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Abstract

The present lectures contain an introduction to low energy supersymmetry, a new symmetry

that relates bosons and fermions, in particle physics. The Standard Model of fundamental

interactions is briey reviewed, and the motivation to introduce supersymmetry is discussed.

The main notions of supersymmetry are introduced. The supersymmetric extension of the

Standard Model - the Minimal Supersymmetric Standard Model - is considered in more detail.

Phenomenological features of the MSSM as well as possible experimental signatures of SUSY

are described. An intriguing situation with the supersymmetric Higgs boson is discussed.

||||||||||||||||||||
� Lectures given at the European School on High Energy Physics, Aug.-Sept. 2000, Cara-

mulo, Portugal and at Schwarzwald Workshop, 5-7 Oct. 2000, Bad Liebenzell, Germany.
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1 Introduction. The Standard Model and beyond

The Standard Model (SM) of fundamental interactions describes strong, weak and electromag-

netic interactions of elementary particles [1]. It is based on a gauge principle, according to which

all the forces of Nature are mediated by an exchange of the gauge �elds of the corresponding

local symmetry group. The symmetry group of the SM is

SUcolour(3)
 SUleft(2)
 Uhypercharge(1); (1.1)

whereas the �eld content is the following:

Gauge sector : Spin = 1

The gauge bosons are spin 1 vector particles belonging to the adjoint representation of the

group (1.1). Their quantum numbers with respect to SU(3) 
 SU(2)
 U(1) are

gluons G
a
� : (8; 1; 0) SUc(3) gs;

intermediate

weak bosons
W

i
� : (1; 3; 0) SUL(2) g;

abelian boson B� : (1; 1; 0) UY (1) g
0
;

(1.2)

where the coupling constants are usually denoted by gs, g and g
0, respectively.

Fermion sector : Spin = 1/2

The matter �elds are fermions belonging to the fundamental representation of the gauge

group. These are believed to be quarks and leptons of at least of three generations. The SM is

left-right asymmetric. Left-handed and right-handed fermions have di�erent quantum numbers
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(1.3)

i = 1; 2; 3 - colour, � = 1; 2; 3; : : : - generation.

Higgs sector : Spin = 0

In the minimal version of the SM there is one doublet of Higgs scalar �elds

H =

 
H

0

H
�

!
(1; 2;�1); (1.4)

which is introduced in order to give masses to quarks, leptons and intermediate weak bosons via

spontaneous breaking of electroweak symmetry.

In the framework of Quantum Field Theory the SM is described by the following Lagrangian:

L = Lgauge + LY ukawa + LHiggs; (1.5)
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D
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where ~H = i�2H
y.

LHiggs = �V = m
2
H
y
H � �

2
(Hy

H)2: (1.8)

Here fyg are the Yukawa and � is the Higgs coupling constants, both dimensionless, and m is

the only dimensional mass parameter1.

The Lagrangian of the SM contains the following set of free parameters:

� 3 gauge couplings gs; g; g
0;

� 3 Yukawa matrices yL
��
; y

D

��
; y

U

��
;

� Higgs coupling constant �;

� Higgs mass parameter m2;

� number of matter �elds (generations).

All the particles obtain their masses due to spontaneous breaking of SUleft(2) symmetry

group via a non-zero vacuum expectation value (v.e.v.) of the Higgs �eld

< H >=

 
v

0

!
; v = m=

p
�: (1.9)

As a result, the gauge group of the SM is spontaneously broken down to

SUc(3)
 SUL(2)
 UY (1)) SUc(3)
 UEM (1):

1We use the usual for particle physics units c = �h = 1
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Measurement Pull Pull
-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021    .05

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023   -.42

σhadr [nb]σ0 41.540 ± 0.037   1.62

RlRl 20.767 ± 0.025   1.07

AfbA0,l 0.01714 ± 0.00095    .75

AeAe 0.1498 ± 0.0048    .38

AτAτ 0.1439 ± 0.0042   -.97

sin2θeffsin2θlept 0.2321 ± 0.0010    .70

mW [GeV]mW [GeV] 80.427 ± 0.046    .55

RbRb 0.21653 ± 0.00069   1.09

RcRc 0.1709 ± 0.0034   -.40

AfbA0,b 0.0990 ± 0.0020  -2.38

AfbA0,c 0.0689 ± 0.0035  -1.51

AbAb 0.922 ± 0.023   -.55

AcAc 0.631 ± 0.026  -1.43

sin2θeffsin2θlept 0.23098 ± 0.00026  -1.61

sin2θWsin2θW 0.2255 ± 0.0021   1.20

mW [GeV]mW [GeV] 80.452 ± 0.062    .81

mt [GeV]mt [GeV] 174.3 ± 5.1   -.01

∆αhad(mZ)∆α(5) 0.02804 ± 0.00065   -.29

Osaka 2000

Figure 1: Global Fit of the Standard Model

The physical weak intermediate bosons are linear combinations of the gauge ones

W
�
� =

W
1
� � iW 2

�p
2

; Z� = � sin �WB� + cos �WW
3
� (1.10)

with masses

mW =
1p
2
gv; mZ = mW = cos �W ; tan �W = g

0
=g; (1.11)

while the photon �eld

� = cos �WB� + sin �WW
3
� (1.12)

remains massless.
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  [
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]

χ2/d.o.f.: 5.7 / 5

χ2/d.o.f.: 11.9 / 6

Afb
0,l 0.23099 ± 0.00053

Aτ 0.23192 ± 0.00053
Ae 0.23117 ± 0.00061
Afb

0,b 0.23225 ± 0.00036
Afb

0,c 0.23262 ± 0.00082
<Qfb> 0.2321 ± 0.0010

Average(LEP) 0.23184 ± 0.00023

Al(SLD) 0.23098 ± 0.00026

Average(LEP+SLD) 0.23146 ± 0.00017

∆αhad= 0.02804 ± 0.00065∆α(5)

αs= 0.119 ± 0.002
mt= 174.3 ± 5.1 GeV

Figure 2: Weak mixing angle and the Higgs boson mass

The matter �elds acquire masses proportional to the corresponding Yukawa couplings:

M
u

�� = y
u

��v; M
d

�� = y
d

��v; M
l

�� = y
l

��v; mH =
p
2m: (1.13)

Explicit mass terms in the Lagrangian are forbidden because they are not SUleft(2) symmetric

and would destroy the renormalizability of the Standard Model.

The SM has been constructed as a result of numerous e�orts both theoretical and experi-

mental. At present, the SM is extraordinary successful, the achieved accuracy of its predictions

corresponds to experimental data within 5 % [1, 2]. The combined results of the Global SM �t

are shown in Fig.1 [2]. All the particles, except for Higgs boson, have been discovered experi-

mentally. And the mass of the Higgs boson is severely constrained from precision electroweak

data (see Fig.2 [2]).

However, the SM has its natural drawbacks and unsolved problems. Among them are

� inconsistency of the SM as a QFT (Landau pole),

� large number of free parameters,

� formal uni�cation of strong and electroweak interactions,
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� still unclear mechanism of EW symmetry breaking: The Higgs boson has not yet been

observed and it is not clear whether it is fundamental or composite,

� the problem of CP-violation is not well understood including CP-violation in a strong

interaction,

� avour mixing and the number of generations are arbitrary,

� the origin of the mass spectrum is unclear.

The answer to these problems lies beyond the SM. There are two possible ways of going

beyond the SM

) To consider the same fundamental �elds with new interactions. This way leads us to

supersymmetry, Grand Uni�cation, String Theory, etc. It seems to be favoured by modern

experimental data.

) To consider new fundamental �elds with new interactions. This way leads us to composite-

ness, fermion-antifermion condensates, Technicolour, extended Technicolour, preons, etc.

It is not favoured by data at the moment.

There are also possible exotic ways out of the SM: gravity at TeV energies, large extra

dimensions, brane world, etc. We do not consider them here. In what follows we go along the

lines of the �rst possibility and describe supersymmetry as a nearest option for the new physics

on TeV scale.

2 What is supersymmetry? Motivation in particle physics

Supersymmetry or fermion-boson symmetry has not yet been observed in Nature. This is a

purely theoretical invention [3]. Its validity in particle physics follows from the common belief

in uni�cation. Over 30 years thousands of papers have been written on supersymmetry. For

reviews see, e.g. Refs.[4]-[8].

2.1 Uni�cation with gravity

The general idea is a uni�cation of all forces of Nature. It de�nes the strategy : increasing

uni�cation towards smaller distances up to lP l � 10�33 cm including quantum gravity. How-

ever, the graviton has spin 2, while the other gauge bosons (photon, gluons, W and Z weak

bosons) have spin 1. Therefore, they correspond to di�erent representations of the Poincar�e

algebra. Attempts to unify all four forces within the same algebra face a problem. Due to no-go

theorems [9], uni�cation of spin 2 and spin 1 gauge �elds within a unique algebra is forbidden.

The only exception from this theorem is supersymmetry algebra. The uniqueness of SUSY is

due to a strict mathematical statement that algebra of SUSY is the only graded (i.e. containing

anticommutators as well as commutators) Lie algebra possible within relativistic �eld theory [9].

If Q is a generator of SUSY algebra, then

Qjboson >= jfermion > and Qjfermion >= jboson > :

Hence, starting with the graviton state of spin 2 and acting by SUSY generators we get the

following chain of states:

spin 2 ! spin 3=2 ! spin 1 ! spin 1=2 ! spin 0:

7



Thus, a partial uni�cation of matter (fermions) with forces (bosons) naturally arises from an

attempt to unify gravity with other interactions.

SUSY algebra appears as a generalization of Poincar�e algebra (see next section) and links

together various representations with di�erent spins. The key relation is given by the anticom-

mutator

fQ�;
�Q _�g = 2�

�

�; _�P�:

Taking in�nitesimal transformations Æ� = �
�
Q�;

�Æ�� = �Q _���
_�
; one gets

fÆ�; �Æ��g = 2(�����)P�; (2.1)

where � is a transformation parameter. Choosing � to be local, i.e. a function of a space-time

point � = �(x), one �nds from eq.(2.1) that an anticommutator of two SUSY transformations

is a local coordinate translation. And a theory which is invariant under the general coordinate

transformation is General Relativity. Thus, making SUSY local, one obtains General Relativity,

or a theory of gravity, or supergravity [10].

Theoretical attractiveness of SUSY �eld theories is explained by remarkable properties of

SUSY models. This is �rst of all cancellation of ultraviolet divergencies in rigid SUSY theories

which is the origin of

� possible solution of the hierarchy problem in GUTs;

� vanishing of the cosmological constant;

� integrability, allowing for an exact non-perturbative solution.

It is believed that along these lines one can also obtain the uni�cation of all forces of Nature

including quantum (super)gravity.

What is essential, the standard concepts of QFT allow SUSY without any further assump-

tions, it is straightforward to construct the supersymmetric generalization of the SM. Moreover,

it can be checked experimentally! In recent years, supersymmetry became a subject of intensive

experimental tests. Its predictions can be veri�ed at modern and future colliders.

2.2 Uni�cation of gauge couplings

Since the main motivation for SUSY is related with the uni�cation theory, let us briey recall

the main ideas of the Grand Uni�cation [11].

The philosophy of Grand Uni�cation is based on a hypothesis: Gauge symmetry increases

with energy. Having in mind uni�cation of all forces of Nature on a common basis and neglecting

gravity for the time being due to its weakness, the idea of GUTs is the following:

All known interactions are di�erent branches of a unique interaction associated with a simple

gauge group. The uni�cation (or splitting) occurs at high energy

Low energy ) High energy

SUc(3)
 SUL(2)
 UY (1) ) GGUT (or Gn + discrete symmetry)

gluons W;Z photon ) gauge bosons

quarks leptons ) fermions

g3 g2 g1 ) gGUT

At �rst sight this is impossible due to a big di�erence in the values of the couplings of

strong, weak and electromagnetic interactions. However, this is not so. The crucial point here
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Figure 3: Electric screening and magnetic antiscreening

is the running coupling constants. It is a generic property of quantum �eld theory which has an

analogy in classical physics.

Indeed, consider electric and magnetic phenomena. Let us take some dielectric medium and

put a sample electric charge in it. What happens is that the medium is polarized. It contains

electric dipoles which are arranged in such a way as to screen the charge (see Fig.3). It is a

consequence of the Coulomb law: attraction of the opposite charges and repulsion of the same

ones. This is the origin of electric screening.

The opposite situation occurs in a magnetic medium. According to the Biot-Savart law,

electric currents of the same direction are attracted to each other, while those of the opposite

one are repulsed (see Fig.3). This leads to antiscreening of electric currents in a magnetic

medium.

In QFT, the role of the medium is played by the vacuum. Vacuum is polarized due to the

presence of virtual pairs of particles in it. The matter �elds and transverse quanta of vector

�elds in this case behave like dipoles in a dielectric medium and cause screening, while the

longitudinal quanta of vector �elds behave like currents and cause antiscreening. These two

e�ects compete each other (see eq.(2.6) below).

Thus, the couplings become the functions of a distance or an energy scale

�i = �i(
Q
2

�2
) = �i(distance); �i � g

2
i =4�:

This dependence is described by the renormalization group equations and is con�rmed experi-

mentally (see Fig.4).

In the SM the strong and weak couplings associated with non-Abelian gauge groups decrease

with energy, while the electromagnetic one associated with the Abelian group on the contrary

increases. Thus, it becomes possible that at some energy scale they become equal. According

to the GUT idea, this equality is not occasional but is a manifestation of a unique origin of

these three interactions. As a result of spontaneous symmetry breaking, the unifying group is

broken and the unique interaction is splitted into three branches which we call strong, weak and

electromagnetic interactions. This happens at a very high energy of an order of 1015�16 GeV. Of
course, this energy is out of the range of accelerators; however, some crucial predictions follow

from the very fact of uni�cation.
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Figure 4: Summary of running of the strong coupling �s [12]

After the precise measurement of the SU(3)�SU(2)�U(1) coupling constants, it has become
possible to check the uni�cation numerically.

The three coupling constants to be compared are

�1 = (5=3)g02=(4�) = 5�=(3 cos2 �W );

�2 = g
2
=(4�) = �= sin2 �W ; (2.2)

�3 = g
2
s=(4�)

where g0; g and gs are the usual U(1), SU(2) and SU(3) coupling constants and � is the �ne

structure constant. The factor of 5/3 in the de�nition of �1 has been included for proper

normalization of the generators.

The couplings, when de�ned as renormalized values including loop corrections require the

speci�cation of a renormalization prescription for which the modi�ed minimal subtraction (MS)

scheme [13] is used.

In this scheme, the world averaged values of the couplings at the Z0 energy are obtained

from a �t to the LEP and Tevatron data [14],[2],[12]:

�
�1(MZ) = 128:978 � 0:027

sin2 �
MS

= 0:23146 � 0:00017 (2.3)

�s = 0:1184 � 0:0031;

that gives

�1(MZ) = 0:017; �2(MZ) = 0:034; �3(MZ) = 0:118 � 0:003: (2.4)
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Assuming that the SM is valid up to the uni�cation scale, one can then use the known RG

equations for the three couplings. They are the following:

d~�i

dt
= bi ~�

2
i ; ~�i =

�i

4�
; t = log(

Q
2

�2
); (2.5)

where for the SM the coeÆcients bi are

bi =

0
B@ b1

b2

b3

1
CA =

0
B@ 0

�22=3
�11

1
CA+NFam

0
B@ 4=3

4=3

4=3

1
CA+NHiggs

0
B@ 1=10

1=6

0

1
CA : (2.6)

Here NFam is the number of generations of matter multiplets and NHiggs is the number of

Higgs doublets. We use NFam = 3 and NHiggs = 1 for the minimal SM, which gives bi =

(41=10;�19=6;�7).
Notice a positive contribution (screening) from the matter multiplets and negative one (an-

tiscreening) from the gauge �elds. For the Abelian group U(1) this contribution is absent due

to the absence of a self-interaction of Abelian gauge �elds.

The solution to eq.(2.5) is very simple

1

~�i(Q2)
=

1

~�i(�2)
� bilog(

Q
2

�2
): (2.7)

The result is demonstrated in Fig.5 showing the evolution of the inverse of the couplings as a

function of the logarithm of energy. In this presentation, the evolution becomes a straight line in

�rst order. The second order corrections are small and do not cause any visible deviation from

a straight line. Fig.5 clearly demonstrates that within the SM the coupling constant uni�cation

at a single point is impossible. It is excluded by more than 8 standard deviations. This result

means that the uni�cation can only be obtained if new physics enters between the electroweak

and the Planck scales!

Since we do not know what kind of new physics it may be, there is a lot of arbitrariness.

In this situation, some guiding idea is needed. It is very tempting to try to check whether

uni�cation is possible within a supersymmetric generalization of the SM. In the SUSY case, the

slopes of the RG evolution curves are modi�ed. The coeÆcients bi in eq.(2.5) now are

bi =

0
B@ b1

b2

b3

1
CA =

0
B@ 0

�6
�9

1
CA+NFam

0
B@ 2

2

2

1
CA+NHiggs

0
B@ 3=10

1=2

0

1
CA ; (2.8)

where we use NFam = 3 and NHiggs = 2 in the minimal SUSY model which gives bi =

(33=5; 1;�3).
It turns out that within the SUSY model a perfect uni�cation can be obtained if the SUSY

masses are of an order of 1 TeV. This is shown in Fig.6; the SUSY particles are assumed to

e�ectively contribute to the running of the coupling constants only for energies above the typical

SUSY mass scale, which causes the change in the slope of the lines near 1 TeV. From the �t

requiring uni�cation one �nds for the break point MSUSY and the uni�cation point MGUT [15]

MSUSY = 103:4�0:9�0:4 GeV;

MGUT = 1015:8�0:3�0:1 GeV; (2.9)

�
�1
GUT

= 26:3 � 1:9� 1:0;
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Figure 5: Evolution of the inverse of the three coupling constants in the Standard Model (left)

and in the supersymmetric extension of the SM (MSSM) (right). Only in the latter case uni�ca-

tion is obtained. The SUSY particles are assumed to contribute only above the e�ective SUSY

scale MSUSY of about 1 TeV, which causes a change in the slope in the evolution of couplings.

The thickness of the lines represents the error in the coupling constants [15].

where �GUT = g
2
5=4�. The �rst error originates from the uncertainty in the coupling constant,

while the second one is due to the uncertainty in the mass splittings between the SUSY particles.

The �2 distributions of MSUSY and MGUT are shown in Fig.6 [15], where

�
2 =

3X
i=1

(��1
i
� ��1

GUT
)2

�2
i

: (2.10)
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Figure 6: The �2 distributions of MSUSY and MGUT
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For SUSY models, the dimensional reduction DR scheme is a more appropriate renormaliza-

tion scheme [16]. In this scheme, all thresholds are treated by simple step approximations, and

uni�cation occurs if all three �'s meet exactly at one point. This crossing point corresponds to

the mass of the heavy gauge bosons. The MS and DR couplings di�er by a small o�set

1

�
DR
i

=
1

�
MS
i

� Ci

12�
; (2.11)

where Ci are the quadratic Casimir operators of the group (Ci = N for SU(N) and 0 for U(1)

so �1 remains the same).

This observation was considered as the �rst "evidence" for supersymmetry, especially since

MSUSY was found in the range preferred by the �ne-tuning arguments.

It should be noted that the uni�cation of the three curves at a single point is not that trivial

as it may seem from the existence of three free parameters (MSUSY ;MGUT and �GUT ). Out of

more than a thousand models tried, only a handful yielded uni�cation. The reason is simple:

Introducing new particles one inuences all three curves simultaneously, thus giving rise to

strong correlations between the slopes of the three lines. For example, adding new generations

and/or new Higgs doublets never yields uni�cation! Nevertheless, uni�cation does not prove

supersymmetry. The real proof would be the observation of the sparticles.

2.3 Solution of the hierarchy problem

The appearance of two di�erent scales V � v in a GUT theory, namely, MW and MGUT , leads

to a very serious problem which is called the hierarchy problem. There are two aspects of this

problem.

The �rst one is the very existence of the hierarchy. To get the desired spontaneous symmetry

breaking pattern, one needs

mH � v � 102 GeV

m� � V � 1016 GeV

mH

m�

� 10�14 � 1; (2.12)

where H and � are the Higgs �elds responsible for the spontaneous breaking of the SU(2) and

the GUT groups, respectively.

The question arises of how to get so small number in a natural way. One needs some kind

of �ne tuning in a theory, and we don't know if there anything behind it.

The second aspect of the hierarchy problem is connected with the preservation of a given

hierarchy. Even if we choose the hierarchy like eq.(2.12) the radiative corrections will destroy it!

To see this, consider the radiative correction to the light Higgs mass. It is given by the Feynman

diagram shown in Fig.7 and is proportional to the mass squared of the heavy particle. This

�
2

" light (m)

. heavy (M)
=) Æm2 � �2 �M2

o o o

102 10�1 1016

Figure 7: Radiative correction to the light Higgs boson mass
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correction obviously spoils the hierarchy if it is not cancelled. This very accurate cancellation

with a precision � 10�14 needs a �ne tuning of the coupling constants.
The only known way of achieving this kind of cancellation of quadratic terms (also known as

the cancellation of the quadratic divergencies) is supersymmetry. Moreover, SUSY automatically

cancels quadratic corrections in all orders of PT. This is due to the contributions of superpartners

of ordinary particles. The contribution from boson loops cancels those from the fermion ones

because of an additional factor (-1) coming from Fermi statistics, as shown in Fig.8. One can see

g
2

gauge

. boson

+

. gaugino

= 0
g g

�
2

. boson

+

. fermion

= 0
� �

Figure 8: Cancellation of quadratic terms (divergencies)

here two types of contribution. The �rst line is the contribution of the heavy Higgs boson and

its superpartner. The strength of interaction is given by the Yukawa coupling �. The second

line represents the gauge interaction proportional to the gauge coupling constant g with the

contribution from the heavy gauge boson and heavy gaugino.

In both the cases the cancellation of quadratic terms takes place. This cancellation is true

in the case of unbroken supersymmetry due to the following sum rule relating the masses of

superpartners X
bosons

m
2 =

X
fermions

m
2 (2.13)

and is violated when SUSY is broken. Then, the cancellation is true up to the SUSY breaking

scale, MSUSY , since X
bosons

m
2 �

X
fermions

m
2 =M

2
SUSY ; (2.14)

which should not be very large (� 1 TeV) to make the �ne-tuning natural. Indeed, let us

take the Higgs boson mass. Requiring for consistency of perturbation theory that the radiative

corrections to the Higgs boson mass do not exceed the mass itself gives

ÆM
2
h � g

2
M

2
SUSY �M

2
h : (2.15)

So, if Mh � 102 GeV and g � 10�1, one needs MSUSY � 103 GeV in order that the relation

(2.15) is valid. Thus, we again get the same rough estimate of MSUSY � 1 TeV as from the

gauge coupling uni�cation above. Two requirements match together.

That is why it is usually said that supersymmetry solves the hierarchy problem. Moreover,

sometimes it is said that: "There is no GUT without SUSY". However, this is only the second
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aspect of the problem, the preservation of the hierarchy. The origin of the hierarchy is the other

part of the problem. We show below how SUSY can explain this part as well.

2.4 Beyond GUTs: superstring

Another motivation for supersymmetry follows from even more radical changes of basic ideas

related to the ultimate goal of construction of consistent uni�ed theory of everything. At the

moment the only viable conception is the superstring theory [17], which pretends to be a self-

consistent quantum �eld theory in a non-perturbative sense allowing exact non-perturbative

solutions in the quantum case. In the superstring theory, strings are considered as fundamental

objects, closed or open, and are nonlocal in nature. Ordinary particles are considered as string

excitation modes. String interactions, which are local, generate proper interactions of usual

particles, including gravitational ones.

To be consistent, the string theory should be conformal invariant in D-dimensional target

space and have a stable vacuum [18]. The �rst requirement is valid in classical theory but

may be violated by quantum anomalies. Cancellation of quantum anomalies takes place when

space-time dimension of a target space equals a critical one. For a bosonic string the critical

dimension is D = 26, and for a fermionic one it is D = 10.

The second requirement is that the massless string excitations (the particles of the SM) are

stable. This assumes the absence of tachyons, the states with imaginary mass, which can be

guaranteed only in supersymmetric string theories!

Thus, the superstring theory proves to be the only known consistent quantum theory. This

serves as justi�cation of research in spite of absence of even a shred of experimental evidence.

However, many ingredients of this theory are still unclear.

3 Basics of supersymmetry

Supersymmetry transformations di�er from ordinary global transformations as far as they con-

vert bosons into fermions and vice versa. Indeed, if we symbolically write SUSY transformation

as

ÆB = " � f;

where B and f are boson and fermion �elds, respectively, and " is an in�nitesimal transformation

parameter, then from the usual (anti)commutation relations for (fermions) bosons

ff; fg = 0; [B;B] = 0

we immediately �nd

f"; "g = 0:

This means that all the generators of SUSY must be fermionic, i.e. they must change the spin

by a half-odd amount and change the statistics.
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3.1 Algebra of SUSY

Combined with the usual Poincar�e and internal symmetry algebra the Super-Poincar�e Lie algebra

contains additional SUSY generators Qi
� and �Qi

_� [3]

[P�; P� ] = 0;

[P�;M��] = i(g��P� � g��P�);
[M�� ;M��] = i(g��M�� � g��M�� � g��M�� + g��M��);

[Br; Bs] = iC
t
rsBt;

[Br; P�] = [Br;M�� ] = 0;

[Qi
�; P�] = [ �Qi

_�; P�] = 0;

[Qi
�;M�� ] =

1
2
(���)

�
�Q

i

�
; [ �Qi

_�;M�� ] = �1
2
�Qi
_�
(����)

_�
_�;

[Qi
�; Br] = (br)

i
j
Q
j
�; [ �Qi

_�; Br] = � �Q
j

_�(br)
i
j
;

fQi
�;

�Q
j

_�
g = 2Æij(��)

� _�
P�;

fQi
�; Q

j

�
g = 2���Z

ij
; Zij = a

r
ij
br; Z

ij = Z
+
ij
;

f �Qi
_�;
�Q
j

_�
g = �2�

_� _�
Z
ij
; [Zij; anything] = 0;

�; _� = 1; 2 i; j = 1; 2; : : : ; N:

(3.1)

Here P� and M�� are four-momentum and angular momentum operators, respectively, Br

are the internal symmetry generators, Qi and �Qi are the spinorial SUSY generators and Zij are

the so-called central charges; �; _�; �; _� are the spinorial indices. In the simplest case one has

one spinor generator Q� (and the conjugated one �Q _�) that corresponds to an ordinary or N=1

supersymmetry. When N > 1 one has an extended supersymmetry.

A natural question arises: how many SUSY generators are possible, i.e. what is the value

of N? To answer this question, consider massless states [5]. Let us start with the ground state

labeled by energy and helicity, i.e. projection of a spin on the direction of momenta, and let it

be annihilated by Qi

Vacuum = jE; � >; QijE; � >= 0:

Then one and more particle states can be constructed with the help of a creation operators as

State Expression # of States

vacuum jE; � > 1

1� particle state �QijE; � >= jE; �+ 1=2 >i

 
N

1

!
= N

2� particle state �Qi
�Qj jE; � >= jE; �+ 1 >ij

 
N

2

!
=

N(N�1)
2

::: ::: :::

N � particle state �Q1
�Q2:::

�QN jE; � >= jE; �+N=2 >

 
N

N

!
= 1

Total # of States
NX
k=0

 
N

k

!
= 2N = 2N�1 bosons + 2N�1 fermions;

where the energy E is not changed, since according to (3.1) the operators �Qi commute with the

Hamiltonian.

Thus, one has a sequence of bosonic and fermionic states and the total number of bosons

equals that of fermions. This is a generic property of any supersymmetric theory. However,
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in CPT invariant theories the number of states is doubled, since CPT transformation changes

the sign of helicity. Hence, in CPT invariant theories, one has to add the states with opposite

helicity to the above mentioned ones.

Consider some examples. Let us take N = 1 and � = 0. Then one has the following set of

states:

helicity 0 1=2 helicity 0 �1=2
N = 1 � = 0

CPT
=)

# of states 1 1 # of states 1 1

Hence, a complete N = 1 multiplet is

N = 1 helicity �1=2 0 1=2

# of states 1 2 1

which contains one complex scalar and one spinor with two helicity states.

This is an example of the so-called self-conjugated multiplet. There are also self-conjugated

multiplets with N > 1 corresponding to extended supersymmetry. Two particular examples are

the N = 4 super Yang-Mills multiplet and the N = 8 supergravity multiplet

N = 4 SUSY YM helicity �1 �1=2 0 1=2 1

� = �1 # of states 1 4 6 4 1

N = 8 SUGRA helicity �2 �3=2 �1 �1=2 0 1=2 1 3=2 2

� = �2 # of states 1 8 28 56 70 56 28 8 1

One can see that the multiplets of extended supersymmetry are very rich and contain a vast

number of particles.

The constraint on the number of SUSY generators comes from a requirement of consistency

of the corresponding QFT. The number of supersymmetries and the maximal spin of the particle

in the multiplet are related by

N � 4S;

where S is the maximal spin. Since the theories with spin greater than 1 are non-renormalizable

and the theories with spin greater than 5/2 have no consistent coupling to gravity, this imposes

a constraint on the number of SUSY generators

N � 4 for renormalizable theories (YM),

N � 8 for (super)gravity:

In what follows, we shall consider simple supersymmetry, or N = 1 supersymmetry, contrary to

extended supersymmetries with N > 1. In this case, one has two types of supermultiplets: the

so-called chiral multiplet with � = 0, which contains two physical states (�;  ) with spin 0 and

1/2, respectively, and the vector multiplet with � = 1=2, which also contains two physical states

(�;A�) with spin 1/2 and 1, respectively.

3.2 Superspace and super�elds

An elegant formulation of supersymmetry transformations and invariants can be achieved in the

framework of superspace [7]. Superspace di�ers from the ordinary Euclidean (Minkowski) space
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by adding of two new coordinates, �� and �� _�, which are Grassmannian, i.e. anticommuting,

variables

f��; ��g = 0; f�� _�; �� _�g = 0; �
2
� = 0; ��2_� = 0; �; �; _�; _� = 1; 2:

Thus, we go from space to superspace

Space ) Superspace

x� x�; ��;
�� _�

A SUSY group element can be constructed in superspace in the same way as an ordinary

translation in the usual space

G(x; �; ��) = e
i(�x�P� + �Q+ �� �Q)

: (3.2)

It leads to a supertranslation in superspace

x� ! x� + i����"� i"����;
� ! � + ";

�� ! �� + �";

(3.3)

where " and �" are Grassmannian transformation parameters. From eq.(3.3) one can easily obtain

the representation for the supercharges (3.1) acting on the superspace

Q� =
@

@��
� i��

� _�
�� _�@�; �Q _� = �

@

@�� _�
+ i���

�

� _�@�: (3.4)

Taking the Grassmannian transformation parameters to be local, or space-time dependent, one

gets a local translation. As has already been mentioned, this leads to a theory of (super) gravity.

To de�ne the �elds on a superspace, consider representations of the Super-Poincar�e group

(3.1) [5]. The simplest one is a scalar super�eld F (x; �; ��) which is SUSY invariant. Its Taylor

expansion in � and �� has only several terms due to the nilpotent character of Grassmannian

parameters. However, this super�eld is a reducible representation of SUSY. To get an irreducible

one, we de�ne a chiral super�eld which obeys the equation

�DF = 0; where �D = � @

@�
� i���@� (3.5)

is a superspace covariant derivative.

For the chiral super�eld Grassmannian Taylor expansion looks like (y = x+ i����)

�(y; �) = A(y) +
p
2� (y) + ��F (y)

= A(x) + i��
���@�A(x) +

1

4
������2A(x)

+
p
2� (x)� ip

2
��@� (x)�

� �� + ��F (x): (3.6)

The coeÆcients are ordinary functions of x being the usual �elds. They are called the components

of a super�eld. In eq.(3.6) one has 2 bosonic (complex scalar �eld A) and 2 fermionic (Weyl

spinor �eld  ) degrees of freedom. The component �elds A and  are called the superpartners.

The �eld F is an auxiliary �eld, it has the \wrong" dimension and has no physical meaning.

It is needed to close the algebra (3.1). One can get rid of the auxiliary �elds with the help of

equations of motion.
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Thus, a super�eld contains an equal number of bosonic and fermionic degrees of freedom.

Under SUSY transformation they convert into one another

Æ"A =
p
2" ;

Æ" = i

p
2���"@�A+

p
2"F; (3.7)

Æ"F = i

p
2�"��@� :

Notice that the variation of the F -component is a total derivative, i.e. it vanishes when integrated

over the space-time.

One can also construct an antichiral super�eld �+ obeying the equation

D�+ = 0; with D =
@

@�
+ i�

���@�:

The product of chiral (antichiral) super�elds �2
;�3, etc is also a chiral (antichiral) super�eld,

while the product of chiral and antichiral ones �+� is a general super�eld.

For any arbitrary function of chiral super�elds one has

W(�i) = W(Ai +
p
2� i + ��F )

= W(Ai) +
@W
@Ai

p
2� i + ��

 
@W
@Ai

Fi �
1

2

@
2W

@Ai@Aj

 i j

!
: (3.8)

TheW is usually referred to as a superpotential which replaces the usual potential for the scalar

�elds.

To construct the gauge invariant interactions, one needs a real vector super�eld V = V
+. It

is not chiral but rather a general super�eld with the following Grassmannian expansion:

V (x; �; ��) = C(x) + i��(x)� i�� ��(x)

+
i

2
��[M(x) + iN(x)]� i

2
����[M(x)� iN(x)]

� ��
���v�(x) + i����[�(x) +

i

2
���@��(x)]

� i�����[�+
i

2
�
�
@� ��(x)] +

1

2
������[D(x) +

1

2
2C(x)]: (3.9)

The physical degrees of freedom corresponding to a real vector super�eld V are the vector

gauge �eld v� and the Majorana spinor �eld �. All other components are unphysical and

can be eliminated. Indeed, under the Abelian (super)gauge transformation the super�eld V is

transformed as

V ! V +�+�+
;

where � and �+ are some chiral super�elds. In components it looks like

C ! C +A+A
�
;

� ! �� i
p
2 ;

M + iN ! M + iN � 2iF;

v� ! v� � i@�(A�A�); (3.10)

� ! �;

D ! D;
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and corresponds to ordinary gauge transformations for physical components. According to

eq.(3.10), one can choose a gauge (the Wess-Zumino gauge [19]) where C = � = M = N = 0,

leaving one with only physical degrees of freedom except for the auxiliary �eld D. In this gauge

V = ������v�(x) + i������(x)� i������(x) + 1

2
������D(x);

V
2 = �1

2
������v�(x)v

�(x);

V
3 = 0; etc: (3.11)

One can de�ne also a �eld strength tensor (as analog of F�� in gauge theories)

W� = �1
4
�D2
e
V
D�e

�V
;

�W _� = �1
4
D

2
e
V �D�e

�V
; (3.12)

which is a polynomial in the Wess-Zumino gauge. (Here Ds are the supercovariant derivatives.)

The strength tensor is a chiral super�eld

�D _�
W� = 0; D�

�W _� = 0:

In the Wess-Zumino gauge it is a polynomial over component �elds:

W� = T
a

�
�i�a� + ��D

a � i

2
(������)�F

a

�� + �
2
�
�
D�

��a
�
; (3.13)

where

F
a

�� = @�v
a

� � @�va� + f
abc
v
b

�v
c

� ; D�
��a = @��a + f

abc
v
b

�
��c:

In Abelian case eqs.(3.12) are simpli�ed and take form

W� = �
1

4
�D2
D�V;

�W _� = �
1

4
D

2 �D�V:

3.3 Construction of SUSY Lagrangians

Let us start with the Lagrangian which has no local gauge invariance. In the super�eld nota-

tion SUSY invariant Lagrangians are the polynomials of super�elds. Having in mind that for

component �elds one should have ordinary terms and the above mentioned property of SUSY

invariance of the highest dimension components of a super�eld, the general SUSY invariant

Lagrangian has the form

L = �+
i
�ij������ + [(�i�i +

1

2
mij�i�j +

1

3
gijk�i�j�k)j�� + h:c:]: (3.14)

Hereafter the vertical line means the corresponding term of a Taylor expansion.

The �rst term is a kinetic term. It contains both the chiral and antichiral super�elds �i and

�+
i
, respectively, and is a function of Grassmannian parameters � and ��. Being expanded over

� and �� it leads to the usual kinetic terms for the corresponding component �elds.

The terms in the bracket form the superpotential. It is composed of the chiral �elds only

(plus the hermitian conjugated counterpart composed of antichiral super�elds) and is a chiral

super�eld. Since the products of a chiral super�eld and antichiral one produce a general su-

per�eld, they are not allowed in a superpotential. The last coeÆcient of its expansion over the
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parameter � is supersymmetrically invariant and gives the usual potential after getting rid of

the auxiliary �elds, as it will be clear later.

The Lagrangian (3.14) can be written in a much more elegant way in superspace. The same

way as an ordinary action is an integral over space-time of Lagrangian density, in supersymmetric

case the action is an integral over the superspace. The space-time Lagrangian density then

is [5, 6, 7]

L =

Z
d
2
�d

2�� �+
i
�i +

Z
d
2
� [�i�i +

1

2
mij�i�j +

1

3
yijk�i�j�k] + h:c: (3.15)

where the �rst part is a kinetic term and the second one is a superpotentialW. Here instead of

taking the proper components we use integration over the superspace according to the rules of

Grassmannian integration [20] Z
d�� = 0;

Z
�� d�� = Æ�� :

Performing explicit integration over the Grassmannian parameters, we get from eq.(3.15)

L = i@�
� i��

�
 i +A

�
i2Ai + F

�
i Fi (3.16)

+ [�iFi +mij(AiFj �
1

2
 i j) + yijk(AiAjFk �  i jAk) + h:c:]:

The last two terms are the interaction ones. To obtain a familiar form of the Lagrangian, we

have to solve the constraints

@L
@F

�
k

= Fk + �
�
k +m

�
ikA

�
i + y

�
ijkA

�
iA

�
j = 0; (3.17)

@L
@Fk

= F
�
k + �k +mikAi + yijkAiAj = 0: (3.18)

Expressing the auxiliary �elds F and F � from these equations, one �nally gets

L = i@�
� i��

�
 i +A

�
i2Ai �

1

2
mij i j �

1

2
m
�
ij
� i � j

�yijk i jAk � y�ijk � i � jA�k � V (Ai; Aj); (3.19)

where the scalar potential V = F
�
k
Fk. We will return to the discussion of the form of the scalar

potential in SUSY theories later.

Consider now the gauge invariant SUSY Lagrangians. They should contain gauge invariant

interaction of the matter �elds with the gauge ones and the kinetic term and the self-interaction

of the gauge �elds.

Let us start with the gauge �eld kinetic terms. In the Wess-Zumino gauge one has

W
�
W�j�� = �2i���D�

��� 1

2
F��F

�� +
1

2
D

2 + i
1

4
F
��
F
��
�����; (3.20)

where D� = @� + ig[v�; ] is the usual covariant derivative and the last, the so-called topological

� term,2 is the total derivative.

The gauge invariant Lagrangian now has a familiar form

L =
1

4

Z
d
2
� W

�
W� +

1

4

Z
d
2�� �W _� �W _�

=
1

2
D

2 � 1

4
F��F

�� � i���D�
��: (3.21)

2Terminology comes from the � term of QCD [21] and has nothing to do with the Grassmannian parameter �.
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To obtain a gauge-invariant interaction with matter chiral super�elds, consider their gauge

transformation (Abelian)

� ! e
�ig��; �+ ! �+

e
ig�+

; V ! V + i(�� �+);

where � is a gauge parameter (chiral super�eld).

It is clear now how to construct both the SUSY and gauge invariant kinetic term (compare

with the covariant derivative in a usual gauge theory)

�+
i
�ij������ ) �+

i
e
gV �ij������ (3.22)

A complete SUSY and gauge invariant Lagrangian then looks like

Linv =
1

4

Z
d
2
� W

�
W� +

1

4

Z
d
2�� �W _� �W _� +

Z
d
2
�d

2�� �+
i
e
gV �i (3.23)

+

Z
d
2
� (

1

2
mij�i�j +

1

3
yijk�i�j�k) + h:c:

In particular, the SUSY generalization of QED looks as follows:

LSUSY QED =
1

4

Z
d
2
� W

�
W� +

1

4

Z
d
2�� �W _� �W _�

+

Z
d
4
� (�+

+e
gV �+ +�+

�e
�gV ��) (3.24)

+

Z
d
2
� m �+�� +

Z
d
2�� m �+

+�
+
�;

where two super�elds �+ and �� have been introduced in order to have both left- and right-

handed fermions.

The non-Abelian generalization is straightforward

LSUSY YM =
1

4

Z
d
2
� Tr(W�

W�) +
1

4

Z
d
2�� Tr( �W� �W�) (3.25)

+

Z
d
2
�d

2�� ��ia(e
gV )ab�

b

i +

Z
d
2
� W(�i) +

Z
d
2�� �W(��i);

where W is a superpotential, which should be invariant under the group of symmetry of a

particular model.

In terms of component �elds the above Lagrangian takes the form

LSUSY YM = �1
4
F
a

��F
a�� � i�a��D�

��a +
1

2
D
a
D
a

+ (@�Ai � igva�T a
Ai)

y(@�Ai � igva�T a
Ai)� i � i���(@� i � igva�T a

 i)

� D
a
A
y
i
T
a
Ai � i

p
2A

y
i
T
a
�
a
 i + i

p
2 � iT

a
Ai
��a + F

y
i
Fi

+
@W
@Ai

Fi +
@ �W
@A

y
i

F
y
i
� 1

2

@
2W

@A@Aj

 i j �
1

2

@
2 �W

@A
y
i
@A

y
j

� i � j : (3.26)

Integrating out the auxiliary �elds Da and Fi, one reproduces the usual Lagrangian.
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3.4 The scalar potential

Contrary to the SM, where the scalar potential is arbitrary and is de�ned only by the requirement

of the gauge invariance, in supersymmetric theories it is completely de�ned by the superpotential.

It consists of the contributions from the D-terms and F -terms. The kinetic energy of the

gauge �elds (recall eq.(3.21) yields the 1=2Da
D
a term, and the matter-gauge interaction (recall

eq.(3.23) yields the gDa
T
a
ij
A
�
i
Aj one. Together they give

LD =
1

2
D
a
D
a + gD

a
T
a

ijA
�
iAj : (3.27)

The equation of motion reads

D
a = �gT a

ijA
�
iAj : (3.28)

Substituting it back into eq.(3.27) yields the D-term part of the potential

LD = �1
2
D
a
D
a =) VD =

1

2
D
a
D
a
; (3.29)

where D is given by eq.(3.28).

The F -term contribution can be derived from the matter �eld self-interaction eq.(3.16). For

a general type superpotential W one has

LF = F
�
i Fi + (

@W

@Ai

Fi + h:c:): (3.30)

Using the equations of motion for the auxiliary �eld Fi

F
�
i = �@W

@Ai

(3.31)

yields

LF = �F �i Fi =) VF = F
�
i Fi; (3.32)

where F is given by eq.(3.31). The full potential is the sum of the two contributions

V = VD + VF : (3.33)

Thus, the form of the Lagrangian is practically �xed by symmetry requirements. The only

freedom is the �eld content, the value of the gauge coupling g, Yukawa couplings yijk and

the masses. Because of the renormalizability constraint V � A
4 the superpotential should be

limited by W � �3 as in eq.(3.15). All members of a supermultiplet have the same masses, i.e.

bosons and fermions are degenerate in masses. This property of SUSY theories contradicts the

phenomenology and requires supersymmetry breaking.

3.5 Spontaneous breaking of SUSY

Since supersymmetric algebra leads to mass degeneracy in a supermultiplet, it should be broken

to explain the absence of superpartners at modern energies. There are several ways of supersym-

metry breaking. It can be broken either explicitly or spontaneously. Performing SUSY breaking

one has to be careful not to spoil the cancellation of quadratic divergencies which allows one to

solve the hierarchy problem. This is achieved by spontaneous breaking of SUSY.
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Apart from non-supersymmetric theories in SUSY models the energy is always nonnegative

de�nite. Indeed, according to quantum mechanics

E =< 0j H j0 >

and due to SUSY algebra eq.(3.1)

fQ�;
�Q _�
g = 2(��)

� _�
P�;

taking into account that tr(��P�) = 2P0; one gets

E =
1

4

X
�=1;2

< 0jfQ�;
�Q�gj0 >=

1

4

X
�

jQ�j0 > j2 � 0:

Hence

E =< 0j H j0 >6= 0 if and only if Q�j0 >6= 0:

Therefore, supersymmetry is spontaneously broken, i.e. vacuum is not invariant (Q�j0 >6=
0), if and only if the minimum of the potential is positive (i:e: E > 0) .

The situation is illustrated in Fig.9. The SUSY ground state has E = 0, while a non-SUSY

one has E > 0. On the right-hand side a non-SUSY potential is shown. It does not appear

even in spontaneously broken SUSY theories. However, just this type of the potential is used

for spontaneous breaking of the gauge invariance via the Higgs mechanism. This property has

crucial consequences for the spontaneous breaking of the gauge invariance. Indeed, as will be

seen later, in the MSSM spontaneous breaking of SU(2) invariance takes place only after SUSY

is broken.

V V

- SUSY GROUND

STATE

" NON-SUSY

GROUND

STATE

- NON-SUSY

POTENTIAL

Figure 9: Scalar potential in supersymmetric and non-supersymmetric theories

Spontaneous breaking of supersymmetry is achieved in the same way as the electroweak sym-

metry breaking. One introduces the �eld whose vacuum expectation value is nonzero and breaks

the symmetry. However, due to a special character of SUSY, this should be a super�eld whose

auxiliary F and D components acquire nonzero v.e.v.'s. Thus, among possible spontaneous

SUSY breaking mechanisms one distinguishes the F and D ones.
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i) Fayet-Iliopoulos (D-term) mechanism [22].

In this case the, the linear D-term is added to the Lagrangian

�L = �V j
������ = �

Z
d
4
� V: (3.34)

It is gauge and SUSY invariant by itself; however, it may lead to spontaneous breaking of both

of them depending on the value of �. We show in Fig.10a the sample spectrum for two chiral

matter multiplets. The drawback of this mechanism is the necessity of U(1) gauge invariance.

0

m

�g = 0 2g� < m20 < �g < m2 2g� > m2�g = m2

Mass Mass

a) b)

�g > m2

A�; � A�; � A�; �; A2 �

A1; A2

 1;  2

A2

 1;  2

A1

 1;  2

A1

A�; A2

 1;  2

A1

A3;  3

A2;  2

A1;  1

A3;  3

~B2

 2

~A2

~B1

 1

~A1

Ai = ~Ai + i ~Bi

Figure 10: Spectrum of spontaneously broken SUSY theories

It can be used in SUSY generalizations of the SM but not in GUTs.

The mass spectrum also causes some troubles since the following sum rule is always validX
boson states

m
2
i =

X
fermion states

m
2
i ; (3.35)

which is bad for phenomenology.

ii) O'Raifeartaigh (F -term) mechanism [23].

In this case, several chiral �elds are needed and the superpotential should be chosen in a way that

trivial zero v.e.v.s for the auxiliary F -�elds be absent. For instance, choosing the superpotential

to be

W(�) = ��3 +m�1�2 + g�3�
2
1;

one gets the equations for the auxiliary �elds

F
�
1 = mA2 + 2gA1A3;

F
�
2 = mA1;

F
�
3 = �+ gA

2
1;

which have no solutions with < Fi >= 0 and SUSY is spontaneously broken. The sample

spectrum is shown in Fig.10b.

The drawbacks of this mechanism is a lot of arbitrariness in the choice of potential. The

sum rule (3.35) is also valid here.
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Unfortunately, none of these mechanisms explicitly works in SUSY generalizations of the

SM. None of the �elds of the SM can develop nonzero v.e.v.s for their F or D components

without breaking SU(3) or U(1) gauge invariance since they are not singlets with respect to

these groups. This requires the presence of extra sources of spontaneous SUSY breaking, which

we consider below. They are based, however, on the same F and D mechanisms.

4 SUSY generalization of the Standard Model. The MSSM

As has been already mentioned, in SUSY theories the number of bosonic degrees of freedom

equals that of fermionic. At the same time, in the SM one has 28 bosonic and 90 fermionic

degrees of freedom (with massless neutrino, otherwise 96). So the SM is to a great extent non-

supersymmetric. Trying to add some new particles to supersymmetrize the SM, one should take

into account the following observations:

1. There are no fermions with quantum numbers of the gauge bosons;

2. Higgs �elds have nonzero v.e.v.s; hence they cannot be superpartners of quarks and leptons

since this would induce spontaneous violation of baryon and lepton numbers;

3. One needs at least two complex chiral Higgs multiplets to give masses to Up and Down

quarks.

The latter is due to the form of a superpotential and chirality of matter super�elds. Indeed,

the superpotential should be invariant under the SU(3) � SU(2) � U(1) gauge group. If one

looks at the Yukawa interaction in the Standard Model, eq.(1.7), one �nds that it is indeed

U(1) invariant since the sum of hypercharges in each vertex equals zero. In the last term this is

achieved by taking the conjugated Higgs doublet ~H = i�2H
y instead of H. However, in SUSY

H is a chiral super�eld and hence a superpotential, which is constructed out of chiral �elds, can

contain only H but not ~H which is an antichiral super�eld.

Another reason for the second Higgs doublet is related to chiral anomalies. It is known that

chiral anomalies spoil the gauge invariance and, hence, the renormalizability of the theory. They

are canceled in the SM between quarks and leptons in each generation.

Indeed, chiral (or triangle anomaly) is proportional to the trace of three hypercharges. In

the SM one has

TrY
3 = 3

�
1
27

+ 1
27

�64
27

+ 8
27

�
�1 �1 +8 = 0:

" " " " " " " "
colour uL dL uR dR �L eL eR

However, if one introduces a chiral Higgs super�eld, it contains higgsinos, which are chiral

fermions, and contain anomalies. To cancel them one has to add the second Higgs doublet with

the opposite hypercharge.

Therefore, the Higgs sector in SUSY models is inevitably enlarged, it contains an even

number of doublets.

Conclusion: In SUSY models supersymmetry associates known bosons with new fermions

and known fermions with new bosons.
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Figure 11: The shadow world of SUSY particles [26]

4.1 The �eld content

Consider the particle content of the Minimal Supersymmetric Standard Model [24]. According

to the previous discussion, in the minimal version we double the number of particles (introducing

a superpartner to each particle) and add another Higgs doublet (with its superpartner). The

particle content of the MSSM then appears as [25]

Particle Content of the MSSM

Super�eld Bosons Fermions SUc(3) SUL(2) UY (1)

Gauge

Ga gluon g
a gluino ~ga 8 0 0

Vk Weak W
k (W�

; Z) wino, zino ~wk ( ~w�; ~z) 1 3 0

V0 Hypercharge B () bino ~b(~) 1 1 0

Matter

Li

Ei

sleptons

(
~Li = (~�; ~e)L
~Ei = ~eR

leptons

(
Li = (�; e)L
Ei = eR

1

1

2

1

�1
2

Qi

Ui

Di

squarks

8><
>:

~Qi = (~u; ~d)L
~Ui = ~uR
~Di = ~dR

quarks

8><
>:
Qi = (u; d)L
Ui = u

c

R

Di = d
c

R

3

3�

3�

2

1

1

1=3

�4=3
2=3

Higgs

H1

H2

Higgses

(
H1

H2
higgsinos

(
~H1

~H2

1

1

2

2

�1
1

where a = 1; 2; :::; 8 and k = 1; 2; 3 are the SU(3) and SU(2) indices, respectively, and i = 1; 2; 3

is the generation index. Hereafter, tilde denotes a superpartner of an ordinary particle.
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Thus, the characteristic feature of any supersymmetric generalization of the SM is the pres-

ence of superpartners (see Fig.11). If supersymmetry is exact, superpartners of ordinary par-

ticles should have the same masses and have to be observed. The absence of them at modern

energies is believed to be explained by the fact that their masses are very heavy, that means

that supersymmetry should be broken. Hence, if the energy of accelerators is high enough, the

superpartners will be created.

The presence of an extra Higgs doublet in SUSY model is a novel feature of the theory. In

the MSSM one has two doublets with the quantum numbers (1,2,-1) and (1,2,1), respectively:

H1 =

 
H

0
1

H
�
1

!
=

 
v1 +

S1 + iP1p
2

H
�
1

!
; H2 =

 
H

+
2

H
0
2

!
=

 
H

+
2

v2 +
S2 + iP2p

2

!
; (4.1)

where vi are the vacuum expectation values of the neutral components.

Hence, one has 8=4+4=5+3 degrees of freedom. As in the case of the SM, 3 degrees of

freedom can be gauged away, and one is left with 5 physical states compared to 1 state in the

SM.

Thus, in the MSSM, as actually in any of two Higgs doublet models, one has �ve physical

Higgs bosons: two CP-even neutral, one CP-odd neutral and two charged. We consider the mass

eigenstates below.

4.2 Lagrangian of the MSSM

The Lagrangian of the MSSM consists of two parts; the �rst part is SUSY generalization of the

Standard Model, while the second one represents the SUSY breaking as mentioned above.

L = LSUSY + LBreaking; (4.2)

where

LSUSY = LGauge + LY ukawa (4.3)

and

LGauge =
X

SU(3);SU(2);U(1)

1

4

�Z
d
2
� TrW

�
W� +

Z
d
2�� Tr �W _� �W _�

�

+
X

Matter

Z
d
2
�d

2�� �
y
i
e
g3V̂3 + g2V̂2 + g1V̂1�i; (4.4)

LY ukawa =

Z
d
2
� (WR +WNR) + h:c: (4.5)

The index R in a superpotential refers to the so-called R-parity [27] which adjusts a "+" charge

to all the ordinary particles and a "�" charge to their superpartners. The �rst part of W is

R-symmetric

WR = �ij(y
U

abQ
j

aU
c

bH
i

2 + y
D

abQ
j

aD
c

bH
i

1 + y
L

abL
j

aE
c

bH
i

1 + �H
i

1H
j

2); (4.6)

where i; j = 1; 2; 3 are the SU(2) and a; b = 1; 2; 3 are the generation indices; colour indices are

suppressed. This part of the Lagrangian almost exactly repeats that of the SM except that the

�elds are now the super�elds rather than the ordinary �elds of the SM. The only di�erence is

the last term which describes the Higgs mixing. It is absent in the SM since there is only one

Higgs �eld there.
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The second part is R-nonsymmetric

WNR = �ij(�
L

abdL
i

aL
j

b
E
c

d + �
L0
abdL

i

aQ
j

b
D
c

d + �
0
aL

i

aH
j

2)

+ �
B

abdU
c

aD
c

bD
c

d: (4.7)

These terms are absent in the SM. The reason is very simple: one can not replace the super�elds

in eq.(4.7) by the ordinary �elds like in eq.(4.6) because of the Lorentz invariance. These terms

have a di�erent property, they violate either lepton (the �rst line in eq.(4.7)) or baryon number

(the second line). Since both e�ects are not observed in Nature, these terms must be suppressed

or be excluded. One can avoid such terms if one introduces special symmetry called the R-

symmetry [28]. This is the global U(1)R invariance

U(1)R : � ! e
i�
�; �! e

in��; (4.8)

i.e., the super�eld has the quantum number R = n. To preserve U(1)R invariance the super-

potential W must have R = 2. Thus, to get WNR = 0 one must choose R = 1 for all the

Higgs super�elds and R = 1=2 for quark and lepton ones. However, this property happens to

be too restrictive. Indeed, the gaugino mass term, which is Lorentz and gauge invariant and is

introduced while supersymmetry breaking, happens to be R-invariant only for � = ��. This re-
duces the R-symmetry to the discrete group Z2, called the R-parity [27]. The R-parity quantum

number is given by

R = (�1)3(B�L)+2S (4.9)

for particles with spin S. Thus, all the ordinary particles have the R-parity quantum number

equal to R = +1, while all the superpartners have R-parity quantum number equal to R = �1.
The R-parity obviously forbids the WNR terms. It is usually assumed that they are absent in

the MSSM, i.e. R-parity is preserved. However, there is no physical principle behind it. It

may well be that these terms are present, though experimental limits on the couplings are very

severe [29]

�
L

abc; �
L0
abc < 10�4; �

B

abc < 10�9:

4.3 Properties of interactions

If one assumes that the R-parity is preserved, then the interactions of superpartners are es-

sentially the same as in the SM, but two of three particles involved into an interaction at any

vertex are replaced by superpartners. The reason for it, as we discussed earlier, is the R-parity.

According to eq.(4.9), all the ordinary particles are R-even, while all the superpartners are

R-odd.

Conservation of the R-parity has two consequences

� the superpartners are created in pairs;

� the lightest superparticle (LSP) is stable.

Usually it is photino ~, the superpartner of a photon with some admixture of neutral higgsino.

Typical vertices are shown in Figs.12-14. The tilde above a letter denotes the corresponding

superpartner. Note that the coupling is the same in all the vertices involving superpartners.

In the case of R-parity violation one has additional vertices with new types of interaction.

As has been already mentioned, they violate either the lepton or baryon number. The typical

ones are

LLLE = �
0 f~�LeLecR � ~eL�Le

c

R + ~e�R�LeR + : : :g ; (4.10)

LLQD = �

n
~�LdL �dR � ~eLuL �dR + ~dL�L �dR � ~uLeL �dR + : : :

o
: (4.11)
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Figure 12: Gauge-matter interaction
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Figure 13: Gauge self-interaction
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Figure 14: Yukawa-type interaction
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Figure 15: Proton decay in R-parity violating models

There are also UDD terms which violate the baryon number. These terms together lead to

a fast proton decay via the process shown in Fig.15. To avoid it, one usually leaves either L or

B violating interactions.

The limits on R-parity violating couplings come from non-observation of various processes,

like proton decay, ��e scattering, etc and also from the charged current universality: �(� !
e�)=�(� ! ��);�(� ! e���)=�(� ! ����), etc.
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4.4 Creation and decay of superpartners

The above-mentioned rule together with the Feynman rules for the SM enables us to draw

diagrams describing creation of superpartners. One of the most promising processes is the e+e�

annihilation (see Fig.16). The usual kinematic restriction is given by the centre of mass energy

e
+

e
�

=Z

~�+
1
; ~l+L;R;

~ti;~bi; ~�
0
i

~��
1
; ~l�L;R;

�~ti;
�~bi; ~�

0
j

~�+
1
; ~�0i

~��
1
; ~�0j

~�e (~eL;R)

~e+L;R (�~�e)

~e�L;R (~�e)

~�0i (~��1 )

e
+

e
�

e
+

e
�

Figure 16: Creation of superpartners

m
max

sparticle �
p
s

2
:

Similar processes take place at hadron colliders with electrons and positrons being replaced by

quarks and gluons.

Creation of superpartners can be accompanied by creation of ordinary particles as well. We

consider various experimental signatures for e+e� and hadron colliders below. They crucially

depend on SUSY breaking pattern and on the mass spectrum of superpartners.

The decay properties of superpartners also depend on their masses. For the quark and lepton

superpartners the main processes are shown in Fig.17.

When the R-parity is conserved, new particles will eventually end up giving neutralinos (the

lightest superparticle) whose interactions are comparable to those of neutrinos and they leave

undetected. Therefore, their signature would be missing energy and transverse momentum.

Examples. Consider some explicit examples of superpartner decays.

squarks : ~qL;R ! q + ~�0
i

(quark + photino)

~qL ! q
0 + ~��

i
(quark + chargino)

~q ! q + ~g (quark + gluino) for m~q > m~g

~t1 ! c+ ~�01 (main decay) signal: 2 acollinear jets +
..
ET

~t1 ! b+ ~�+1 signal: 2 b jets + 2 leptons +
.
ET

,! ~�01f
�f 0 (f �f 0 = l��; q�q) (4 jets) +

.
ET
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Figure 17: Decay of superpartners

sleptons : ~l ! l + ~�0
i

(lepton + photino)
~lL ! �l + ~��

i
(neutrino + chargino)

gluino : ~g ! q + �q + ~ (quark + antiquark + photino)

~g ! g + ~ (gluon + photino)

chargino : ~��
i

! e+ �e + ~�0
i

(electron + neutrino + photino)

~��
i

! q + �q0 + ~�0
i

(quark + antiquark + photino)

neutralino : ~�02 ! ~�01 +X

In the last case there are many possible channels both visible and invisible.

Visible Channels Final States

~�02 ! ~�01l
+
l
� (l = e; �; �)

! ~��1 l
�
�l l

+
l
� +

.
ET

,! ~�01l
�
�l

! ~�01q�q 2 jets +
.
ET

! ~�0  +
.
ET

! ~��1 q�q
0

,! ~�01l
�
q�q0 2 jets +

.
ET

! ~��1 l
�
�l

,! ~�01q�q
0

l
� + 2 jets +

.
ET

! ~��1 q�q
0

,! ~�01l
�
�l l

� + 2 jets +
.
ET

Invisible Channel Final State

! ~�01�l��l

.
ET

Thus, if supersymmetry exists in Nature and if it is broken somewhere below 1 TeV, then it will

be possible to detect it in the nearest future.
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5 Breaking of SUSY in the MSSM

Since none of the �elds of the MSSM can develop non-zero v.e.v. to break SUSY without spoiling

the gauge invariance, it is supposed that spontaneous supersymmetry breaking takes place via

some other �elds. The most common scenario for producing low-energy supersymmetry breaking

is called the hidden sector one [30]. According to this scenario, there exist two sectors: the usual

matter belongs to the "visible" one, while the second, "hidden" sector, contains �elds which lead

to breaking of supersymmetry. These two sectors interact with each other by exchange of some

�elds called messengers, which mediate SUSY breaking from the hidden to the visible sector

(see Fig.18). There might be various types of messenger �elds: gravity, gauge, etc. Below we

consider four possible scenarios.

The hidden sector is the weakest part of the MSSM. It contains a lot of ambiguities and

leads to uncertainties of the MSSM predictions considered below.

MATTER

VISIBLE

HIDDEN

NO SUSY

SUSY

by F & D

terms

 MESSENGERS

Figure 18: Hidden Sector Scenario

5.1 The hidden sector: four scenarios

So far there are known four main mechanisms to mediate SUSY breaking from a hidden to a

visible sector:

� Gravity mediation (SUGRA);

� Gauge mediation;

� Anomaly mediation;

� Gaugino mediation.

Consider them in more detail.

SUGRA

This mechanism is based on e�ective nonrenormalizable interactions arising as a low-energy

limit of supergravity theories [31]. In this case, two sectors interact with each other via gravity.

There are two types of scalar �elds that develop nonzero v.e.v.s, namely moduli �elds T , which

appear as a result of compacti�cation from higher dimensions, and the dilaton �eld S, part

of SUGRA supermultiplet. These �elds obtain nonzero v.e.v.s for their F components: <

FT >6= 0; < FS >6= 0, which leads to spontaneous SUSY breaking. Since in SUGRA theory

supersymmetry is local, spontaneous breaking leads to Goldstone particle which is a Goldstone

fermion in this case. With the help of a super-Higgs e�ect this particle may be absorbed into

an additional component of a spin 3/2 particle, called gravitino, which becomes massive.
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SUSY breaking is then mediated to a visible sector via gravitational interaction leading to

the following SUSY breaking scale:

M .
SUSY

� < FT >

MPL

+
< FS >

MPL

� m3=2;

where m3=2 is the gravitino mass.

The e�ective low-energy theory, which emerges, contains explicit soft supersymmetry break-

ing terms

Lsoft = �
X
i

m
2
i jAij2 �

X
i

Mi(�i�i + ��i��i)� B W(2)(A)�A W(3)(A); (5.1)

where W(2) and W(3) are the quadratic and cubic terms of a superpotential, respectively. The

mass parameters are

m
2
i �

�
< FS >

MPL

�2
� m

2
3=2; Mi �

< FS >

MPL

� m3=2;

B �
�
< FT >

MPL

�2
� m

2
3=2; A � < FT;S >

MPL

� m3=2:

To have SUSY masses of an order of 1 TeV, one needs
p
< FT;S > � 1011 GeV.

In spite of attractiveness of these mechanism in general, since we know that gravity exists

anyway, it is not truly substantiated due to the lack of a consistent theory of quantum (su-

per)gravity. Among the problems of a supergravity mechanism also are the large freedom of

parameters and the absence of automatic suppression of avour violation.

Gauge Mediation

In this version of a hidden sector scenario, the SUSY breaking e�ects are mediated to the

observable world not via gravity but via gauge interactions [32]. The messengers are the gauge

bosons and matter �elds of the SM and of some GUT theory. The hidden sector is necessary

since the dynamical SUSY breaking requires the �elds with quantum numbers not compatible

with the SM. The advantage of this scenario is that one can construct a renormalizable model

with dynamic SUSY breaking, where in principle all the parameters can be calculated.

Consider some simplest possibility where in a hidden sector one has a singlet scalar super�eld

S with nonzero v.e.v. < FS >6= 0. The messenger sector consists of some super�eld �, for

instance, �5 of SU(5), that couples to S and to the SM �elds with a superpotential

W � S�y�; < S >=M 6= 0: (5.2)

Integrating out the messenger �elds gives mass to gauginos at the one loop level (see Fig.19)

and to the scalar �elds (squarks and sleptons) at the two loop one (see Fig.20). So, in gauge

mediated scenario all the soft masses are correlated to the gauge couplings and in this sense this

scenario is more restrictive than the SUGRA one. There is no problem with avour violating

processes as well, since the soft terms automatically repeat the rigid sector.

It is remarkable that in this scenario the LSP happens to be the gravitino. The mass of the

gravitino is given by

m ~G
� < FS >

M
� M

MPL

� 10�14
M

[GeV ]
; (5.3)

that leads to a very light gravitino �eld.
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The problem of the gauge mediated SUSY breaking scenario emerges in the Higgs sector since

the Higgs mass mixing parameters, which break an unwanted Peccei-Quin symmetry, cannot be

generated by gauge interactions only. In order to parameterize some new unknown interactions,

two new inputs have to be introduced (� and B in SUGRA conventions).

Anomaly Mediation

An anomaly mediation mechanism assumes no SUSY breaking at the tree level. SUSY

breaking is generated due to conformal anomaly. This mechanism refers to a hidden sector of a

multidimensional theory with the couplings being dynamic �elds which may acquire v.e.v.s. for

their F components [33]. The external �eld or scale dependence of the couplings emerges as a

result of conformal anomaly and that is why is proportional to the corresponding � functions.

In the leading order one has

Mi(�) � bi�i(�)
< FT;S >

MPL

� bi �i m3=2;

m
2(�) � b

2
i �

2
i (�) m

2
3=2; (5.4)

where bi are the one-loop RG coeÆcients (see eq.(2.8)).

This reminds supergravity mediation mechanism but with �xed coeÆcients. It leads to two

main di�erences:

i) the inverted relation between the gaugino masses at high energy scale

M1 :M2 :M3 = b1 : b2 : b3;

ii) negative slepton mass squared (tachyons!) at the tree level.

This problem has to be cured.
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Gaugino Mediation

At last we would like to mention the gaugino mediation mechanism of SUSY breaking [34].

This is a less developed scenario so far. It is based on a paradigm of a brane world. According

to this paradigm, there exists a multidimensional world where our four dimensional space-time

represents a brane of 4 dimensions. The �elds of the SM live on the brane, while gravity and some

other �elds can propagate in the bulk. There also exists another brane where supersymmetry

is broken. SUSY breaking is mediated to our brane via the �elds propagating in the bulk. It is

assumed that the gaugino �eld plays an essential role in this mechanism (see Fig.21)

gaugino

BULK

 

OUR BRANE ANOTHER BRANE

 SUSY

Figure 21: Gaugino mediated SUSY breaking

All four mechanisms of soft SUSY breaking are di�erent in details but are common in results.

They generate gauge invariant soft SUSY breaking operators of dimension � 4 of the form

Lsoft = �
X
i

m
2
i jAij2 �

X
i

Mi(�i�i + ��i��i)

�
X
ij

BijAiAj �
X
ijk

AijkAiAjAk + h:c:; (5.5)

where the bilinear and trilinear couplings Bij and Aijk are such that not to break the gauge

invariance. These are the only possible soft terms that do not break renormalizability of a theory

and preserve SUSY Ward identities for the rigid terms [35].

Predictions for the sparticle spectrum depend on the mechanism of SUSY breaking. For

comparison of four above-mentioned mechanisms we show in Fig.22 the sample spectra as the

ratio to the gaugino mass M2 [36].

In what follows, to calculate the mass spectrum of superpartners, we need an explicit form

of SUSY breaking terms. Applying eq.(5.5) to the MSSM and avoiding the R-parity violation

gives

�LBreaking =
X
i

m
2
0ij'ij2 +

 
1

2

X
�

M�
~��~�� +BH1H2 (5.6)

+ A
U

ab
~Qa

~U c

bH2 +A
D

ab
~Qa

~Dc

bH1 +A
L

ab
~La ~E

c

bH1 + h:c:

�
;

where we have suppressed the SU(2) indices. Here 'i are all scalar �elds, ~�� are the gaugino

�elds, ~Q; ~U; ~D and ~L; ~E are the squark and slepton �elds, respectively, and H1;2 are the SU(2)

doublet Higgs �elds.
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Figure 22: Superparticle spectra for various mediation mechanisms

Eq.(5.6) contains a vast number of free parameters which spoils the prediction power of the

model. To reduce their number, we adopt the so-called universality hypothesis, i.e., we assume

the universality or equality of various soft parameters at a high energy scale, namely, we put

all the spin 0 particle masses to be equal to the universal value m0, all the spin 1/2 particle

(gaugino) masses to be equal to m1=2 and all the cubic and quadratic terms, proportional to

A and B, to repeat the structure of the Yukawa superpotential (4.6). This is an additional

requirement motivated by the supergravity mechanism of SUSY breaking. Universality is not a

necessary requirement and one may consider nonuniversal soft terms as well. However, it will

not change the qualitative picture presented below; so for simplicity, in what follows we consider

the universal boundary conditions. In this case, eq.(5.6) takes the form

�LBreaking = m
2
0

X
i

j'ij2 +
 
1

2
m1=2

X
�

~��~�� (5.7)

+ A[yUab
~Qa

~U c

bH2 + y
D

ab
~Qa

~Dc

bH1 + y
L

ab
~La ~E

c

bH1] +B[�H1H2] + h:c:

�
;

It should be noted that supergravity induced universality of the soft terms is more likely

to be valid at the Planck scale rather than at the GUT one. This is because a natural scale

for gravity is MP lanck while MGUT is the scale for gauge interactions. However, due to a small

di�erence between these two scales, it is usually ignored in the �rst approximation resulting in

minor uncertainties in the low-energy predictions [37].

The soft terms explicitly break supersymmetry. As will be shown later, they lead to the mass

spectrum of superpartners di�erent from that of ordinary particles. Remind that the masses of

quarks and leptons remain zero until SU(2) invariance is spontaneously broken.
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5.2 The soft terms and the mass formulas

There are two main sources of the mass terms in the Lagrangian: the D terms and soft ones.

With given values of m0;m1=2; �; Yt; Yb; Y� ; A, and B one can construct the mass matrices for all

the particles. Knowing them at the GUT scale, one can solve the corresponding RG equations,

thus linking the values at the GUT and electroweak scales. Substituting these parameters into

the mass matrices, one can predict the mass spectrum of superpartners [24, 38, 39].

5.2.1 Gaugino-higgsino mass terms

The mass matrix for gauginos, the superpartners of the gauge bosons, and for higgsinos, the

superpartners of the Higgs bosons, is nondiagonal, thus leading to their mixing. The mass terms

look like

LGaugino�Higgsino = �
1

2
M3

��a�a �
1

2
��M (0)

�� ( � M (c)
 + h:c:); (5.8)

where �a; a = 1; 2; : : : ; 8; are the Majorana gluino �elds and

� =

0
BBB@

~B0

~W 3

~H0
1

~H0
2

1
CCCA ;  =

 
~W+

~H+

!
(5.9)

are, respectively, the Majorana neutralino and Dirac chargino �elds.

The neutralino mass matrix is

M
(0) =

0
BBB@

M1 0 �MZ cos � sinW MZ sin� sinW
0 M2 MZ cos � cosW �MZ sin� cosW

�MZ cos � sinW MZ cos � cosW 0 ��
MZ sin� sinW �MZ sin� cosW �� 0

1
CCCA ; (5.10)

where tan� = v2=v1 is the ratio of two Higgs v.e.v.s and sinW = sin �W is the usual sinus of

the weak mixing angle. The physical neutralino masses M~�0
i
are obtained as eigenvalues of this

matrix after diagonalization.

For charginos one has

M
(c) =

 
M2

p
2MW sin�p

2MW cos � �

!
: (5.11)

This matrix has two chargino eigenstates ~��1;2 with mass eigenvalues

M
2
1;2 =

1

2

�
M

2
2 + �

2 + 2M2
W �

q
(M2

2 � �2)2 + 4M4
W
cos2 2� + 4M2

W
(M2

2 + �2 + 2M2� sin 2�)

�
:

(5.12)

5.2.2 Squark and slepton masses

Non-negligible Yukawa couplings cause a mixing between the electroweak eigenstates and the

mass eigenstates of the third generation particles. The mixing matrices for ~m2
t ; ~m

2
b
and ~m2

� are 
~m2
tL

mt(At � � cot �)
mt(At � � cot �) ~m2

tR

!
; (5.13)

38



 
~m2
bL

mb(Ab � � tan �)
mb(Ab � � tan�) ~m2

bR

!
; (5.14)

 
~m2
�L

m� (A� � � tan�)
m� (A� � � tan �) ~m2

�R

!
(5.15)

with

~m2
tL = ~m2

Q +m
2
t +

1

6
(4M2

W �M2
Z) cos 2�;

~m2
tR = ~m2

U +m
2
t �

2

3
(M2

W �M2
Z) cos 2�;

~m2
bL = ~m2

Q +m
2
b �

1

6
(2M2

W +M
2
Z) cos 2�;

~m2
bR = ~m2

D +m
2
b +

1

3
(M2

W �M2
Z) cos 2�;

~m2
�L = ~m2

L +m
2
� �

1

2
(2M2

W �M2
Z) cos 2�;

~m2
�R = ~m2

E +m
2
� + (M2

W �M2
Z) cos 2�

and the mass eigenstates are the eigenvalues of these mass matrices. For the light generations

the mixing is negligible.

The �rst terms here ( ~m2) are the soft ones, which are calculated using the RG equations

starting from their values at the GUT (Planck) scale. The second ones are the usual masses of

quarks and leptons and the last ones are the D terms of the potential.

5.3 The Higgs potential

As has already been mentioned, the Higgs potential in the MSSM is totally de�ned by super-

potential (and the soft terms). Due to the structure of W the Higgs self-interaction is given by

the D-terms while the F -terms contribute only to the mass matrix. The tree level potential is

Vtree(H1;H2) = m
2
1jH1j2 +m

2
2jH2j2 �m2

3(H1H2 + h:c:)

+
g
2 + g

02

8
(jH1j2 � jH2j2)2 +

g
2

2
jH+

1 H2j2; (5.16)

where m2
1 = m

2
H1

+ �
2
;m

2
2 = m

2
H2

+ �
2. At the GUT scale m2

1 = m
2
2 = m

2
0 + �

2
0; m

2
3 = �B�0.

Notice that the Higgs self-interaction coupling in eq.(5.16) is �xed and de�ned by the gauge

interactions as opposed to the SM.

The potential (5.16), in accordance with supersymmetry, is positive de�nite and stable. It

has no nontrivial minimum di�erent from zero. Indeed, let us write the minimization condition

for the potential (5.16)

1

2

ÆV

ÆH1

= m
2
1v1 �m2

3v2 +
g
2 + g

02

4
(v21 � v22)v1 = 0; (5.17)

1

2

ÆV

ÆH2

= m
2
2v2 �m2

3v1 +
g
2 + g

02

4
(v21 � v22)v2 = 0; (5.18)

where we have introduced the notation

< H1 >� v1 = v cos �; < H2 >� v2 = v sin�; v
2 = v

2
1 + v

2
2 ; tan� � v2

v1
:
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Solution of eqs.(5.17),(5.18) can be expressed in terms of v2 and sin 2�

v
2 =

4(m2
1 �m2

2 tan
2
�)

(g2 + g
02)(tan2 � � 1)

; sin 2� =
2m2

3

m
2
1 +m

2
2

: (5.19)

One can easily see from eq.(5.19) that if m2
1 = m

2
2 = m

2
0 + �

2
0, v

2 happens to be negative, i.e.

the minimum does not exist. In fact, real positive solutions to eqs.(5.17),(5.18) exist only if the

following conditions are satis�ed [25]:

m
2
1 +m

2
2 > 2m2

3; m
2
1m

2
2 < m

4
3; (5.20)

which is not the case at the GUT scale. This means that spontaneous breaking of the SU(2)

gauge invariance, which is needed in the SM to give masses for all the particles, does not take

place in the MSSM.

This strong statement is valid, however, only at the GUT scale. Indeed, going down with

energy, the parameters of the potential (5.16) are renormalized. They become the \running"

parameters with the energy scale dependence given by the RG equations. The running of

the parameters leads to a remarkable phenomenon known as radiative spontaneous symmetry

breaking to be discussed below.

Provided conditions (5.20) are satis�ed, the mass matrices at the tree level are

CP-odd components P1 and P2 :

Modd =
@
2
V

@Pi@Pj

�����
Hi=vi

=

 
tan� 1

1 cot �

!
m

2
3; (5.21)

CP-even neutral components S1 and S2:

Meven =
@
2
V

@Si@Sj

�����
Hi=vi

=

 
tan � �1
�1 cot �

!
m

2
3 +

 
cot � �1
�1 tan�

!
MZ cos � sin�; (5.22)

Charged components H� and H+:

Mcharged =
@
2
V

@H
+
i
@H

�
j

�����
Hi=vi

=

 
tan� 1

1 cot �

!
(m2

3 +MW cos � sin�): (5.23)

Diagonalizing the mass matrices, one gets the mass eigenstates [25]:(
G
0 = � cos �P1 + sin�P2; Goldstone boson ! Z0;

A = sin�P1 + cos �P2; Neutral CP = �1 Higgs;
(
G
+ = � cos �(H�

1 )
� + sin�H+

2 ; Goldstone boson ! W
+
;

H
+ = sin�(H�

1 )
� + cos �H+

2 ; Charged Higgs;

(
h = � sin�S1 + cos�S2; SM Higgs boson CP = 1;

H = cos�S1 + sin�S2; Extra heavy Higgs boson;

where the mixing angle � is given by

tan 2� = � tan 2�

 
m

2
A
+M

2
Z

m2
A
�M2

Z

!
:
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The physical Higgs bosons acquire the following masses [24]:

CP-odd neutral Higgs A : m
2
A = m

2
1 +m

2
2;

Charge Higgses H
� : m

2
H� = m

2
A +M

2
W ; (5.24)

CP-even neutral Higgses H, h:

m
2
H;h =

1

2

�
m

2
A +M

2
Z �

q
(m2

A
+M2

Z
)2 � 4m2

A
M2

Z
cos2 2�

�
; (5.25)

where, as usual,

M
2
W =

g
2

2
v
2
; M

2
Z =

g
2 + g

02

2
v
2
:

This leads to the once celebrated SUSY mass relations

mH� �MW ;

mh � mA �MH ;

mh �MZ j cos 2�j �MZ ;

m
2
h
+m

2
H
= m

2
A
+M

2
Z
:

(5.26)

Thus, the lightest neutral Higgs boson happens to be lighter than the Z boson, which clearly

distinguishes it from the SM one. Though we do not know the mass of the Higgs boson in the

SM, there are several indirect constraints leading to the lower boundary ofmSM

h
� 135 GeV [40].

After including the radiative corrections, the mass of the lightest Higgs boson in the MSSM,

mh, however increases. We consider it in more detail below.

5.4 Renormalization group analysis

To calculate the low energy values of the soft terms, we use the corresponding RG equations.

The one-loop RG equations for the rigid MSSM couplings are [41]

d~�i

dt
= bi ~�

2
i ; t � logQ2

=M
2
GUT

dYU

dt
= �YL

�
16

3
~�3 + 3~�2 +

13

15
~�1 � 6YU � YD

�
;

dYD

dt
= �YD

�
16

3
~�3 + 3~�2 +

7

15
~�1 � YU � 6YD � YL

�
;

dYL

dt
= �YL

�
3~�2 +

9

5
~�1 � 3YD � 4YL

�
; (5.27)

where we use the notation ~� = �=4� = g
2
=16�2; Y = y

2
=16�2.

For the soft terms one �nds

dMi

dt
= bi ~�iMi:

dAU

dt
=

16

3
~�3M3 + 3~�2M2 +

13

15
~�1M1 + 6YUAU + YDAD;

dAD

dt
=

16

3
~�3M3 + 3~�2M2 +

7

15
~�1M1 + 6YDAD + YUAU + YLAL;

dAL

dt
= 3~�2M2 +

9

5
~�1M1 + 3YDAD + 4YLAL;
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dB

dt
= 3~�2M2 +

3

5
~�1M1 + 3YUAU + 3YDAD + YLAL:

d ~m2
Q

dt
= �

�
(
16

3
~�3M

2
3 + 3~�2M

2
2 +

1

15
~�1M

2
1 )� YU( ~m2

Q + ~m2
U +m

2
H2

+A
2
U )

�YD( ~m2
Q + ~m2

D +m
2
H1

+A
2
D)
i
;

d ~m2
U

dt
= �

�
(
16

3
~�3M

2
3 +

16

15
~�1M

2
1 )� 2YU ( ~m

2
Q + ~m2

U +m
2
H2

+A
2
U )

�
;

d ~m2
D

dt
= �

�
(
16

3
~�3M

2
3 +

4

15
~�1M

2
1 )� 2YD( ~m

2
Q + ~m2

D +m
2
H1

+A
2
D)

�
;

d ~m2
L

dt
= �

�
3(~�2M

2
2 +

1

5
~�1M

2
1 )� YL( ~m2

L + ~m2
E +m

2
H1

+A
2
L)

�
;

d ~m2
E

dt
= �

�
(
12

5
~�1M

2
1 )� 2YL( ~m

2
L + ~m2

E +m
2
H1

+A
2
L)

�
;

d�
2

dt
= ��2

�
3(~�2 +

1

5
~�1)� (3YU + 3YD + YL)

�
; (5.28)

dm
2
H1

dt
= �

�
3(a2M

2
2 +

1

5
a1M

2
1 )� 3YD( ~m

2
Q + ~m2

D +m
2
H1

+A
2
D)

�YL( ~m2
L + ~m2

E +m
2
H1

+A
2
L)
i
;

dm
2
H2

dt
= �

�
3(a2M

2
2 +

1

5
a1M

2
1 )� 3YU ( ~m

2
Q + ~m2

U +m
2
H2

+A
2
U )

�
:

Having all the RG equations, one can now �nd the RG ow for the soft terms. To see what

happens at lower scales, one has to run the RG equations for the mass parameters in the opposite

direction from the GUT to the EW scale. Let us take some initial values of the soft masses at

the GUT scale in the interval between 102� 103 GeV consistent with the SUSY scale suggested

by uni�cation of the gauge couplings (2.9). This leads to the following RG ow of the soft terms

shown in Fig.23. [38, 39]
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Figure 23: An example of evolution of sparticle masses and soft supersymmetry breaking pa-

rameters m2
1 = m

2
H1

+ �
2 and m2
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+ �
2 for low (left) and high (right) values of tan�
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One should mention the following general features common to any choice of initial conditions:

i) The gaugino masses follow the running of the gauge couplings and split at low energies.

The gluino mass is running faster than the others and is usually the heaviest due to the strong

interaction.

ii) The squark and slepton masses also split at low energies, the stops (and sbottoms) being

the lightest due to relatively big Yukawa couplings of the third generation.

iii) The Higgs masses (or at least one of them) are running down very quickly and may even

become negative.

To calculate the masses one has also to take into account the mixing between various states

(see eqs.(5.10,5.11, 5.13-5.15).

Numerical solutions allow one to understand the signi�cance of di�erent initial conditions for

the evolution down to low energies. As an example we present below the results of a numerical

solution to the RG equations for the soft terms in the case of low values of tan�. In this

case, one can ignore the bottom and tau Yukawa couplings and keep only the top one. Taking

MGUT = 2:0 � 1016 GeV, �(MGUT ) � 1=24:3; Yt(MGUT ) � ~�(MGUT ); tan� = 1:65, one gets the

following numerical results [39]:

M3(MZ) = 2:7 m1=2;

M2(MZ) = 0:8 m1=2;

M1(MZ) = 0:4 m1=2;

�(MZ) = 0:63 �0;

At(MZ) = 0:009 At(0)� 1:7 m1=2;

~m2
EL
(MZ) = m

2
0 + 0:52 m2

1=2 � 0:27 cos(2�)M2
Z ;

~m2
�L
(MZ) = m

2
0 + 0:52 m2

1=2 + 0:5 cos(2�)M2
Z ;

~m2
ER

(MZ) = m
2
0 + 0:15 m2

1=2 � 0:23 cos(2�)M2
Z ;

~m2
UL
(MZ) = m

2
0 + 6:6 m2

1=2 + 0:35 cos(2�)M2
Z ;

~m2
DL

(MZ) = m
2
0 + 6:6 m2

1=2 � 0:42 cos(2�)M2
Z ;

~m2
UR
(MZ) = m

2
0 + 6:2 m2

1=2 + 0:15 cos(2�)M2
Z ;

~m2
DR

(MZ) = m
2
0 + 6:1 m2

1=2 � 0:07 cos(2�)M2
Z ;

~m2
bR
(MZ) = ~m2

DR
;

~m2
bL
(MZ) = ~m2

DL
� 0:48 m2

0 � 1:21 m2
1=2;

~m2
tR
(MZ) = ~m2

UR
� 0:96 m2

0 � 2:42 m2
1=2;

~m2
tL
(MZ) = ~m2

UL
� 0:48 m2

0 � 1:21 m2
1=2;

m
2
1(MZ) = m

2
0 + 0:40 �20 + 0:52 m2

1=2;

m
2
2(MZ) = �0:44 m2

0 + 0:40 �20 � 3:11 m2
1=2 � 0:09 A0m1=2 � 0=02 A2

0:

Typical dependence of the mass spectra on the initial conditions (m0) is also shown in Fig.24

[42]. For a given value of m1=2 the masses of the lightest particles are practically independent of

m0, while the heavier ones increase with it monotonically as it follows also from the numerical

solutions given above. One can see that the lightest neutralinos and charginos as well as the

stop squark may be rather light.
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Figure 24: The masses of sparticles as functions of the initial value m0

5.5 Radiative electroweak symmetry breaking

The running of the Higgs masses leads to the phenomenon known as radiative electroweak sym-

metry breaking. By this we mean the following: at the GUT energy scale both the Higgs mass

parameters m2
1 and m

2
2 are positive, and the Higgs potential has no nontrivial minima. However,

when running down to the EW scale due to the radiative corrections they may change the sign so

that the potential develops a nontrivial minimum. At this minimum the electroweak symmetry

happens to be spontaneously broken. Thus, contrary to the SM, where one has to choose the

negative sign of the Higgs mass squared "by hand", in the MSSM the e�ect of spontaneous

symmetry breaking is triggered by the radiative corrections.

Indeed, one can see in Fig.23 that m2
2 (or both m

2
1 and m

2
2) decreases when going down

from the GUT scale to the MZ scale and can even become negative. This is the e�ect of the

large top (and bottom) Yukawa couplings in the RG equations. As a result, at some value of

Q
2 the conditions (5.20) are satis�ed, so that the nontrivial minimum appears. This triggers

spontaneous breaking of the SU(2) gauge invariance. The vacuum expectations of the Higgs

�elds acquire nonzero values and provide masses to quarks, leptons and SU(2) gauge bosons,

and additional masses to their superpartners.

In this way one also obtains the explanation of why the two scales are so much di�erent.

Due to the logarithmic running of the parameters, one needs a long "running time" to get

m
2
2 (or both m

2
1 and m

2
2) to be negative when starting from a positive value of the order of

MSUSY � 102 � 103 GeV at the GUT scale.

6 Constrained MSSM

6.1 Parameter space of the MSSM

The Minimal Supersymmetric Standard Model has the following free parameters:

� Three gauge couplings �i.
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� The matrices of the Yukawa couplings yi
ab
, where i = L;U;D.

� The Higgs �eld mixing parameter �.

� The soft supersymmetry breaking parameters.

Compared to the SM there is an additional Higgs mixing parameter, but the Higgs self-coupling,

which is arbitrary in the SM, is �xed by supersymmetry. The main uncertainty comes from the

unknown soft terms.

With universality hypothesis one is left with the following set of 5 free parameters de�ning

the mass scales

�; m0; m1=2; A and B:

Parameter B is usually traded for tan �, the ratio of the v.e.v.s of the two Higgs �elds.

In particular models, like in SUGRA or gauge and anomaly mediation, some of soft parame-

ters may be related to each other. However, since the mechanism of SUSY breaking is unknown,

in what follows we consider them as free phenomenological parameters to be �tted by exper-

iment. The experimental constraints are suÆcient to determine these parameters, albeit with

large uncertainties. The statistical analysis yields the probability for every point in the SUSY

parameter space, which allows one to calculate the cross sections for the expected new physics

of the MSSM at the existing or future accelerators (LEP II, Tevatron, LHC).

While choosing parameters and making predictions, one has two possible ways to proceed:

i) take the low-energy parameters as input, impose the constraints, de�ne the allowed pa-

rameter space and calculate the spectrum and cross-sections as functions of these parameters.

They might be the superparticle masses ~mt1; ~mt2;mA, tan �, mixings Xstop; �, etc.

ii) take the high-energy parameters as input, run the RG equations, �nd the low-energy

values, then impose the constrains and de�ne the allowed parameter space for initial values.

Now the calculations can be carried out in terms of the initial parameters. They might be, for

example, the above mentioned 5 soft parameters.

Both the ways are used in a phenomenological analysis. We show below how it works in

practice.

6.2 The choice of constraints

Among the constraints that we are going to impose on the MSSM model are those which follow

from the comparison of the SM with experimental data, from the experimental limits on the

masses of as yet unobserved particles, etc, and also those that follow from the ideas of uni�cation

and from SUSY GUT models. Some of them look very obvious while the others depend on a

choice. Perhaps, the most remarkable fact is that all of them can be ful�lled simultaneously.

The only model where one can do it is proved to be the MSSM.

In our analysis we impose the following constraints on the parameter space of the MSSM:

� Gauge coupling constant uni�cation;
This is one of the most restrictive constraints, which we have discussed in Sect 2. It �xes the

scale of SUSY breaking of an order of 1 TeV.

� MZ from electroweak symmetry breaking;

Radiative corrections trigger spontaneous symmetry breaking in the electroweak sector. In this

case, the Higgs potential does not have its minimum for all �elds equal to zero, but the minimum

is obtained for nonzero vacuum expectation values of the �elds. SolvingMZ from eq.(5.19) yields

M
2
Z = 2

m
2
1 �m2

2 tan
2
�

tan2 � � 1
: (6.1)
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To get the right value of MZ requires proper adjustment of parameters. This condition deter-

mines the value of � for given values of m0 and m1=2.

� Yukawa coupling constant uni�cation;
The masses of top, bottom and � can be obtained from the low energy values of the running

Yukawa couplings

mt = yt v sin�; mb = yb v cos�; m� = y� v cos �: (6.2)

Eq.(6.2) is written for the so-called running masses. They can be translated to the pole masses

with account taken of the radiative corrections. For the pole masses of the third generation the

following values are taken [43], [1]

Mt = 174:3 � 5:1 GeV=c2;

Mb = 4:94 � 0:15 GeV=c2; (6.3)

M� = 1:7771 � 0:0005 GeV=c2:

The requirement of bottom-tau Yukawa coupling uni�cation strongly restricts the possible

solutions in mt versus tan� plane [44]-[49] as it can be seen from Fig.25.
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Figure 25: The upper part shows the top quark mass as a function of tan � for m0 = 600 GeV,

m1=2 = 400 GeV. The middle part shows the corresponding values of the Yukawa couplings at

the GUT scale and the lower part of the �2 values.
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� Branching ratio BR(b! s);

The branching ratio BR(b! s) has been measured by the CLEO [50] collaboration and later

by ALEPH [51] and yields the world average of BR(b! s) = (3:14�0:48)�10�4 . The Standard
Model contribution to this process comes from the W � t loop and gives a prediction which is

very close to the experimental value leaving little space for SUSY. In the MSSM, this avour

changing neutral current (FCNC) receives additional contributions from the H�� t, ~��� ~t and

~g� ~q loops. The ~�0� ~t loops are much smaller [52, 53]. In the leading order, SUSY contribution

may be rather big, exceeding the experimental value by several standard deviations. However,

the NLO corrections are essential.

This requirement imposes severe restrictions on the parameter space, especially for the case

of large tan�.

� Experimental lower limits on SUSY masses;

SUSY particles have not been found so far and from the searches at LEP one knows the lower

limit on the charged lepton and chargino masses of about half of the centre of mass energy [54].

The lower limit on the neutralino masses is smaller. The lower limit on the Higgs mass is roughly

given by the c.m.e. minus the Z-boson mass. These limits restrict the minimal values for the

SUSY mass parameters. There exist also limits on squark and gluino masses from the hadron

colliders [55], but these limits depend on the assumed decay modes. Furthermore, if one takes

the limits given above into account, the constraints from the limits on all other particles are

usually ful�lled, so they do not provide additional reductions of the parameter space in the case

of the minimal SUSY model.

� Dark Matter constraint;

Abundant evidence of the existence of nonrelativistic, neutral, nonbaryonic dark matter exists

in our Universe [56, 57]. The lightest supersymmetric particle (LSP) is supposedly stable and

would be an ideal candidate for dark matter.

The present lifetime of the universe is at least 1010 years, which implies an upper limit on

the expansion rate and correspondingly on the total relic abundance. Assuming h0 > 0:4 one

�nds that the contribution of each relic particle species � has to obey [57]


�h
2
0 < 1;

where 
�h
2 is the ratio of the relic particle density of particle � and the critical density, which

overcloses the Universe. This bound can only be met, if most of the LSP's annihilated into

fermion-antifermion pairs, which in turn would annihilate into photons again.

Since the neutralinos are mixtures of gauginos and higgsinos, the annihilation can occur both,

via s-channel exchange of the Z0 and Higgs bosons and t-channel exchange of a scalar particle,

like a selectron [58]. This constrains the parameter space, as discussed by many groups [59]-[62].

� Proton life-time constraint;

There are two sources of proton decay in SUSY GUTs. The �rst one is the same as in non-SUSY

theories and is related to the s-channel exchange of heavy gauge bosons. To avoid contradiction

with experiment, the uni�cation scale has to be above 1015 GeV which is usually satis�ed in any

SUSY GUT.

The second source is more speci�c to SUSY models. The proton decay in this case takes

place due to the loop diagrams with the exchange of heavy higgsino triplets. The preferable

decay mode in this case is p! ��K or p! �
+
K instead of p! e

+
� in non-SUSY GUTs. The

decay rate in this case depends on a particular GUT model and it is not so easy to satisfy the

experimental requirements.

Having in mind the above mentioned constraints one can try to �x the arbitrariness in the

parameters. In a kind of a statistical analysis, in which all the constraints are implemented in a
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�
2 de�nition, one can �nd the most probable region of the parameter space by minimizing the

�
2 function. For the purpose of this analysis the following �2 de�nition is used [39]:

�
2 =

3X
i=1

(��1
i
(MZ)� ��1MSSMi

(MZ))
2

�2
i

+
(MZ � 91:18)2

�2
Z

+
(Mt � 174)2

�2t

+
(Mb � 4:94)2

�2
b

+
(M� � 1:7771)2

�2�

+
(Br(b! s)� 3:14 � 10�4)2

�(b! s)2
(6.4)

+
(
h2 � 1)2

�2


(for 
h2 > 1)

+
( ~M � ~Mexp)

2

�2~M

(for ~M < ~Mexp)

+
( ~mLSP � ~m�)

2

�2
LSP

(for ~mLSP charged):

The �rst six terms are used to enforce gauge coupling uni�cation, electroweak symmetry break-

ing and b � � Yukawa coupling uni�cation, respectively. The following two terms impose the

constraints from b! s and the relic density, while the last terms require the SUSY masses to

be above the experimental lower limits and the lightest supersymmetric particle (LSP) to be a

neutralino since a charged stable LSP would have been observed. The input and �tted output

variables have been summarized in Table 1.

Fit parameters

exp. input data ) low tan � high tan�

�1; �2; �3 MGUT ; �GUT MGUT ; �GUT

mt Y
0
t ; Y

0
b
= Y

0
� Y

0
t = Y

0
b
= Y

0
�

mb minimize m0;m1=2 m0;m1=2

m� �
2 tan � tan�

MZ � �

b! s (A0) A0

�universe

Table 1: Summary of �t input and output variables.

The �ve-dimensional parameter space of the MSSM is big enough to be represented in a two-

or three-dimensional picture. To make our analysis more clear, we consider various projections

of the parameter space.

We �rst choose the value of the Higgs mixing parameter � from the requirement of radiative

EW symmetry breaking, then we take the values of tan� from the requirement of Yukawa cou-

pling uni�cation (see Fig.25). One �nds two possible solutions: low tan� solution corresponding

to tan � � 1:7 and high tan� solution corresponding to tan� � 30 � 60. In what follows, we

refer to these two solutions as low and high tan � scenarios, respectively.

What is left are the values of the soft parameters A; m0 and m1=2. However, the role

of the trilinear coupling A is not essential since at low energies it runs to the infra-red �xed
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point and is almost independent of initial conditions. Therefore, imposing the above-mentioned

constraints, the parameter space of the MSSM is reduced to a two dimensional one. In what

follows, we consider the plane m0;m1=2 and �nd the allowed region in this plane. Each point

at this plane corresponds to a �xed set of parameters and allows one to calculate the spectrum,

the cross-sections and other quantities of interest.

We present the allowed regions of the parameter space for low and high tan� scenarios

in Fig.26. This plot demonstrates the role of various constraints in the �2 function. The

contours enclose domains by the particular constraints used in the analysis [63]. In case when
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Figure 26: The �2-distribution for low and high tan � solutions. The di�erent shades in the

projections indicate steps of ��2 = 4, so basically only the light shaded region is allowed. The

stars indicate the optimum solution. Contours enclose domains by the particular constraints

used in the analysis.

the requirement of the b! s decay rate is not taken into account (due to uncertainties of the

high order contributions), the allowed region of parameter space becomes much wider, as it is

illustrated in Fig.27. Now much lower values of m0 and m1=2 are allowed which lead to lower

values of sparticle masses.

6.3 The mass spectrum of superpartners

When the parameter set is �xed, one can calculate the mass spectrum of superpartners. Below

we show the set of parameters and the predicted mass spectrum corresponding to the best �t

values indicated by stars in Fig.26 [39].
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Figure 27: The same as Fig.26 but with the b ! s constraint released with account taken of

the higher order corrections [64].

Fitted SUSY parameters

Symbol low tan � high tan �

tan � 1.71 35.0

m0 200 600

m1=2 500 400

�(0) 1084 -558

A(0) 0 0

1=�GUT 24.8 24.8

MGUT 1:6 1016 1:6 1016

Table 2: Values of the �tted SUSY parameters for low and high tan � (in GeV, when applicable).

To demonstrate the dependence of masses of the lightest particles on the choice of parameters,

we show below in Figs.28,29 their values in the whole m0;m1=2 plane for the case of low and

high tan� solutions, respectively [63]. One can see that the masses of gauginos (charginos and

neutralinos) and Higgses basically depend on m1=2, while those of squarks and sleptons on m0.
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SUSY masses in [GeV]

Symbol low tan � high tan�

~�01(
~B), ~�02(

~W 3) 214, 413 170, 322

~�03(
~H1),~�

0
4(
~H2) 1028, 1016 481, 498

~��1 (
~W�), ~��2 (

~H�) 413, 1026 322, 499

~g 1155 950

~eL, ~eR 303, 270 663, 621

~�L 290 658

~qL, ~qR 1028, 936 1040, 1010

~�1, ~�2 279, 403 537, 634
~b1, ~b2 953, 1010 835, 915

~t1, ~t2 727, 1017 735, 906

h, H 95, 1344 119, 565

A, H� 1340, 1344 565, 571

Table 3: Values of the SUSY mass spectra for the low and high tan� solutions given in Table 2.
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6.4 Experimental signatures at e
+
e
� colliders

Experiments are �nally beginning to push into a signi�cant region of supersymmetry parameter

space. We know the sparticles and their couplings, but we do not know their masses and mixings.

Given the mass spectrum one can calculate the cross-sections and consider the possibilities of

observing new particles at modern accelerators. Otherwise, one can get restrictions on unknown

parameters.

We start with e
+
e
� colliders and, �rst of all, with LEP II. In the leading order creation

of superpartners is given by the diagrams shown in Fig.16 above. For a given center of mass

energy the cross-sections depend on the mass of created particles and vanish at the kinematic

boundary. For a sample example of c.m. energy of LEP II equal to 183 GeV, they are shown at

Fig.30.
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Figure 30: The cross-section of sparticle production at LEP II as functions of sparticle masses

Experimental signatures are de�ned by the decay modes which vary with the mass spectrum.

The main ones are summarized below.

Production Key Decay Modes Signatures

� ~lL;R~lL;R ~l�
R
! l

� ~�0
i
& cascade acomplanar pair of

~l�
L
! l

� ~�0
i
% decays charged leptons +

.
ET

� ~�~� ~� ! l
� ~�01

.
ET

� ~��1 ~�
�
1 ~��1 ! ~�01l

�
�; ~�01q�q

0 isolated lepton + 2 jets +
.
ET

~��1 ! ~�02f
�f 0 pair of acomplanar

~��1 ! l~�l ! l�l ~�
0
1 leptons +

.
ET

~��1 ! �l
~l! �ll~�

0
1 4 jets +

.
ET

53



� ~�0
i
~�0
j

~�0
i
! ~�01X; ~�

0
j
! ~�01X

0
X = �l��l invisible

= ; 2l; 2 jets

2l +
.
ET ; l + 2j +

.
ET

� ~ti~tj ~t1 ! c~�01 2 jets +
.
ET

~t1 ! b~��1 ! bf �f 0~�01 2 b jets + 2 leptons +
.
ET

2 b jets + 2 jets + lepton +
.
ET

� ~bi~bj ~bi ! b~�01 2 b jets +
.
ET

~bi ! b~�02 ! bf �f 0~�01 2 b jets + 2 leptons +
.
ET

2 b jets + 2 jets +
.
ET

A characteristic feature of all possible signatures is the missing energy and transverse momenta,

which is a trade mark of a new physics.

Numerous attempts to �nd superpartners at LEP II gave no positive result thus imposing

the lower bounds on their masses [54]. They are shown on the parameter plane in Figs.31,32.
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Figure 31: The excluded region in chargino-slepton and chargino-stop mass plane

In the case of stop masses, the result depends on the stop mixing angle �~t calculated from

the stop mixing matrix. It de�nes the mass eigenstates basis ~t1 and ~t2 
~t1
~t2

!
=

 
cos�~t sin�~t

� sin�~t cos�~t

!  
~tL
~tR

!
:

Nonobservation of charginos at the maximal LEP II energy de�nes the lower limit on chargino

masses as shown in Fig.32 [54].

Typical LEP II limits on the masses of superpartners are

m
�0
1
> 40 GeV m~eL;R > 105 GeV m~t > 90 GeV

m
�
�

1

> 100 GeV m~�L;R > 100 GeV m~b
> 80 GeV

m~�L;R > 80 GeV

(6.5)
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Figure 32: Cross section of chargino production at LEP and experimental limits on chargino

mass

6.5 Experimental signatures at hadron colliders

Experimental signatures at hadron colliders are similar to those at e+e� machines; however, here

one has much wider possibilities. Besides the usual annihilation channel identical to e+e� one

with the obvious replacement of electrons by quarks (see Fig.33), one has numerous processes

of gluon fusion, quark-antiquark and quark-gluon scattering (see Fig.34).

q

�q

=Z

q

�q

W
�

~�� (~l�)

~�� (
�~l
�
)

~��i (~l�L)

~�0j (~�l)

Figure 33: Annihilation channel

The �nal states depend on gluino decay modes. If squarks are heavier, i.e. m~q > m~g, then

the main gluino decay modes are

~g ! t+ �t+ ~�0i ; ~g ! t+�b+ ~��
i
; ~g ! t+ b+ ~�+

i
;

otherwise gluino can decay into quarks and squarks with further decay of the latter.
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Figure 34: Gluon fusion, q�q scattering, quark-gluon scattering

Experimental SUSY signatures at the Tevatron (and LHC) are

Production Key Decay Modes Signatures

� ~g~g; ~q~q; ~g~q

~g ! q�q~�01
q�q0 ~��1
g ~�01

9>=
>;m~q > m~g

.
ET +multijets

(+leptons)

~q ! q ~�0
i

~q ! q
0 ~��
i

)
m~g > m~q
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� ~��1 ~�
0
2 ~��1 ! ~�01l

�
�; ~�02 ! ~�01ll Trilepton +

.
ET

~��1 ! ~�01q�q
0
; ~�02 ! ~�01ll; Dilepton + jet +

.
ET

� ~�+1 ~�
�
1 ~�+1 ! l~�01l

�
� Dilepton +

.
ET

� ~�0
i
~�0
i

~�0
i
! ~�01X; ~�

0
i
! ~�01X

0
.
ET +Dilepton + (jets) + (leptons)

� ~t1~t1 ~t1 ! c~�01 2 acollinear jets +
.
ET

~t1 ! b~��1 ; ~�
�
1 ! ~�01l

�
�; ~��1 ! ~�01q�q

0 single lepton +
.
ET + b

0
s

~t1 ! b~��1 ; ~�
�
1 ! ~�01l

�
�; ~��1 ! ~�01l

�
� Dilepton +

.
ET + b

0
s

� ~l~l; ~l~�; ~nu~� ~l� ! l � ~�0
i
; ~l� ! �l ~�

�
i

Dilepton +
.
ET

~� ! � ~�01 Single lepton +
.
ET + (jets).

ET

Note again the characteristic missing energy and transverse momenta events.

Contrary to e+e� colliders, at hadron machines the background is extremely rich and essen-

tial.

6.6 The lightest superparticle

One of the crucial questions is the properties of the lightest superparticle. Di�erent SUSY

breaking scenarios lead to di�erent experimental signatures and di�erent LSP.

� Gravity mediation

In this case, the LSP is the lightest neutralino ~�01, which is almost 90% photino for a low

tan� solution and contains more higgsino admixture for high tan�. The usual signature for

LSP is missing energy; ~�01 is stable and is the best candidate for the cold dark matter in the

Universe. Typical processes, where the LSP is created, end up with jets +
.
ET , or leptons +

.
ET ,

or both jest + leptons +
.
ET .

� Gauge mediation
In this case the LSP is the gravitino ~G which also leads to missing energy. The actual

question here is what the NLSP, the next lightest particle, is. There are two possibilities:

i) ~�01 is the NLSP. Then the decay modes are

~�01 !  ~G; h ~G; Z ~G:

As a result, one has two hard photons +
.
ET , or jets +

.
ET .

ii) ~lR is the NLSP. Then the decay mode is ~lR ! � ~G and the signature is a charged lepton

and the missing energy.

� Anomaly mediation
In this case, one also has two possibilities:

i) ~�01 is the LSP and wino-like. It is almost degenerate with the NLSP.

ii) ~�L is the LSP. Then it appears in the decay of chargino ~�+ ! ~�l and the signature is the

charged lepton and the missing energy.

� R-parity violation
In this case, the LSP is no longer stable and decays into the SM particles. It may be charged

(or even colored) and may lead to rare decays like neutrinoless double �-decay, etc.

Experimental limits on the LSP mass follow from non-observation of the corresponding

events. Modern low limit is around 40 GeV (see Fig.35).
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Figure 35: The LSP mass limits within the MSSM [54]

7 The Higgs boson in the SM and the MSSM

One of the hottest topics in the SM now is the search for the Higgs boson. It is also a window to

a new physics. Below we consider the situation with the Higgs boson search and the properties

of the Higgs boson in the MSSM.

7.1 Allowed mass range in the SM

The last unobserved particle from the Standard Model is the Higgs boson [65]. Its discovery

would allow one to complete the SM paradigm and con�rm the mechanism of spontaneous

symmetry breaking. On the contrary, the absence of the Higgs boson would awake doubts about

the whole picture and would require new concepts.

Experimental limits on the Higgs boson mass come from a direct search at LEP II and

Tevatron and from indirect �ts of electroweak precision data, �rst of all from the radiative

corrections to the W and top quark masses. A combined �t of modern experimental data

gives [66]

mh = 90+55�47 GeV; (7.1)

which at the 95% con�dence level leads to the upper bound of 200 GeV (see Fig.36). At the

same time, recent direct searches at LEP II for the c.m. energy of 209 GeV give the lower limit

of 113.4 GeV[66]. From a theoretical point of view a low Higgs mass could be a hint for physics

beyond the SM, in particular, for the supersymmetric extension of the SM.

Within the Standard Model the value of the Higgs mass mh is not predicted. However, one

can get the bounds on the Higgs mass [40, 67]. They follow from the behaviour of the quartic

coupling which is related to the Higgs mass by eqs.(1.9,1.13) m2
h
= 2�v and obeys the following

renormalization group equation describing the change of � with a scale:

d�

dt
=

1

16�2

�
6�2 + 6�y2t � 6y4t + gauge terms

�
(7.2)

with t = ln(Q2
=�

2). Here yt is the top-quark Yukawa coupling.
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Since the quartic coupling grows with rising energy in�nitely and reaches the Landau pole,

the upper bound on mh follows from the requirement that the theory be valid up to the scale

MP lanck or up to a given cut-o� scale � below MP lanck [40]. The scale � could be identi�ed

with the scale at which the Landau pole develops. The upper bound on mh depends mildly on

the top-quark mass through the impact of the top-quark Yukawa coupling on the running of the

quartic coupling � in eq.(7.2).

V V

jH j jH j

 SSB

� > 0 � > 0

� < 0

Figure 37: The shape of the Higgs potential
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On the other hand, the requirement of vacuum stability in the SM (positivity of �) imposes

a lower bound on the Higgs boson mass, which crucially depends on both the top-quark mass

and the cut-o� � [40, 67]. Again, the dependence of this lower bound on mt is due to the e�ect

of the top-quark Yukawa coupling on the quartic coupling in eq.(7.2), which drives � to negative

values at large scales, thus destabilizing the standard electroweak vacuum (see Figs.37).

From the point of view of LEP and Tevatron physics, the upper bound on the SM Higgs boson

mass does not pose any relevant restriction. The lower bound on mh, instead, is particularly

important in view of the search for a Higgs boson at LEP II and Tevatron. For mt � 174 GeV

and �s(MZ) = 0:118 the running of the Higgs quartic coupling is shown in Fig.38. The results

Figure 38: The running of the Higgs quartic coupling. Numbers shown above the lines indicate

the value of the Higgs mass in GeV.

at � = 1019 GeV or at � = 1 TeV can be given by the approximate formulae [67]

mh > 135 + 2:1[mt � 174] � 4:5

�
�s(MZ)� 0:118

0:006

�
; � = 1019 GeV; (7.3)

mh > 72 + 0:9[mt � 174]� 1:0

�
�s(MZ)� 0:118

0:006

�
; � = 1 TeV; (7.4)

where the masses are in units of GeV.

Fig.39 [68] shows the perturbativity and stability bounds on the Higgs boson mass of the

SM for di�erent values of the cut-o� � at which new physics is expected. We see from Fig.39

and eqs.(7.3,7.4) that indeed for mt � 174 GeV the discovery of a Higgs particle at LEP II

would imply that the Standard Model breaks down at a scale � well below MGUT or MP lanck,

smaller for lighter Higgs. Actually, if the SM is valid up to � �MGUT or MP lanck, for mt � 174

GeV only a small range of values is allowed: 134 < mh <� 200 GeV. For mt = 174 GeV and

mh < 100 GeV [i.e. in the LEP II range] new physics should appear below the scale � � a few

to 100 TeV. The dependence on the top-quark mass however is noticeable. A lower value, mt '
170 GeV, would relax the previous requirement to � � 103 TeV, while a heavier value mt ' 180

GeV would demand new physics at an energy scale as low as 10 TeV.
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Figure 39: Strong interaction and stability bounds on the SM Higgs boson mass. � denotes the

energy scale up to which the SM is valid.

7.2 SM Higgs production at LEP

The dominant mechanism for the Higgs boson production at LEP is the Higgsstrahlung. The

Higgs boson is produced together with the Z0 boson. A small contribution to the cross section

comes also from the WW- and ZZ- fusion processes (see Fig.40). The cross section depends on

e
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Figure 40: SM Higgs production at LEP: Higgsstrahlung (above) and WW- and ZZ- fusion

(below)

the Higgs boson mass and decreases with increase of the latter. On the other hand, it grows

with the centre of mass energy, as shown in Fig.41 [69]. Kinematic limit on the Higgs production

is given by the c.m. energy minus the Z-boson mass.
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Figure 41: The cross section of the Higgs production at LEP II

However, one of the main problems is to distinguish the �nal products of the Higgs boson

decay from the background, mainly the ZZ pair production. The branching ratios for the

Higgs boson decay are shown in Fig.42. The Z boson has the same decay modes with di�erent

branchings. In the �nal states, one has either four hadronic jets, or two jets and two leptons, or

H�+��; �+��q�q, 8.7%

He+e�; H�+�� 6.7%

H��� 20.0%

Hq�q 64.6%

Channel BR Topology

�+

��

e+; �+

e�; ��
�

��

q

�q

HZ �nal states (Higgsstrahlung production)

Figure 42: The �nal states of the Higgs boson decay with the branching ratios
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Figure 43: Typical four jet event

four leptons. The most probable is the four jet con�guration, which is the most diÆcult from

the point of view of unwanted background. A two-jet and two-lepton �nal state is more clean

though less probable.

Attempts to �nd the Higgs boson have not met success so far. All the data are consistent

with the background. An interesting four-jet event is shown in Fig.43 and is most likely a ZZ

candidate [70]. A reconstructed invariant mass of two jets does not show noticeable deviation

from background expectation. For the 68.1 background events expected, there are 70 events

observed. The reconstructed Higgs mass for four-jet events is shown in Fig.44. At this kind of

plots the real Higgs boson should give a peak above the background, as is shown for a would be

Higgs mass of 110 GeV in Fig.44 [70].

Combined results from four LEP collaborations (ALEPH, DELPHI, L3 and OPAL) in the

energy interval
p
s = 200 � 210 GeV allow one to get a lower limit on the Higgs mass. As it

follows from Fig.45, at the 95% con�dence level it is [66]

mh > 113:3 GeV=c2 @ 95% C:L: (7.5)

Recent hot news from the LEP II accelerator show slight excess of events in hadronic channels.

For the hard cuts keeping only "really good" events one can achieve the signal/background

ratio of 2 with a few signal events indicating the 114 GeV Higgs boson (see Fig.46). Deviation

from the background achieves 2.9 standard deviations and is better seen in the con�dence level

plots [70]. There are also some events in leptonic channel [71]. However, statistics is not enough

to make de�nite conclusions.
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7.3 The Higgs boson mass in the MSSM

It has already been mentioned that in the MSSM the mass of the lightest Higgs boson is predicted

to be less than the Z-boson mass. This is, however, the tree level result and the masses acquire

the radiative corrections.

With account taken of the radiative corrections, the e�ective Higgs bosons potential is

V
eff

Higgs
= Vtree +�V; (7.6)
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where Vtree is given by eq.(5.16) and in the one-loop order

�V1loop =
X
k

1

64�2
(�1)Jk(2Jk + 1)ckm

4
k

 
log

m
2
k

Q2
� 3

2

!
: (7.7)

Here the sum is taken over all the particles in the loop, Jk is the spin and mk is the �eld

dependent mass of a particle at the scale Q.

The main contribution comes from the diagrams shown in Fig.47. These radiative corrections

y
2

t

H2 H2

. ~t (stop)

+

. t (top)

yt yt

�

Figure 47: Corrections to the Higgs boson self-energy from the top(stop) loops
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vanish when supersymmetry is not broken and are positive in the softly broken case. They are

proportional to the mass squared of top (stop) quarks and depend on the values of the soft

breaking parameters. Contributions from the other particles are much smaller [72, 73, 74]. The

leading contribution comes from (s)top loops

�V
stop

1loop =
3

32�2

"
~m4
t1
(log

~m2
t1

Q2
� 3

2
) + ~m4

t2
(log

~m2
t2

Q2
� 3

2
)� 2m4

t (log
m

2
t

Q2
� 3

2
)

#
: (7.8)

These corrections lead to the following modi�cation of the tree-level relation for the lightest

Higgs mass

m
2
h �M

2
Z cos

2 2� +
3g2m4

t

16�2M2
W

log
~m2
t1
~m2
t2

m4
t

: (7.9)

One �nds that the one-loop correction is positive and increases the mass value. Two loop

corrections have the opposite e�ect but are smaller and result in slightly lower value of the

Higgs mass [75, 63, 76].

To �nd out numerical values of these corrections, one has to determine the masses of all

superpartners. Within the Constrained MSSM, imposing various constraints, one can de�ne the
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Figure 48: The mass of the lightest Higgs boson for the low tan� solution as a function of m0

and m1=2. The contours at the upper plots correspond to �xed values of the Higgs mass. The

lower plots demonstrate the saturation of the mass at high values of mass parameters.

66



allowed region in the parameter space and calculate the spectrum of superpartners and, hence,

the radiative corrections to the Higgs boson mass (see Figs.48, 49).

The Higgs mass depends mainly on the following parameters: the top mass, the squark

masses, the mixing in the stop sector, the pseudoscalar Higgs mass and tan �. As will be shown

below, the maximum Higgs mass is obtained for large tan�, for a maximum value of the top

and squark masses and a minimum value of the stop mixing.

Note that in the CMSSM the Higgs mixing parameter � is determined by the requirement of

EWSB, which yields large values for � [39]. Given that the pseudoscalar Higgs mass increases

rapidly with �, this mass is always much larger than the lightest Higgs mass and thus decouples.

This decoupling is e�ective for all regions of the CMSSM parameter space, i.e. the lightest Higgs

has the couplings of the SM Higgs within a few per cent. We present the value of the lightest
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Figure 49: The same as in Fig. 48 but for the high tan � solution tan � = 35.
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Higgs mass in the whole m0;m1=2 plane for low and high tan � solutions, respectively [64] in

Figs.48, 49. One can see that it is practically constant in the whole plane and is saturated for

high values of m0 and m1=2.

The lightest Higgs boson mass mh is shown as a function of tan� in Fig. 50 [64]. The shaded

band corresponds to the uncertainty from the stop mass and stop mixing for mt = 175 GeV.

The upper and lower lines correspond to mt=170 and 180 GeV, respectively.
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Figure 50: The mass of the lightest Higgs boson as a function of tan�

The parameters used for the calculation of the upper limit are: mt = 180 GeV, A0 = �3m0

and m0 = m1=2 = 1000 GeV. The lowest line of the same �gure gives the minimal values of mh.

For high tan � the values of mh range from 105 GeV 125 GeV. At present, there is no preference

for any of the values in this range but it can be seen that the 95% C.L. lower limit on the Higgs

mass [66] of 113.3 GeV excludes tan� < 3:3.

In order to better understand the Higgs mass uncertainties, the relevant parameters were

varied one by one. The largest uncertainty on the light Higgs mass originates from the stop

masses. The Higgs mass varies between 110 and 120 GeV, if m0 and m1=2 are varied between

200 and 1000 GeV, which implies stop masses varying between 400 and 2000 GeV. Since at

present there is no preference for any of the values between 110 and 120 GeV, the variance for

a at probability distribution is 10/
p
12=3 GeV, which we take as an error estimate.

The remaining uncertainty of the Higgs mass originates from the mixing in the stop sector

when one leaves A0 as a free parameter. The mixing is determined by the o�-diagonal element

in the stop mass matrix Xt = At��= tan �. Its inuence on the Higgs mass is quite small in the
CMSSM since the low energy value At tends to a �xed point so that the stop mixing parameter

Xt = At � �= tan � is not strongly dependent on A0. Furthermore, the � term is not important

at large tan �. If we vary A0 between �3m0, the error from the stop mixing in the Higgs boson

mass is estimated to be �1:5 GeV. The values of m0 = m1=2 = 370 GeV yield the central value

of mh = 115 GeV.

Given the uncertainty on the top mass of 5.2 GeV [43] leads to the uncertainty for the Higgs

mass at large tan� of � 5 GeV.
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The uncertainties from the higher order calculations (HO) is estimated to be 2 GeV from a

comparison of the full diagrammatic method [76] and the e�ective potential approach [75]. So

combining all the uncertainties discussed before the results for the Higgs mass in the CMSSM

can be summarized as follows:

� The low tan� scenario (tan� < 3:3) of the CMSSM is excluded by the lower limit on the

Higgs mass of 113.3 GeV [66].

� For the high tan � scenario the Higgs mass is found to be in the range from 110 to 120

GeV for mt = 175 GeV. The central value is found to be [64]:

mh = 115� 3 (stopmass) � 1:5 (stopmixing) � 2 (theory) � 5 (topmass) GeV; (7.10)

where the errors are the estimated standard deviations around the central value. This

prediction is independent of tan� for tan � > 20 and decreases for lower tan�.

However, these SUSY limits on the Higgs mass may not be so restricting if non-minimal

SUSY models are considered. In a SUSY model extended by a singlet, the so-called Next-to-

Minimal model, eq.(5.26) is modi�ed and at the tree level the upper bound looks like [77]

m
2
h 'M

2
Z cos

2 2� + �
2
v
2 sin2 2�; (7.11)

where � is an additional singlet Yukawa coupling. This coupling being unknown brings us back

to the SM situation, though its inuence is reduced by sin2�. As a result, for low tan� the

upper bound on the Higgs mass is slightly modi�ed (see Fig.51).

Even more dramatic changes are possible in models containing non-standard �elds at inter-

mediate scales. These �elds appear in scenarios with gauge mediated supersymmetry breaking.

In this case, the upper bound on the Higgs mass may increase up to 155 GeV [77] (the upper

curve in Fig.51), though it is not necessarily saturated. One should notice, however, that these

more sophisticated models do not change the generic feature of SUSY theories, the presence of

the light Higgs boson.
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Figure 51: Dependence of the upper bound on the lightest Higgs boson mass on tan � in MSSM

(lower curve), NMSSM (middle curve) and extended SSM (upper curve)
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7.4 Perspectives of observation

LEP

In the case of supersymmetry, contrary to the SM, there are two competing processes for

neutral Higgs production. Besides the usual Higgsstrahlung diagram there is also the pair pro-

duction one when two Higgs bosons (the usual one and the pseudoscalar boson A) are produced.

The cross-sections of these two processes are complimentary and related to the SM one by a

simple formula (see Fig.52). Thus, the cross-section for Higgs production in the MSSM is usu-

e
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�
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�

e
+

e
�

Z
�

H
0

Z
0

H
0

A
0

Higgsstrahlung Pair Production

� = sin2(� � �)�SM � � cos2(� � �)�SM

Figure 52: MSSM Higgs production at LEP: complimentary diagrams

ally lower than that of the SM. Therefore, searches for pair production are limited by a low

cross-section rather than by a threshold (see Fig.53).
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Figure 53: hA pair production cross section in fb as a function of mh and tan �

Non-observation of the Higgs boson at LEP in general gives lower bound on the Higgs boson

mass than that in the SM. Modern experimental limits on the MSSM Higgs bosons are [69]

mh > 90:5 GeV=c2; mA > 90:5 GeV=c2 @ 95% C:L: (7.12)
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case

However, for a heavy pseudoscalar boson A the second process is decoupled and one basically

has the same production rate as in the SM. Therefore, in this case the SM experimental limit is

applicable also to the MSSM.

To present the result for the Higgs search in the MSSM, various variables can be used. The

most popular ones are (mh;mA), (mh; tan �) and (mA; tan �) planes. They are shown below in
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mixing case

Figs.54-55 for two particular cases: no-mixing and maximal mixing in the stop sector [66]. For

comparison the theoretically allowed regions are shown. One can see that

a) low tan � solution (0:5 < tan � < 3:3) is already excluded;

b) very small region for the lightest neutral Higgs boson mass is left (specially for the no-

mixing case).
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As it has been explained, in the MSSM one has also the charged Higgs bosons. The searches

for the charged Higgs bosons are the attempts to look beyond the Standard Model. It is basically

the same in the MSSM and in any two Higgs doublet model. The charged Higgs bosons are

produced in pairs in an annihilation process like any charged particles. The couplings are the

standard EW couplings and the only unknown quantity is the charged Higgs mass. However, the

branching ratios for the decay channels depend on the mass and the model. A large background

comes from the W -pair production. Nonobservation of charged Higgs bosons at LEP gives the

lower limit on their masses. The combined exclusion plot for various channels is shown in Fig.56.

This imposes the absolute lower limit on the charged Higgs boson mass [69]

mH� > 77:5 GeV=c2 @ 95% C:L: (7.13)
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Figure 56: Combined exclusion plot for the charged Higgs boson

Tevatron and LHC

With the LEP shut down, further attempts to discover the Higgs boson are connected with

the Tevatron and LHC hadron colliders.

Tevatron will start the Run II next year and will reach the c.m. energy of 2 TeV with almost

10 times greater luminosity than in RUN I. However, since it is a hadron collider, not the full

energy goes into collision taken away by those quarks in a proton that do not take part in the

interaction. Having a very severe background, this collider needs a long time of running to reach

the integrated luminosity required for the Higgs discovery. A combined CDF/D0 plot [78] shows

the integrated luminosity at Tevatron as a function of the Higgs mass (see Fig.57). The three

curves correspond to 2� (95% con�dence level), 3� and 5� signal necessary for exclusion, evidence

and discovery of the Higgs boson, respectively. One can see that the integrated luminosity of 2

fb�1, which is planned to be achieved at the end of 2001, will allow one to exclude the Higgs

boson with the mass of an order of 115 GeV, i.e., just the limit reached by LEP. One will need

RUN III to reach 10 fb�1 to cover the most interesting interval, even at the level of exclusion

(2�).
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Figure 57: Integrated luminosity needed for exclusion ((2�), evidence (3�) and discovery (5�)

of the Higgs boson at Tevatron

Figure 58: Exclusion plots for LHC hadron collider for di�erent Higgs decay modes

To �nd the Higgs boson, one will need still greater integrated luminosity. The signatures

of the Higgs boson are related to the dominant decay modes which depend on the mass of the
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Higgs boson. In the Tevatron region they are

H ! b�b; 100 < mH < 140 GeV;

H ! WW
�
; 140 < mH < 175 GeV;

H ! ZZ
�
; 175 < mH < 190 GeV:

(7.14)

The LHC hadron collider is the ultimate machine for a new physics at the TeV scale. Its

c.m. energy is planned to be 14 TeV with very high luminosity up to a few hundred fb�1. It is
supposed to start operating in 2006. In principle, LHC will be able to cover the whole interval

of SUSY and Higgs masses up to a few TeV. It will either discover the SM or the MSSM Higgs

boson, or prove their absence. In terms of exclusion plots shown in Figs.54, 55 the LHC collider

will cover the whole region [79]. Various decay modes allow one to probe di�erent areas, as

shown in Fig.58, though the background will be very essential.

8 Conclusion

LEP II has neither discovered the new physics, nor has proven the existence of the Higgs boson.

However, it gave us some indication that both of them exist. Supersymmetry is now the most

popular extension of the Standard Model. It promises us that new physics is round the corner

at a TeV scale to be exploited at new machines of this decade. If our expectations are correct,

very soon we will face new discoveries, the whole world of supersymmetric particles will show

up and the table of fundamental particles will be enlarged in increasing rate. If we are lucky,

probably we will soon have the table of sparticles in new addition of Sparticle Data Group (see

Fig.59) [80]. This would be a great step in understanding the microworld. If not, still new

discoveries are in agenda.
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Figure 59: Foreseeable future: SParticle Data Group
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