atomic sequents. The segment I can be implemented as either a tag NONE denoting I0,
or otherwise as the unique signed formula s� such that I = fs0�0 j s� > s0�0g. We shall see in Section 3.3
that we don't even have to represent it explicitly. In general, the TDD implementation in Section 3.3 will be
much sleeker.

It remains to show that such an algorithm is complete. The algorithm looks for a special kind of >-
canonical proof that we call fully canonical:

De�nition 15 Let I0 be the set of all signed formulas.
For any total ordering > extending �, for any >-segment I, call a proof � of � .� fully I-canonical if

and only if, writing � as:
�1 : : : �n
...

...
�1 .�1 : : : �n .�n

(R) � .�

then either:

� R is (Ax),

� or � .� is not I-ready and R is (� R), and �1, : : : , �n are all fully I0-canonical,

� or � .� is I-ready, the principal formula s� in R is the >-maximal ready formula in (+�;��) \ I,
and letting I0 be fs0�0 j s� > s0�0g, then �1, : : : , �n are all fully I0-canonical.

Call a proof fully >-canonical if and only if it is fully I0-canonical.

Then:

Lemma 10 Every provable sequent has a fully >-canonical proof.

Proof: We check that every >-canonical proof can be transformed into a fully >-canonical proof. More
precisely, for any proof �, de�ne the segment I� as the set of all formulas < than its �nal principal formula.
We claim that for any >-canonical proof �, for any segment I � I� , there is a fully I-canonical proof of the
same sequent.

We prove the claim by induction on the size of the proof �. Every >-canonical proof of size 0 can be
transformed in this way, because there are no proofs of size 0. Otherwise, assume that the induction hypothesis
(�):

For any >-canonical proof � of size less than k, for any segment I � I� , there is a fully I-canonical proof of
the same sequent

holds for all k < n, for some n � 1, and let � be a >-canonical proof of size n, I be a segment such that
I � I� .

If � ends in (Ax), the claim is clear. Otherwise, the idea is that we use the fact that all rules except (� R)
are invertible to add new instances of invertible rules below �. In general, this will transform � into a proof
of the form:

...
...

...
�1 �2 : : : �n
. . .

.
.

� .�

of the same end sequent as �, where �1, : : : , �n are benign transformations of �, all rules used below �1, : : : ,
�n are among the invertible rules, and somehow every rule below �1, : : : , �n yields a principal formula that

19

is >-maximal among the ready formulas in its conclusion | the principal formula in the end-sequent being
>-maximal in (+�;��) \ I.

More formally, we de�ne a new proof f(�; I) of � .� by well-founded induction on > (which is possible
because we are here dealing with the restriction of > to the �nite set of subformulas of the given sequent) by
de�ning the expression f(�0; I 0) for any benign transformation �0 of �, and for any I0 � I�0 , as follows. Note
that f(�0; I0) is unde�ned in any other case.

If the principal formula s� in the end sequent of �0 is not the greatest of its signed formulas in I0, then we
do the following. Assume that s� is a positive implication +�1 � �2 (the other cases are similar or simpler).
Then the end sequent of �0 can be written �0;�1 � �2 .�0, and letting I00 be fs0�0 j +�1 � �2 > s0�0g, we
de�ne f(�0; I0) as:

f((�0;�1); I00) f([�1 �]�0; I00)
...

...
�0;�1 � �2 .�1;�0 �0;�2 .�0

(� L) �0;�1 � �2 .�0

If the principal formula s� in the end sequent of �0 is already the greatest element of (+�;��)\ I0, then
we let f(�0; I0) be a fully >-canonical proof that we get from the induction hypothesis (�). By Lemma 5,
j�0j � j�j = n, so we cannot apply (�) immediately. Instead, we look at the last rule in �0. If �0 ends in (Ax),
then let f(�0; I0) be �0. If �0 ends in (� R), i.e. �0 is:

�0
1

...
�0;�1 .�2

(� R) �0 .�1 � �2;�0

then j�0
1j < n and I0 � I

�
0

1

, so we apply (�) on �0
1, and we can therefore replace �

0
1 in �

0 by a fully I0-canonical
proof of �0;�1.�2. This way, �0 is changed into a fully I0-canonical proof of �0.�1 � �2;�0: we let f(�0; I0)
be the latter. Finally, if �0 ends in some other rule, say (� L), then �0 has the form:

�1 �2
...

...
�0;�1 � �2 .�1;�0 �0;�2 .�0

(� L) �0;�1 � �2 .�0

and j�1j < n (resp. j�2j < n), I�0 � I�1 (resp. I�0 � I�2) because �
0 is >-canonical, so that we can apply (�)

on �1 and �2, transforming them into fully I�0 -canonical proofs of �0;�1 � �2 . �1;�0 (resp. �0;�2 .�0).
Replacing �1 and �2 by the latter in �0 yields a proof that we de�ne as being f(�0; I0).

Now, by construction f(�; I) is fully I-canonical, and we are done. 2

Note that, whereas our main arguments for concentrating on canonical proofs was the set of permutabilities
of the system of logic at hand, restricting to fully canonical proofs requires us to examine the invertibility
status of rules as well.

Moreover, while �nding canonical proofs was justi�ed by induction on the size of proofs, full canonicity
requires that we also use induction on the strategy, i.e. the ordering >. Should we wish to extend this procedure
to, say, �rst-order intuitionistic logic, we would then be forced to extend � so that +8x � � � +�[t=x] for
instance (which is no problem) but also to +8x �� � +8x ��, to be able to represent the quanti�er rule:

�; 8x ��;�[t=x].
(8L) �; 8x �� .�

The fact that we must allow for +8x � � � +8x � � is due to the fact that this duplication of +8x � � is
unavoidable in general, but unfortunately it prevents � from being an ordering, which destroys our arguments.
Fortunately, there is a simple way out, and it is to index quanti�ers by indexes, and replace the (8L) rule
above by the following schema:

�; 8i+1x ��;�[t=x].
(8Li) �; 8ix �� .�

20

for every integer index i. We then assume that 8x�� just means 80x��. We leave it to the reader to check that
this does not change the notion of provability in �rst-order intuitionistic logic, and that we can de�ne total
orderings that terminate on the set of subformulas that appear in any given proof. This is slightly trickier
than in the propositional case, and although getting >-canonical proofs from general proofs (the analogue
of Theorem 8) won't be harder, getting fully >-canonical proofs will crucially depend on termination of an
ordering where 80x � � > 81x � � > : : : > 8ix � � > : : :, i.e. we have to bound the number of quanti�er
expansions in advance. (This is easy, because these transformations will never create any indexes that were
not in the original proof.) This justi�es the usual tableau procedure that consists of �xing a so-called
-limit
on the number of quanti�er expansions.

Having made this important remark on what it takes to get various levels of canonicity in proofs, we
return to our main topic:

Theorem 11 For any total ordering > extending �, the search procedure terminates; moreover, search(�.
�; I0; ;) returns true if and only if � .� is provable in the system of Figure 3.

Proof: The tricky point of this proof is loop checking. Termination is obvious, because search may only
generate �nitely many non-I-ready sequents (which are here sets), and because > is well-founded on �nite
sets of subformulas, search can only generate �nitely many consecutive I-ready sequents. So the loop checks
force termination.

If search(�.�; I0; ;) returns true, moreover, then it has implicitly built a proof of �.�, which we might
in fact as well return in place of the terser answer \true".

It remains to show that if � .� is provable, then search(� .�; I0; ;) will return true. So assume � .�
provable. First, by Lemma 10, it has a fully >-canonical proof. Consider such a proof � of smallest size. In
�, no instance of (� R) is ever repeated along any branch of the proof. Indeed, otherwise � would look like:

�1 �2
... . .

.

�1 .�1

... �3

... . .
.

�1 .�1

... �4

... . .
.

� .�

where both instances of �1.�1 are conclusions of an (� R) instance. But then, we could transform this into:

�1 �2
... . .

.

�1 .�1

... �4

... . .
.

� .�

which would be fully >-canonical (notice that this depends on the fact that both occurrences of �1 .�1 are
conclusions of instances of (� R); for any other rules, the question of which I we should consider would muck
things up), and moreover would be strictly smaller than �, a contradiction.

Given such a fully >-canonical proof � with no repetition of instances of (� R), it is now easy to guide
search by �, so that search returns true. 2

Observe that we have proved search to be complete, but search1 strangely seems harder to prove complete.
In fact, search1 might even be incomplete, because it may be the case that some sequents need to be repeated

21

in certain fully >-canonical proofs; these would be rejected by search1. We estimate this to be unlikely, and
conjecture that search1 would also be complete. In fact, we don't care, since search is in any case more
e�cient than search1.

3.3 A TDD Calculus for Intuitionistic Logic

Theorem 11, or the search procedure, suggests the following canonical tableau proof-search procedure. First,
from a given initial tableau t, compute the tableau N�(t), where N�(t) is de�ned recursively on tableaux t

as follows. Recall that a signed formula is called ready if and only if it is not atomic, and not a negative
implication.

� If no signed formula in t is ready, then N�(t) = t;

� Otherwise, let s� be a �-maximal ready signed formula among those that occur in t. Let R be the
only expansion rule that can apply to s�.

Let t1 be the subset of t consisting of all paths in which s� occurs, and t0 be the subset of t consisting
of all paths in which s� does not occur. Compute t2, the set of all expansions of paths in t1 by R on
s�. Then N�(t) = N�(t0 [t2).

This de�nition of N� is well-founded, as the sum of the sizes of the ready signed formulas occurring in t0[t2
is strictly less that that occurring in t. (Beware that we sum over all distinct formulas, not over all their
occurrences.)

While computing N�(t) by expanding kernels in tableaux (top-down, as above) is the most obvious way,
there is another solution, namely to build it bottom-up, as is the tradition in the BDD world [1]. For example,
assume that we wish to compute N�(ff+(�1 & �2)gg). We may compute it top-down by setting up the
initial tableau ff+(�1 & �2)gg, then by expanding +(�1 & �2) by rule (+&), giving ff+�1g; f+�2gg. Or
we may �rst compute the tableaux t1 for ff+�1gg and t2 for ff+�2gg, and produce the tableau whose paths
are the unions of paths in t1 and paths in t2, i.e. the shu�e t1 @ t2.

We therefore de�ne the following function:

fun TDDintN (+?) = 0 (* rule (+?) *)

| TDDintN (�?) = 1 (* rule (�?) *)

| TDDintN (+(�1 & �2)) = (* rule (+&) *)

TDDshuffle (TDDintN (+�1); TDDintN (+�2))
| TDDintN (�(�1 & �2)) = (* rule (�&) *)

TDDunion (TDDintN (��1); TDDintN (��2))
| TDDintN (+(�1 _�2)) = (* rule (+_) *)

TDDunion (TDDintN (+�1); TDDintN (+�2))
| TDDintN (�(�1 _�2)) = (* rule (�_) *)

TDDshuffle (TDDintN (��1); TDDintN (��2))
| TDDintN (+(�1 � �2)) = (* rule (+ �) *)

TDDunion (TDDshuffle (TDDmake (+(�1 � �2));
TDDintN (��1));

TDDintN (+�2))
| TDDintN (s�) = TDDmake (s�)

The correctness of TDDintN (Lemma 13) relies on the following lemma:

Lemma 12 N� commutes with unions and shu�es, i.e. for any tableaux t and t0, N�(t[t0) = N�(t)[N�(t0)
and N�(t@ t0) = N�(t) @ N�(t0).

Proof: By induction on the sum n of the sizes of ready formulas in t [t0. If n = 0, then this is clear:
N�(t [t0) = t [t0 = N�(t) [N�(t0), and N�(t@ t0) = t@ t0 = N�(t) @N�(t0).

Otherwise, assume that n > 0. Let s� be the �-maximal one and R be the associated rule. Let t1 be
the subset of t consisting of all paths in which s� occurs, and t0 be that of all paths in which it does not
occur. Similarly, let t01 be the subset of t0 consisting of all paths in which s� occurs, and t00 be that of all

22

paths in which it does not occur. Then the set of all paths in t [t0 where s� occurs is t1 [t01, and the
set of all paths in t [t0 where s� does not occur is t0 [t00. Then N�(t [t0) = N�((t0 [t1) [(t00 [t01)) =
N�((t0[t00)[(t1[t

0
1)) by associativity and commutativity of [. Let t2 (resp. t02) be the set of all expansions

of paths in t1 (resp. t01) by rule R on s�. Then t2 [t02 is the set of all expansions of paths in t1 [t01, so
N�(t [t0) = N�((t0 [t00) [(t2 [t02)) = N�((t0 [t2) [(t00 [t02)) (by associativity and commutativity of [)
= N�(t0 [t2) [N�(t00 [t02) (by induction hypothesis) = N�(t) [N�(t0).

The argument is similar for t@t0: N�(t@t0) = N�((t0[t1)@(t00[t
0
1)) = N�((t0@t00)[(t0@t

0
1)[(t

0
0@t1)[

(t1@ t01)), where the paths that contain s� are in (t0@ t01)[(t
0
0@ t1)[(t1@ t01). Their expansions by R on s�

are the paths in (t0@t02)[(t
0
0@t2)[(t2@t

0
2), hence N

�(t@t0) = N�((t0@t00)[(t0@t
0
2)[(t

0
0@t2)[(t2@t

0
2)) =

N�((t0 [t2) @ (t00 [t02)) = N�(t0 [t2) @ N�(t00 [t02) (by induction hypothesis) = N�(t) @ N�(t0). 2

Lemma 13 For any tableau t, let N (t) be the star-erasure of N�(t), i.e. N�(t) with every formula ��

replaced by �, from which every closed path has been removed.
For any signed formula s�, TDDintN (s�) computes the TDD of N (ffs�gg), for any total ordering �

such that s� � s0�0 whenever s� is not a negative implication and �0 is an immediate subformula of �.

Proof: First, notice the following. Let TDDintN 0 be de�ned as TDDintN, except that TDDunion,
TDDshuffle and TDDmake are replaced by their equivalent on zero-suppressed BDDs, i.e. the closing reduction
rule is not applied any longer. Observe then that TDDintN (s�) is just the normal form of TDDintN 0(s�)
by the TDD reduction rules: this is because the TDD reduction rules form a convergent rewrite system.

It therefore only remains to show that TDDintN 0(s�) = D(N (ffs�gg)), or rather that N (ffs�gg) =
T (TDDintN 0(s�)), which is equivalent by Theorem 3. We prove it by induction on the size of s�. The only
non-trivial case is when this argument is +(�1 � �2). Then N (ff��1gg) equals T (TDDintN 0(��1)) and
N (ff+�2gg) equals T (TDDintN 0(+�2)) by induction hypothesis. Then:

N�(ff+(�1 � �2)gg)
= N�(ff+(�1 � �2)

�
;��1g; f+�2gg)

= N�(ff+(�1 � �2)
�
;��1gg) [N�(ff+�2gg)

= (N�(ff+(�1 � �2)
�g) @ N�(ff��1gg)) [N�(ff+�2gg)

by Lemma 12. But N�(ff+(�1 � �2)
�g) = ff+(�1 � �2)

�gg, so:

N�(ff+(�1 � �2)gg) = (ff+(�1 � �2)
�gg@N�(ff��1gg)) [N�(ff+�2gg)

Therefore,
N (ff+(�1 � �2)gg))
= (ff+(�1 � �2)g@ T (TDDintN 0(��1))) [T (TDDintN 0(+�2))
= T (TDDintN 0(+(�1 � �2))

2

Note that TDDintN forces to expand the tableau with (Ax) or (Ax�) applied as late as possible. Indeed,
by Lemma 13, it does the same thing as expanding the tableau by N , which never applies (Ax) or (Ax�),
and then eliminates all closed paths. That is, although this choice of implementation keeps the code simple,
it may have detrimental e�ects like expanding paths like +�1 � �2;��1 � �2 (which could be closed)
into tableaux like +(�1 � �2)

�
;��1;�(�1 � �2) plus +�2;�(�1 � �2), of which the second cannot be

closed right away without using rule (� �) (or (limpR)). This process may be done recursively, producing
non-trivial expansions with a huge amount of unclosed paths, starting from only one closable path. We shall
wait until Section 4 (experimental results) to see whether this is an important matter or not.

Using TDDintN, we de�ne the following proof-search procedure, which alternates between appling eagerly
all rules but (� R) then (Ax), and applying (� R) when we are forced to. To prove (or disprove) a formula
�, compute prove(D(ff��gg); ;), where prove(F; S) is de�ned on all TDDs F and �nite sets S of TDDs
(used to implement the loop-check) by:

� Let G be TDDintN (F).

� If G 2 S, then prove (F; S) returns false (unprovable by loop-check).

23

� If G = 0, then prove (F; S) returns true (proved).

� If G = 1, then prove (F; S) returns false (unprovable).

� Otherwise, prove (F; S) returns true if and only if, for all paths p in G, there is a negative implication
in p that we can expand by rule (� �) (i.e., (� R)) into a path p0, such that prove (D(fp0g); S [fFg).

The exploration of paths in the last step is easily done by using the function TDDiter of Section 2.3, as
follows:

let val S0 = S [fFg
in

TDDiter (fn p => (* take a path, and try to close it *)

if there is s� of the form �(�1 � �2) in p

such that prove (TDDshuffle (TDDshuffle (TDDmake (+�1),
TDDmake (��2));

posPathToTdd p); S0)
then raise TDDITER (* success *)

else false (* fail *)
) F handle TDDITER => true

end

where posPathToTdd builds a TDD from a the positive formulas in the (sorted) list of signed formulas given
as arguments:

fun posPathToTDD p =
let fun t ([]; r) = r

| t (+� :: l; r) = t (l; TDDnode (+�;0; r))
| t (�� :: l; r) = t (l; r)

in

t (p;1)
end

3.4 Optimizations

We can make the procedure of the last subsection more e�cient by noticing a few facts.

3.4.1 Avoiding Redundancy.

First, it may be the case that, in the last step of the proof procedure, where we try to close all remaining
paths by �rst applying (� �), we have to close essentially the same tableaux over and over again. More
precisely, assume that we have two paths p1 and p2 in G. We �rst try to prove p1 by �nding a negative
implication in it which we can use to expand p1 into a tableau that we can close. Doing this, it is often
the case that we produce intermediate tableaux that contain paths which we shall meet again when trying
to close p2. We can therefore remember (in a global tableau success) a set of paths that we have already
managed to close; before we try to close all paths in a TDD, we �rst eliminate from it all paths that are
already in success (more generally, those that are weakenings of paths in success), which we have already
closed earlier; and whenever we succeed in closing all paths of a TDD F , we add them all to success (by
assigning TDDunion(F; success) to success).

Computing the set of all paths in F that are not weakenings of some paths in another TDD F 0 (success)
is done by computing TDDwfilter (F; F 0), which is de�ned recursively as follows:

memofun TDDwfilter (0; F 0) = 0

| TDDwfilter (F;0) = F

| TDDwfilter (F;1) = 0

| TDDwfilter (1; F 0) = if hasI F 0 then 0 else 1

24

| TDDwfilter (F as s� �! F1=F0; F
0 as s0�0 �! F 0

1=F
0
0) =

if s� = s0�0

then TDDnode (s�;TDDwfilter (F0; F 0
0);

TDDwfilter (F1; TDDunion (F 0
0; F

0
1)))

else if s� < s0�0

then TDDnode (s�;TDDwfilter (F0; F 0);
TDDwfilter (F1; F 0))

else TDDwfilter (F; F 0
0)

where hasI tests whether its argument is a tableau containing the empty path:

fun hasI 1 = true

| hasI 0 = false

| hasI (s� �! F1=F0) = hasI F0

3.4.2 Using Oracles.

A second optimization that we can apply comes from the fact that any provable intuitionistic formula and
also provable in classical logic. We can therefore query an oracle for classical propositional logic before trying
to expand paths. If the oracle returns \invalid", then we may stop the search right away.

Such an oracle can be implemented by any procedure we like, including a TDD method for classical logic.
Since all rules in classical propositional logic permute, it su�ces to de�ne:

fun TDDclassN (+?) = 0 (* rule (+?) *)

| TDDclassN (�?) = 1 (* rule (�?) *)

| TDDclassN (+(�1 & �2)) = (* rule (+&) *)

TDDshuffle (TDDclassN (+�1); TDDclassN (+�2))
| TDDclassN (�(�1 & �2)) = (* rule (�&) *)

TDDunion (TDDclassN (��1); TDDclassN (��2))
| TDDclassN (+(�1 _�2)) = (* rule (+_) *)

TDDunion (TDDclassN (+�1); TDDclassN (+�2))
| TDDclassN (�(�1 _�2)) = (* rule (�_) *)

TDDshuffle (TDDclassN (��1); TDDclassN (��2))
| TDDclassN (+(�1 � �2)) = (* classical rule (+ �) *)

TDDunion (TDDclassN (��1);
TDDclassN (+�2))

| TDDclassN (�(�1 � �2)) = (* classical rule (� �) *)

TDDshuffle (TDDclassN (+�1); TDDclassN (��2))
| TDDclassN (s�) = TDDmake (s�)

It is easily seen that TDDclassN (��) equals 0 if and only if � is classically provable.
Because classical provability is coNP-complete, TDDclassN may take exponential time to compute; we

may therefore limit the time taken by the oracle by placing an upper bound on the size of the classical TDD
and pruning it so as to stay below the size limit. This loses some information, but may be useful. This
is exactly what Laurent Mauborgne did in [14], with standard BDDs. We may also use other oracles, say
oracles that would test the formula on speci�ed Kripke frames, or that would draw models at random and
check that the formula holds on the random model. We have not implemented any of these ideas.

3.4.3 Special Cases for Negative Implications.

Finally, we can also re�ne our analysis by noticing that in the procedure of the last section, G can be split
into the TDD G0 of all paths that do not contain negative implications, the TDD G1 of all paths that contain
exactly one negative implication, and all other paths G2.

Then, if G0 is not 0, then F is not provable (we cannot apply any rule on it). If G0 is 0, then G1 is
the disjoint union of TDDs G1(��1 � �2)), whose paths are all those whose sole negative implication is

25

�(�1 � �2). The point is that instead of sweeping through the space of all paths in sequence, we may apply
(� �) in parallel on all paths on each G1(��1 � �2)). If some G1(��1 � �2)) is not provable, then return
false. Otherwise, do the last step of the procedure on G2 instead of G.

Finding the G0 part is done by computing G0 = Gzero G:

memofun Gzero 0 = 0

| Gzero 1 = 1

| Gzero (s� �! F1=F0) =

case s� of

�(�1 � �2) => Gzero F0
| _ => TDDnode (s�; Gzero F0; Gzero F1)

We compute the G1 parts by computing Gone G, which returns a �nite map from negative implications
�(�1 ! �2) to G0

1(�(�1 ! �2)), the set of all paths in G1(�(�1 ! �2)) where �(�1 ! �2) has been taken
away. In the following, �nite maps are taken to be �nite sets of bindings s� 7! F :

memofun Gone 0 = fg
| Gone 1 = fg
| Gone (s� �! F1=F0) =

case s� of

�(�1 � �2) => Gone F0 [fs� 7! Gzero F1g
| _ =>

let val F 0
0 = Gone F0 and F 0

1 = Gone F1
in

fs0�0 7! TDDnode (s�; F 0
0(s

0�0); F 0
1(s

0�0))
j s0�0 2 dom F 0

0 \ dom F 0
1g[

fs0�0 7! F 0
0(s

0�0) j s0�0 2 dom F 0
0 n dom F 0

1g[
fs0�0 7! TDDnode (s�;0; F 0

1(s
0�0))

j s0�0 2 dom F 0
1 n dom F 0

0

such that F 0
1(s

0�0) 6= 0g
end

Computing G1 is done by applying the following function Gunion to Gone (G):

fun Gunion fg = 0

| Gunion fs� 7! Fg =

TDDshuffle (TDDmake s�; F)
| Gunion (s1 [s2) =

TDDunion (Gunion s1; Gunion s2)

where the pattern s1 [s2 is intended to split its arguments into two non-empty disjoint sets (with roughly as
many elements each).

Given a TDD F , we may extract the TDD of all p+ for p ranging over paths in F by computing
TDDPpart F :

memofun TDDPpart 0 = 0

| TDDPpart 1 = 1

| TDDPpart (�� �! F1=F0) = TDDunion (TDDPpart F0; TDDPpart F1)
| TDDPpart (+� �! F1=F0) = TDDnode (+�; TDDPpart F0; TDDPpart F1)

To sum up, we therefore reimplement the prove(F; S) procedure as follows (success is initialized to the
empty tableau 0):

� If F 2 S, then prove (F; S) returns false (unprovable by loop-check).

� Let G be TDDwfilter (TDDintN (F); success). (TDDwfilter is used to avoid reexpanding redund-
ant paths.)

26

� Let G0 be Gzero G. If G0 6= 0, then return false (unprovable).

� Otherwise, if TDDclassN G 6= 0, then return false (oracle says no).

� Otherwise, let s be the map Gone G. If for some �(�1 � �2) 7! G0 in s,

prove (TDDshuffle (TDDshuffle (TDDmake (+�1);
TDDmake (��2));

TDDPpart G0);
S [fFg)

returns false, then return false. (Expand paths in G1(�(�1 � �2)) in parallel.)

� Otherwise, let G2 be TDDwfilter (G;Gunion s): return true if and only if, for all paths p in G2,
there is a negative implication in p that we can expand by rule (� �) (i.e., (� R)) into a path p0,
such that prove (D(fp0g); S [fFg). If so, then do success := TDDunion (success;G). (Record all
successful paths for redundancy checking.)

4 Experimental Results

Experimental results are needed to validate our approach, not only because they are in general, but because
we can run two contradicting arguments as to how e�cient our procedure should be in practice.

The �rst argument is the thesis that we have developed here: TDDs provide an implementation of tableaux
where (because of canonicity of representation, and mostly because of the nice interaction between sharing
and canonical proofs) many paths can be closed or expanded in parallel, while keeping the non-determinism
low.

The counter-argument is a now classical fact about uniform proofs, which extends to canonical proofs
in general: an expansion strategy that clings to the motto of �nding a proof in some canonical format may
be highly detrimental in terms of proof length. Intuitively, there may be formulas that can be proved by
expanding its tableaux in, say, 2 paths that can be closed by well-chosen instances of the (� �) rule, but
whose expansion by the N function (which expands all formulas but negative implications) would produce
one million paths with several negative implications on each. This opens the possibility of having very simple
formulas (for the right strategy) on which our prover would stall.

We have tested six versions of the prover:

� (1) is the basic prover of Section 3.3.

� (2) is (1) plus redundancy elimination through the use of an auxiliary success TDD.

� (3) is (2) plus the use of the classical oracle of Section 3.4.

� (4) is (1) plus the re�nement on the use of (� �) of the end of Section 3.4.

� (5) is (4) plus redundancy elimination.

� (6) is (5) plus the use of a classical oracle, i.e. the last incarnation of prove that we have described.

� (C) is just the oracle TDDclassN, which we put here so as to be able to make comparisons between the
e�ciency of the intuitionistic prover and that of a TDD prover for propositional classical logic.

We have used a simple lexicographic path ordering (lpo) on formulas to order the TDDs, so that �1 < �2 if
and only if �1 is greater than �2 in the lpo. Atomic variables are compared by their names, lexicographically,
and the lpo is based on a precedence such that & > _ >�> ? > A for any variable A; this is all rather
arbitrary, but follows the heuristic that, if we don't have better knowledge of the nature of the formula, a
BDD ordering based on the textual order of appearance of formulas usually works well.

Moreover, the re�nement on the use of (� �) of the end of Section 3.4 that we use in versions (4)
through (6) needs to sweep through all bindings s� 7! F in Gone G, and this has to be done in some order.

27

By default, this order was unspeci�ed in the �rst implementations, and test results showed some extreme
variations in execution time as the order changed. Although the data of Figure 5 seemed mostly unchanged,
those of Figure 6 were erratic: for instance, we got results ranging from 2.46 seconds to non termination in
less than 20 minutes for the Urq(6) line, column (5). We therefore decided on the following heuristic: sweep
through all the bindings s� 7! F in increasing rough complexity order, where the rough complexity order is
de�ned as follows (this is mostly arbitrary, except that we wish to express that what counts most during the
search is how many negative implications will crop up). We de�ne the following weight function w on signed
formulas: w(+A) = w(�A) = w(+?) = w(�?) = 1, w(+�1 _ �2) = w(+�1 & �2) = w(+�1) + w(+�2),
w(��1 _ �2) = w(��1 & �2) = w(��1) + w(��2), w(+�1 � �2) = w(��1) + w(+�2), and w(��1 �
�2) = w(+�1) �w(��2) (where the last clause uses multiplication instead of addition, therefore giving more
weight in general to negative implications). Then we decide that s� is roughly less complex than s0�0 if
and only if w(s�) < w(s0�0), or w(s�) = w(s0�0) and s� is less than s0�0 under some total ordering (the
latter being used to break ties, so that our procedure runs deterministically; we have chosen the lpo above
for simplicity).

As test formulas, �rst we have chosen the propositional problems in Pelletier's [18] test suite (entries 1
through 17). Some of them are equivalences P � Q: if n is such a problem, then we have added entries n1
(formula P � Q) and n2 (formula Q � P). Formula I is A � A, S is (A � B � C) � (A � B) � A � C,
K is A � B � A. Nepr denotes Neprevoda's formula ((((P � Q) � P) � P) � Q) � Q, a formula that is
reputedly di�cult to prove in natural deduction systems. For every positive integer n, Urq(n) is the Urquhart
formula:

(((: : : (x1 � x2) � : : : � xn) � x1) � x2) � : : : � xn

where P � Q denotes (P � Q) & (Q � P), so that the size of this formula is in fact an exponential in n.
Finally, for every integers m and n, pigm;n is a formula that says that if we have m holes and n pigeons,
and every pigeon is in some hole, then there is a hole with more than one pigeon. (Which is both classically
valid and intuitionistically provable if and only if m < n.) This formula is:

in some hole(1) & : : : & in some hole(n)
� more than one pigeon(1) _ : : :_more than one pigeon(m)

where
in some hole(j) =
in(j; 1) _ in(j; 2) _ : : :_ in(j;m)

more than one pigeon(i) =
(in(2; i) & in(1; i))_
(in(3; i) & in(1; i)) _ (in(3; i) & in(2; i))_
: : :

(in(j; i) & in(1; i)) _ (in(j; i) & in(2; i)) _ : : :_ (in(j; i) & in(j � 1; i))_
: : :

(in(n; i) & in(1; i)) _ (in(n; i) & in(2; i)) _ : : :_ (in(n; i) & in(n� 1; i))

where each in(j; i) is a propositional variable expressing that pigeon j is in hole i.
All these formulas are classically valid (hence invalidating the role of the classical oracle at the start of the

search | but not necessarily afterwards), but not all are intuitionistically provable. The results are shown in
Figures 5 and 6. Size comes into two
avors: dag size is the number of distinct subformulas in the formula,
or alternatively the size of the formula represented as a directed acyclic graph where all common subformulas
are shared; tree size denotes the number of distinct occurrences in the formula, or the size of the formula
represented as a tree (as though we didn't share common subformulas). The latter is a more relevant measure
of the size of formulas for tableau procedures: intuitively, paths in tableaux are split on an occurrence basis,
and identical formulas cannot be expanded in the same way on all paths in a tableau. On the other hand,
our implementation as TDDs allows us to recover some level of sharing, hence of parallelism in expansions
of identical formulas, whatever the paths they are found in.

The tests were conducted on an implementation of the prover in HimML [9], a bytecoded implementation
of the core Standard ML language, with fast equality and fast �nite set and map operations. The �gures we

28

dag tree
Problem size size provable? (1) (2) (3) (4) (5) (6) (C)
I 2 3

p
0:00 0:00 0:02 0:00 0:00 0:02 0:00

S 9 13
p

0:10 0:12 0:17 0:10 0:10 0:13 0:03
K 4 5

p
0:02 0:02 0:02 0:02 0:02 0:02 0:00

1 10 23 0:07 0:10 0:13 0:07 0:07 0:10 0:00
11 8 11

p
0:03 0:05 0:05 0:05 0:05 0:07 0:02

12 8 11 0:05 0:05 0:08 0:07 0:08 0:08 0:00
2 7 15 0:03 0:03 0:05 0:03 0:03 0:03 0:02
21 5 7 0:02 0:02 0:02 0:03 0:02 0:03 0:00
22 5 7

p
0:00 0:02 0:03 0:02 0:03 0:02 0:00

3 7 9
p

0:03 0:02 0:03 0:03 0:03 0:05 0:02
4 10 23 0:07 0:05 0:08 0:08 0:08 0:10 0:02
41 8 11 0:05 0:05 0:08 0:05 0:05 0:07 0:00
42 8 11 0:05 0:05 0:07 0:05 0:05 0:07 0:00
5 9 13 0:03 0:03 0:08 0:05 0:05 0:07 0:02
6 4 5 0:00 0:02 0:02 0:00 0:02 0:02 0:02
7 6 9 0:03 0:02 0:02 0:02 0:02 0:02 0:00
8 5 7 0:02 0:02 0:02 0:03 0:02 0:03 0:00
9 13 25

p
0:03 0:07 0:07 0:05 0:07 0:05 0:00

10 14 23
p

0:13 0:17 0:23 0:22 0:15 0:53 0:02
11 3 7

p
0:00 0:00 0:00 0:02 0:00 0:00 0:02

12 18 79 0:37 0:68 0:80 0:77 0:70 0:57 0:43
121 16 39 0:61 0:43 0:58 0:43 0:47 0:57 0:05
122 16 39 0:35 0:37 0:45 0:40 0:42 0:53 0:05
13 11 27

p
0:05 0:03 0:05 0:05 0:08 0:08 0:02

14 14 39 0:05 0:07 0:10 0:12 0:12 0:17 0:02
15 9 19 0:05 0:03 0:05 0:05 0:07 0:08 0:02
16 5 7 0:00 0:02 0:02 0:03 0:02 0:02 0:02
17 18 51 0:07 0:07 0:15 0:08 0:08 0:15 0:02
Nepr 7 11

p
0:05 0:07 0:12 0:07 0:08 0:08 0:00

Urq(1) 3 7
p

0:00 0:00 0:00 0:00 0:02 0:02 0:00
Urq(2) 11 43 0:08 0:08 0:13 0:12 0:13 0:20 0:03
Urq(3) 18 187 1:88 0:58 0:93 0:38 0:40 0:62 0:05
pig1; 1 3 3 0:00 0:00 0:00 0:00 0:00 0:00 0:00
pig1; 2 4 7

p
0:00 0:00 0:02 0:02 0:00 0:02 0:00

pig2; 2 11 15 0:05 0:05 0:05 0:03 0:05 0:03 0:02
pig2; 3 23 35

p
0:12 0:10 0:13 0:12 0:12 0:12 0:07

pig3; 3 35 53 0:22 0:28 0:17 0:25 0:47 0:13 0:15
pig3; 4 59 95

p
0:70 0:72 0:63 0:72 0:50 0:52 0:38

pig4; 4 79 127 0:87 0:88 0:63 0:92 0:93 0:53 0:60
pig4; 5 119 199

p
2:03 2:03 2:25 1:98 1:95 2:05 1:53

pig5; 5 149 249 2:98 2:92 2:22 3:13 3:07 2:05 2:17
pig5; 6 209 359

p
6:20 6:53 7:07 6:25 6:20 6:35 4:43

Total: � � � 17:53 16:83 17:82 16:80 16:80 16:38 10:25

Figure 5: Experimental Results

29

dag tree
Problem size size provable? (1) (2) (3) (4) (5) (6) (C)
Urq(1) 3 7

p
0:00 0:02 0:00 0:00 0:00 0:00 0:00

Urq(2) 11 43 0:10 0:07 0:12 0:15 0:15 0:17 0:03
Urq(3) 18 187 1:90 0:67 0:83 0:45 0:43 0:42 0:10
Urq(4) 25 763 > 900 > 900 > 900 1:42 1:35 0:88 0:20
Urq(5) 32 3067 � � � 17:82 13:90 1:75 0:28
Urq(6) 39 12283 � � � > 900 > 900 3:25 0:86
Urq(7) 46 49147 � � � � � 6:20 0:57
Urq(8) 53 196603 � � � � � 11:23 0:82
Urq(9) 60 786427 � � � � � 23:97 1:08

Figure 6: Urquhart's problems

give here were obtained on a SPARCstation ELC under SunOS 4.1.2, with 16 Mb main memory and 6.5 Mb
swap space. The resolution of the clock is 1/60 second, and all �gures were rounded to the nearest. Observe
that times of 0.00 really mean less than 1/60 second. Moreover, there are some perturbations due to garbage
collections in the timings: garbage collections take roughly 10% of the time, and may pause the program for
as long as 0.3 to 0.5 second; vthese times are included in the timings, because it is di�cult both to avoid
counting them and to average out these errors (although we vcannot predict when garbage collection will
occur, it nevertheless occurs roughly at the same times in two di�erent sessions). Entries with a dash �
denote absence of measurements. Entries like > 500 means that we have interrupted the prover after 500
seconds, but it didn't �nd any proof or any counterargument.

Observe that total timings in Figure 5 do not vary much when the set of optimizations changes. This
is probably due to the fact that these formulas are not very hard to prove, for the most part. In fact, the
classical prover (C), which should be more e�cient than any of the intuitionistic provers, does not have a
decisive edge on the latter. Therefore it seems that we have intuitionistic provers that are only little more
ine�cient than classical provers on the same technology.

But because these test problems are so small, this �rst table is likely to measure more the e�ciency of
searching for fully canonical proofs, and less that of a TDD implementation: indeed, sharing is not that
important on small formulas. But consider formulas Urq(n). These are really intricate formulas for even
rather small values of n: although their dag size is linear in n, their tree size is exponential in n. Figure 6
shows that our optimized prover manages to prove Urq(9) in about 24 seconds, and in fact that it proves
Urq(n) in time roughly proportional to the square root of the size of the formula. (Space consumption follows
the same pattern, and Urq(10) fails by memory over
ow | more than 12 Mb needed | which con�rms
the fact that BDDs tend to consume lots of memory.) Observe that a naive tableau implementation, even
taking the same permutabilities into account as we have done, would be lost for much smaller values of n.
Indeed, the size of the formula is an exponential in n, and the size of a maximally expanded tableau is a
double exponential in n, so Urq(n) can only be shown to be intuitionistically unprovable by standard tableaux
(with a canonical strategy) in double exponential time in n. We manage to show the same thing in single
exponential time.

Of course, proof search in intuitionistic logic is harder than classical logic (PSPACE-complete vs. coNP-
complete), and indeed our prover does not keep up with an implementation of standard BDDs in classical
logic: previous experiments have shown that Urq(n) was proved classically in time linear in n with BDDs [8].
The latter fact is however deceptive, in that BDDs are designed to handle equivalences well, and in fact
Urquhart's formulas are amongst the easiest problems for BDDs. TDDs for classical logic are not quite as
good, but are already competitive enough: continuing the table, we �nd that times are 1.37 for Urq(10),
8.68 for Urq(20), 15.2 for Urq(25), 21.48 for Urq(30) and 37.95 for Urq(40), i.e. after a starting phase the
asymptotical complexity is roughly O(1:1n). The asymptotic complexity for prover (6) is roughly O(2n),
which is not bad, since the size of the formula is O(4n).

30

Another negative point is that the prover of the Logics Workbench [12], compared to our prover, in
fact achieves bet-
ter performance on our test problems. We may compare their approach with the one presented here for

intuitionistic logic in this table:

Logics Workbench TDDs
Sequent system Clever (Dyckho�'s system), Dumbed down,

many impermutabilities few impermutabilities
Parallelism None SIMD-like

A

simple conclusion springs to mind: a clever logical system is better than a clever implementation strategy. It
would be interesting to see how TDDs fare with a clever logical system, even if this system does not allow
as much parallelism as the dumber system. We leave this as future investigation.

5 Related Works

Posegga and Schmitt [20] also used a form of tableaux encoded as BDDs. Again, paths leading to 1 in a
BDD were meant to represent tableaux paths, but using standard BDDs forced them to use what is usually
called tableaux with lemmata. (In tableaux with lemmata, p;+�1_�2 is expanded into the two paths p;+�1

and p;��1;+�2 instead of p;+�1 and p;+�2 in order to avoid redoing steps on the second paths that we've
already done closing paths in the expansion of the �rst path.) Because their aim is �rst-order classical logic,
they actually use shared Shannon graphs, i.e. BDDs that are neither ordered nor reduced. Consequently, they
close paths one by one; speed is gained by compiling (sequential) proof search into an e�cient form, such as
a Prolog program. That is, they gain a rather large constant factor in speed; by parallelizing expansions and
closings in TDDs, we gain a possibly much larger factor. But the main point is that their approach does not
generalize to non-classical logics, at least not easily: the major roadblock is that lemmata cannot be used in
non-classical logics, and this is why we have used a variant of Minato's zero-suppressed BDDs.

Looking at the intuitionistic proof procedure that we have proposed, we may be tempted to say that it
implements a uniform proof search strategy, in the sense that it deals uniformly with all paths. This is what
allows us to expand them in parallel. However, the term \uniform" is already taken in a more restricted sense
in [15], where it denotes a proof strategy for fragments of intuitionistic logic related to the way that Prolog
programs are executed, where right rules are systematically used �rst and a backchaining rule is used to
encode expansions of left rules. As noticed by Galmiche and Perrier [7], uniformity in this restricted sense is
only a particular case of looking for canonical proofs. There is no unique notion of canonical proof, and they
depend on the chosen sequent system for the logic (and its combinatorics: permutabilities, invertibility), on
the direction of the search (top-down as in tableaux, or bottom-up as in Maslov's inverse method [24], or even
mixed) and on strategy choices. Funnily, in the system we have presented, we have estimated that the more
natural canonical proofs for tableau search should apply left implication rules before any right implication
rules, i.e. the converse of the uniform strategy.

This leads us to discuss our choice of Dummett's system for intuitionistic logic. Dyckho� [4] presents
two systems without contraction | one based on LJ, the other on Dragalin's multi-conclusioned GHPC |,
which may save us the trouble of loop checking. But they have more impermutabilities, so it is not clear
whether we would gain something by using his systems.

Some other systems encode the impermutabilities of the deduction system in various ways, so as to
actually force new permutabilities. Shankar [22] uses skolemization and herbrandization so as to encode
impermutabilities as variable dependencies: this delays the check for impermutabilities until we try to close
paths, and makes the provability problem quite similar to proof-search in �rst-order classical logic with
bounded Herbrand multiplicity. Although there is no reason to think that such a technique would be superior
to the one that we have presented here, this opens up another avenue for using BDDs with non-classical logics,
using for instance techniques from [10] or [19], and this is probably the only sensible way of doing it for non-
classical �rst-order logics. Techniques based on encoding semantical Kripke accessibility relationships as
path-expressions [17, 23] seem to pose similar problems and to o�er similar solutions. A recent technique
[21] is to look for intuitionistic proofs as (hidden) subproofs of classical proofs, by a clever deciphering on
proof-terms for classical logic expressed in Parigot's ��-calculus. Unfortunately, in the latter technique we
need to decorate formulas on paths by terms; if done naively, this will require us to decorate TDD paths by
terms, thus possibly destroying the amount of sharing, hence of parallelism that we had managed to obtain.

31

Adapting the latter technique is thus conditioned by our ability to e�ciently extract proof-terms from TDD
proofs, a problem that we don't know how to solve at the moment.

6 Conclusion

The results of this paper are of two kinds.
First, we have shown that BDD technology was not limited to classical logic. Although we have not used

usual BDDs, we have used very similar data-structures, called TDDs, which are basically Minato's zero-
suppressed BDDs with an additional closing rule. We have successfully implemented an automated theorem
prover for propositional intuitionistic logic using this technology.

Second, we have shown that using TDDs was in fact an e�cient enough way of implementing tableaux
for classical or non-classical logic, provided that the logic of interest has a Gentzen system with many
nice combinatorial properties, including permutabilities (for canonicity) and invertibility of rules (for full
canonicity). The purported main source of e�ciency here is the interplay between sharing in TDDs and
proof combinatorics, which allows us to close and expand many paths in parallel. To put it shortly and
a bit incorrectly, TDDs allow us to implement mostly parallel search strategies on sequential machines.
Experiments show that using canonical proof search strategies is not detrimental to the e�ciency, and that
the high level of parallelism that TDDs o�ers allows us to prove (or show to be unprovable) formulas that
are out of reach of tableaux theorem provers that look for uniform proofs, like Urquhart's formulas.

Finally, note that TDDs are not limited to classical or intuitionistic logic, but can be applied to any logic
where sequents can be coded as �nite sets, like most modal logics. TDDs may however be less interesting
in logics that only have Gentzen systems with many impermutabilities. We believe that TDDs can also be
extended to logics where sequents must be multisets, like fragments of linear logic, by having each node
having a variable number of successors, each corresponding to a di�erent number of occurrences of the literal.
(For example, if s� does not occur in p0, occurs once in p1 and three times in p2, we might represent the set

of all paths by a ternary node s�(
0
�!F0)(

1
�!F1)(

3
�!F3), where F0 represents p0, F1 represents p1, and F3

represents p3.) We leave it as future studies.
And even if a logic has a Gentzen system with many permutabilities, clever tableaux systems, implemented

sequentially, may still be better than dumber but \parallelizable" tableaux systems. As Roy Dyckho� once
told me, logic wins. We leave the question of the performance of TDD technology on clever tableau systems
to be answered in future works.

References

[1] R. E. Bryant. Graph-based algorithms for boolean functions manipulation. IEEE Trans. Comp.,
C35(8):677{692, 1986.

[2] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving. Computer Science
Classics. Academic Press, 1973.

[3] M. Dummett. Elements of Intuitionism. Clarendon Press, Oxford, 1977.

[4] R. Dyckho�. Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic Logic,
57(3):795{807, 1992.

[5] M. Fitting. Proof Methods for Modal and Intuitionistic Logics, volume 169 of Synthese Library. D.
Reidel, Dordrecht, Holland, 1983.

[6] M. C. Fitting. First-Order Logic and Automated Theorem Proving. Springer Verlag, 1990.

[7] D. Galmiche and G. Perrier. Foundations of proof search strategies design in linear logic. In International
Symposium on Logical Foundations of Computer Science, Logic at St. Petersburg'94, pages 101{113,
1994. Lecture Notes in Computer Science 813.

32

[8] J. Goubault. D�emonstration automatique en logique classique : complexit�e et m�ethodes. PhD thesis,
�Ecole Polytechnique, Palaiseau, France, 1993.

[9] J. Goubault. HimML: Standard ML with fast sets and maps. In 5th ACM SIGPLAN Workshop on ML
and its Applications, 1994.

[10] J. Goubault. Proving with BDDs and control of information. In A. Bundy, editor, 12th International
Conference on Automated Deduction (CADE-12), volume 814 of Lecture Notes in Arti�cial Intelligence,
Nancy, France, june{july 1994. Springer Verlag.

[11] J. Goubault. A BDD-based simpli�cation and skolemization procedure. Bulletin of the Spe-
cial Interest Group in Pure and Applied Logics, 3(1), June 1995. available by ftp on
theory.doc.ic.ac.uk:/home/leonardo/papers/GoubaultJ/.

[12] A. Heuerding, G. Jger, S. Schwendimann, and M. Seyfried. Propositional logics on the computer. In
P. Baumgartner, H�ahnle, and J. Posegga, editors, Tableaux'95, pages 310{323. LNAI 918, Springer
Verlag, 1995. Home page at http://lwbwww.unibe.ch:8080/LWBinfo.html.

[13] S. C. Kleene. Permutability of inferences in Gentzen's calculi LK and LJ. Memoirs of the American
Mathematical Society, 1952.

[14] L. Mauborgne. Abstract interpretation using TDGs. In First Static Analysis Symposium (SAS'94),
pages 363{379, 1994.

[15] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logic program-
ming. Annals of Pure and Applied Logic, 51:125{157, 1991.

[16] S.-I. Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems. In Proceedings
of the 30th ACM/IEEE Design Automation Conference, pages 272{277, Dallas, TX, June 1993. ACM
Press.

[17] H. J. Ohlbach. A resolution calculus for modal logics. In E. Lusk and R. Overbeek, editors, 9th
International Conference on Automated Deduction, volume 310 of Lecture Notes in Computer Science,
pages 500{516, Argonne, Illinois, USA, May 1988. Springer Verlag.

[18] F. J. Pelletier. Seventy-�ve problems for testing automatic theorem provers. Journal of Automated
Reasoning, 2:191{216, 1986. errata in JAR 4:235{236, 1988.

[19] J. Posegga. Deduktion mit Shannongraphen f�ur Pr�adikatenlogik erster Stufe. In�x Verlag, Sankt Au-
gustin, 1993.

[20] J. Posegga and P. H. Schmitt. Implementing semantic tableaux. To be pusblished as part of the Handbook
on Tableaux, 1995.

[21] E. Ritter, D. Pym, and L. Wallen. On the intuitionistic force of classical search. In Tableaux'96, 1996.
Lecture Notes in Arti�cial Intelligence, Springer Verlag.

[22] N. Shankar. Proof search in the intuitionistic sequent calculus. In D. Kapur, editor, 11th International
Conference on Automated Deduction, volume 607 of Lecture Notes in Arti�cial Intelligence, pages 522{
536, Saratoga Springs, New York, USA, June 1992. Springer Verlag.

[23] L. Wallen. Automated Proof Search in Non Classical Logics: E�cient Matrix Proof Methods for Modal
and Intuitionistic Logics. PhD thesis, Edinburgh, 1987. published by MIT Press, 1989.

[24] N. Zamov. Maslov's inverse method and decidable classes. Annals of Pure and Applied Logic, 42:165{194,
1989.

33

A Proof of Figure 4 (Permutabilities)

First, the ?L column is obvious, since this rule has no premise, so no rule is in permutation position above
?L.

Similarly, the ?L row is also obvious. For instance, the (?L)=(� R) case is as follows:

(?L) �;?;�1 .�2

(� R) �;? .�1 � �2;�

which is transformed into:
(?L) �;? .�1 � �2;�

Now, look at the ?R column (except for the entry in the ?L row). If R is in permutation position above
?R, then either R is not (� R) and (?R) may then permute up, or R is (� R), and we transform:

�1
...

�;�1 .�2

(� R) � .�1 � �2;�
(?R) � .�1 � �2;?;�

into:
�1
...

�;�1 .�2

(� R) � .�1 � �2;?;�

A.1 The &R Column

The (� L)=(&R) case is as follows:

�1 �2
...

... �3

�;�1 � �2 .�1;�3;� �;�2 .�3;�
...

(� L) �;�1 � �2 .�3;� �;�1 � �2 .�4;�
(&R) �;�1 � �2 .�3 & �4;�

(or symmetrically), and we transform it into:

�1 �3;�1 �2 [�1 �]�3
...

...
...

...
�;�1 � �2 �;�1 � �2 �;�2 .�3;� �;�2 .�4;�
.�1;�3;� .�1;�4;�

(&R) �;�1 � �2 .�1;�3 & �4;� (&R) �;�2 .�3 & �4;�
(� L) �;�1 � �2 .�3 & �4;�

The (� R)=(&R) case is as follows (up to symmetries):

�1
... �2

�;�1 .�2

...
(� R) � .�1 � �2;�3;� � .�1 � �2;�4;�
(&R) � .�1 � �2;�3 & �4;�

34

and we transform it into:
�1
...

�;�1 .�2

(� R) � .�1 � �2;�3 & �4;�

The (_L)=(&R) case is as follows (up to symmetries):

�1 �2
...

... �3

�;�1 .�3;� �;�2 .�3;�
...

(_L) �;�1 _�2 .�3;� �;�1 _�2 .�4;�
(&R) �;�1 _�2 .�3 & �4;�

and we transform it into:

�1 [_�2]�3 �2 [�1_]�3
...

...
...

...
�;�1 .�3;� �;�1 .�4;� �;�2 .�3;� �;�2 .�4;�

(&R) �;�1 .�3 & �4;� (&R) �;�2 .�3 & �4;�
(_L) �;�1 _�2 .�3 & �4;�

The (_R)=(&R) case is as follows, up to symmetries:

�1
... �2

� .�1;�2;�3;�
...

(_R) � .�1 _�2;�3;� � .�1 _�2;�4;�
(&R) � .�1 _�2;�3 & �4;�

and we transform it into:
�1 �2[�1 _�2]
...

...
� .�1;�2;�3;� � .�1;�2;�4;�

(&R) � .�1;�2;�3 & �4;�
(_R) � .�1 _�2;�3 & �4;�

The (&L)=(&R) case is as follows, up to symmetries:

�1
... �2

�;�1;�2 .�3;�
...

(&L) �;�1 & �2 .�3;� �;�1 & �2 .�4;�
(&R) �;�1 & �2 .�3 & �4;�

and we transform it into:
�1 [�1 & �2]�2
...

...
�;�1;�2 .�3;� �;�1;�2 .�4;�

(&R) �;�1;�2 .�3 & �4;�
(&L) �;�1 & �2 .�3 & �4;�

35

The (&R)=(&R) case is as follows, up to symmetries:

�1 �2
...

... �3

� .�1;�3;� � .�2;�3;�
...

(&R) � .�1 & �2;�3;� � .�1 & �2;�4;�
(&R) � .�1 & �2;�3 & �4;�

which we transform into:

�1 �3[&�2] �2 �3[�1&]
...

...
...

...
� .�1;�3;� � .�1;�4;� � .�2;�3;� � .�2;�4;�

(&R) � .�1;�3 & �4;� (&R) � .�2;�3 & �4;�
(&R) � .�1 & �2;�3 & �4;�

The (?R)=(&R) case looks like:

�1
... �2

� .�1;�
...

(?R) � .?;�1;� � .?;�2;�
(&R) � .?;�1 & �2;�

which we transform into:
�1 �2[?]
...

...
� .�1;� � .�2;�

(&R) � .�1 & �2;�
(?R) � .?;�1 & �2;�

A.2 The &L Column

The (� L)=(&L) case is as follows:

�1 �2
...

...
�;�3;�4;�1 � �2 .�1;� �;�3;�4;�2 .�

(� L) �;�3;�4;�1 � �2 .�
(&L) �;�3 & �4;�1 � �2 .�

which we transform into:

�1 �2
...

...
�;�3;�4;�1 � �2 .�1;� �;�3;�4;�2 .�

(&L) �;�3 & �4;�1 � �2 .�1;� (&L) �;�3 & �4;�2 .�
(� L) �;�3 & �4;�1 � �2 .�

The (� R)=(&L) case is as follows:

�1
...

�;�3;�4;�1 .�2

(� R) �;�3;�4 .�1 � �2;�
(&L) �;�3 & �4 .�1 � �2;�

36

which we simply permute into:
�1
...

�;�3;�4;�1 .�2

(&L) �;�3 & �4;�1 .�2

(� R) �;�3 & �4 .�1 � �2;�

The (_L)=(&L) case is as follows:

�1 �2
...

...
�;�1;�3;�4 .� �;�2;�3;�4 .�

(_L) �;�1 _�2;�3;�4 .�
(&L) �;�1 _�2;�3 & �4 .�

which permutes into:

�1 �2
...

...
�;�1;�3;�4 .� �;�2;�3;�4 .�

(&L) �;�1;�3 & �4 .� (&L) �;�2;�3 & �4 .�
(_L) �;�1 _�2;�3 & �4 .�

The (_R)=(&L) case is as follows:

�1
...

�;�3;�4 .�1;�2;�
(_R) �;�3;�4 .�1 _�2;�
(&L) �;�3 & �4 .�1 _�2;�

which permutes into:
�1
...

�;�3;�4 .�1;�2;�
(&L) �;�3 & �4 .�1;�2;�
(_R) �;�3 & �4 .�1 _�2;�

The (&L)=(&L) is as follows:

�1
...

�;�3;�4;�1;�2 .�
(&L) �;�3;�4;�1 & �2 .�
(&L) �;�3 & �4;�1 & �2 .�

which permutes into:
�1
...

�;�3;�4;�1;�2 .�
(&L) �;�3 & �4;�1;�2 .�
(&L) �;�3 & �4;�1 & �2 .�

37

The (&R)=(&L) case is as follows:

�1 �2
...

...
�;�3;�4 .�1;� �;�3;�4 .�2;�

(&R) �;�3;�4 .�1 & �2;�
(&L) �;�3 & �4 .�1 & �2;�

which permutes into:

�1 �2
...

...
�;�3;�4 .�1;� �;�3;�4 .�2;�

(&L) �;�3 & �4 .�1;� (&L) �;�3 & �4 .�2;�
(&R) �;�3 & �4 .�1 & �2;�

The (?R)=(&L) case is as follows:

�1
...

�;�1;�2 .�
(?R) �;�1;�2 .?;�
(&L) �;�1 & �2 .?;�

which permutes into:
�1
...

�;�1;�2 .�
(&L) �;�1 & �2 .�
(?R) �;�1 & �2 .?;�

A.3 The _R Column

The (� L)=(_R) case is as follows:

�1 �2
...

...
�;�1 � �2 .�1;�3;�4;� �;�2 .�3;�4;�

(� L) �;�1 � �2 .�3;�4;�
(_R) �;�1 � �2 .�3 _�4;�

which we transform into:

�1 �2
...

...
�;�1 � �2 .�1;�3;�4;� �;�2 .�3;�4;�

(_R) �;�1 � �2 .�1;�3 _�4;� (_R) �;�2 .�3 _�4;�
(� L) �;�1 � �2 .�3 _�4;�

The (� R)=(_R) case is as follows:

�1
...

��1 .�2

(� R) � .�1 � �2;�3;�4;�
(_R) � .�1 � �2;�3 _�4;�

38

and simpli�es to:
�1
...

�;�1 .�2

(� R) � .�1 � �2;�3 _�4;�

The (_L)=(_R) case is as follows:

�1 �2
...

...
�;�1 .�3;�4;� �;�2 .�3;�4;�

(_L) �;�1 _�2 .�3;�4;�
(_R) �;�1 _�2 .�3 _�4;�

which permutes into:
�1 �2
...

...
�;�1 .�3;�4;� �;�2 .�3;�4;�

(_R) �;�1 .�3 _�4;� (_R) �;�2 .�3 _�4;�
(_L) �;�1 _�2 .�3 _�4;�

The (_R)=(_R) case is as follows:

�1
...

� .�1;�2;�3;�4;�
(_R) � .�1 _�2;�3;�4;�
(_R) � .�1 _�2;�3 _�4;�

which permutes into:
�1
...

� .�1;�2;�3;�4;�
(_R) � .�1;�2;�3 _�4;�
(_R) � .�1 _�2;�3 _�4;�

The (&L)=(_R) is as follows:

�1
...

�;�1;�2 .�3;�4;�
(&L) �;�1 & �2 .�3;�4;�
(_R) �;�1 & �2 .�3 _�4;�

which permutes into:
�1
...

�;�1;�2 .�3;�4;�
(_R) �;�1;�2 .�3 _�4;�
(&L) �;�1 & �2 .�3 _�4;�

39

The (&R)=(_R) case is as follows:

�1 �2
...

...
� .�1;�3;�4;� � .�2;�3;�4;�

(&R) � .�1 & �2;�3;�4;�
(_R) � .�1 & �2;�3 _�4;�

which permutes into:
�1 �2
...

...
� .�1;�3;�4;� � .�2;�3;�4;�

(_R) � .�1;�3 _�4;� (_R) � .�2;�3 _�4;�
(&R) � .�1 & �2;�3 _�4;�

The (?R)=(_R) case is as follows:

�1
...

� .�1;�2;�
(?R) � .?;�1;�2;�
(_R) � .?;�1 & �2;�

which permutes into:
�1
...

�;�1;�2 .�
(_R) � .�1 _�2;�
(?R) � .?;�1 _�2;�

A.4 The _L Column

The (� L)=(_L) case is as follows:

�1 �2
...

... �3

�;�3;�1 � �2 .�1;� �;�3;�2 .�
...

(� L) �;�3;�1 � �2 .� �;�4;�1 � �2 .�
(_L) �;�3 _�4;�1 � �2 .�

(or symmetrically), and we transform it into:

�1 �3;�1 �2 [�1 �]�3
...

...
...

...
�;�3;�1 � �2 �;�4;�1 � �2 �;�3;�2 .� �;�4;�2 .�

.�1;� .�1;�
(_L) �;�3 _�4;�1 � �2 .�1;� (_L) �;�3 _�4;�2 .�
(� L) �;�3 _�4;�1 � �2 .�

40

The (� R)=(_L) case is as follows (up to symmetries):

�1
... �2

�;�3;�1 .�2

...
(� R) �;�3 .�1 � �2;� �;�4 .�1 � �2;�
(_L) �;�3 _�4 .�1 � �2;�

and we would like to transform it into:

�1 ?
...

...
�;�3;�1 .�2 �;�4;�1 .�2

(_L) �;�3 _�4;�1 .�2

(� R) �;�3 _�4 .�1 � �2;�

but no proof can stand for the question mark in general, so that this pair is not permutable.
The (_L)=(_L) case is as follows (up to symmetries):

�1 �2
...

... �3

�;�3;�1 .� �;�3;�2 .�
...

(_L) �;�3;�1 _�2 .� �;�4;�1 _�2 .�
(_L) �;�3 _�4;�1 _�2 .�

and we transform it into:

�1 [_�2]�3 �2 [�1_]�3
...

...
...

...
�;�3;�1 .� �;�4;�1 .� �;�3;�2 .� �;�4;�2 .�

(_L) �;�3 _�4;�1 .� (_L) �;�3 _�4;�2 .�
(_L) �;�3 _�4;�1 _�2 .�

The (_R)=(_L) case is as follows, up to symmetries:

�1
... �2

�;�3 .�1;�2;�
...

(_R) �;�3 .�1 _�2;� �;�4 .�1 _�2;�
(_L) �;�3 _�4 .�1 _�2;�

and we transform it into:
�1 �2[�1 _�2]
...

...
�;�3 .�1;�2;� �;�4 .�1;�2;�

(_L) �;�3 _�4 .�1;�2;�
(_R) �;�3 _�4 .�1 _�2;�

The (&L)=(_L) case is as follows, up to symmetries:

�1
... �2

�;�3;�1;�2 .�
...

(&L) �;�3;�1 & �2 .� �;�4;�1 & �2 .�
(_L) �;�3 _�4;�1 & �2 .�

41

and we transform it into:
�1 [�1 & �2]�2
...

...
�;�3;�1;�2 .� �;�4;�1;�2 .�

(_L) �;�3 _�4;�1;�2 .�
(&L) �;�3 _�4;�1 & �2 .�

The (&R)=(_L) case is as follows, up to symmetries:

�1 �2
...

... �3

�;�3 .�1;� �;�3 .�2;�
...

(&R) �;�3 .�1 & �2;� �;�4 .�1 & �2;�
(_L) �;�3 _�4 .�1 & �2;�

which we transform into:

�1 �3[&�2] �2 �3[�1&]
...

...
...

...
�;�3 .�1;� �;�4 .�1;� �;�3 .�2;� �;�4 .�2;�

(_L) �;�3 _�4 .�1;� (_L) �;�3 _�4 .�2;�
(&R) �;�3 _�4 .�1 & �2;�

The (?R)=(_L) case looks like:

�1
... �2

�;�1 .�
...

(?R) �;�1 .?;� �;�2 .?;�
(_L) �;�1 _�2 .?;�

which we transform into:
�1 �2[?]
...

...
�;�1 .� �;�2 .�

(_L) �;�1 _�2 .�
(?R) �;�1 _�2 .?;�

A.5 The � R Column

In the (� L)=(� R) case, we have:

�1 �2
...

...
�;�1 � �2;�3 .�1;�4 �;�2;�3 .�4

(� L) �;�1 � �2;�3 .�4

(� R) �;�1 � �2 .�3 � �4;�

which we would like to transform into:

? �2
...

...
�;�1 � �2;�3 .�4 �;�2;�3 .�4

(� R) �;�1 � �2 .�1;�3 � �4;� (� R) �;�2 .�3 � �4;�
(� L) �;�1 � �2 .�3 � �4;�

42

but there is no way to �nd a proof in place of the question mark above.
The (� R)=(� R) case cannot occur, since the only possibility for having an instance of (� R) atop

another one is:
�1
...

�;�3;�1 .�2

(� R) �;�3 .�1 � �2

(� R) � .�3 � �1 � �2

where the principal formula in the upper instance is �1 � �2, and is active in the lower one.
The (_L)=(� R) case is as follows:

�1 �2
...

...
�;�1;�3 .�4 �;�2;�3 .�4

(_L) �;�1 _�2;�3 .�4

(� R) �;�1 _�2 .�3 � �4;�

which we permute into:

�1 �2
...

...
�;�1;�3 .�4 �;�2;�3 .�4

(� R) �;�1 .�3 � �4;� (� R) �;�2 .�3 � �4;�
(_L) �;�1 _�2 .�3 � �4;�

The (_R)=(� R) case cannot happen, for reasons similar to the (� R)=(� R) case.
The (&L)=(� R) case is as follows:

�1
...

�;�1;�2;�3 .�4

(&L) �;�1 & �2;�3 .�4

(� R) �;�1 & �2 .�3 � �4;�

which transforms into:
�1
...

�;�1;�2;�3 .�4

(� R) �;�1;�2 .�3 � �4;�
(&L) �;�1 & �2 .�3 � �4;�

And the (&R)=(� R) and (?R)=(� R) cases cannot happen, for reasons similar to the (� R)=(� R)
case.

A.6 The � L Column

The (� L)=(� L) case is either as follows:

�1 �2
...

... �3

�;�1 � �2;�3 � �4 .�1;�3;� �;�2;�3 � �4 .�3;�
...

(� L) �;�1 � �2;�3 � �4 .�3;� �;�1 � �2;�4 .�
(� L) �;�1 � �2;�3 � �4 .�

43

in which case we transform it into:

�1 �3;�1 �2 [�1 �]�3
...

...
...

...
�;�1 � �2;�3 � �4 �;�1 � �2;�4 �;�2;�3 � �4 �;�2;�4

.�1;�3;� .�1;� .�3;� .�
(� L) �;�1 � �2;�3 � �4 .�1;� (� L) �;�2;�3 � �4 .�
(� L) �;�1 � �2;�3 � �4 .�

or it is as follows:

�2 �3

�1
...

...
... �;�1 � �2;�4 .�1;� �;�2;�4 .�

�;�1 � �2;�3 � �4 .�3;� (� L) �;�1 � �2;�4 .�
(� L) �;�1 � �2;�3 � �4 .�

in which case we transform it into:

�1;�1 �2 [�1 �]�1 �3
...

...
...

...
�;�1 � �2;�3 � �4 �;�1 � �2;�4 �;�2;�3 � �4 �;�2;�4

.�1;�3;� .�1;� .�3;� .�
(� L) �;�1 � �2;�3 � �4 .�1;� (� L) �;�2;�3 � �4 .�
(� L) �;�1 � �2;�3 � �4 .�

In the (� R)=(� L) case, we have a proof of the form:

�1
... �2

�;�3 � �4;�1 .�2

...
(� R) �;�3 � �4 .�1 � �2;�3;� �;�4 .�1 � �2;�
(� L) �;�3 � �4 .�1 � �2;�

which we would like to transform into:

�1;�3 ?
...

...
�;�3 � �4;�1 .�2;�3 �;�4;�1 .�2

(� L) �;�3 � �4;�1 .�2

(� R) �;�3 � �4 .�1 � �2;�

but there is no way we can instantiate the question mark above, or we have:

�2

�1
...

... �;�4;�1 .�2

�;�3 � �4 .�1 � �2;�3;� (� R) �;�4 .�1 � �2;�
(� L) �;�3 � �4 .�1 � �2;�

which we would like to transform into:

? �2
...

...
�;�3 � �4;�1 .�2;�3 �;�4;�1 .�2

(� L) �;�3 � �4;�1 .�2

(� R) �;�3 � �4 .�1 � �2;�

44

but there is no way we can instantiate the question mark above in general.
In the (_L)=(� L) case, we have:

�1 �2
...

... �3

�;�1;�3 � �4 .�3;� �;�2;�3 � �4 .�3;�
...

(_L) �;�1 _�2;�3 � �4 .�3;� �;�1 _�2;�4 .�
(� L) �;�1 _�2;�3 � �4 .�

which we transform into:

�1 [_�2]�3 �2 [�1_]�3
...

...
...

...
�;�1;�3 � �4 �;�1;�4 �;�2;�3 � �4 �;�2;�4

.�3;� .� .�3;� .�
(� L) �;�1;�3 � �4 .� (� L) �;�2;�3 � �4 .�
(_L) �;�1 _�2;�3 � �4 .�

or it is as follows:

�2 �3

�1
...

...
... �;�1;�4 .� �;�2;�4 .�

�;�1 _�2;�3 � �4 .�3;� (_L) �;�1 _�2;�4 .�
(� L) �;�1 _�2;�3 � �4 .�

in which case we transform it into:

[_�2]�1 �2 [�1_]�1 �3
...

...
...

...
�;�1;�3 � �4 �;�1;�4 �;�2;�3 � �4 �;�2;�4

.�3;� .� .�3;� .�
(� L) �;�1;�3 � �4 .� (� L) �;�2;�3 � �4 .�
(_L) �;�1 _�2;�3 � �4 .�

In the (_R)=(� L) case, we have:

�1
... �2

�;�3 � �4 .�1;�2;�3;�
...

(_R) �;�3 � �4 .�1 _�2;�3;� �;�4 .�1 _�2;�
(� L) �;�3 � �4 .�1 _�2;�

which we transform into:

�1 �2[�1 _�2]
...

...
�;�3 � �4 .�1;�2;�3;� �;�4 .�1;�2;�

(� L) �;�3 � �4 .�1;�2;�
(_R) �;�3 � �4 .�1 _�2;�

45

or we have:
�2

�1
...

... �;�4 .�1;�2;�
�;�3 � �4 .�1 _�2;�3;� (_R) �;�4 .�1 _�2;�

(� L) �;�3 � �4 .�1 _�2;�

which we transform into:

�1[�1 _�2] �2
...

...
�;�3 � �4 .�1;�2;�3;� �;�4 .�1;�2;�

(� L) �;�3 � �4 .�1;�2;�
(_R) �;�3 � �4 .�1 _�2;�

In the (&L)=(� L) case, we have:

�1
... �2

�;�1;�2;�3 � �4 .�3;�
...

(&L) �;�1 & �2;�3 � �4 .�3;� �;�1 & �2;�4 .�
(� L) �;�1 & �2;�3 � �4 .�

which we transform into:

�1 [�1 & �2]�2
...

...
�;�1;�2;�3 � �4 .�3;� �;�1;�2;�4 .�

(� L) �;�1;�2;�3 � �4 .�
(&L) �;�1 & �2;�3 � �4 .�

or we have:
�2

�1
...

... �;�1;�2;�4 .�
�;�1 & �2;�3 � �4 .�3;� (&L) �;�1 & �2;�4 .�

(� L) �;�1 & �2;�3 � �4 .�

which we transform into:

[�1 & �2]�1 �2
...

...
�;�1;�2;�3 � �4 .�3;� �;�1;�2;�4 .�

(� L) �;�1;�2;�3 � �4 .�
(&L) �;�1 & �2;�3 � �4 .�

In the (&R)=(� L) case, we have:

�1 �2
...

... �3

�;�3 � �4 .�3;�1;� �;�3 � �4 .�3;�2;�
...

(&R) �;�3 � �4 .�3;�1 & �2;� �;�4 .�1 & �2;�
(� L) �;�3 � �4 .�1 & �2;�

46

which we transform into:

�1 �3[&�2] �2 �3[�1&]
...

...
...

...
�;�3 � �4 �;�4 �;�3 � �4 �;�4

.�3;�1;� .�1;� .�3;�2;� .�2;�
(� L) �;�3 � �4 .�1;� (� L) �;�3 � �4 .�2;�
(&R) �;�3 � �4 .�1 & �2;�

or it is as follows:

�2 �3

�1
...

...
... �;�4 .�1;� �;�4 .�2;�

�;�3 � �4 .�3;�1 & �2;� (&R) �;�4 .�1 & �2;�
(� L) �;�3 � �4 .�1 & �2;�

in which case we transform it into:

�1[&�2] �2 �1[�1&] �3
...

...
...

...
�;�3 � �4 �;�4 �;�3 � �4 �;�4

.�3;�1;� .�1;� .�3;�2;� .�2;�
(� L) �;�3 � �4 .�1;� (� L) �;�3 � �4 .�2;�
(&R) �;�3 � �4 .�1 & �2;�

Finally, the (?R)=(� L) case is as follows:

�1
... �2

�;�1 � �2 .�1;�
...

(?R) �;�1 � �2 .�1;?;� �;�2 .?;�
(� L) �;�1 � �2 .?;�

which transforms into:
�1 �2[?]
...

...
�;�1 � �2 .�1;� �;�2 .�

(� L) �;�1 � �2 .�
(?R) �;�1 � �2 .?;�

or:
�2

�1
...

... �;�2 .�
�;�1 � �2 .�1;?;� (?R) �;�2 .?;�

(� L) �;�1 � �2 .?;�

which transforms into:
�1[?] �2
...

...
�;�1 � �2 .�1;� �;�2 .�

(� L) �;�1 � �2 .�
(?R) �;�1 � �2 .?;�

47

