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Abstract

Real-world projects often demand modelling of stochastic project evolution,
stochastic project activity durations, as well as feedback in order to take care of
uncertainties occurring during a project execution. These conditions can be met
by project modelling through EOR networks. In order to obtain exact analysis
of a project evolution in time, these EOR networks have to be evaluated non—
marginally in time.

In this paper, we consider non—marginal time analysis of EOR project net-
works with exponentially distributed project activity durations. In this case,
we derive exact formulas for the activation functions. Arbitrary project activity
durations can be approximated by using Edgeworth—approximation or by approx-
imation via Cox— or Phase-Type distributions.

This new analysis method for stochastic projects is compared to the well-
known Markov Renewal Process method (MRP). It shows that, the exact method
needs to calculate all paths from the network’s source to a considered project
state’s node in the project network, but clearly compensates this disadvantage
through the very quick and explicite calculation of the activation function in
comparison to the MRP method, which does not need to calculate each path
separately but needs to approximate integrals along the project activity arcs,
i.e., for real-world project dimensions with decent network structure the new
method clearly outperforms the MRP method in calculation time.
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Chapter 1

Special Stochastic Networks
(EOR Networks) and Coincidence

with Markov Renewal Processes

In this chapter we first introduce special stochastic project networks: EOR
networks. EOR networks are a subclass of GERT networks. They are activity—
on—arc project networks, where stochastic project evolution as well as stochastic
activity durations can be modelled. Project feedback can be expressed by cycle
structures.

For literature on activity—on—arc project networks, we refer to Elmaghraby
(1977). Standard literature on GERT networks is Neumann & Steinhardt (1979)
and Neumann (1990). GERT networks were first introduced by Pritsker & Happ
(1966).

We then show coincidence of EOR networks and Markov Renewal Processes.
This coincidence can be exploited for non—marginal time evaluation of EOR
project networks.

For literature on Renewal Theory, we refer to Alsmeyer (1991) or Grimmett &
Stirzaker (1982).

1.1 EOR Networks

In EOR networks, stochastic project evolution can be modelled as well as
stochastic activity durations:



1. Stochastic Project Evolution:

For modelling stochastic project evolution, there are two types of nodes:

STEOR-nodes and DETEOR-nodes. The corresponding symbols are shown

in Figure 1.1.

STEOR DETEOR

Figure 1.1: Node-types in EOR networks

e STEOR node ::

When a project realization activates STEOR-node ¢, then exactly one
outgoing activity is executed. The corresponding conditioned execu-
tion probability of activity < ,7 > is

pij = P(<1,j > is executed | iis active),

compare Figure 1.2. We require };cs:) pij = 1, where S(2) denotes
the set of all successor-nodes of ¢

©

Figure 1.2: Conditioned transition probabilities of activities emanating from

STEOR-mode ¢



e DETEOR node ::

When a project realization activates DETEOR-node ¢, then all outgo-
ing activities are executed. The corresponding conditioned execution
probability of activity < ,7 > is p;; :==1Vj € S(¢). See Figure 1.3.

Figure 1.3: Conditioned transition probabilities of activities emanating from

DETEOR-node ¢

2. Stochastic Activity Durations:

Given the event “node 7 is active”, we define:

D;j: duration of activity < ¢,j >, which is a (non—negative) random vari-
able.

Fy;: distribution function of random variable D;;.

It is required that Fj;(t) = 0 for t < 0 and E(D;;) < c.

Convention:
If node ¢ has at most one successornode, we let : be STEOR.

Structural Assumptions:

o Markov—Property: A further project evolution of an EOR network only
depends on the current project state and not on former project behaviour.

e Project network paths emanating from one and the same DETEOR-node
are not allowed to merge again.



e Cycle Structures (feedback):

— Only STEOR-nodes are allowed in cycle structures.
— A cycle structure must be left with a strictly positive probability.

— A cycle structure can be entered at most once during a project execu-
tion.

e The project possesses exactly one source'.

Example 1.1:

Figure 1.4 shows a fictitious dentist project as a STEOR network. A project
realization corresponds to a patient receiving treatment at a dentist. The activity
duration distributions are shown at the corresponding arcs. Notice, that the
normal distribution is not a strictly positive distribution. In order to be exact,
we have to omit its negative partion.

Suppose, we are interested in the following question: What is the probability,
that we have to issue an additional bill at most 20 minutes after a patient was
started to get treatment?

More general: What is the probability, that a certain project state will be
activated up to a certain time 7 Non—marginal time analysis of projects is
concerned with these questions. 4

1.2 Coincidence with Markov Renewal Process-
es

We denote an EOR network by N =< V. E.p, F' >, where V := {1,2,...,n} is
the set of all nodes, F denotes the set of all arcs < 7, j >, p the matrix (p;;)i j=1...n
of all conditioned transition probabilities, and F' the matrix (F};); =1, . of all
conditioned distribution functions.

We first want to consider STEOR networks, which are FOR networks only
including STEOR-nodes. STEOR networks have the property that a project
realization corresponds to a single “trace” through the network. Suppose, at
time ¢t = 0 the source is activated. We give the following:

!'Weakening of this assumption is possible but combined with technical modelling. Compare
Neumann (1990). We therefore restrict ourselves to only considering one project source.

4
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Figure 1.4: Example of STEOR project network: a fictitious dentist project



Definition 1.2:

1. We let 8, be that point in time, where the v—th activation of a node occurs.

2. We let X, be that node which is activated at time 6,,.

Theorem 1.3:
{Xl”‘g”}ueﬁ\fo is a Markov Renewal Process with embedded homogeneous
Markov Chain {X,} with transition matrix (p;;) N

,5=1,...,n "
Remarks to the proof:

e The theorem takes advantage of direct coincidence of a STEOR network
with the above defined Markov Renewal Process, since there is a single
“trace” through the network for every project realization. The transition

matrix (pij)ij—l . is stochastic, since ) p;; = 1 for all STEOR-nodes
Y e R ]:1
r=1,...,n.

e For exact formulations of a proof, see Neumann & Steinhardt (1979).

We now consider the more general case, where at time £ = 0 node ¢ is active.

le.. Xo =17 and 6, =0.

Definition 1.4: (transition function, one-step transition function)

o P(Xi=5i00 <t Xg=1i) for t>0
Qii(?) '_{0 for t<0

Remark 1.5: );;(t) describes the transition from node 7 to node j in exactly
one step: Q;;(t) = pi; Fi;(1). 4

Definition 1.6:  (v—step transition function)

oWy =] P =58 St Xo=d) for 120
(1) = 0 for t<0



Definition 1.7:  (activation function of node j given Xy = ¢)
The activation function Y;;(?) is defined to be the expected number of activa-
tions of node j up to time ¢t given that node ¢ is active at time ¢t = 0. O

Theorem 1.8:  (argument of coincidence)
Yi;(t) coincides with the expected number of renewals of the renewal process
{Xl”‘g”}ueﬁ\fo up to time ¢ with Xo = ¢ and 0y = 0.

Especially: Y;; (%) is solution of the renewal equation, i.e.:

V() =3 Q40

We next will develop the renewal equation, applying a standard “one—step—
backtracking” argument. In the following, é;; denotes the Kronecker-Delta, i.e.

52']‘:{1 for z:j7

0 else
X[0,0)(t) denotes the indicator-function on [0, 00), i.e.

1, 1>0
X[O,oo)(t):{ 07 t<0

and “x” is the operator for the convolution of two (conditioned, positive) distri-
bution functions, i.e., for two functions F(t) and G/(t),

t

(F+G)(t) = / F(t — s)dG(s) .

— 00

We devolop the renewal equation:

i) = x Qi

= Y = Ay + P
::6iJX[O,oo)(t)

= di(t) + 21 él (@5 Qui) (1)

= s+ £ QY0 Qulo)

1

=Yir(t)

= di; (1) + él Yir(t) * Qui (1) (*)

7



The marginal case (1 — o0) of (x):

Definition 1.9:  (activation number)
Zij 1= tlim Yi;(t) is the activation number of node j when the project is started

in node 1. O

Remark 1.10: z;; corresponds to the expected number of activations of j with
start in 7 “in the long run” of a project. As we will see, z;; is independent of F
Vi, g=1,...,n. 4

From () we get:

n

Zij = tlirgo d;;(t) + Z E?o Yir(t) % Qus(1)
\_v_/ r=t — pk;~1
— 17 ifz = 7 \—v—/

| 0, otherwise — D%k

Summarized, in the marginal case we obtain the following linear system of
equations:

i =1
Zij = kz_:lpkaik 5 j = 1,...,n 5 Z 7&]

Remark 1.11: From the above linear system of equations it is obvious, that z;;
depends on p and not on F' Vi, 5 =1,...,n. 4

Theorem 1.12:

For EOR networks, there is coincidence of several independently overlapping
Markov Renewal Processes and () holds as well. 4

Remarks to the proof:

o Here, we need the prerequisite, that paths emanating from one and the
same DET-node do not merge again. l.e.: at DET-nodes, a single trace
is “splitting” into several traces. For each trace, we define a coinciding
Markov Renewal Process.

e An exact formulation of a proof can be found in Neumann (1990).



Chapter 2

Non—Marginal Time Analysis

We show, how coincidence of EOR networks with renewal processes can be
applied to calculate the activation functions Y;;.

First, we consider the well-known Markov Renewal Process Method (MRP),
where the equation (%) from Chapter 1 is solved by approximating Riemann—
Stieltjes integrals.

Second, we develop a new exact analysis formula. This formula can be re-
solved to explicit representation of the Yj;(¢) in the case where F;; = exp(\)!
V < 4,7 >€ FE and in the case where F;; = exp(A\;)V < ¢,7 >€ E with

Nj £ AV ij # kL.

2.1 The Markov Renewal Process Method (MRP)

We now derive the Markov Renewal Process Method (MRP) out of equation

(%)
() Yiglt) = digt)+ X (Vi Quy) (1)
& Vi) = dy)+paFit+ X (Vi Qi) (1)

n t
= di;(t) + pij (1) + = gpkijj(t—S) dYi(s) (k)
ki

Lexp(A) denotes the distribution function of the exponential distribution:
exp(A) = L—e M for t>0
PY=1 0 for t <0 °



Remark 2.1:

e (kx) can be approximated numerically, e.g., through rectangular calculus of
Riemann-Stieltjes integrals: when [a, b] is a small intervall, it holds:

T F(s) d(s) = f(a) (o) = o)) + 1 (252) (9(6) — @)

e With the integral approximation, (#*) becomes a linear system of equations

in Y, fixed, j=1,...nVt=0.

179

e For acyclic networks, topological ordering of nodes is possible and the above
system of equations provides a triangular coefficient matrix which makes
calculus easier.

o f: ... can be replaced by 3 ... (where P(j) denotes the set of
(% kEP(j)NR(0)
all predecessors of node j and R(z) denotes the set of all nodes which can

be reached from ¢ minus node ), since transition probabilities py; = 0 for

k¢ P(j) N R(i).

e Evaluation of (#*) via integral approximation is referred to as Markov Re-

newal Process Method (MRP), compare Neumann (1990).

e Evaluating (**) via MRP is combined with a considerable calculatorial
expense: Obtaining values for Y;;(%o), we need to calculate Y;;(¢) at many
intermediate values ¢ € [0, o], since the integral approximation is based on
former time values of Y;; (which correspond to ¢g(a™) in the above formula
for integral approximation).

Furthermore: The smoother the partition of [0,¢g] is, the better is the
approximation.

o We want to stress that MRP works in cycle structures as well.

10



2.2 An Exact Analysis Method

Another approach to solve the renewal equation is the following:

Vo) = % QW)

_ a0+ Qi)

— (1) +y21 “z QY1) * Qis(1)

= di;(t) + UZI 2121 2221 QU (1) % Quyiy (1) * Qi (1)

= () + ST Y Qi e # Qi * Qs (1)

1/12122 Ty—1

= dij(t) + Z Z Qiil * QiliQ ook Qiy—ﬂ(t)

v=1 (i1,,ip—1)

v—1
(kxx) = dy()+ X 2 (ll:lo pmm) Fiiy o Fiyiy oo (8

v=1 (il,...,il,_l)
where ¢ := ¢ and 2, := j.

Remark 2.2:

e > ... actually consists of finitely many terms in the case of acyclic net-

works.

o [{1,...,n}"""| = n*7'; but: only “admissible” paths from 7 to j have to
be considered, since p;; = 0 for (¢, 7) ¢ F.

2.2.1 The Case F;; =exp(\) Vij

Theorem 2.3:
In the case where F;; = exp(A) Vij it holds:

(o) = Vil =dy(+ Y % )(Hp)( (Z(k))

11



Remark 2.4:

e The above theorem holds due to the fact, that *}exp (A) = Erlang (v, \)
(Erlang—distribution).

e () in this case is an explicit representation of Y;(?).

2.2.2 The Case Ej = exp ()\Zj) ; )\ij # )\kl \V/Z] # kl

Theorem 2.5:
In the case where F;; = exp (Aij); Aij # A Viy # kIl it holds:

v—1 v—1
o) Vi =50+ 5 (M)« (143 enwe )
) (=0

=1 (i1,5ip—1 k=0
e{1,...,npv—1
h 1 v Aigings
where ¢, = (=1)" [T 5~ q
[=0 U4l T VR4l
1#k

Remark 2.6:

e The above holds, since the sum of exponentially distributed random vari-
ables with distinct parameters is hypo—exponentially or hyper—exponentially
distributed?. For a proof, which is quite technical, see Strohler (1995) or
Dehon & Latouche (1982).

e () in this case is an explicit representation of Y;;(1), too.

?Expressions in literature differ.

12



Chapter 3

Extensions of the Exact Analysis

Method

In this chapter, we show generalizations of the new exact and explicit repre-
sentation formula of the activation functions Y;; ((* * *) in Chapter 2).

First, we show an approximation of the distribution of a sum of independent
and identically distributed iid random variables. This approximation is directly
applied for calculating the convolution of distribution functions in (* * *).

Second, we show how Cox—distributed activity durations can be replaced by
a STEOR network structure. In this network structure, all activities are ex-
ponentially distributed. Thus, the exact analysis formula in the case, where
Fij = exp(Nj); Aij # A Vij # kl can be applied. Since the class of Cox—
distributed random variables is dense in the class of all positive distributions,
arbitrary positive random durations can be approximated with this technique.

3.1 Edgeworth—Approximation of the Distri-
bution of a Sum of 7zd Random Variables

In the following, we show how the distribution of a sum of independent and
identically distributed random variables can be approximated by the Edgeworth—
approximation. The Edgeworth—approximation is based on the Central Limit
Theorem of probability theory. This approach can be found in Barndorff-Nielsen
& Cox (1989).

For sketching the Edgeworth—approximation, we briefly introduce the follow-
ing notations:

13



Definition 3.1:
Let Y, Y7,Y5, ... be iid random variables. Then:

L. p:= FE(Y) is the expectation of Y.

2. =k (Yk) k=1,2,... is the k—th moment of Y.
3. up = F ((Y— ,u)k) k= 1,2,... 1is defined to be the k-th centered
moment of Y.
4. S, : =Y, +...+Y, denotes the sum of the Y;.
Sn—n

5. S* .= 07\/5“ denotes the normed or standardized sum of the Y.

n

6. My :=F (ety) , t > 0 is the moment—generating function of Y.

7. Ky 1= log M) is the camulant-generating function of Y.

Remark 3.2: The moment—generating function and the cumulant—generating
function of a random variable Y have the following power series representation:

o My =1+ ki_o:l ﬂ%% , if convergent.

. ) koo, . . .
o Ky = 2 /ik};—! , if convergent, with power series coefficients “%.

= k!
4
Definition 3.3:
1. k; are called cumulants of Y.
2. op =% k=3,4,... are called standardized cumulants, where o := | /ju,.
O
Remark 3.4:
R1 = W,

— _ 2
Ry = 2 =07,

R3 = U3,

14



Ka = ftg — 343,
ks = pu3 — 10uspuo, and

Ko = fte — 15ptaprz — 1005 + 3043

Definition 3.5:  (Hermite Polynoms)

t2
With the density of the standard normal-distribution ¢(#) = e~ 2, the
Hermite Poynoms H), are defined by

e Hiw = (-1)" (jt)k@(t)

O
Hermite polynoms possess the following property:
/etXHk(X)c,o (x)de =F (etXHk(X)) = ifkeg
R
The first six Hermite polynoms have the following representation:
Ho(t) =
Hi(t)=1
Hy(t)y =1 —1
Hs(t) =% — 3t
Hy(t) =t*—6t> +3
Hs(t) =t° —10¢° + 15¢
Heg(t) = 15 — 15t* + 45t — 15
Theorem 3.6: (Edgeworth—development)
For Y7, Y5, ... itd random variables, it holds
Fsyy = (1)
= (1) (R Halt) + i Halt) + 5L H(0) + (1)) + O (1)
4

15



Remark 3.7:

e The proof is via the cumulant generating function, the moment generating
function, and the Hermite Polynoms. An exact proof can be found in

Barndorff-Nielsen & Cox (1989).

o The Edgeworth-approximation of Fs« is obtained in the above formula,
when O (i) is omitted.

n2

o The Edgeworth—approximation is close to the central limit theorem for big
n. It uses the standardized normal distribution ¢(?).

o The longer the paths in an EOR network with identically distributed ran-
dom variables, the better the approximation through the Edgeworth for-
mula.

3.2 Representation of the Cox—Distribution as
a STEOR Network

The Cox—distribution is a quite general class of distributions.
It is dense in the class of all positive distributions. It is modelled as follows:
If X ~ Coxpmpr,pm)i(drdm)s then X corresponds to the time of absorption
of the Markov process {Y,,0,} with state space of the embedded Markov chain

S =1{0,...,m + 1}, inter arrival times 6, ~ exp(},), and transition matrix*
00 p 0 ... 0 1—p
P =
: . .0
0 ... ... ... 0 pn 1—p,
0 ... ... ... ... 0 1

If an activity < i,7 > has a Cop (p,,....pm), (M, )~ distributed duration Dyj,
then the arc < 2,5 > in the EOR network can be replaced by a STEOR net-
work structure, where all occurring distributions are exponential. The network
structure is shown in Figure 3.1. The network structure exactly corresponds to
the Markov process defining the Cox—distribution, where state 0 is represented
by node ¢ and state m + 1 by node j.

1Clearly, the Markov process will be absorbed in state m + 1.

16



exp(hq) exp(hp) exp(hs) exp(im)

Figure 3.1: Cox—distribution as a STEOR network

Remark 3.8:

e In the more general Triangular Phase-type distribution (TPH), forward—
moves not only to the next state in the Markov state space but also to fol-
lowing, higher—-numbered states are allowed. TPH-distributed activity du-
rations can be modelled analogously by STEOR network structures, where
corresponding additional “forward arcs” are contained with their respective
transition probabilities.

TPH is dense in the class of positive distributions, too. For details, see

Barlow & Proschan (1975).

o With the Cox—distribution or the TPH, any positive distribution can be
approximated. One way to do this is the following: Set the first & mo-
ments of the random variable, whose distribution is to be approximated,
equal to the corresponding moments of the Cox-distribution?. This leads
to a non—linear system of equations. Solve this system approximately and
obtain parameters for the Cox—distribution. The higher k, the better the
approximation, but also, the more complex the system of non-linear equa-
tions.

o Replacing arbitrarily distributed activity durations by the above described
network structures, we obtain a network with exclusively exponentially dis-
tributed parameters. We are able to apply the exact analysis formula in the

case Fy; = exp(Nij); Aij # A Vij # kl. The number of network nodes

is hereby increased. Since the network structures are not dense networks,

2For the moments of TPH, see Barlow & Proschan (1975)

17



calculus of paths should still be able in an acceptable amount of time, cf.
Chapter 4.

3.3 Cycle Structures

Whereas the MRP works for cycle structures as well, the exact analysis for-
mula has to calculate infinite sums of convolutions, since paths may contain
infinitely many arcs in cycle structures. There are two possibilities to obtain
approximate results for cycle structures:

1. Calculate paths through cycle structures until the probability for staying
another turn in the cycle structure is sufficiently small. This can be done
since the probability for leaving a cycle structure is assumed to be strictly
positive:

Let C be a cycle structure, where the probability to stay in cycle structure
C is po < 1 and 1 — p¢ is the probability for leaving C'. Then, a project
realization which activates (' stays exactly n turns in ' with probability
pc” - (1 — pe). This probability limits to 0 when n — oo.

2. Calculate the expected time of a single “cycle execution”, E(T¢). Then,
calculate the expected number of cycle executions F(NV), which can be con-
sidered as a stopping time. Corresponding to Wald’s equation, the expected
time consumption within cycle structure C'is E(T¢) - E(N). Finally, cycle
structure C' can be replaced by a single activity with deterministic duration
E(T¢) - E(N). Clearly, this approach is a heuristic approximation.

18



Chapter 4

Computing Test Results

In this chapter, we analyze and compare the two methods in exactness and
computing time. The results are extracted from Strohler (1995).

The methods were implemented in Visual Works\Smalltalk V.2.0a and run on
a “80 MHz—Macintosh Power PC”. The MRP was implemented with equidistant
interval-splitting partitions and different approximation—accuracy, depending on
the time-distributions of the activities and on the network-depth. In the fol-
lowing, approximation—accuracy parameters are denoted by “approx” and a fol-
lowing number. The number itself is a value for the smoothness of the partition
of the considered intervall. E.g., approx=40 is twice as smooth as approx=20.
This relation of the smoothness—values is sufficient to qualitatively interpret the
following analysis.

Of course, the MRP could be implemented with higher technical standards,
as professional mathematical linear equation solver software and adapted integral
approximation methods. This would definitely lead to less absolute computing
times for the MRP. However, the qualitative trends which can be extracted from
the diagrams stay the same.

4.1 Exactness and Computing Time in Com-
parison

We first consider an acyclic EOR network with n = 30 nodes and m = 60 arcs,
D;j ~ exp(1l) iid. This project network was evaluated in a single network sink at
time ¢t = 5. The exact analysis formula is referred to as the exact value, since it
could be adapted in the exact and explicit form. Figure 4.1 shows the relative
deviation of the MRP with different approximation accuracies and the consumed
absolute computing time (in milliseconds) compared to the exact method. Fig-
ure 4.2 depicts the same situation with the relative computing time difference to

! Nevertheless, the corresponding absolute smoothness—value depends on the given problem.

19



the exact method.

~—~~

g 700000 T—m

= 600000

2 500000 ®exakt

g 400000 W approx=10
g approx=20
5 288888 Xapprox=30
8. 100000 oS Xapprox=40
=

Qo 0 X

o

0.00% 0.50% 1.00% 1.50% 2.00% 2.50%
relative deviation

Figure 4.1: Computing time comparison: exact analysis formula versus MRP

S

350 Tm
% 300
S ¢ exakt
Q 250 M approx=10
E 200 pp
- 150 approx=20
g’ Xapprox=30
— 100 X
5 Xapprox=40
a 90 X
€ 0
8 0.00%  0.50%  1.00%  1.50%  2.00%  2.50%

relative deviation

Figure 4.2: Relative computing time comparison: exact analysis formula versus

MRP

Remark 4.1:

e We notice, that in this case, where the exact analysis formula can be
adapted directly, we have an enormous computing time advantage in com-
parison to MRP.

o Computing times of the MRP increase exponentially in the smoothness of
the integral partition. The reason therefore is, that the MRP needs to
calculate all intermediate values up to fy = 5 in the same smoothness steps
(Riemann—Stieltjes integral approximation needs former values). q

20



Next, we investigate the behaviour of the methods in the course of time.
Therefore, we consider an acyclic EOR network with again n = 30 nodes and
m = 60 arcs. This time, D;; ~ exp(h) iid. We consider non—-marginal time
evaluation of a sink at times t = 2, t = 4, and t = 6. Figure 4.3 shows the
relative deviation of the MRP with different approximation parameters to the
exact formula. Figure 4.4 shows the relative computing time differences of the
MRP to the exact method in this case.
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Figure 4.3: Relative deviation: exact analysis formula versus MRP

Remark 4.2:

o We see, that the MRP is getting stable, i.e., the longer (with respect to
evaluation time) the MRP is applied for approximation of the activation
functions, the more exact it becomes. The limit-values of the activation
functions are the marginal values, to which the MRP tends with appropriate
approximation accuracy.

e The computing times of the MRP increase, for any approximation accuracy,
linear in time, since integral approximation is calculated in equidistant par-
titions.

21



450000
400000
%)
1S 350000
Nt
g 300000 @kt
= 250000 Mapprox=10
? approx=20
= 200000 -
= approx=30
a 150000 Kapprox=40
g 100000 f
8 | |
50000 X i
0 - * ¢
0 1 2 3 4 5 6

time t

Figure 4.4: Computing time at several points in time: exact analysis formula

versus MRP

4.2 Examination of the Exactness in Detail

In order to verity the exactness of the MRP, we examine a STEOR network
with n = 20 nodes and m = 19 activities, all in series. Activity durations are
distributed iid exp(1). The activation function of the sink is the distribution
function of the 19-times convolution of exp(l)-random variables, i.e.: Erlang
(19,1). This distribution function is “already” close to the normal distribution,
due to the central limit theorem. This exact activity distribution is shown in Fig-
ure 4.5. An approximation with the MRP and a smooth approximation accuracy
(approx=40) is shown in Figure 4.6.
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Figure 4.5: Activation function of sink for exp(1)-distributed activity durations
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Figure 4.6: Difference of MRP and exact formula for exp(1)-distributed activity
durations

Remark 4.3:

o The absolute difference of MRP with appropriate approximation accuracy
to the exact analysis is not much.

o The difference is the higher, the greater the derivation of the exact distri-
bution function is. This is reasoned by the equidistant partitioning of the
integral approximation.

o We again notice, that the difference of MRP to the exact analysis converges
to zero if t — oo. Le.: “the MRP stabilizes towards the marginal case”. «

Finally, we want to compare the MRP with the “exact analysis formula” in the
case, where activity durations are distributed uniformly. We consider the same
network as above, where 19 activities are executed in series. Activity durations
this time are distributed éid U[0, 1], i.e., uniform on the interval [0,1]. We apply
the Edgeworth—approximation for the “exact formula”. Figure 4.7 shows the
activation function for the sink obtained with the Edgeworth—approximation.
Since n = 19, the result is “already” close to a normal distribution, due to the
central limit theorem. Figure 4.8 shows the difference of the MRP to the “exact
formula” with Edgeworth—approximation.

Remark 4.4:

o The absolute difference of MRP with appropriate approximation accuracy
to the “exact analysis” is not much. Here, we need to be careful since two
not—exact values are compared.

o The difference again is the higher, the greater the gradient of the exact

distribution function is. <
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Figure 4.7: Activation function of sink for U(0, 1)-distributed activity durations
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Figure 4.8: Difference of MRP and “exact formula” for U(0, 1)-distributed ac-
tivity durations
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Chapter 5

Summary and Outlook

The Markov Renewal Process Method (MRP) with appropriate accuracy for
the integral approximation gives good and stable results. It is a very flexible
approximation method for arbitrary positively distributed activity durations. It
is as good within cycle structures.

Disadvantages, however, are the large computing times to obtain good re-
sults. The qualitative trends, that computing time increases exponentially with
increasing smoothness of the interval partition for integral approximation and,
that computing time increases linear in evaluation time, cannot be compensated
with high technical computing standards.

The exact analysis formula derived from the renewal equation gives explicit
representation of the activity functions in the case where activity durations are
exponentially distributed. Non—marginal time evaluation becomes exact. For
projects, where the acyclic network is not too dense, the computing time for
all occurring paths is acceptable. The comparison to MRP gives astonishingly
souvereign results.

It was shown, that arbitrary project durations can be approximated by Fdge-
worth—approximation or by the Cox—distribution and using the “exact analysis
formula”. Cycle—structures can heuristically be applied, too.

Thus, for real-world projects, this new method should be as well taken into
consideration for non—marginal time analysis due to its very fast evaluation.
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