
Rami�ed Higher-Order Uni�cation

Jean Goubault-Larrecq

Institut f�ur Logik, Komplexit�at und Deduktionssysteme

Universit�at Karlsruhe, D-76128 Karlsruhe�y

Jean.Goubault@frcl.bull.fr

August 29, 1996

Abstract

While uni�cation in the simple theory of types (a.k.a.
higher-order logic) is undecidable, we show that uni-
�cation in the pure rami�ed theory of types with in-
teger levels is decidable. But the pure rami�ed theory
of types cannot express even the simplest formulas of
logic. The impure rami�ed type theory has an unde-
cidable uni�cation problem even at order 2. However,
the decidability result for the pure subsystem indic-
ates that uni�cation should fail to terminate less of-
ten than general higher-order uni�cation. We present
applications to two expressive subsystems of second-
order Peano arithmetic, ACA0 and �1

k-CA0.

1 Introduction

Higher-order logic is one of the most expressive form-
alisms in which we can express and prove theorems.
Bertrand Russell proposed two ways of formalizing
it. In rami�ed type theory [WR27], expressions are
strati�ed in a double hierarchy of types (individu-
als, sets, sets of sets, etc.) and of predication levels
(corresponding to times of de�nition, and called or-
ders by them); but the resulting logical system is
too weak to found mathematics, and so-called redu-
cibility axioms are called for. In simple type the-
ory, levels are dispensed with; the resulting language
is Church's simply-typed �-calculus with additional
constants representing logical and non-logical sym-
bols [Chu40]. (See also [And86].)

A central problem in automated theorem proving
and logic programming is that of uni�cation, i.e. de-
ciding whether two terms have a common instance.
Unfortunately, uni�cation in the simple theory of

�Research funded by the HCM grant 7532.7-06 from the

European Union.
yOn leave from Bull Corporate Research Center, rue Jean

Jaur�es, F-78340 Les Clayes sous Bois.

types is undecidable even at order 2 [Gol81]. Our ori-
ginal idea was to re�ne the study of higher-order uni-
�cation by reintroducing rami�cation. This seemed
an interesting idea for two complementary reasons:
�rst, we shall see that rami�ed higher-order uni�c-
ation in its pure form is decidable; second, we can,
in theory, get back the full power of simple type the-
ory by introducing Whitehead and Russell's axioms
of reducibility. Controlling the use of these axioms
would then provide a natural way of controlling the
search for uni�ers in simple type theory. It also
seemed interesting even if we didn't allow for these
axioms. Indeed, rami�ed type theory has natural
restrictions that allow us to formalize weak subsys-
tems of arithmetic like ACA0 or ATR0, which are
still strong enough to formalize most of mathematics
[Sim85]. However, this is only valid in some impure
form of rami�ed type theory, for which uni�cation is
undecidable again (see Section 7.2). But the decidab-
ility result for the pure subsystem indicates that uni-
�cation should fail to terminate less often than gen-
eral higher-order uni�cation (in the simple theory of
types), and so impure rami�ed type theory should be
of practical value in implementing automated proof
methods for the subsystems of arithmetic mentioned
above.

We may sum up the contributions of this paper as
follows. First, we formalize rami�ed type theory in
both a simple and general way, which does not seem
to have been done before. Then, we prove that uni�c-
ation in this pure system is decidable (Corollary 30).
We also provide two negative results: �rst, that this
system is much too weak to formalize any useful frag-
ment of logic; and second, that the most natural ex-
tension that cures this problem, rami�ed type the-
ory with operators, is undecidable even at order 2 |
Goldfarb's encoding still works (Theorem 31). Fi-
nally, we argue that the latter theory should be of
practical value for automating proof search in ACA0

and related systems.

1

The reader willing to learn more about rami�cation
is directed to [LN95] for a modern analysis of what
Whitehead and Russell may have meant precisely by
rami�cation and predicativity. Modern accounts of
these topics are somewhat di�erent, and we shall base
our study on Hazen's point of view [Haz83]; see also
[Cop71, Chu76].
The plan of the paper is as follows. We formalize

a variant of rami�ed type theory as a particular type
system for the �-calculus with equality de�ned by the
� and � rules. This will take Section 2. We then recall
Gallier and Snyder's formalization of Huet's higher-
order uni�cation procedure, and give the rough ideas
for adapting it to rami�ed type theory in Section 3.
The grunt work starts in Section 4, where we establish
all needed basic theorems for our rami�ed calculus.
We show that inferring levels of expressions is decid-
able in Section 5; we need this to check that a uni�er
in the simple theory of types is in fact one in the rami-
�ed theory. Then, in Section 6, we replay the ideas
expounded in Section 3 in a more formal way. We
also deal with the �-case (without �) in Section 6.2.
Finally, we try to put these ideas to work in Section 7,
and come up with our negative results: the logic is too
weak, and adding operators (see Section 7.2) to cure
the problem makes the uni�cation problem undecid-
able again. Section 8 shows how ACA0 and �1

k-CA0

are naturally encoded in the latter impure rami�ed
system. We conclude in Section 9.

2 Rami�ed Type Theory

In this section, we propose a formalization of rami�ed
type theory in a notation that we hope will be famil-
iar to computer scientists, namely a type system for
Church's �-calculus. We also discuss how well it �ts
with usual views on rami�cation, but bear in mind
that our main objective is to �nd decidable restric-
tions of higher-order uni�cation through rami�cation.
Let ST be the algebra of simple types: we have a

non-empty set B of base types (among which, typic-
ally, the types � of individuals and o of propositions),
and simple types � are either base types, or function
types �1 ! �2.
We de�ne the algebra RT of rami�ed types by

adding levels ` taken from an initial segment L of
the ordinals, i.e. L is an ordinal. In the sequel, we
shall assume that L is a limit ordinal, i.e. a non-zero
ordinal that is not a successor, so that for every level
` there is a greater one in L. We shall really be inter-
ested in integer levels, i.e. L = !, as in the original
works by Whitehead and Russell. It should be noted
that there is nothing wrong in taking for L some seg-

ment of the computable ordinals. The idea originates
with G�odel and Wang, and culminated in Feferman's
works on autonomous progressions of predicative sys-
tems, where L = �0 [Haz83].

De�nition 1 (Rami�ed Types) We de�ne both
the set RT of rami�ed types � and their levels l(�)
by simultaneous induction as follows.

The rami�ed types are either base types b | and

we let l(b) = 0 | or function types �1
`
!�2, where �1

and �2 are rami�ed types and ` is a level such that

` � l(�1) | then we let l(�1
`
!�2) = max(`+1; l(�2)).

We assume that ! and
`
! associate to the right, so

that �1 ! �2 ! �3 denotes �1 ! (�2 ! �3), for ex-
ample.

The idea is that, while the simple type �1 ! �2 is the

type of all total functions from �1 to �2, �1
`
!�2 is the

type of all those functions that act on concepts de�ned
at or after time `. (Not just at time `: contrarily
to Whitehead and Russell, but following Hazen, we
consider the hierarchy of levels to be cumulative, i.e.
everything at level ` is also at all higher levels.)

There is a simple connection between simple and
rami�ed types: let the erasing map be de�ned on
rami�ed types as follows: E(b) = b for all base types

b, and E(�1
`
!�2) = E(�1)! E(�2).

The order r(�) of a rami�ed type � is de�ned in-
ductively as follows. For any base type b, r(b) = 0;

and r(�1
`
!�2) = max(r(�1) + 1; r(�2)). Levels do not

play any role here, and orders of simple types are
de�ned similarly.

We now consider a variant of the �-calculus [Bar84]
as the basic language for building terms and formu-
las. The �-terms s, t, u, v, : : : are variables x, y,
z, : : : , constants c, applications uv, and abstractions
�x � u. We assume that application associates to the
left, i.e. uvw denotes (uv)w, and that abstractions
extend as much right as possible. We also denote
by FVC(s) the set of free variables or constants of
s. (Think of constants as ordinary variables of the
�-calculus, with the di�erence that we cannot substi-
tute any term for them.) To avoid variable capture
problems, we also adopt Barendregt's convention that
no free variables occurs bound, and that no two oc-
currences of � bind the same variables (this involves
some renaming of bound variables). Substitutions �
are �nite maps from variables x1, : : : , xn to �-terms
v1, : : : , vn, are are written [v1=x1; : : : ; vn=xn]. The
application u� of the substitution � to the term u

is then de�ned straightforwardly as textual substitu-
tion; the composition ��0 is the only substitution such

2

that u(��0) = (u�)�0 for all terms u; and the domain
dom � of � is the set of variables x such that x 6= x�.
We consider that the variables and constants have a

uniquely determined rami�ed type � and level ` such
that ` � l(�). To emphasize it, we shall write x`�
instead of x to state that x is given type � and level
` (resp. c`� instead of c). When context permits, we
shall leave these annotations implicit.
We consider that two terms that di�er only by a

change of bound variables of the same simple type
are equal (�-renaming), i.e. �x`� � u = �y`

0

� 0 � u[y
`0

� 0=x
`
�]

provided that E(�) = E(� 0). We shall explain this
shortly.
The calculus is then endowed with the following two

standard reduction relations:

(�) (�x � u)v ! u[v=x]
(�) �x � ux! u (provided x is not free in u)

We write �!� the smallest relation on terms con-
taining (�) and stable by context application. More
formally, call a context any term with exactly one hole
[]: the contexts C are described by the grammar:

C ::= [] j CT j TC j �X � C

where T is the set of terms and X the set of vari-
ables. We note C[t] the result of replacing the hole
in C with the term (or context) t. The �!� relation
is then de�ned as C[s] �!� C[t] for every context C,
and every �-redex s (= (�x � u)v) whose contractum
(= u[v=x]) is t. We write

�
�!� its re
exive trans-

itive closure,
+
�!� its transitive closure, and =� its

re
exive symmetric transitive closure. Similarly with
�!��,

�
�!��,

+
�!�� and =�� , etc.

It would seemmore natural to use a more restricted
�-renaming rule, whereby �x`� � u = �y`

0

� 0 � u[y
`0

� 0=x
`
�]

provided that � = � 0 and ` = `0. However, in the
presence of �, this is not enough to ensure that the
resulting calculus is con
uent: if x is not free in u,
then �x`� �(�y

`0

� 0 �u)x reduces by � to �x
`
� �u[x=y], or by

� to �y`
0

� 0 �u. If the �rst term is typable, then intuitively
� and � 0 will have the same erasures, and this is why
we consider the less restricted �-equivalence to be
able to consider them equal.
We shall therefore write abstractions as �x� � u,

where � is the erasure of any rami�ed type that dec-
orates the bound variable x, and we forget about
the level labelling x. Although this seems to defeat
the purpose of rami�cation, this is not so. We shall
see, for example, that higher-order rami�ed uni�ca-
tion with integer levels is decidable, although it is not
so in the simply-typed case.
For now, and before we introduce the precise typing

rules that we shall use, let us analyze the paradox in

intuitive terms. The �-notation is short for express-
ing the comprehension axioms of rami�ed type theory,
i.e. (omitting a few details) for every term u there is a
term v such that 8x`� � (vx � u), where � is a suitable
notion of equality. If we take � to mean coextension-
ality (as in [Chu76], for example), then v1 � v2 if and
only if 8x1; : : : ; xn � v1x1 : : :xn , v2x1 : : : xn, where
x1, : : : , xn are variable containing all those of v1 and
v2, and the usual type and level provisos are obeyed.
We have decided to write �x`� � u for such a term v.
Now, assuming that � is a congruence (in particu-
lar, passes to context), it follows that � is valid, i.e.
transforms a term into an �-equal term. The real
problem is that � may not be a congruence: indeed,
the rule that u � v implies fu � fv is not deductible
in general.
On the other hand, if we choose for � a form of

Leibniz equality, namely v1 � v2 if and only if for
every property P of suitable type and level, Pv1 holds
if and only if Pv2 holds, then there is no reason why �-
equality should hold. But there is no reason why the
rule �: u � v implies �x�u � �x�v, should hold either.
I.e., if we take the purely intensional route to rami�ed
logics (as described and discussed in [Cop71]), the �-
notation itself is at stake. This is discussed further in
[Haz83], Section 2.
All this boils down to the fact that we have just

made a choice of a particular rami�ed logic, with
rather strong extensionality conditions expressed by
the � rule and a liberalized �-conversion rule. This is
not a departure from usual predicative logics, while it
certainly simpli�es the presentation of the framework.
We shall examine brie
y what happens if we drop the
� rule in Section 6.2.
Finally, we consider the typing rules shown in Fig-

ure 1. A decorated type �=` is just a pair of a type-
to-be � and a level `. These rules derive a decorated
type �=` for each expression u as a judgement u : �=`.
We shall see (Lemma 2) that, whenever we can derive
u : �=`, then � will really be a rami�ed type and
` � l(�) will hold. The latter is a condition of rami-
�cation, saying that u cannot be de�ned earlier than
its constituents, and is analogous to the constraint
that we have imposed on function types in De�ni-
tion 1. Furthermore, rule (Abs) includes explictly the
�-conversion rule. We might have left it implicit by
stating (Abs) as:

u : �2=`2

�x`1�1 � u : �1
`1
!�2=max(`1 + 1; `2)

and stating that if u : �=` is derivable, then any �-
variant of u also has type � and level `, but we feel
that rule (Abs) is more readable.

3

(V ar)
x`� : �=`

u : �=` � v � 0 ` � `0

(Cml)
u : � 0=`0

(x variable or constant)

u : �1
`1
!�2=`2 v : �1=`1

(App)
uv : �2=`2

u[y`1�1=x] : �2=`2 � = E(�1) y 62 FVC(u)
(Abs)

�x� � u : �1
`1
!�2=max(`1 + 1; `2)

b base type
(Rfl)

b v b

� 01 v �1 �2 v � 02 l(� 01) � `0 � `
(Sub)

�1
`
!�2 v � 01

`0

!� 02

Figure 1: Typing rules

Type and level annotations on variables and con-
stants are used in rule (V ar). Recall that, for every
variable x`� , � is assumed to be a rami�ed type and `
is assumed to be at least l(�). Observe that this im-
plicitly means that �1 is a rami�ed type and `1 � l(�1)
in rule (Abs). In all other cases, we do not require
the objects � , �1, �2, �

0
1, �

0
2 to be types, unless ex-

plicitly required (in rule (Rfl)). We shall however
see (Lemma 2) that, in any derivation, they will be
rami�ed types.
Although it is not assumed in usual texts on rami-

�ed type theory [Haz83], we also assume a subtype
relation v to express the cumulativity of levels. (We
need this in establishing the basic theorems of Sec-
tion 4.) That the levels are cumulative means that
if an object is typed at some level `, then it is also
typed at all higher levels. Now, intuitively, every ob-

ject of type �1
`
!�2 is a function that can be applied

to objects of level `, or by cumulativity to objects of
levels at most `. So it is consistent to require every

object of type �1
`
!�2 to be of type �1

`0

!�2 also, with
`0 � `: this is the gist of rules (Cml) and (Sub).
Our system is slightly richer than usual rami�ed

systems, in that everything at some level is also at
all higher levels. Usually [Haz83], it is just assumed
that we may promote v to a higher level when using
it as an argument of some function symbol f or of
some other term u. In particular, �rst-order variables
(variables of base types) are usually taken to be at
level 0, where 0 is the least level; we allow them to be
at any level we wish. This is naturally not essential.
We �nally de�ne:

De�nition 2 For every ordinals � � ! and �, we
let ��� be the set of �-terms that are typable in the
rami�ed type theory, and such that:

� all types of subterms have order < �;

� the set L of levels is the set of all ordinals < �.

Therefore, the theory of Whitehead and Russell with
cumulative levels would be �!!, while Feferman's sys-
tems could be expressed in ��02 .

3 Uni�cation

Say that a substitution � is well-typed if and only if
it binds every variable x`� to a term x� of type �=`;
equivalently, to a term x� of type � 0=`0 such that � 0 v
� and `0 � `. Similarly, we say that a substitution � is
well-simply-typed if and only if it binds every variable
x`� to a term x� of simple type E(�).

We write fja; b; c; : : : jg the multiset consisting of a,
b, c, : : : and] for multiset union. The notation ha; bi
denotes an unordered pair, which is the same as hb; ai.

The uni�ability problem in any language ��� is the
following:

INPUT: a �nite multiset M of unordered pairs of
simply-typed terms in �-normal form fjhui; vii j 1 �
i � njg in ���.

QUESTION: is there a well-typed substitution �

such that ui� =�� vi for every i, 1 � i � n?

This problem is so close to uni�ability in the simple
theory of types (just ignore the levels) that a variant
of Huet's procedure [Hue75], augmented with level
checks, will solve the problem. The idea is simple:
if � is a rami�ed uni�er of M , then ui� =�� vi for
every i, 1 � i � n, so � is also a uni�er of M is
simple type theory. To �nd such �'s, therefore, apply
Huet's procedure, and at speci�ed times check that
the current partial uni�er has some instances that are
erasures of well-typed rami�ed substitutions �. The
only di�culty lies in the latter: level checks need to
be carefully designed.

4

3.1 Type Restrictions

With uni�cation in the simple theory of types, the
input M could be restricted so that ui and vi had
the same type for each i, 1 � i � n; otherwise, there
could not be any uni�er for M . The reason is that:

(R1) if u has simple type �, then for any well-simply-
typed substitution �, u� has type �, and

(R2) if for some well-simply-typed substitution �, u�
has simple type �, then u has type �.

(R3) if u has simple type � and u
�
�!��v, then v has

simple type � (subject reduction), and

(R4) if u has a simple type and v has simple type �
and u

�
�!��v, then u has simple type �.

(R3) in fact follows from (R1), and (R4) follows from
(R3) and the fact that each term has a unique simple
type.
In the rami�ed theory of types, (R1) still holds if

we read decorated type instead of type: this is The-
orem 10, to be proved in Section 4. However, (R2)
does not hold. For instance, let u be x6� and � be
[a2�=x], where a is some constant. Then the types of
u are all those that are at least �=6 in the v � �

ordering on decorated types, while those of u� are
those of a2� , namely all types that are at least �=2.
In particular, u� has types �=2, �=3, �=4, �=5, which
are not types of u.
So, we cannot restrict ourselves to pairs hui; vii

having the same decorated types. However, let's say
that two decorated types �=` and � 0=`0 are compatible
if and only if E(�) = E(� 0). Then we can assume
that the input to the uni�cation problem consists of
pairs hui; vii of typed terms with compatible types.
Otherwise, the uni�cation problem trivially has no
solution.

3.2 Huet's Procedure

We recall how Huet's procedure works. There is noth-
ing new in this section, as it is but a summary of
[SG89].
Assume that all the terms that we use are simply

typed. Huet's procedure not only tests for uni�ab-
ility, but returns a complete set of preuni�ers, in a
sense which we shall recall shortly.
First, we only use terms in �-normal form. This is

possible because all terms are terminating. We shall
write u # for the unique �-normal form of the term
u, and similarly for multisets of pairs of terms, etc.
These normal forms are of the form �x1 � : : : ��xm �

au1 : : : un, where m � 0, n � 0, a is a variable or a

constant called the head of the term, and u1, : : : , un
are terms in �-normal form. For brevity, we write this
as �xm � aun. If a is a constant or a bound variable
xi, 1 � i � m, then we say that the term is rigid ; it
is
exible otherwise.

The �-expanded form �[u] of a term u is de�ned
as follows: if u = �xm � aun and u has simple type
�1 ! : : : ! �m ! �m+1 ! : : : ! �m+k ! b, where
k � 0 and b is a base type, then �[u] equals:

�x1 � : : : � �xm � �xm+1�m+1
� : : : � �xm+k�m+k

�

a(�[u1]) : : : (�[un])(�[xm+1]) : : : (�[xm+k])

Then, ui� =�� vi� if and only if �[ui]�[�] =�

�[vi]�[�], where �[�] is the substitution mapping each
x 2 dom � to �[x�]; i.e., we only need compare
terms by �-equality. Moreover, we may look for uni-
�ers � that are idempotent , i.e. such that FVC(x�)\
dom � = ; for every x 2 dom �, and normalized , i.e.
x� is an �-expanded form for every x 2 dom �. This
is Section 2 of [SG89].

The uni�cation procedure works by stepwise trans-
formation of systems S, i.e. of multisets of unordered
pairs of terms with the same simple types. A pair
h�[x]; �[s]i is in solved form in S if and only if
the only occurrence of x in S is in the �[x] com-
ponent of the given pair. S is itself solved if and
only if all its pairs are solved in S. As usual,
a solved system fjh�[x1]; �[s1]i; : : : ; h�[xk]; �[sk]ijg
de�nes an idempotent and normalized substitution
[�[s1]=x1; : : : ; �[sk]=xk].

To approximate individual bindings, we need the
following notion of partial bindings (see [SG89],
De�nition 4.8):

De�nition 3 Let � be a simple type, which we write
�1 ! : : : �n ! b with b a base type, and a be a variable
or constant of simple type �01 ! : : : �0m ! b.

For each 1 � i � m, let's write �0i as �00
i
1 !

: : : �00
i
pi
! bi, where bi is a base type.

The set B(�; a) of partial bindings of type � and
head a is the set of terms of the form:

�y1�1 � : : : � �yn�n �

a(�z1p1 �H1ynz1p1) : : : (�z
m
pm

�Hmynzmpm)

where:

1. for every 1 � i � m, 1 � j � pi, z
i
j is a variable

(zij)�00i
j

;

2. for every 1 � i � m, Hi is a variable
(Hi)�1!:::�n!�00i

1
!:::�00ipi

!bi
;

5

If u has type �, the set B(u; a) of partial bindings
of head a appropriate to u is B(�; a).

A partial binding is an imitation binding for a if a
is either a function symbol or a free variable; it is a
projection binding if a is one of the bound variables
yi, 1 � i � n; we let PBi(�) and PBi(u) denote
B(�; yi) and B(u; yi) respectively.

Notice that any element of B(�; a) has type �. We say
that a partial binding has fresh head variables if and
only if H1, : : : , Hm are pairwise distinct and do not
occur free in the context.

Finding solved forms is not required in most applic-
ations, and the search for them involves a highly non-
deterministic procedure [SG89]. Huet's solution was
to modify the notion of solved form so that
exible-

exible pairs (i.e., pairs h�xk �Fum; �xk �Gvni, with F
and G free variables) would be considered as solved.
We say that a pair in S is presolved in S if and only if
it is either solved or consists of two
exible terms. A
system S is in presolved form if and only if it consists
in presolved pairs.

The trick is that any
exible-
exible pair is always
uni�able: for each simple type �, which we write �1 !
: : : �n ! b with b a base type, let ê� be the term �x1�1 �

: : : � �xn�n � vb, where vb is a distinguished variable
that will never be used in any other term. Letting �
be the substitution mapping each variable of type � to
ê�, and letting � be the substitution corresponding to
the non-
exible-
exible pairs in S, then �� is always
a uni�er of S, hence of M . Such a � is called the
preuni�er associated with S.

Gallier and Snyder's rules for preuni�cation are
those of Figure 2. These rules are sound (in the sense
that all presolved forms denote preuni�ers) and com-
plete (in that every uni�er is an instance of some pre-
uni�er derived from the rules). Moreover, Gallier and
Snyder show that (Delete), (Decomp) and (Bind)
can be applied eagerly (in particular, right after (Im-

itate) or (Project)). And, as far as the
exible-rigid
pair on which to apply (Imitate) or (Project) is
concerned, there is no non-determinism associated to
its choice, and we can commit ourselves to any pair
we please. The restriction \F free in S" in (Bind)

is ours, as well as \F unsolved" in (Imitate) and
(Project); this preserves soundness and complete-
ness, and is intended to prevent this rule from being
applied inde�nitely in the rami�ed case.

3.3 Introducing Rami�cation

What do we have to do to adapt this procedure to
rami�ed type theory? Basically, we have to check all

the constraints between levels that we have left out
by reasoning in the simple theory of types.

The �rst thing is, given a system S in solved form
describing a uni�er �, to check whether there is a
normalized instance (��0) # of � that is a well-
typed rami�ed substitution, at least when restricted
to FVC(S) and with proper levels annotating types
and all new free variables.

We shall attack this problem by showing that it re-
duces to a simpler subproblem (the reduction is the
content of the technical Lemma 13 to come). The sim-
pler problem is: can we put back levels on type ar-
rows and free variables of a term, or of several terms,
so that it becomes well-typed in the rami�ed sense?
It will turn out that this is a rather simple problem,
which we shall solve by graph-theoretic techniques in
Section 5.

Once we have overcome these small hurdles, it will
be clear that rami�ed higher-order uni�cation is not
much more complicated that uni�cation in the simple
theory of types. In fact, in terms of algorithmic com-
plexity, is is much simpler, at least in the case where
all levels are integer: indeed, the main claim of this
paper is that it is decidable.

The intuitive reason why is the following. Assume
that � is a uni�er. In rules (Imitate) and (Pro-

ject), the partial binding t is of the general form �yn �

a(�zpm �Hmyn zpm), to take a condensed notation
due to Gallier and Snyder. Now, modulo �, the level
of F should be that of t, which by (Abs) should be at
least the level ` of a(�zpm �Hmyn zpm). The level of
a itself should then be ` by rule (App), but it can only
apply to objects of strictly lower levels `i, 1 � i � n

(the type of a is of the form �1
`1
! : : : �m

`m
!�=`, with

` � max(`1+1; : : : ; `m+1; l(�))). So the level of F is
strictly more than that of �zpi �Hiym zpi , in particular
than that of Hi, for each i.

Now in any derivation M = S0 ! S1 ! : : : !

Sm ! : : : following the rules of Figure 2, the only
rules that create new variables are the above two, and
they must create variables of lower and lower ordinal
levels. Therefore, if we keep track of levels of free
variables as above, these rules can be invoked only
�nitely many times in such a derivation. And since
(Delete), (Decomp) and (Bind) terminate, any de-
rivation fromM must terminate.

As it stands, this informal argument is not entirely
correct, but it gives the rough idea. We shall formalize
it in Section 6.

When the set of levels is ! or smaller, it follows
by K�onig's Lemma that the whole modi�ed proced-
ure terminates; for the language �!!, for instance,
whenever we know that the level of F should not ex-

6

(Delete) S0] fjhu; uijg �! S0

(Decomp) S0] fjh�xk � aun; �xk � avnjg �! S0] fjh�xk � u1; �xk � v1i; : : : ; h�xk � un; �xk � vnijg

where a is a constant or a bound variable xi, 1 � i � k

(Bind) S0] fjh�xk � Fxk; �xk � vijg �! (S0[�xk � v=F]) #] fjh�xk � Fxk; �xk � vijg

with F variable not free in �xk � v, F 62 fx1; : : : ; xkg, F free in S0

(Imitate) S0] fjh�xk � Fun; �xk � avmijg �! S0] fjh�[F]; ti; h�xk � Fun; �xk � avmijg
with F unsolved variable other than x1, : : : , xk, a constant,
and t 2 B(F; a) with fresh head variables

(Project) S0] fjh�xk � Fun; �xk � avmijg �! S0] fjh�[F]; ti; h�xk � Fun; �xk � avmijg
with F unsolved variable other than x1, : : : , xk, a constant or bound variable,
t 2 PBi(F) with fresh head variables and such that the head of ui is a

Figure 2: Rules for higher-order preuni�cation

ceed `, we know that those of H1, : : : , Hm should not
exceed `�1. Then, the set of all derivations as above
forms a �nitely-branching tree whose branches are all
�nite, so by K�onig's Lemma, this tree must be �nite,
yielding a terminating algorithm for uni�ability in �!! .

However, for larger sets of levels, this is not so
easy; indeed, when keeping track of levels as above,
whenever ` is a limit ordinal, we cannot compute `�1,
and we have to guess a new bound `i < ` on the level
of Hi. There are always in�nitely many such possible
bounds, because the co�nality of any limit ordinal is
at least !. Then, although all branches of the search-
tree are �nite, the rules that need to produce a partial
binding must be replicated in an in�nite-branching
non-deterministic choice, which invalidates the above
argument. We conjecture that uni�cation in ���, for �
and � large enough, is undecidable. More precisely,
we conjecture that uni�cation in �!+12 is undecidable.

4 Basic Theorems

We �rst study the v relationship, which is entirely
de�ned by the only rules (Rfl) and (Sub):

Lemma 1 v is an order relation on rami�ed types.
Moreover, if � v � 0, then l(�) � l(� 0).

Proof: Re
exivity follows by a straightforward in-
duction on the type derivation.
Symmetry means that if � v � 0 and � 0 v � , then

� = � 0. We show this by simultaneous induction on
derivations of these two inequalities. If the last rule
of at least one of the derivations is (Rfl), then this is
trivial. Otherwise, the last rule is (Sub) in each case,

so that � = �1
`
!�2, �

0 = � 01
`0

!� 02 with �
0
1 v �1, �2 v � 02

and `0 � ` on one hand, and �1 v � 01, �
0
2 v �2 and

` � `0 on the other hand. By induction hypothesis we

have �1 = � 01, �2 = � 02, and by symmetry of � we have
` = `0. So � = � 0.

We go on to transitivity. Assume that we have de-
rivations of � v � 0 and of � 0 v � 00: we show that
� v � 00 by simultaneous induction on the former de-
rivations. This is clear if one of those derivations ends

in (Rfl). Otherwise we have � = �1
`
!�2, �

0 = � 01
`0

!� 02,

� 00 = � 001
`00

!� 002 , with �
0
1 v �1, �2 v � 02 and `

0 � ` on the
one hand, and � 001 v � 01, �

0
2 v � 002 and `00 � `0 on the

other hand. By induction hypothesis it follows that
� 001 v �1, �2 v � 002 , and by transitivity of � we have
`00 � `, so by one application of (Sub) we get � v � 00.

Finally, we show that � v � 0 implies l(�) � l(� 0)
by induction on the derivation of the former. If the
last rule is (Rfl), this is clear. Otherwise we have

� = �1
`
!�2 with � 01 v �1, �2 v � 02 and `0 � `. By

induction hypothesis, l(�2) � l(� 02), so that l(�) =
max(` + 1; l(�2)) � max(`0 + 1; l(� 02)) = l(� 0). 2

It follows from this Lemma that we can normalize
derivations by merging every sequence of instances of
(Cml) into just one instance. Since nothing prevents
us from taking � 0 = � and `0 = ` in this rule, we may
also consider that exactly one instance of (Cml) is
used just after every application of (V ar), (App) or
(Abs).

Lemma 2 If the inequality � v � 0 is derivable, then
� and � 0 are rami�ed types.

Proof: By structural induction on the derivation. If
it ends in (Rfl), then this is clear because then � =
� 0 = b for some base type b. If it ends in (Sub), then

� = �1
`
!�2, �

0 = � 01
`0

!� 02. By induction hypothesis, �1,
�2, �

0
1, �

0
2 are rami�ed types. Moreover, `0 � l(� 01),

so � 0 is a rami�ed type. And since � 01 v �1, we have
l(� 01) � l(�1) by Lemma 1: since ` � `0 � l(� 01), it

7

follows that ` � l(�1), so that � is also a rami�ed
type. 2

We then check that all the rules preserve the rami-
�cation constraints:

Lemma 3 For every term u, if u : �=` is derivable,
then � is a rami�ed type and ` � l(�).

Proof: By induction on the derivation of u : �=`.
If the last rule is (V ar), then this follows from our
assumption that variables and constants are decorated
with rami�ed type � and levels ` such that ` � l(�).
If the last rule is (Abs), then let it be as in Fig-

ure 1. Then � , i.e. �1
`1
!�2, is a rami�ed type since

�1 and �2 are (by assumption on the variable y`1�1 and
by induction hypothesis respectively) and `1 � l(�1)
(by assumption on the variable x). Moreover ` =
max(`1 + 1; `2). By induction hypothesis `2 � l(�2).

Therefore ` � max(`1 + 1; l(�2)) = l(�1
`1
!�2) = l(�).

If the last rule is (App), then let it be as in Fig-
ure 1. Then by induction hypothesis on the left

premise, �1
`1
!�2 is rami�ed, hence �2 is rami�ed; and

` = `2 � l(�1
`1
!�2) = max(`1+1; l(�2)) � l(�2) = l(�).

If the last rule is (Cml), then by Lemma 1 l(�) �
l(� 0) and by induction hypothesis ` � l(�). Since `0 �
`, it follows by transitivity that `0 � l(� 0). Moreover
by Lemma 2 � 0 is a rami�ed type, hence the claim. 2

4.1 Normal Derivations

This type system may be simpli�ed as follows:

De�nition 4 Let (V ar0) be the following rule:

� v � 0 ` � `0

x`� : �
0=`0

Call a normal type derivation any derivation of a
type judgement using only rules (V ar0), (App), (Abs),
(Rfl) and (Sub).

Lemma 4 Let � be a normal derivation of u : �2=`2.
For any rami�ed type � 01 and level `01 such that � 01 v
�1, `

0
1 � `1 and `01 � l(� 01), there is a normal de-

rivation of u[y
`01
� 0
1

=x`1�1] : �2=`2, where y is not free in
u.

Proof: By structural induction on u. If u is x`1�1 ,
then � is:

�1 v �2 `1 � `2
(V ar0)

x : �2=`2

By the transitivity of v (Lemma 1) and of � we have

� 01 v �2 and `01 � `2, so that y
`01
� 0
1

: �2=`2 is derivable

by (V ar0) as well.

If u is another variable, then u[y=x] = u and the
claim is trivial.
If u is an application vw, then the last rule of � was

(App), and � was of the form:

�
�
�

v : �3
`3
!�2=`2

�
�
�

w : �3=`3
(App)

vw : �2=`2

By induction hypothesis v[y
`01
� 0
1

=x`1�1] : �3
`3
!�2=`2 and

w[y
`01
� 0
1

=x`1�1] : �3=`3 have normal derivations. Adding

an instance of (App) to the latter two yields a normal

derivation of (vw)[y
`01
� 0
1

=x`1�1] : �2=`2.

If u is an abstraction �z� � v, then � is of the form:

�
�
�

v[z0
`3
�3
=z] : �4=`4 � = E(�3) z0 62 FVC(v)

(Abs)
�z� � v : �3

`3
!�4=max(`3 + 1; `4)

where �2 = �3
`3
!�4 and `2 = max(`3 + 1; `4). By

induction hypothesis v[z0
`3
�3
=z][y

`01
� 0
1

=x`1�1] : �4=`4 has a

normal derivation. By the variable naming conven-
tion, x 6= z, y 6= z; and we can always transform
the normal derivation above so as to ensure that z0 is
not equal to either x or y. Then the term above is

also v[y
`01
� 0
1

=x`1�1][z
0`3
�3
=z], and we can prolong the latter

normal derivation by appending (Abs) to get a normal

derivation of (�z��v)[y
`01
� 0
1

=x`1�1] : �3
`3
!�4=max(`3+1; `4).

2

Lemma 5 Let � be a normal derivation of s : �=`.
For any � 0 and `0 with � v � 0 and ` � `0, there is a
normal derivation of s : � 0=`0.

Proof: By induction on � (or s). If � ends in
(V ar0), then this follows from the transitivity ofv and
�. If � ends in (App), then this follows by induction
hypothesis on the left premise.
If � ends in (Abs), then let it be as in Figure 1:

(1) � = �1
`1
!�2 and (2) ` = max(`1 + 1; `2). Since

� v � 0, it must be the case that (3) � 0 = � 01
`01
!� 02,

with (4) � 01 v �1, (5) �2 v � 02, (6) `
0
1 � `1 and (7)

l(� 01) � `01. Since `
0 � ` and by (2), we must have (8)

`0 � `2. By induction hypothesis on the premise using
(5) and (8), there is a normal derivation of u[y`1�1=x] :
� 02=`

0. By Lemma 4 using the fact that � 01 is a rami�ed
type, and using (4), (6) and (7), there is a normal

derivation of u[y`1�1=x][y
0`
0

1

� 0
1

=y] : � 02=`
0 for any y0 not

free in u[y`1�1=x]. Choose y
0 not free in u and di�erent

8

from y. As y is not free in u, it follows that we have

a normal derivation of u[y0
`01
� 0
1

=x] : � 02=`
0. Then, by (4)

E(�1) = E(� 01) = �, so we can apply (Abs) and get a

normal derivation of �x� � u : �
0
1

`01
!� 02=max(`

0
1 + 1; `0).

Since `0 � ` and by (2), we have `0 � `1 + 1, whence
`0 � `01 + 1 by (6), so max(`01 + 1; `0) = `0. Moreover

� 01
`01
!� 02 is just � 0 by (3), so that we have a normal

derivation of �x� � u : �
0=`0. 2

Theorem 6 (Normalization) A typing judgement
u : �=` has a derivation in the system of Figure 1 if
and only if it has a normal derivation.

Proof: If: any normal derivation can be trivially
rewritten into a derivation in the system of Figure 1 by
replacing each instance of (V ar0) into the appropriate
instances of (V ar) and (Cml).
Only if: this is proved by structural induction on

a derivation �. If � ends in (V ar) and concludes
x`� : �=`, then we replace it by:

� v � ` � `
(V ar0)

x`� : �=`

Indeed, because �; x : �=` is a context, � is a rami�ed
type, and therefore � v � is derivable by Lemma 1.
If � ends in (App) or in (Abs) then by induction hy-

pothesis we can transform the subderivations whose
conclusions are the premises of the rules into normal
derivations. This transforms � into a normal deriva-
tion.
Finally, if � ends in (Cml), then it has the form:

�
�
�
�0

u : �=` � v � 0 ` � `0

u : � 0=`0

By induction hypothesis, there is a normal proof �00

of u : �=`. By Lemma 2, � 0 is a rami�ed type, so by
Lemma 5, there is a normal derivation of u : � 0=`0. 2

One property that we have in the simple theory of
types and which fails here is the unicity of types.
Namely, every typable term has many di�erent types,
because of the subtyping rule (Sub). Because of this
same rule, the set of types of a given typable term
is an upper v-ideal. This will complicate a bit our
analysis of uni�cation.

4.2 The Vicious Circle Principle

One of the arguments that Russell proposed in favor
of rami�cation was that it disallowed so-called vicious

circles (\whatever involves all of a collection must not
be one of the collection"). Theorem 8 below gives the
precise sense in which our system implements Rus-
sell's vicious circle principle.

Lemma 7 Let x be a variable or a constant. Let s be
a term where x`� occurs free, and assume that s : � 0=`0

is derivable in the system of Figure 1. Then `0 � `.

Proof: By induction on the derivation. If the last
rule is (V ar), this is obvious. If it is (Cml), this
follows directly from the induction hypothesis.

If the last rule is (App), then s = uv and `0 = `2. If
x is free in u, then by the induction hypothesis on the
left premise, `0 � `; otherwise, x must be free in v,
so that by induction hypothesis in the right premise,
`1 � `. But by Lemma 3 on the left premise, `2 �

l(�1
`1
!�2) = max(`1 + 1; l(�2)) � `1 + 1 > `1 � `,

hence `0 > `.

If the last rule is (Abs), then s = �x� � u and `0 =
max(`1+1; `2), where by induction hypothesis `2 � `.
So `0 � `2. 2

Theorem 8 Let u1, : : : , un be terms, n � 1, and
assume that the variable or constant x occurs free in
some ui, 1 � i � n. Then xu1 : : :un is not typable in
the system of Figure 1.

Proof: Assume that xu1 : : :un is typable. By The-
orem 6 it has a normal derivation. Furthermore x
must be of the form x`

�1
`1
!:::�n

`n
!�

, with in particular

(1) ` � max(`1 + 1; : : : ; `n + 1; l(�)).
Without loss of generality, we may consider that

x is free in un. Consider a normal derivation of a
decorated type for xu1 : : :un:

(V ar0)

x : � 01
`01
! : : : � 0n

`0n
!� 0=`0 u1 : �

0
2=`

0
2
(App)

xu1 : �
0
2

`02
! : : : � 0n

`0n
!� 0=`0

�
�
�

xu1 : : :un�1 : �
0
n

`0n
!� 0=`0 un : �

0
n=`

0
n
(App)

xu1 : : : un : �
0=`0

where in particular (2) `0i � `i for every 1 � i � n.
By Lemma 7 and since x is free in un, `

0
n � `. By (2)

with i = n, it follows that `n � `. By (1) ` � `n + 1,
hence ` � `+ 1, which is impossible. 2

So, if x is a n-ary predicate variable, we cannot ex-
press the fact that it must hold of some n-tuple of
individuals whose de�nitions involve x itself. This is
how rami�cation prohibits vicious circles.

9

4.3 Reduction

Let's now return to more mundane, basic proper-
ties, and in particular let's examine how term typings
evolve through reduction. First, rami�cation behaves
well under substitution:

Lemma 9 If u : � 0=`0 and v : �=` are derivable, then
so is u[v=x`�] : �

0=`0.

Proof: By induction on the derivation of u : � 0=`0.
If u = x, then this is obvious. Otherwise, the last
rule in the derivation is (App), (Abs), or (Cml), and
the claim follows straightforwardly from the induction
hypothesis (and the fact that, thanks to the variable
naming convention in the case of (Abs), we have (�y �
u)[v=x] = �y � u[v=x]). 2

Theorem 10 (Subject Reduction) If s : �=` is
derivable and s

�
�!�t (resp. s

�
�!��t), then t : �=`

is derivable.

Proof: By induction on the length of a normal de-
rivation. It is enough to prove the claim for the two
cases s �!? t, where ? is either � or �. Take s = C[s0],
t = C[t0], where s0 is the redex and t0 is its contractum.
We prove the claim by induction on C. The induction
cases (C of the form C0w, wC0 or �x � C0) are trivial,
and it remains to prove the base case, namely when s
is itself the redex.
If s is a �-redex (�x� � u)v, then t = u[v=x]. Look

at the normal derivation of s : �=`:

�
�
�

u[y`1�1=x] : �=`
(Abs)

�x� � u : �1
`1
!�=`

�
�
�

v : �1=`1

(�x� � u)v : �=`

where � = E(�1). By Lemma 9, u[y`1�1=x][v=y
`1
�1
] : �=`

is derivable. Since y is not free in u, the latter term
is u[v=x], whence the claim.
If s is an �-redex �x� �ux, with x not free in u, then

necessarily the derivation of s : �=` ends in:

�
�
�
�

u : � 01
`01
!�2=`2

(V ar0)
y`1�1 : �

0
1=`

0
1
(App)

uy : �2=`2
(Abs)

�x� � ux : �1
`1
!�2=max(`1 + 1; `2)

where (1) �1 v � 01, (2) `1 � `01 (rule (V ar0)), (3)

� = E(�1) (rule (Abs)) and (4) � = �1
`1
!�2, (5) ` =

max(`1 + 1; `2). Moreover (6) `1 � l(�1) because of

the assumption on the decoration of the variable y.

By (1), (2) and (6) it follows that � 01
`01
!�2 v �1

`1
!�2;

since `2 � max(`1 + 1; `2) as well, we can build the
derivation:

�
�
�
�

u : � 01
`01
!�2=`2

(Cml)

u : �1
`1
!�2=max(`1 + 1; `2)

which proves the claim. 2

Subject reduction is important, for without it �-
reduction or ��-reduction would be a meaningless
concept within the rami�ed typed universe. In par-
ticular, the Church-Rosser property of the untyped
�-calculus transfers to the rami�ed typed �-calculus
just because subject reduction works (and because
of �-conversion). Also, it will be important in uni-
�cation, because applying a substitution to a term
is then followed by a normalization phase, which by
Theorem 10 will preserve well-typedness.

Equally important is the fact that, in some sense,
the rami�ed type theory is a subtheory of the simple
type theory, a fact that we have used in the informal
presentation of Sections 3.2 and 3.3:

Lemma 11 If u : �=` is derivable in the system of
Figure 1, then u : E(�) is derivable in the simple
theory of types.

Proof: To be precise, by the simple theory of types
we mean the set of rules:

(V ar�)
x`� : E(�)

u : �1 ! �2 v : �1
(App�)

uv : �2

u : �2
(Abs�)

�x�1 � u : �1 ! �2

i.e., we keep levels on variables, although they are
useless.

The claim is then a trivial induction on the de-
rivation: (V ar), (App) and (Abs) rules translate to
(V ar�), (App�) and (Abs�) respectively, while (Cml)
steps are erased. Indeed, whenever � v � 0, we have
E(�) = E(� 0): this is an easy induction on the deriv-
ation of the inequality. 2

Corollary 12 The rami�ed theory of types is con-
vergent: every � (resp. ��) reduction terminates to a
unique normal form.

10

Proof: Every derivation in the rami�ed calculus
is also a derivation in the simply-typed calculus. (In
particular, any �-conversion step in the former is an
�-conversion step in the latter.) So the rami�ed cal-
culus is terminating.
Conversely, let u be a term of decorated type �=`

that reduces to v and w along di�erent reduction
paths. Because the pure �-calculus is con
uent, the
simply-typed calculus is [Bar84]; now v and w have
types E(�) in the simple theory of types by Lemma 11
applied to u and Theorem 10. So v and w have a
common reduct s in the simple theory of types. But
the reductions from v to s and from w to s are also
reductions in the rami�ed calculus: this establishes
the fact that the rami�ed calculus is con
uent, hence
Church-Rosser.
Finally, any rewrite system that is both terminating

and Church-Rosser is convergent. 2

Recall that we write u # � , or simply u # , the unique
�-normal form of u.

4.4 Can a Term be Instantiated to a

Well-Typed One?

There is a kind of converse of Theorem 10, or a kind
of analogue of remark (R4) at the beginning of Sec-
tion 3.1. The goal is to establish Theorem 15, which
states a necessary and su�cient condition for a term
to have well-typed rami�ed instances.

Lemma 13 For every simple type �, writen uniquely
as �1 ! : : : �n ! b with b a base type, let ê� be the
term �x1�1 � : : :��xn�n �v

0
b , where v

0
b is a distinguished

variable of type b and level 0 that will never be used
in any other term.
We let � be the substitution mapping each variable

of type � (and arbitrary level) to êE(�). Then:

1. � is a well-typed substitution;

2. for every �-normal term t, the �-normal form
(t�) # exists;

3. for every �-normal simply-typed term t, for every
well-simply-typed substitution �, if t� �-reduces
to a rami�ed well-typed term of some decorated
type �=`, then (t�) # : �=` is derivable.

Proof: 1. Let x`� be any variable, with (1) ` � l(�),

(2) � = �1
`1
! : : : �n

`n
!b, with b a base type, and � =

E(�), so that x� = ê�. By n-fold application of rule

(Abs), ê� : �1
`1
! : : : �n

`n
!b=max(`1+1; : : : ; `n+1; 0) is

derivable. By (2), max(`1+1; : : : ; `n+1; 0) = l(�), so
by (1) it is at most `: apply (Cml) to get a derivation
of ê� : �=`.

2. Let W be FVC(t), and let �0 be �jW , so that
�0 is a regular substitution with u�0 = u�. Recall
that �-normal forms may be characterized as those
terms de�ned inductively as �yk�aum, where k;m � 0,
a is a variable or a constant, and u1, : : : , um are
normal forms. (We call this the hnf-decomposition of
the term.) The (unique) normal form (t�) # (i.e.,
(t�0) #) may then be de�ned by recursion on its hnf-
decomposition by:

� if a 2 W , then a�0 is some ê�, with � = �1 !

: : : �n ! b, n � m, and (t�0) # = �y1 � : : : � �yk �

�xm+1�m+1
� : : : � �xn�n � v

0
b ;

� otherwise, (t�0) # = �yk � a(um�0) # .

3. Let W , �0 be as above. We prove the claim by
induction on the hnf-decomposition of t, with t as in
2. Let yi be yi�0

i
, for every 1 � i � k, and assume

that t�
�
�!�s for some typable s. Then:

� if a 2 W , then look at s. Whenever s : �=` is
derivable, s has type E(�) in the simple theory
of types by Lemma 11. So t� has type E(�) in
the simple theory of types (see Remark (R4) at
the beginning of Section 3.1). But the simple
type of a is some � of the form �1 ! : : : �n ! b,
n � m, so the simple type of t� must be E(�) =
�01 ! : : : ! �0k ! �m+1 ! : : : ! �n ! b. For
this to be the case, � must be of the form (1)

� 01
`01
! : : :

`0k�1
! � 0k

`0k
!�m+1

`m+1

! : : :
`n�1
! �n

`n
!b, with (2)

E(� 0i) = �0i, 1 � i � k and (3) E(�j) = �j, 1 �
j � n. Moreover by Lemma 3 we have (4) ` �
l(�).

On the other hand, (t�0) # = �y1�0
1
� : : : �

�yk�0
k
� �xm+1�m+1

� : : : � �xn�n � v0b . Apply-

ing rule (Abs) k times using (2) and n � m

times using (3), it follows that (t�0) # :

� 01
`01
! : : :

`0
k�1

! � 0k
`0k
!�m+1

`m+1

! : : :
`n�1
! �n

`n
!b=max(`01+

1; : : : ; `0k + 1; `m+1 + 1; : : : ; `n + 1) is derivable,
i.e. (t�0) # : �=l(�) using (1). By (Cml) and
(4), it follows that (t�0) # : �=` is derivable.

� If a 62 W , then t� = �yk � aum�, and a is a
constant or a variable, so s must be of the form
�yk � avm with ui�

�
�!�vi for every 1 � i � m.

Moreover, since s is (rami�ed) typable, so is each
vi (with y1, : : : , yk replaced by suitable fresh
variables of the right types and levels). By in-
duction hypothesis, (ui�0) # can be assigned the
same decorated type as vi for each 1 � i � m.
It follows that �yk � a(um�0) # can be given the
same decorated type as s; but this is just (t�0) #
by construction.

11

2

The case of the �-rule is more trivial:

Lemma 14 If u
�
�!�v, u is simply-typed and v : �=`

is derivable, then u : �=`.

Proof: By induction on the length of the reduction
from u to v, it is enough to prove the claim when
u �!� v. In turn, this is proved by structural in-
duction on C, where u = C[�x�1 � tx] and v = C[t].
The only non trivial case is the base case, where C
is the empty context. Then, assume t : �=` deriv-
able. Because u is simply-typed and by Lemma 11,
we must have E(�) = �1 ! �2 for some simple type

�2. So � must be of the form �1
`1
!�2, with �1 = E(�1),

�2 = E(�2), `1 � l(�1) and ` � max(`1 + 1; l(�2)).
Since x is not free in t by assumption, we can pro-
duce the following derivation:

�
�
�

ty`1�1 : �2
(Abs)

�x�1 � tx : �1
`1
!�2=max(`1 + 1; l(�2))

(Cml)

�x�1 � tx : �1
`1
!�2=`

2

Theorem 15 Let t be a �-normal simply-typed term.
Call a well-simply-typed instance of t any term t�,
where � is a well-simply-typed substitution.
Then t has a well-simply-typed instance that is ��-

equivalent to a rami�ed well-typed term if and only if
(t�) # has a rami�ed type.

Proof: If the term t has a well-simply-typed in-
stance t� that is ��-equivalent to a well-typed rami-
�ed term u, then by con
uence t�

�
�!��v and u

�
�!��

for some term v. By Theorem 10 applied to u, it fol-
lows that t has a well-simply-typed instance t� that
��-reduces to some rami�ed well-typed term. Con-
versely, if t� ��-reduces to some rami�ed well-typed
term, it is ��-equivalent to it. To prove the theorem,
it is therefore enough to prove the following claim: t
has a well-simply-typed instance that ��-reduces to a
rami�ed well-typed term if and only if (t�) # has a
rami�ed type.
By Lemma 13 1. and 2., (t�) # is always well-

de�ned and that t� is a well-typed instance of t. Re-
call also that, in any ��-reduction to normal form, we
may �rst take the �-normal form, then the �-normal
form of the latter (this is postponement of the �-rule
[Bar84]).
If: if (t�) # has a rami�ed type, then let t� be the

desired instance: it �-reduces to a term with a rami-
�ed type, namely (t�) # , which then �-normalizes to

another term with the same rami�ed type, by The-
orem 10.

Only if: assume that there is a substitution � such
that t�

�
�!��v, with v having the rami�ed decorated

type �=`. By postponement of �, there is a term u

such that t�
�
�!�u

�
�!�v. By subject reduction in the

simply-typed case, u is simply typed. By Lemma 14,
u : �=` is therefore derivable. By Lemma 13, (t�) # :
�=` is then derivable. 2

Therefore, the problem of �nding instances of a
simply-typed term modulo �� that is well-typed in
the rami�ed sense reduces to the type-checking prob-
lem in the rami�ed system of Figure 1.

5 Retrieving Levels

We wish to show that type-checking rami�ed terms is
decidable, and in fact computationally easy. To type-
check a term, we wish to �nd a normal derivation of a
decorated type for it, or to prove that none exists. We
do this classically by constructing such a derivation
bottom-up, being guided by the structure of the term.
The only problem lies in rule (Abs), because there
we need to guess a type �1 and a level `1 for the
fresh variable y. Since we already know the shape
of �1 (E(�1) must equal �), this is just a question
of guessing the right levels to annotate the function
arrows in �1.

So �rst, we replace every level annotating variables
or type arrows by fresh level variables, and express
the typing constraints as systems of level constraints
in Section 5.1. We shall then show that we can in-
fer the general form of types and levels of terms in
polynomial time in Section 5.2. This is the analogue
of [Hin69] or of the ML type system [Mil78] without
lets. We give a few examples in Section 5.3, and pro-
pose a few improvements in Section 5.4.

5.1 Level Variables and Constraints

Introducing level variables demands that we change
our representation of types and terms to accomodate
variables:

De�nition 5 Let V be a coutably in�nite set of so-
called level variables �, �, etc.

The set RT (V) of rami�ed pre-types with variables
as levels is the smallest containing all base types b,

and all expressions �1
�
!�2, where �1 and �2 are rami-

�ed pre-types and � is in V [L.

The set �(V) of rami�ed pre-terms is the smallest
containing variables x�� where � 2 RT (V) and � 2

12

V [L, applications uv with u 2 �(V) and v 2 �(V),
and abstractions �x� � u with u 2 �(V) and � 2 ST .

Notice that a pre-term with no level variables is just
an ordinary term. These new objects are to be under-
stood under assignments � mapping level variables to
actual levels in L. To represent sets of assignments,
we use the following notion of constraints.

De�nition 6 A system of level constraints K is a
�nite set of constraints of the form � � � + n where
� and � are level variables and n 2 IN, or � � ` or
` � � where � is a level variable and ` is a constant
level in L.
The domain dom K of a system K is the set of

level variables appearing in it. A level assignment �
is said to satisfy K, and we write � j= K, if and only
if all the inequalities gotten from constraints in K by
replacing variables � by �(�) are valid.
For any sentence about RT (V) or �(V), we say

that it holds under K provided that for any � satisfy-
ing K, the same sentence holds with all level variables
replaced by their values under �.

Systems of level constraints are interesting because
they express all the constraints that we shall need, and
most problems on them are solvable in polynomial
time. But before we can speak of polynomial time,
we must de�ne our data representations, and de�ne
measures of size. We de�ne the size joj of an object o
as usual, by juvj = juj+ jvj+1, j�x� �uj = j�j+ juj+1,
jx�j = j�j + 1, jx�� j = j� j + 1, jbj = 1, j�1 ! �2j =

j�1j+ j�2j+ 1, j�1
�1
!�2j = j�1j+ j�2j+ 1.

Then, we represent K as the following graph G(K):
the vertices are all variables in dom K and all level
constants appearing in K, and the edges are �

n
�!�

for all constraints � � �+n, �
0
�!` for all constraints

� � ` and `
0
�!� for all constraints ` � � in K. The

labels on arrows are called weights. It will always
be assumed that G(K) is in fact the way that K is
really represented in memory, so that we don't have
to translate back and forth between K and G(K) in
practice. Furthermore, we assume that G(K) is rep-
resented in memory as an adjacency list [McH90],
i.e. a list of vertices, as pointers to records containing
the description of the vertex (an ordinal, or a spe-
cial tag denoting a variable vertex), and a list of suc-
cessor/weight pairs. (If there are two edges from v1
to v2, with respective weights n1 and n2, we only
represent one with weight max(n1; n2); this does not
change the semantics of K.) The size jKj of K is
then the sum of sizes of edges (equated to the size
jnj = max(1; dlog2(n + 1)e) of the weights labelling
them, represented in binary), plus the sum of sizes of
vertices in dom K, where a variable vertex has size 1.

To de�ne the size of constant vertices, we need to
make precise our system of ordinal notations. It must
allow us to compute the sum of an ordinal and an
integer, to compare by = or � any two ordinals in
polynomial time. If we use only integers as levels,
say in binary, this is trivial (the size of ` is then j`j =
max(1; dlog2 `e)). This is also certainly possible up to
�0 [Gal91], by using Sch�utte's function and natural
ordinal sums: this yields ordinal notations where = is
just structural comparison and < is the lexicographic
path ordering. The size of an ordinal notation, there,
is the number of signs needed to write it on paper.

The essence of our algorithms will be the compu-
tation of the set of strongly connected components of
G(K) [McH90]. Recall that a subgraph is strongly
connected if and only if every vertex in the subgraph is
reachable from any other vertex in the subgraph, and
that the strongly connected components of a graph of
the maximal strongly connected subgraphs. Leaving
labels aside, the condensation graph G of a graph G is
the graph whose vertices are the strongly connected
components of G, and where there is an edge from
C1 to C2 if and only if there is an edge v1�!v2 in G,
with v1 a vertex of C1 and v2 a vertex of C2. We let
v be the strongly connected component of v. Observe
that G is then a directed acyclic graph, or intuitively
a \tree with shared subtrees".

Say that the value of a vertex under � is ` if the
vertex is a level constant `, and �(�) if it is a level
variable �. We write (abusively) �(v) the value of v
under �.

Lemma 16 If � satis�es K, then for every strongly
connected component C of G(K), there is a unique
level ` such that for every vertex v of C, �(v) = `.
We write this level �(C).

Proof: Notice that for any edge v1
n
�!v2, we must

have �(v1) � �(v2) + n, with n � 0, and there-
fore �(v1) � �(v2). Now if there is a path from v1
to v2, then by induction on the length of the path,
�(v1) � �(v2). In a strongly connected component C,
for any two distinct vertices v1 and v2, by de�nition
v2 is reachable from v1, so �(v1) � �(v2), and v1 is
reachable from v2, so �(v2) � �(v1). It follows that
�(v1) = �(v2). 2

Lemma 17 If � satis�es K, then in every strongly
connected component C of G(K), all the weights la-
beling edges inside C are 0.

Proof: Let v1
n
�!v2 be an edge in C. By Lemma 16,

�(v1) = �(v2). But since � satis�es K, �(v1) �

�(v2) + n, hence n = 0. 2

13

We say that a strongly connected component is con-
sistent if and only if all its edges have weights equal
to 0, and it contains at most one constant level ver-
tex. If it contains one such constant vertex `, then we
say that it is �xed , otherwise it is variable.

Lemma 18 There is a polynomial-time algorithm
which, given any system K of constraints, decides
whether it is satis�able, and if so, returns the least
assignment � on dom K satisfying K with respect to
the pointwise ordering on ordinals.

Proof: Build the condensation graph G of G(K),
and label each edge C1�!C2 in G by the least upper
bound n of all weights m of edges v1

m
�!v2, with v1

a vertex of C1 and v2 a vertex of C2. This can be
done in polynomial time by a slight variant of Tarjan's
algorithm for �nding strongly connected components
[McH90].
Now decorate each vertex of G in reverse topo-

logical order (i.e., bottom-up, since this graph is
acyclic) as follows. At vertex C, with immediate
successors C1, : : : , Ck reached respectively through
edges of weights n1, : : : , nk (at this step C1, : : : ,
Ck have already been decorated, say with respective
levels `1, : : : , `k):

1. Check whether C is consistent; if not, then fail:
K is unsatis�able. Otherwise, do:

2. If C is �xed, then let ` be the unique constant
vertex in C; if ` < `i + ni for some i, 1 � i � k,
then fail: K is unsatis�able. Otherwise, decorate
C with `.

3. If C is variable, then decorate C with max(`1 +
n1; : : : ; `k + nk).

This algorithm clearly runs in polynomial time in the
size of the input K. If it succeeds, let �0 be the as-
signment that maps each level variable � to the decor-
ation of �. We now show that the algorithm answers
the question.
(=)) Assume that K is satis�able. We claim that

the algorithm does not fail, and that every assign-
ment � satisfying K is (pointwise) greater than or
equal to �0. We prove the claim by well-founded in-
duction on the directed acyclic graph G, showing at
each step (where C is the currently examined vertex
of G) that � is pointwise at least �0 on all vertices of
G(K) reachable from vertices in C.
So consider the current vertex C in G, C

ni
�!Ci,

1 � i � k, be the outgoing edges. By Lemma 16, C
contains at most one level constant, and by Lemma 17
all the edges in G between elements of C have weight

0, so C is consistent: the algorithm therefore does not
fail at step 1.

If C is �xed, then necessarily �(C) = ` where ` is
the unique constant in C. Consider a �xed arbitrary
Ci, 1 � i � k. For every edge v1

n
�!v2 in G going

from a vertex v1 in C to a vertex v2 in Ci, we have
�(v1) � �(v2) + n. Because ni is the least upper
bound of all such n, �(C) � �(Ci)+ni; this is in turn
at least �0(Ci) + ni by induction hypothesis, that is,
we have ` � `i + ni for every i, 1 � i � k, where
`i = �0(Ci). Therefore, the algorithm does not fail
at step 2 either. Moreover for every vertex v in C,
�(v) = ` = �0(v), and for every vertex v reachable
from some Ci, 1 � i � k, �(v) � �0(v) by induction
hypothesis. So � is pointwise at least �0 on vertices
reachable from C.

If C is variable, then the algorithm cannot fail.
Moreover, by a similar argument �(C) � �(Ci)+ni for
every i, 1 � i � k. By induction hypothesis �(Ci) �
�0(Ci) = `i, so �(C) � max(`1 + n1; : : : ; `k + nk) =
�0(C). The claim is then proved.

((=) Assume that the algorithm does not fail. We
claim that �0 satis�es K. Again we prove it by well-
founded induction on G, showing at each step (where
the current vertex in G is C) that �0 satis�es all
the constraints described by edges of G(K) that are
reachable from vertices in C.

So let C be the current vertex in G, C
ni
�!Ci,

1 � i � k, be the outgoing edges. By induction hypo-
thesis, �0 satis�es all the constraints in K represented
by edges in C1, : : : , Ck or below. We show that it also
satis�es all constraints represented by edges of G(K)
inside C, and by edges of G(K) going from vertices
inside C to vertices inside Ci.

Since the algorithm does not fail at step 1., C is
consistent. Let then be v1

0
�!v2 any edge from vertex

v1 in C to vertex v2 in C. This corresponds to the
constraint �0(v1) � �0(v2), which is trivially satis�ed
since �0(v1) = �0(v2) = �0(C).

Moreover, �0 is such that �0(C) � max(�0(C1) +
n1; : : : ; �0(Ck) + nk), whether C is �xed or vari-
able. So let v1

n
�!v2 be any edge in G(K) from

a vertex v1 in C to a vertex v2 in some Ci, 1 �

i � k. Then �0(v1) = �0(C) (by de�nition) �

max(�0(C1) + n1; : : : ; �0(Ck) + nk) (by the remark
above) � �0(Ci) + ni = �0(v2) + ni (by de�nition of
�0) � �0(v2) + n (by de�nition of ni). So the con-
straint represented by this edge is again satis�ed. 2

It would be interesting to transform this algorithm
into an incremental algorithm, i.e. an algorithmwhere
new constraints are progressively added and satis�ab-
ility is checked at each step. We leave this as an im-
provement to be done.

14

5.2 Level Inference

We can then translate conditions for being well-typed,
for two types to be less or equal, and so on, as systems
of constraints. We let � = � denote the set of two
constraints � � �, � � �.

Lemma 19 Given any rami�ed pre-types � , � 0, and
level variable �, we can build in polynomial time
systems of constraints K(l(�) � �), K(� rami�ed),
K(� v � 0) and K(� = � 0) such that the assign-
ments that satisfy them are precisely those under
which l(�) � �, � is a rami�ed type, � v � 0 and
� = � 0 respectively.

Proof: In the following, let b stand for base types,
� for any rami�ed type (possibly primed or indexed).
Let > (true) denote the empty set ; of constraints,
and ? (false) denote any unsatis�able set of con-
straints, like f0 � �; � � 1g for some variable �.
K(l(b) � �) = >

K(l(�1
�
!�2) � �) = f� � � + 1g [K(l(�2) � �)

K(b rami�ed) = >

K(�1
�
!�2 rami�ed) = K(�1 rami�ed)

[K(�2 rami�ed)
[K(l(�1) � �)

K(b v b) = >

K(�1
�
!�2 v � 01

�0

!� 02) = K(� 01 v �1) [K(�2 v � 02)
[f� � �0g [K(l(� 01) � �0)

K(� v � 0) = ? otherwise
In the latter clause, it will be interesting in prac-

tice to just fail, aborting the whole computation, and
returning ?.

K(b = b) = >

K(�1
�
!�2 = � 01

�0

!� 02) = K(�1 = � 01) [K(�2 = � 02)
[f� = �0g

K(� v � 0) = ? otherwise
Similarly, in the latter clause, it will be interesting
in practice to just fail. 2

Let FLV(s) be the set of free level variables in
the pre-term s, de�ned as FLV(�x� � u) = FLV(u),
FLV(uv) = FLV(u) [FLV(v), FLV(x��) = f�g [

FLV(�), and where FLV(�) is de�ned as FLV(b) = ;

if b is a base type, and FLV(�1
�
!�2) = FLV(�1) [

FLV(�2) [f�g.
We wish to �nd a system of level constraints that

would express exactly when a given pre-term s has
a rami�ed type. This system of level constraints
should therefore have FLV(s) as domain. But a pre-
dicate denoting typability of s will be of the form
9�1; : : : ; �k � K, where K is a system of constraints

expressing all the ordering constraints between level
variables that occur in a derivation, and �1, : : : , �k
are unknowns that must be introduced to represent
unknown levels in (V ar0) and (Abs). We might show
that we can represent such predicates as systems of
constraints (to represent 9� �K, the rough idea is to
add edges v

m+n
�!v0 to G(K) whenever we have edges

v
m
�!� and �

n
�!v0, then to eliminate all edges incident

on �; the real procedure is a bit more complicated).
But it will be easier to leave the existentially quan-

ti�ed variables explicit, and instead to consider a re-
�ned notion of satisfaction. For any set S of level
variables, we say that a level assignment � satis�es
a system of constraints K up to S if and only if
there is a level assignment �0 satisfying K such that
�(�) = �0(�) for every � 2 S. (That is, we quantify
on all variables in dom K n S.)

Theorem 20 (Level Reconstruction)

Typability of rami�ed pre-terms is decidable in poly-
nomial time.
More precisely, there is a polynomial-time al-

gorithm which, given a rami�ed pre-term s, either
fails if s is not typable, or returns a rami�ed pre-type
�s, a level variable �s and a system of constraints
K(s : �s=�s) such that s is well-typed and has decor-
ated type �s=�s under assignment � if and only if �
satis�es K(s : �s=�s) up to FLV(s).

Proof: This is a more or less direct translation of
the rules used in normal derivations (but we might as
well do this directly on the rules of Figure 1, although
this would be less e�cient). We �rst de�ne a suitable
notion of occurrence p in a pre-term or pre-type. Oc-
currences will be words on the alphabet f0; 1g. We
de�ne the set of occurrences of u and the subterm
ujp of u at occurrence p inductively as follows. The
empty word " is an occurrence in every term u, and
uj" = u; if p is an occurrence in u, and ujp is an ab-
straction �x� � v, then p0 is an occurrence in u and
ujp0 = v; if ujp is an application vw, then p0 and p1
are occurrences in u and ujp0 = v, ujp1 = w. Sim-
ilarly, in simple types, if p is an occurrence in � and
�jp = �1 ! �2, then p0 and p1 are occurrences in �

and �jp0 = �1, �jp1 = �2.
First, for every subterm occurrence p in s, let �p

be a level variable (this will denote the level of sjp).
For every occurrence of an abstraction �x� � t in s, let
�x and �px be level variables, for every occurrence p
of a functional subtype �1 ! �2 in �; we let �x be the
rami�ed pre-type obtained by recursively decorating
each functional subtype at occurrence p in � as above
by �px (intuitively, �x=�x denotes the decorated type
of the variable y to guess in rule (Abs)). Finally, for

15

every occurrence p of a constant or a variable (free
or bound) x� (resp. x

`
�), for every occurrence q of a

functional subtype �1 ! �2 in � (resp. E(�)), let �
q
p be

a level variable; similarly, we de�ne �p as the rami-
�ed pre-type obtained by recursively decorating each
functional subtype at occurrence q in � as above by �qp
(intuitively, �p=�p will be the decorated type that we
assign to x by rule (V ar0)). We assume that all these
level variables are pairwise distinct and distinct from
the level variables in FLV(s).
We arrange the set of occurrences in s as a �nite

tree by sharing occurrence pre�xes (this tree is the
skeleton of s). The algorithm is then de�ned by struc-
tural recursion on this tree, returning a pre-type �p(�)
and a set of constraints Kp(�) at each occurrence
p, where � is a substitution mapping all variables x�
bound in s but possibly free in sjp to variables of the
form y`� . (The purpose of � is to e�ect all substitu-
tions needed in rule (Abs) in a lazy way.)

Algorithm 21 For each occurrence p in s:

(Variable case) If p is an occurrence of a constant
or a variable, equal to or mapped by � to x�� , then
let �p(�) be �p, and Kp(�) be K(� v �p) [f�p �

�g [K(l(�) � �) (rule (V ar0)).

(Application case) If p is an occurrence of an ap-
plication uv, then check that �p0(�) (intuitively, the

type of u) is of the form �1
�
!�2, with E(�1) =

E(�p1(�)); otherwise, fail (s is not typable). Let then
�p(�) be �2, and Kp(�) be Kp0(�)[Kp1(�)[K(�1 =
�p1) [f� = �p1; �p = �p0g (rule (App)).

(Abstraction case) If p is an occurrence of an
abstraction �x� � v, then let y�x�x be a variable not

free in v, �p(�) = �x
�x
!�p0(�[y

�x
�x
=x]), and Kp(�) be

Kp0(�[y
�x
�x
=x]) [K(�x rami�ed) [K(l(�x) � �xg [

f�p � �x + 1; �p � �p0g (rule (Abs); notice that
we don't encode �p = max(�x + 1; �p0), but �p �

max(�x+1; �p0), but this is all right, as we shall see).

Finally, we let �s be �"([]), �s be �", and K(s :
�s=�s) be K"([]).

Proof of Correctness: We now prove that the
algorithm is correct. We claim that for each occur-
rence p, (1) if �p(�) is unde�ned, then ujp� is not
typable, and (2) if �p(�) is de�ned, then the assign-
ments � under which ujp� is typable are exactly those
which satisfy Kp(�) up to FLV(ujp�), and that its
type is then �p=�p. We prove the claim by structural
induction on the tree of occurrences.

If p is an occurrence of a variable, then ujp� is some
x�� . (1) is trivial since �p(�) is always de�ned. As for
(2), if x is typable of type � 0=�p under �, then we
must have � � l(�), and the type has been obtained

by rule (V ar0), so � v � 0 and � � �p. From � v � 0

it follows that E(�) = E(� 0), hence that the general
form of � 0 is described by �p. So �p(�) must indeed
be �p with Kp(�) satis�ed. Conversely, if Kp(�) is
satis�ed by �, then under � we have � v �p, hence
by Lemma 2 � is a rami�ed type; moreover l(�) � �,
� v �p and � � �p under �, so by rule (V ar0) ujp�
has indeed type �p=�p.

Assume that p is an occurrence of an application
uv. If the algorithm fails, then either it failed in u or
in v, in which case (uv)� is not typable by induction
hypothesis, claim (1); or it fails because �p0(�) is not
an functional type or E(�1) 6= E(�p1(�)): in each
case, rule (App) cannot be applied, so (uv)� is not
typable (this is by Theorem 6). This proves (1). As
for (2), if (uv)� is typable, then u and v are, too, the
type �1 of u's argument must equal the type �p1 of v,
the level �1 of u's argument must equal the level �p1
of v, and the level �p of (uv)� must equal that of u�,
namely �p0: this yields all the constraints in Kp(�).
Moreover, the type returned must be the type �2 of
the results of u�. Conversely, it is clear that if Kp(�)
is satis�ed by �, then by induction hypothesis we have

type derivations of u� : �1
�1
!�2=�p0 and v� : �1=�1,

so that we can apply rule (App) to get (uv)� : �2=�p.

Finally, assume that p is an occurrence of an ab-
straction �x� � v. Claim (1) is clear from the in-
duction hypothesis. As for (2), if (�x� � v)� is typ-
able under �, then by Theorem 6 the last rule in the
derivation can be assumed to be (Abs), so there is
a variable y�x�x not free in v such that E(�x) = �

and v�[y�x�x =x] is typable. By induction hypothesis,
Kp0(�[y

�x
�x
=x]) must therefore be satis�ed by �. And

�x must be a rami�ed type, with �x � l(�x) so
K(�x rami�ed)[K(l(�x) � �x) must also be satis�ed
by �. Moreover, we must have �p = max(�x+1; �p0),
so in particular �p � �x + 1; �p � �p0; hence, Kp(�)
is satis�ed by �. And the type of (�x� � v)� must

then be �x
�x
!�p0(�[y

�x
�x
=x]), i.e. �p(�). Conversely, if

Kp(�) is satis�ed, then it is clear by induction hy-
pothesis that under any � satisfying it, we can infer
(�x� � v)� : �x

�x
!�p0(�[y

�x
�x
=x])=max(�x + 1; �p0), i.e.

(�x� � v)� : �p(�)=max(�x+1; �p0), where �x is rami-
�ed and �x � l(�x). To infer (�x� � v)� : �p(�)=�p,
since �p � max(�x+1; �p0), we just apply rule (Cml)
(and apply Lemma 5 if we insist on getting normal de-
rivations).

Running Time: Finally, Algorithm 21 runs in
polynomial time. We assume that � is represented by
a balanced tree or any data structure where adding an
element and retrieving an element is fast | typically
in time logarithmic in the cardinality of �, i.e. at most
O(log jsj). Furthermore, we assume that unions of

16

sets of constraints are done by adding one edge at a
time to a global graph; for example, the behavior on
applications is just adding the edges resulting from
�1 = �p1, �1 = �p1 and �p = �p0 to the global graph.

We then claim that computing �"([]) and K"([])

takes O(jsj
2
log jsj) time, for any � > 1 (more pre-

cisely, time bounded by kjsj
2
log(jsj + 1)). To show

this, we prove by structural induction on the occur-
rence tree that computing �p(�) and Kp(�) takes

kjuj
2
log(jsj + 1) time, where u = sjp, and that

j�p(�)j � O(juj).

Each variable step, for a variable equal to or
mapped by � to x�� adds at most O(j� j) new edges
to the global graph, and therefore takes at most
O(jx�� j � log jsj) � kjx�� j

2
log(jsj + 1). Moreover, the

returned type has the same size as � , i.e. less than
O(jx�� j).

Each application step (where sjp = uv) needs time
O(j�p1(�)j) to test for failure (u having non-functional
type or E(�1) 6= E(�p1(�))), and adds O(j�p1(�)j)
new edges to the global graph. This needs at most
O(j�p1(�)j) = O(jvj) time by induction hypothesis.

Now typing u took time at most kjuj
2
log(jsj + 1),

typing v took kjvj
2
log(jsj + 1), so all in all we need

time kjuj
2
log(jsj + 1) + kjvj

2
log(jsj + 1) + k0jvj +

o(jvj) to check uv. But since juvj = juj + jvj + 1,

kjuvj
2
log(jsj+ 1) � kjuj

2
log(jsj+ 1) + kjvj

2
log(jsj+

1) + 2kjujjvj log(jsj+ 1). So, provided that k is high
enough that 2kjuj log(jsj + 1) � k0 (i.e. for example
k � k0=(2 log2)), the time taken is bounded above

by kjuvj2 log(jsj + 1). Moreover, we have j�p(�)j �
O(juj) � O(juvj).

Each abstraction step (where sjp = �x� � u) needs
O(j�j) time to build �x, O(log jsj) time to add the

binding y�x�x =x to �, kjuj
2
log(jsj+ 1) time to type u,

and adds O(j�j) edges to the global graph. Therefore

it takes at most kjuj
2
log(jsj+1) +O(log jsj)+O(j�j)

time, which is (much) less that kj�x� � uj
2
log(jsj+1),

since j�x� � uj = j�j+ juj+ 1. And the returned type

�p(�) is �x
�x
!�p0(�[y

�x
�x
=x]), where by induction hypo-

thesis j�p0(�[y
�x
�x
=x])j � O(juj), and by construction

j�xj � j�j, so the returned type has size O(j�x� � uj).

The claim is proved. The total time is then
O(jsj

2
log jsj): this is polynomial in jsj. 2

Corollary 22 Testing whether a given term is typ-
able is decidable in polynomial time.

Proof: Apply Algorithm 21, and then apply the
algorithm of Lemma 18 on the graph K(s : �s=�s), of

size O(jsj
2
). 2

5.3 Example

@

@ @

a b y

@

x �z� �

y

0 1

1 100

0 1

0

Figure 3: Term example

For example, consider the term a(x(�z� � y))(by),

where � is a base type, a = a`3
�
`1
!�

`2
!�

and b = b`5
�
`4
!�

are constants, and x = x`8

(�
`6
!�)

`7
!�

and y = y`9�

are variables. The free level variables are `1, : : : ,
`9. This term is shown as a tree in Figure 3. At
marks (@) denote application nodes, and 0's and 1's
denote letters forming paths. We create new vari-
ables �", �0, �00, �01, �010, �011, �0110, �1, �10
and �11 (levels of subterms); �z (and �z = �); �"00,
�100, (for a,) �

"
010, �

0
010, (for x,) �

"
10 (for b). We have

�00 = �
�"00
!�

�100
!�, �010 = (�

�0010
! �)

�"010
! �, �10 = �

�"10
!�,

while �0110 = �11 = �.

�"00 �00
`1

`2

`3

`4

`5

`6

`7

`8

`9

1
1

�"010 �0010 �010
1

1

�0110 �011 �z K011

K0110

K00

1

K01

1

K10

�1 K1

�0

�"

�100

�01

K010

�11

�"10
�10

Figure 4: Corresponding graph

17

Consider �rst the occurrence 00 of a. Since there
is no �-header above this occurrence, � will be the
empty substitution. Since a is a constant, we are in
the �rst case of the Algorithm 21. Then �00(�) =

�00 = �
�"00
!�

�100
!�. The constant a is of the form a�� ,

where � = �
`1
!�

`2
!� and � = `3. So K00(�) = f`1 �

�"00; `2 � �100g[f�00 � `3g[f`3 � `1+1; `3 � `2+1g.

Then, look at the occurrence 010 of x. Again, � is
the empty substitution, and we are in the �rst case

of Algorithm 21. �010(�) = �010 = (�
�0010
! �)

�"010
! �,

� = (�
`6
!�)

`7
!�, � = `8; so K(� v �010) = f�0010 �

`6; `7 � �"010; �
"
010 � �0010+1g, and K010(�) = f�0010 �

`6; `7 � �"010; �
"
010 � �0010 + 1; �010 � `8; `8 � `7 + 1g.

The only abstraction in this term is at occurrence
011. We create a new variable y�z�z , where �z = �, and
map it to z in �. Then K011(�) = K0110(�[y

�z
�z
=z]) [

; [; [f�011 � �z + 1; �011 � �0110g. And the K0110

set is just f�0110 � `9g.

We �nd an application for example at occurrence

01. The type of the function is �010, i.e. (�
�0010
! �)

�"010
! �,

and the type of the argument is the type of the ab-
straction above, namely �z

�z
!� = �

�z
!�. The eras-

ure of the typed expected by the function is � ! �,
as is the erasure of the type of the argument, so Al-
gorithm 21 does not fail (the term is simply-typed).
Then K01(�) = K010(�) [K011(�) [f�0010 = �zg [

f�"010 = �011; �01 = �010g (each of these equalities
being really two inequalities, i.e. a length 2 cycle in
the graph), and the returned type is �.

1
1

`8

`7

1

�00; �0; �"

`3
1 1

�"00; �01; �010 �100; �1; �10

`5

`4

�"10; �11

`2`1

�"010; �011

�0010; �z

`6
�0110

`9

Figure 5: Condensation graph

Continuing this process, we get as most general
type �, with level �" submitted to the constraints rep-
resented in Figure 4. We have omitted all 0-weights
on edges, so as to make the graph more readable. The
condensation graph is shown in Figure 5; each C is
consistent, so there are level assignments satisfying
this set of constraints. The smallest assigns level 3 to
the whole expression.

1

1
�010

�"11`1

`2

`3

`4

`5

�"0

�10

�11

�"10

�0

1

�1
�"

Figure 6: An unsatis�able graph

Let's take another example, and consider the term
x(yx), where x = x`2

�
`1
!�

and y = y`5
(�

`3
!�)

`4
!�

. By

Theorem 8, this term cannot be typable, so let's
check it. The computed graph is shown in Figure 6,
and has four connected components: f`3g, f�

0
10; �

"
11g,

f�"10; �11; `2; `1; �
�
0; �1; �10; `5; `4g, and f�0; �"g. But

the third is inconsistent, as it contains two edges of
non-zero weight (alternatively, it contains a cycle of
weight 2).

`1

`2 �0

�"0
1

�"

�1 0

Figure 7: Checking for satis�able instances

Naturally, although x(yx) is untypable, it has
typable instances (modulo ��). This comes from
Lemma 13, noticing that (x(yx)�) # = ê�!� is
clearly typable. If x is a constant and y is a variable,
x(yx) still has typable instances as (x(yx)�) # =
xê(�!�)!� is typable. Indeed, this term is x`2

�
`1
!�

v0�,

and its graph is shown in Figure 7.

5.4 Improvements

We can improve Algorithm 21 a great deal. First,
we are not forced to generate all level variables in
advance, and we may create them as we need them.
Then, we may de�ne Kp for variable or constant oc-

currences p as just K(� v �p)[f�p � �g so as to re-

18

duce the number of constraints that we add; a prepro-
cessing step will then add the constraints K(l(�) � �)
for all free variables and constants x�� . (Notice that
we don't need to do this for bound variables, because
the constraints are those in K(l(�x) � �x) introduced
in the abstraction case.) This avoids rebuilding these
same constraints over and over at each occurrence of
the same variable. We can also avoid adding the con-
straints in K(�x rami�ed) in the abstraction case as
soon as x occurs free in the abstraction, since then
each occurrence of x will produce constraints of the
form K(� v �p), where � = �x, and this forces �x to
be rami�ed by Lemma 2. Still on the chapter of vari-
ables, we can use Theorem 8 to fail right away when
trying to type applications of the form xu, where x is
a variable or a constant that occurs free in u.

In the application step, we add constraints of the
form K(�1 = �1p), �1 = �p1, �p = �p0, which are
equalities between level variables. Instead of repres-
enting an equality � = � as two edges �

0
�!� and

�
0
�!�, it is more e�cient to simply merge the nodes

of � and �. This not only decreases the size of the
graph G(Kp(�)), but also and therefore accelerates
the algorithm of Lemma 18 applied on G(K"([])).
(In particular, observe that this correctly identi�es
all connected components of the �rst example of Sec-
tion 5.3 right away.)

In the abstraction step, we can also dispense with
the creation of a variable y�x�x . Observe that what we
really need is just �x and �x, not y. This is only a
minor point.

A more important point is that although we ex-
amine applications as unary applications, it is more
pro�table to deal with n-ary applications in one fell
swoop. That is, observe that any term can be
written uniquely as �x1�1 � : : : � �xm�m � hu1 : : :un,
where m � 0, n � 0 and h is not an applica-
tion. Then we type it (at occurrence p) by ex-
tending � to �[y

�x1
�x1

=x1; : : : ; y
�xm
�xm

=xm], typing h, u1,

: : : , un, failing if the type of h is not of the form

�1
�1
! : : : �n

�n
!� , with �i having the same erasure as the

type � 0i of ui for each i, 1 � i � n, and then produ-
cing K(�xj rami�ed) and K(l(�xj) � �xj) for every
1 � j � m, K(�i = � 0i), �i = �0i (where �

0
i is the

level of ui) for every 1 � i � n, plus �p = � if
m = 0 or �p � �x1 + 1, : : : , �p � �xm + 1, �p � �

if m > 0, where � is the level of h; and we return

�x1
�x1
! : : : �xm

�xm
! � as �p(�). This cuts drastically on

the number of auxiliary level variables that we need,
at least when we have many abstractions, constants or
variables taking several arguments; indeed, we don't
need any variable for (�x2�2 � : : : ��xm�m �hu1 : : :un),
: : : , (�xm�m �hu1 : : :un), (hu1 : : :um), (hu1 : : : um�1),

: : : , or hu1 any longer.

`1

`2

`3

`4

`5

`6

`7

`8

`9

1
1

1

1

1

�00; �"

�10; �1; �
1
00

�"010; �011

�0010; �z

�0110

�11; �
"
10

�"00; �01; �010

Figure 8: Simpli�ed graph

Returning to the example a(x(�z� � y))(by) of Sec-
tion 5.3, and applying the tricks above, we get the
graph of Figure 8. The main gain comes from identi-
fying nodes that are equated in the application step.
(Observe also that this made us merge the two

1
�! ar-

rows from �"010 to �
0
010, and from �011 to �z.) The trick

where we decompose terms as m-ary abstractions of
n-ary applications �x1�1 � : : : � �xm�m � hu1 : : :un only
makes the variable �0 disappear, which is not much:
this is because there is only one binary application
and no n-ary abstraction, n > 1, in the example.
We can also improve Algorithm 21 in common

cases by doing a small amount of preprocessing,
where we type-check the term in the simple theory
of types �rst, and at the same time check that in each
component �x1�1 � : : : � �xm�m � hu1 : : :un where h is
a constant or a variable, h does not occur free in u1,
: : : , or un (the vicious circle principle). Otherwise, by
Theorem 8, type-checking fails. If the preprocessing
phase does not fail, then we apply Algorithm 21 (with
the improvements described above). The latter, now,
cannot fail, and merely builds a constraint graph,
which we then solve by Lemma 18.
This preprocessing will catch most untypable in-

stances. However, notice that it won't catch
all of them: there are well-simply-typed terms
in normal form that obey the vicious circle prin-
ciple but cannot be well-typed in the rami�ed
sense. For instance, consider �x((�!�)!�)!� �

�y�!� � y(xa2
(�

0
!�)

1
!�

)(xb4
(�

2
!�)

3
!�

). This term is

well-simply-typed of type �, is ��-normal, obeys
the vicious circle principle but is not typable. In-

19

�"010; �011

�"10; �11

2

4
1

1

1

1

�"x

�x

1

�0x

�00x

1
�"10; �11

�0010; �
"
011 1

3

�00010; �
0
011 0

�0010; �
0
11 2

�1; �10

�01; �010

Figure 9: Another untypable term

deed, the part of the graph that the Algorithm 21
builds corresponding to the subterms xa and xb

is shown in Figure 9: check that the path
1

0
�!�0010; �

"
011

0
�!�0x

1
�!�00x

0
�!�0010; �

0
11

0
�!2 is indeed

insatis�able. The reason why this example is not typ-
able is that the types of a and b have no common v-
lower bound, so that the same variable x cannot be
applied to both a and b.

6 Decidability of Uni�cation

6.1 Integer Levels, ��-Equality

Building on Sections 4 and 5, we prove that rami�ed
higher-order rami�cation with integer levels (L = !)
is decidable.
First, we make precise the informal argument of

decreasing levels discussed in Section 3.3. We have
already said that this informal argument was not quite
correct. The main reason why is that it is not so much
the levels of free variables that count as the levels that
we can get by instantiating these free variables by a
uni�er and reducing. This justi�es the followingde�n-
ition; recall that a substitution is normalized when
it maps variables to terms in �-normal �-expanded
form.

De�nition 7 For every �-normal term u of the form
�y1�1 � : : : � �yn�n � t, let the min-level l(u) of u be
the least ` such that t[x`1�1=y1; : : : ; x

`n
�n
=yn] is typable

of type �=` for some type � , where E(�1) = �1, : : : ,
E(�n) = �n.

Lemma 23 For any well-typed normalized substitu-
tion �, for every variable F `

� , l(F�) � `.

Proof: Since � is well-typed, F� is typable of some
type � 0=`0 with � 0 v � and (1) `0 � `. Let's write � 0

as �1
`1
! : : : �n

`n
!b, where b is a base type. Since � is

normalized,F� must be of the form �y1�1 �: : :��yn�n �t;
and by rule (Abs), E(�1) = �1, : : : , E(�n) = �n, and
t[x`1�1=y1; : : : ; x

`n
�n
=yn] is typable of type b=`

00, with `0 =
max(`1 + 1; : : : ; `n+ 1; `00). In particular, (2) `00 � `0.
By De�nition 7, (3) l(F�) � `00. By (1), (2) and (3)
it follows that l(F�) � `. 2

Let's say that a substitution is weakly well-typed if
and only if it maps every variable x`� to some term t

of type � 0=`0 with E(�) = E(� 0). A well-typed sub-
stitution imposes moreover � = � 0 and ` = `0.

Lemma 24 Let � be an arbitrary weakly well-typed
normalized substitution, F a variable, t = �yn �

a(�zpm �Hmyn zpm) a partial binding appropriate to
F , where a is a constant or a bound variable.

If � uni�es F and t, then for every 1 � i � m,
l(Hi�) < l(F�).

Proof: F� is a �-normal �-expanded term, say
�y1�1 � : : : � �yn�n � t. (The abstraction header is the
same as that of t, because both those terms are �-
expanded terms and of the same simple type.)

Since � is normalized, for each 1 � i � m, Hi�

is �-normal and �-expanded, so it is �y01 � : : : � �y
0
n �

�z01 � : : :��z
0
pi
� ti for some �-normal term ti of type bi.

Without loss of generality, we may drop the primes
on the bound variables in the header of Hi�, so that
(Hi�)yn zpi is just ti.

Since � uni�es F with t, F� =�� (t�) # , and
because both sides of the equality are �-normal and
�-expanded, F� = (t�) # = �yn�a(�zp1 �t1) : : : (�zpm �
tm). So t = a(�zp1 � t1) : : : (�zpm � tm). Letting x1

`1
�1
,

: : : , xn
`n
�n

be fresh variables with E(�1) = �1, : : : ,
E(�n) = �n, we have:

t[x1=y1; : : : ; xn=yn] =
a0(�zp1 � t1[x1=y1; : : : ; xn=yn])
: : : (�zpm � tm[x1=y1; : : : ; xn=yn])

where a0 = a[x1=y1; : : : ; xn=yn]. (So a
0 = a for imit-

ation bindings, and a0 = xj for some j in the case of
projection bindings.) In particular, l(F�) is the least
` such that a0(�zp1 � t1[x1=y1; : : : ; xn=yn]) : : : (�zpm �

tm[x1=y1; : : : ; xn=yn]) is typable of type �=` for some
� .

Any normalized derivation of the latter must end
in m instances of (App), following one instance of
(V ar0) to type a0. Now a0 is a variable or constant,

which is assigned some rami�ed type � 01
`01
! : : : � 0m

`0m
!b

and some level `0 in the derivation by rule (V ar0), with

20

(1) `0 = ` (by rule (App)); since this type is rami-
�ed by Lemma 3, (2) `0 � max(`01 + 1; : : : ; `0m + 1).
On the other hand, for each 1 � i � m, �zpi �
ti[x1=y1; : : : ; xn=yn] must have received the decor-
ated type � 0i=`

0
i, by rule (App). To type the lat-

ter, we must have used rule (Abs) pi times, and

ti[x1=y1; : : : ; xn=yn; x
0
1
l1
�1
=z1; : : : ; x

0
pi

lpi
�pi
=zpi],

where x0j
lj

�j
, 1 � j � pi, are fresh variables, must

have been given a (base) type bi and a level l
0
i; so �

0
i =

�1
l1
! : : : �pi

`pi
!bi and (3) `

0
i = max(l1+1; : : : ; lpi+1; l0i)

(by (Abs)). And by De�nition 7, (4) l0i � l(Hi�).
By (1) and (2) ` = `0 � `0i + 1. But by (3) `0i � l0i,

so ` � l0i+1, and by (4) ` � l(Hi�)+1. Since l(F�) is
the lowest such `, it follows that l(F�) � l(Hi�) + 1.
2

We shall also need the following:

De�nition 8 For any simple type �, let � (�) be the
rami�ed type de�ned by � (b) = b for any base type b

and � (�1 ! �2) = � (�1)
l(�(�1))
! � (�2).

Lemma 25 For any simple type �, � (�) is a rami�ed
type � of minimal level such that E(�) = �.

Proof: That � (�) is a rami�ed type follows from
the de�nition. By an easy structural induction on �,
E(� (�)) = �. Finally, let � be another type such that
E(�) = �, then we claim that l(�) � l(� (�)). This
is proved by structural induction on �. If � is a base
type, then l(�) = 0 = l(� (�)). And if � is of the

form �1 ! �2, then � is of the form �1
`1
!�2, where by

induction hypothesis (1) l(�1) � l(� (�1)), (2) l(�2) �
l(� (�2)), and because � is rami�ed (3) `1 � l(�1).
By (1) and (3), it follows (4) `1 � l(� (�1)). And
l(�) = max(`1+1; l(�2)) � max(l(� (�1))+1; l(�2)) (by
(4)) � max(l(� (�1)) + 1; l(� (�2))) (by (2)) = l(� (�)).
2

We are now able to formulate our algorithm for
rami�ed higher-order uni�cation with integer levels.
Recall that the input is a multiset M of unordered
pairs of simply-typed terms in �-normal form. For
each free variable x, we estimate an upper bound `

on the possible l(x�) for any uni�er �. To map each
variable to this upper bound, we use the following
trick: we store ` as the level of the variable, i.e., we
write x as x`� , for some � . This is certainly consist-
ent with the usual meaning of levels, by Lemma 23.
Lemma 25 will allow us to �nd � . The only di�-
culty is that a uni�er � need not assign a term of
level at most ` to these new variables, hence the no-
tion of weakly well-typed substitutions that we have
introduced just before Lemma 24.

We use Lemma 24 and Lemma 25 to re�ne De�ni-
tion 3:

De�nition 9 Let � be a simple type, which we write
�1 ! : : : �n ! b with b a base type, ` be an integer
level, and a be a variable or constant of simple type
�01 ! : : : �0m ! b.

For each 1 � i � m, let's write �0i as �00
i
1 !

: : : �00
i
pi
! bi, where bi is a base type. Assume that:

(A) ` > l(� (�1 ! : : : �n ! �0
i
))

for each 1 � i � m.
The set B(�; a; `) of partial bindings of type �, head

a, and level `, is the set of terms of the form:

�y1�1 � : : : � �yn�n �

a(�z1p1 �H1ynz1p1) : : : (�z
m
pm

�Hmynzmpm)

where:

1. for every 1 � i � m, 1 � j � pi, z
i
j is a variable

(zij)�00i
j

;

2. for every 1 � i � m, Hi is a variable
(Hi)

`�1
�(�1!:::�n!�00i

1
!:::�00ipi

!bi)
;

The set B(F; a) of partial bindings head a appropriate
to F `

� is B(E(�); a; `).

We let projection and imitation bindings be as in
De�nition 3, and keep the same notation, so that
we can use the rules of Figure 2 for rami�ed pre-
uni�cation. Notice that an essential di�erence is that
projection bindings only exist if condition (A) above
is satis�ed. Indeed, without condition (A), there
could be no variable Hi of rami�ed type of erasure
�1 ! : : : �n ! �00

i
1 ! : : : �00

i
pi
! bi and level at most

`� 1, by Lemma 25.

Algorithm 26 Let N be an auxiliary function
de�ned as follows: for any such multiset S, N (S)
applies (Delete), (Decomp), (Bind) on S until
this is no longer possible, and returns the resulting
multiset.

1. Initialize S to N (M).

2. While S is not in solved form, do:

(a) pick any
exible-rigid pair h�xk �F
`
�un; �xk �

avmi in S, with ` satisfying condition (A),
namely ` > l(� (�i)) + 1 for each xi�i , 1 �
i � k, and ` > l(� (�0)) where �0 is the simple
type of a;

(b) if there is none, then fail;

21

(c) otherwise, apply (Imitate) or (Project)

non-deterministically on it, getting a new
multiset Sa;

(d) let S be N (Sa), and loop.

3. Let � the substitution represented by S, restricted
to the free variables of M . For every variable x`�
in dom �, check that (x��) # is typable of type
�=`. If so, return �, otherwise fail.

Step 3 is accomplished by using Algorithm 21 and
Lemma 18, and testing for each x� ` 2 dom � whether
K(s : �s=�s) [K(� = �s) [f�s = `g is satis�able,
where s = (x��) # .
Furthermore, the meaning of \pick" above denotes

an arbitrary choice: picking another
exible-rigid pair
does not a�ect soundness or completeness | although
it may a�ect the e�ciency of the algorithm. On the
contrary, the rules to apply to the given
exible-rigid
pair are applied non-deterministically, i.e. by back-
tracking for example.

Theorem 27 (Termination) Algorithm 26 termin-
ates.

Proof: We �rst claim that N is well-de�ned, i.e.
that any sequence of applications of (Delete), (De-
comp), (Bind) on S must terminate. Let s(S) be
de�ned as

P
c2S s(c), where shui; vii = s(ui) + s(vi),

s(x) = 1 for any variable or constant x, s(uv) =
s(u) + s(v) + 1 and s(�x� � u) = s(u). Let #(S)
be de�ned as the number of solved pairs h�[x]; �[s]i
in S (or equivalently, as the number of solved vari-
ables). Then (Delete) does not increase #(S) and
decreases s(S) by 2s(u). (Decomp) leaves #(S)
constant and decreases s(S) by (see Figure 2 for nota-
tions)

�
s(a) +

Pn

i=0(s(ui) + 1) +
Pn

i=0(s(vi) + 1)
�
��Pn

i=0 ui +
Pn

i=0 vi
�
= 2n + 1 > 0. And in the

case of (Bind) (see Figure 2 for notations), since F
is assumed to be free in S0, F is not solved before
applying the rule; but F is solved after applying it.
Moreover, any other variable G that occurred in a
solved pair h�[G]; �[t]i before occurs only in the pair
h�[G]; (�[t][�xk � v=F]) # i afterwards, which is solved
because G does not occur in v. So #(S) decreases
strictly in this case.
We now claim that the loop in step 2 of Al-

gorithm 26 can only be traversed �nitely many times.
Let L(S) be de�ned as the set of unsolved variables
in N (S). We order such sets A by letting �(A) de-
note

P
x`�2A

!`, where the sum is the natural sum of

ordinals (i.e. the summands are �rst sorted in decreas-
ing order); this is akin to a multiset extension of the
ordering on levels of variables [Der87].

Then, any use of (Imitate)or (Project) on S, fol-
lowed by a call to the procedure N , will apply (Bind)
on F and (Decomp) on the pair under consideration.
That is, step 2.(b) transforms S into a new multiset
Sa where F is solved, whereas F was not solved in
S, by the side-conditions on (Imitate), resp. (Pro-
ject). Moreover, all the solved free variables in S

remain solved in Sa. So L(Sa) is obtained from L(S)
by replacing the unsolved variable F at level ` by �-
nitely many unsolved variables Hi, 1 � i � m, with
levels `�1, and possibly erasing some other unsolved
variables. Therefore �(L(Sa)) < �(L(S)). Since the
ordering on ordinals is well-founded, step 2 can only
be applied �nitely many times.
Finally, step 3 terminates because Algorithm21 and

the algorithm of Lemma 18 terminate. 2

Theorem 28 (Soundness) For any � returned by
Algorithm 26, (��) # is a rami�ed uni�er of M .

Proof: By the soundness of simply-typed uni�ca-
tion, the substitution & represented by the multiset S
of step 3 is a well-simply-typed pre-uni�er ofM . That
is, (&�) # is a uni�er of M . Letting � be &jFVC(M),
therefore, (��) # is also a uni�er of M . Moreover,
it is well-typed by step 3 and the correctness of Al-
gorithm 21 and of the algorithm of Lemma 18. 2

Theorem 29 (Completeness) For any rami�ed
uni�er & of M , there is a computation branch of Al-
gorithm 26 that returns a substitution � such that &
is an instance of � | i.e., there is a substitution �0

such that & =�� ��
0.

Proof: Since & is a rami�ed uni�er of M , it is
also a well-simply-typed uni�er of M . By the com-
pleteness of Huet's algorithm, with the strategy ap-
plying (Bind), (Decomp) and (Delete) eagerly, &
is an instance (modulo ��) of some substitution found
by applying steps 1 and 2 of Algorithm 26, with the
exception that we don't check condition (A). More
formally, there is a �nite sequence of uni�cation prob-
lems S0, S1, : : : , Sp, p � 0, such that S0 = N (M)
(step 1), and for every 1 � j � p, Si = N (Sa i�1),
where Sa i�1 is obtained from Si�1 by applying (Im-

itate) or (Project) on some arbitrary
exible-rigid
pair of Si�1. Moreover, & uni�es every Sj , 0 � j � p,
in the simply-typed sense. In particular, & is weakly
well-typed in the rami�ed sense.
We claim that for every variable x`� free in any Sj,

0 � j � p, l(x&) � `. We prove the claim by induction
on j. This is indeed true for all variables free in
S0, since & is a well-typed (rami�ed) uni�er of M
and by Lemma 23. Then, for all variables free in

22

Sj but not in Sj�1, such variables are variables Hi,
1 � i � m, coming from a partial binding appropriate
to some variable F free in Sj�1; so by Lemma 24,
l(Hi&) < l(F&). By induction hypothesis, and letting
` be the level annotating F , we have l(F&) � `, hence
l(Hi&) < `. It follows that l(Hi&) � `�1, where `�1 is
precisely the level decorating Hi, for each 1 � i � m.
Therefore the �nite sequence of uni�cation prob-

lems veri�es condition (A) at each turn through step
2, by Lemma25. Therefore, the step 2 loop terminates
successfully. Finally, by Lemma 13 and the correct-
ness of Algorithm 21 and the algorithm of Lemma 18,
step 3 also terminates successfully. Since & uni�es Sp,
i.e. the S that we �nd in step 3, it is by construction
an instance of the � returned by the algorithm. 2

Corollary 30

Rami�ed higher-order uni�cation with integer levels
is decidable.

Proof: By Theorems 27, 28 and 29. 2

Algorithm26 is not incremental as it stands, in that
we cannot unify fjhu1; v1i; hu2; v2ijg by �rst running
it on the pair hu1; v1i, choosing one of the answers �,
and then unifying hu2�; v2�i. Indeed, u2� and v2�

may contain variables Hi invented by the (Imitate)

and (Project) steps, and the levels of these variables
are mere codings of upper bounds on the min-level
l(Hi�), not on the levels of terms to subtitute for these
variables.
Incremental uni�cation algorithms are useful in

automated theorem proving and elsewhere, and the
following modi�cation to Algorithm 26 makes it in-
cremental: we separate the set of free variables in
two disjoint sets. Variables x`� from the �rst set can
only be instantiated by terms of level at most `, while
variables y`� from the second set are used as fresh
variables in (Imitate) and (Project), and can only
be instantiated by terms of min-level at most `. Al-
gorithm 26 is left unchanged.

6.2 �-Equality

It is also interesting to consider uni�cation modulo �,
i.e. without the � rule. This is in particular important
in the case of rami�ed type theory, which is so inten-
sional in nature [Cop71]. We sketch here why these
cases are still decidable.
Just dropping the �-rule entails that we cannot use

the rules of Figure 2 any longer. Instead, we have
to use Huet's method for �-uni�cation as underly-
ing simply-typed uni�cation procedure [Hue75]. This
procedure is a bit more complicated, because it can-
not use �-expanded forms any longer. In any
exible-

rigid pair h�xk �F
`
�un; �xk0 �avmi, k is not necessarily

equal to k0 as before, and we have to adjust arities
before imitating or projecting; that is, we must have
k � k0, and F must be mapped to some term of the
form �xk+1 � : : : ��xj �u, where u is a suitable partial
binding and k � j � k0. Such partial bindings are of
the form �yn � a

0(H1yn) : : : (Hmyn), where a
0 = a or

a0 is a bound variable.
Another variant is to drop the �-rule and choose a

weaker notion of �-equivalence; recall that we were
forced to choose such a lax notion of �-equivalence
to be consistent with �-equality. Consider therefore
the language consisting of variables and constants x`� ,
applications uv, and abstractions �x`� � u, with con-
version rules:

(�w) (�x`� � u) = (�y`� � u[y=x])
(�) (�x � u)v ! u[v=x]

where y is not free or bound in u in the �w rule.
The typing rules are unchanged but for abstrac-

tions:
u : �2=`2

�x`1�1 � u : �1
`1
!�2=max(`1 + 1; `2)

Almost all results of this paper are unchanged, then.
Theorem 6 on normal type derivations still holds, and
is in fact simpler to prove than before. Theorem 8
(the vicious circle principle) is unchanged. Subject
reduction (Theorem 10) also holds in this case, and
is also a bit simpler to prove. Lemma 11 on erasing
levels trivially holds. And, provided that we replace
\��-equivalent" by \�-equivalent", Theorem 15 on
how to test whether a term has a rami�ed well-typed
instance also holds.
The results of Section 5 had nothing to do with �-

conversion and therefore still apply. The only real
things that change are the notions of Section 6.1.
The min-level l(u) of a �-normal term u of the form
�y1

`1
�1
� : : : � �yn

`n
�n
� t is now de�ned as the level of

t, i.e. the least ` such that t : �=` is derivable for
some � . The analogues of Lemmas 23 and 24 then
hold, provided that by normalized substitution we un-
derstand substitution mapping variables to �-normal
terms, not necessarily �-expanded. It follows that
Algorithm 26, with the appropriate notions of par-
tial bindings, is a terminating, sound and complete
algorithm for �-uni�cation with weak �-conversion.

7 Logic

Uni�cation is a basic component of automated the-
orem proving. But in which system of logic? The
answer to this question is not so easy as it may seem,
and we discuss several possible approaches.

23

(Ax)
�; F . F;�

� . F;�
(:L)

�;:F .�

�; F .�
(:R)

� . :F;�

�; F;G .�
(^L)

�; F ^G .�

� . F;� � . G;�
(^R)

� . F ^G;�

�; (F [t=x]) # �� .� t : �=`
(8L)

�; 8x`� � F .�

� . F [y`�=x];� y 62 FVC(�;�)

� . 8x`� � F;�

Figure 10: Rami�ed deduction rules

7.1 Setting Up A Deduction System

Rami�ed type theory gives rise to a system of logic
that we call rami�ed higher-order logic. Due to the
choices that we have made, this logic will have cumu-
lative levels and be weakly extensional (the � rule),
but we may as well choose more intensional logics
(see Section 6.2. The language of the logic enables us
to build formulas, for instance by including operators
for negation :, conjunction ^ and universal quanti-
�cation 8. Universal quanti�cations must exist at all
types � and at all levels `: 8x`� �F means that F holds
of all objects of type � and level ` (or lower).

We adopt for instance the Gentzen-style deduction
system of Figure 10. A sequent is any expression of
the form � .�, where �, � are �nite sets of formulae
F , G, etc. The quanti�er rules (8L) and (8R) are
special compared to the corresponding rules in simple
type theory in that they not only enforce that t (in
(8L)) or y (in (8R)) have the correct type, but also
all the correct levels.

To get a tableau system from the latter, we interpret
all these rules bottom-up [Fit90]. The (8L) rule needs
to guess a term t: we represent this term t by a meta-
variable x`� (i.e., a free variable). The real value of t
will be found by instantiating x when we try to close
a path, i.e. to conclude that the current sequent is an
instance of (Ax): this involves �nding one formula on
the left and one formula on the right of later sequent
that can be uni�ed. This much is the rationale behind
our de�nition of rami�ed uni�cation, and in particu-
lar of well-typed substitutions, in Section 3. The (8L)
rule needs to introduce a fresh variable y`� that should
never be instantiated, i.e. that should be treated as a
constant: to represent this, we may do as Kohlhase in
simple type theory [Koh95], and manage a database
of instantiable variables, of non-instantiable variables,

and of dependencies between them. (We may also dis-
pense with the �-headers in Gallier and Snyder's uni-
�cation rules by introducing the third class of bound
variables, as does Kohlhase.)

The most natural way to represent logical operat-
ors in ��� is to make them constants of the language,

i.e. we create negations :` : o
`
!o=` + 1, conjunctions

^` : o
`
!o

`
!o=` + 1 at all levels ` 2 L, and univer-

sal quanti�ers �`0+1

(�
`
!o)

`0

!o

for all types � and all levels

`; `0 2 L with `0 � ` + 1. Then, we omit type and
level annotations when they are not strictly necessary.
Moreover, we write F ^G instead of ^FG, we de�ne
F _G as :(:F ^:G), F)G as :F _G. Finally, we

write 8x`� � F for �`0+1

(�
`
!o)

`0

!o

(�y� � F), where � = E(�)

and `0 is such that F [x`�=y] : o=`
0 is derivable.

But we face a serious problem, here, as this encod-
ing cannot represent enough formulas. This is The-
orem 8 on the vicious circle principle: in a formula
F ^G, neither F nor G can contain any conjunctions,
for example. We therefore need to relax the typing
conditions on constant operators.

7.2 Adding Operators

The most natural way to do this is to enrich the
��� languages with operators, aking to the function
symbols of �rst-order logic. Intuitively, an oper-
ator f would be such that f(u1; : : : ; um) would be
at level max(`1; : : : ; `m) when ui is at level i for each
1 � i � m. We can then encode the logical con-
nectives and quanti�ers as operators, and the problem
above disappears.

More formally, we enrich the languages ��� with
operators f , each given with a unique signature �1 �
: : : �m) � . The terms are either variables x`� , ap-

24

plications uv, abstractions �x� � u or algebraic terms
f(u1; : : : ; um), where f is an operator. The typing
rules are as in Figure 1, plus the additional rule:

u1 : �1=`1 : : : um : �m=`m
f of signature �1 � : : : �m) �

(Alg)
f(u1; : : : ; um) : �=max(l(�); `1; : : : ; `m)

The adaptation of Huet's procedure to operators
is straightforward: just consider an algebraic term
f(u1; : : : ; um) as a simply-typed term fu1 : : :um,
where f is now considered a constant. The theory
then goes through, until Lemma 24, where we cannot
guarantee any longer that partial bindings must pro-
duce fresh variables of strictly lower min-levels. And
indeed:

Theorem 31 Uni�cation in the rami�ed theory of
types with operators is undecidable. This holds even
at the second order, with integer levels, with only one
binary operator g of signature � � �) � and two
constants a, b of type � .

Proof: This is just Goldfarb's proof [Gol81]. Let
� be a base type, a and b be of type �=0. The op-
erator g is used as a pairing operator; de�ne 0t = t,
n+ 1t = g(a; nt) for every integer n, then the game is
to reencode Hilbert's tenth problem as a uni�cation
problem. For this, we only need to produce uni�ca-
tion problems of the form (0) h1(Fa); F (1a)i, where

F is a variable of type �
0
!�=1, (1) hF1(F2a); F3ai,

where F1, F2, F3 are variables of type �
0
!�=1, (2)

hd1; e1i; hd2; e2i where:

d1 = Gab(g(g(F3a; F2b); a))
e1 = g(g(a; b); G(F1a)(1b)a)
d2 = Gba(g(g(F3b; F2a); a))
e2 = g(g(b; a); G(F1b)(1a)a)

F1, F2, F3 are variables of type �
0
!�=1, and G is a

variable of type �
0
!�

0
!�

0
!�=1.

Problems of type (0) encode the type of integers, in
that any well-simply-typed uni�er � of such problems
must map F to �x� � nx, for some n 2 IN. But we
have:

y0� : �=0
�
�
�

ny0� : �=0

�x� � nx : �
0
!�=1

so �jfFg is well-typed (in the rami�ed sense).
Problems of type (1) encode addition, in that any

uni�er � mapping Fi to �x� �nix, 1 � i � 3, must be
such that n1+n2 = n3. Because Goldfarb's encoding

adds problems of type (0) for each of F1, F2, F3,
�jfF1;F2;F3g is well-typed.
And problems of type (2) encode multiplica-

tion, in that any uni�er mapping Fi to �x� �

nix, 1 � i � 3, must be such that n1:n2 =
n3. Such uni�ers then map G to �x� �

�y� ��z� �g(t0xy; g(t1xy; : : : ; g(tn�1xy; z) : : :)), where
tixy = g(i:n1x; iy). This term has rami�ed type

�
0
!�

0
!�

0
!�=1, and because Goldfarb's encoding adds

problems of type (0) for each of F1, F2, F3,
�jfF1;F2;F3;Gg is well-typed.
In conclusion, any simply-typed uni�er of Gold-

farb's problem is also a rami�ed well-typed uni�er of
the same problem. The converse is trivial. Therefore
Goldfarb's problem also encodes Hilbert's tenth prob-
lem as a uni�cation problem in rami�ed type theory
with the operator g. 2

Note that the role of operator g in Theorem 31 is
played in logic, for instance, by conjunction ^ (of sig-
nature o�o)o), so undecidability seems unescapable.
Of course, we still have a pre-uni�cation procedure

for this system: this is mostly the same algorithm as
before, except that imitating on a term of the form
�uk � f(v1; : : : ; vi)vi+1 : : : vm produces fresh variables
with identical, not lower min-levels.

8 Encoding Subsystems of

Arithmetic

The Reverse Mathematics programme [Sim85] aimed
at �nding the weakest natural systems of logic that
allow us to prove several important theorems of math-
ematics. It turned out that, although �rst-order arith-
metic is not always enough to prove even combinat-
orial theorems, we usually do not need the full power
of even second-order arithmetic to prove more in-
volved theorems like the Bolzano-Weierstrass theorem
or Kruskal's Lemma.
Let's consider ACA0 and �

1
k-CA0, for every k � 0.

These are subsystems of second-order arithmetic con-
structed as follows. The language is built on a set of
�rst-order variables x, y, z, : : : denoting naturals, and
set variables X, Y , Z, : : : denoting sets of naturals.
Terms s, t, : : : are built from �rst-order variables
using the function symbols + (addition, binary), �
(multiplication, binary), s (successor, unary), and the
constant 0. Atomic formulas are of the form s < t,
s = t, and s 2 X, where X is a set variable. For-
mulas are built from atomic formulas using negation
:, conjunction ^, �rst-order quanti�cation 81x� and
second-order quanti�cation 82X�. We use 6=, �, _,
), 9, and so on, as derived notations. The emantics

25

is de�ned in the obvious way. For the deduction sys-
tem, we take for example the one of Figure 10.

The basic arithmetical axioms BAA are the univer-
sally quanti�ed closures of:

s(x) 6= 0
s(x) = s(y)) x = y

x+ 0 = x

x+ s(y) = s(x + y)
x � 0 = 0
x � s(y) = x � y + y

:x < 0
x < s(y)) x < y _ x = y

and the restricted induction axiom RIA0:

82X � 0 2 X^
(81x � x 2 X) s(x) 2 X)

)81x � x 2 X

ACA0 is the theory axiomatized by BAA, RIA0,
plus the arithmetical comprehension scheme, express-
ing that for every arithmetical formula F (i.e., for-
mula without any second-order quanti�er, but pos-
sibly with free �rst-order and set variables) and for
every �rst-order variable x:

92X � 81x � (x 2 X ,F)

holds.

We encode this in rami�ed type theory with oper-
ators by letting the operators, with their signatures,
be:

s : �) � : : o) o

+ : �� �) � ^ : o � o) o

: �� �) � 8`1 : (�
`
!o)) o

=: �� �) o

<: �� �) o

The constants are:

0 : �=0

8`2 : ((�
`
!o)

`+1
! o)

`+2
! o=`+ 3

where ` � 1. The variables are x0� , y
0
� , z

0
� , : : : (all at

level 0), X1

�
0
!o

, : : : (set variables, all at level 1).

The atomic formulas s 2 X are encoded as applic-
ations X1

�
0
!o
s, of type o=1. The arithmetical com-

prehension axiom is simply encoded as the use of �-
abstraction. Indeed, any arithmetical formula F has

type o=0 or o=1, hence �x � F has type �
0
!o=1. It

follows that we can deduce 92X � 81x � x 2 X , F ,
because X has the right type and level. BAA is en-
coded in the obvious way, and RIA0 as the following

formula RIAk with k = 0:

8k2X
k+1

�
k
!o

�X0^

(8k1x
k
� �Xx)X(s(x)))

)8k1x
k
� �Xx

By similar arguments, it follows that �1
k-CA0, the

subsystem of second-order Peano arithmetic where
the comprehension axiom is now restricted to �1

k-
formulas, can be encoded in rami�ed type theory with
operators, by using RIAk instead of RIA0. �1

1-CA0

is already stronger than Friedman's system ATR0

[Sim85], which is strong enough to prove the Bolzano-
Weierstrass theorem and is equivalent in strength to
Kruskal's Lemma.
Mechanising proof search in such systems is not

the purpose of this paper. We only mention the
main di�culties in doing so. The �rst di�cult point
is the failure of the subformula property: this is
already a problem in the simple theory of types, but
it already plagues usual formalisations of �rst-order
Peano arithmetic. In fact, to do any serious mathem-
atics probably involves tackling this di�cult problem.
The second di�culty is the fact that, although

�1
1-CA0 is strong enough to prove most theorems of

everyday mathematics, it does so in quite contrived
ways: we must encode pairs of integers as integers,
sequences of integers as integers, even inner models
of the theory inside the theory. This di�culty is prob-
ably only apparent. Nothing prevents us indeed from
formalising a richer theory, with an explicit pairing
operator:

(;) : �� �) �

In fact, most any inductive datatype that crops up in
computer science can be endowed with a theory �a la
ACA0 or �1

k-CA0. For example, to encode lists of
integers, we add the following operator:

cons : �� � list) � list

and the constant nil : � list, where � list is a new base
type. We also add an induction axiom on lists, re-
stricted in the same way that RIAk was restricted:

8k2X
k+1

� list
k
!o

�X nil^

(8k1x
k

� list
; yk� �Xx)X(cons(y; x)))

)8k1x
k

� list
�Xx

The shape of the induction axioms is entirely de-
termined from the de�nition of the datatype, here
� list ::= nil j cons(�; � list): see [GLT89]. Moreover,
considering � list not as a new base type but as the
application of a type operator list to the base type
�, thus allowing other list types and a limited form

26

of polymorphism, is a benign extension to the type
system.

We therefore believe that rami�ed type theory with
operators is a sensible starting point for formalizing
powerful enough systems of mathematics, in an auto-
mated deduction perspective.

9 Conclusion

We have proposed a formalization of the pure rami-
�ed theory of types through a typed �-calculus that
is simple, rigorous, and arguedly in the spirit of
usual rami�ed theories with cumulative levels. We
have shown that uni�cation, or rather pre-uni�cation,
in such pure theories with integer levels was decid-
able. However, the logical systems for which they can
provide foundations are too weak to express any non-
trivial logical facts. Extending the frameworks with
operators makes the uni�cation problem undecidable,
already at order 2, but the decidability result above
should be taken as an indication that rami�ed type
theory with operators is a computationallymore sens-
ible basis for automated deduction than simple type
theory. It is all the more sensible as most theorems of
everyday mathematics can be proved in theories that
are formalizable in such rami�ed systems.

References

[And86] Peter B. Andrews. An Introduction to Math-
ematical Logic and Type Theory: To Truth
through Proof. Computer Science and Ap-
plied Mathematics. Academic Press, 1986.

[Bar84] Henk Barendregt. The Lambda Calculus, Its
Syntax and Semantics, volume 103 of Stud-
ies in Logic and the Foundations of Math-
ematics. North-Holland Publishing Com-
pany, Amsterdam, 1984.

[Chu40] Alonzo Church. A formulation of the simple
theory of types. Journal of Symbolic Logic,
5:56{68, 1940.

[Chu76] Alonzo Church. Comparison of Russell's
resolution of the semantical antinomies with
that of Tarski. Journal of Symbolic Logic,
41(4):747{760, December 1976.

[Cop71] Irving M. Copi. The Theory of Logical
Types. Monographs in modern logic. Lon-
don usw. Routledge and Kegan Paul, 1971.

[Der87] Nachum Dershowitz. Termination of re-
writing. Journal of Symbolic Computation,
3:69{116, 1987.

[Fit90] Melvin C. Fitting. First-Order Logic and
Automated Theorem Proving. Springer,
1990. Second edition, 1996.

[Gal91] Jean Gallier. What's so special about
Kruskal's Theorem and the ordinal �0. A
survey of some results in proof theory. An-
nals of Pure and Applied Logic, 53(3):199{
260, September 1991.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul
Taylor. Proofs and Types, volume 7 of Cam-
bridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, 1989.

[Gol81] Warren D. Goldfarb. The undecidabil-
ity of the second-order uni�cation problem.
Theoretical Computer Science, 13:225{230,
1981.

[Haz83] Allen Hazen. Predicative logics. In D. Gab-
bay and F. Guenther, editors, Handbook of
Philosophical Logic I: Elements of Classical
Logic, chapter I.5, pages 331{407. D. Reidel
Publishing Company, Dordrecht, The Neth-
erlands, 1983. (Synthese library Volume
164).

[Hin69] J. R. Hindley. The principal type scheme
of an object in combinatory logic. Transa-
tions of the American Mathematical Soci-
ety, 146:29{60, 1969.

[Hue75] G�erard P. Huet. A uni�cation algorithm
for typed �-calculus. Theoretical Computer
Science, 1:27{57, 1975.

[Koh95] Michael Kohlhase. Higher-order tableaux.
In Workshop on Theorem Proving with
Analytic Tableaux and Related Methods,
1995.

[LN95] Twan Laan and Rob Nederpelt. A
formalization of the rami�ed type theory.
26 pages. Available from the author at
laan@win.tue.ml, 1995.

[McH90] James A. McHugh. Algorithmic Graph The-
ory. Prentice-Hall International, 1990.

[Mil78] Robin Milner. A theory of type polymorph-
ism in programming. Journal of Computer
and System Sciences, 17:348{375, 1978.

27

[SG89] W. Snyder and J. Gallier. Higher order uni-
�cation revisited: Complete sets of tran-
formations. Journal of Symbolic Computa-
tion, 8(1 & 2):101{140, 1989. Special issue
on uni�cation. Part two.

[Sim85] Stephen G. Simpson. Reverse mathematics.
In A. Nerode and R. A. Shore, editors, Re-
cursion Theory, pages 461{471. American
Mathematical Society, 1985. Proceedings of
Symposia in Pure Mathematics, vol. 42.

[WR27] Alfred North Whitehead and Bertrand Rus-
sell. Principia Mathematica. Cambridge
University Press, 1910, 1927.

28

