
Language Concepts and Design Patterns

Uwe A�mann, Andreas Heberle, Welf L�owe, Andreas Ludwig, Rainer Neumann

Institut f�ur Programmstrukturen und Datenorganisation

Universit�at Karlsruhe

Postfach 6980, Zirkel 2, 76128 Karlsruhe, Germany

(assmannjheberlejloewejludwigjrneumann)@ipd.info.uni-karlsruhe.de

Abstract. Programming languages aim at the construction of simple

but expressive programs. To achieve this, plenty of language concepts

have arisen over time. Design patterns aim at the solution of common

design problems. To achieve this, plenty of approved design concepts

have been collected.

We claim that language concepts and design patterns are essentially the

same. Indeed, a language may o�er a design pattern as a language con-

cept; we call such patterns language patterns.

A design pattern can be implemented in terms of other design or lan-

guage patterns. Since a concrete programming language only supports

a subset of language patterns, every other pattern must be expressed

in terms of this subset. We call such an implementation a workaround.

The speci�cation of a workaround imposes proof obligations: it must be

shown that a workaround simulates the pattern. Once proved correct, we

can collect patterns and their workarounds in a trustworthy catalogue.

This helps software developers to correctly apply patterns in any lan-

guage and helps the language designer to decide which patterns to put

into the language core.

We demonstrate this pattern integration process with well-known design

patterns and concepts of object-oriented languages. Additionally, we list

important language patterns together with their workarounds.

Keywords: decomposition, design pattern, language design, language pat-

tern, meta-programming, programming languages, program transformation

1 Introduction

Design patterns have brought software engineering closer to other engineering

disciplines, where the reuse of standard solutions to common problems is al-

ready state of the art. Many of approved design concepts have been collected in

catalogues during the last years [9, 3, 23].

Recently, many language constructs appear as design patterns in these cata-

logues. This somewhat astounding trend results from the fact that a particular

programming language does not support all well-known language constructs; ei-

ther the integration of a certain pattern into the language is too costly or not

desired. To use the concept nevertheless, it is described as a design pattern so

that programmers know how to work around the concept in terms of the lan-

guage.

On the other hand, more and more design patterns appear as concepts

in modern programming languages, in particular in domain-speci�c languages.

While these languages become more expressive and powerful they tend to be

more complicated. Extending a language with a new concept is a cost-intensive

procedure: a new compiler has to be constructed or an existing one has to be

extended. Also, since design patterns often have informal semantics, they cannot

directly be mapped to the machine level. To this end, it is required to formalize

a design pattern, but this reduces the degree of freedom in application of the

pattern.

Hence, a systematic method to integrate design patterns into languages would

be highly appreciated. Such a method should provide automation support for

patterns; it should rely on a precise semantics for patterns; it should provide a

proof methodology such that a language designer or compiler writer can develop

a trustworthy implementation. In short: it should provide a pattern integration

process, i.e. a means to help integrating patterns into languages, together with a

quality management method to assure that the automated patterns work correct.

This paper presents such a process. Its underlying insight is that

Design patterns and language constructs are conceptually equivalent.

This insight yields a uniform view on design patterns and language constructs

as patterns. To this end, we de�ne the notion of a workaround for patterns in

terms of other patterns. Workarounds can be created by a static meta-program

in an open language. The meta-program maps a new language construct, namely

the formalized pattern, to the constructs of the base language so that the com-

piler automatically generates code for the pattern. As a functional basis we

present a formal syntax and semantics for patterns, based on initial ground

term algebras and Abstract State Machines. Using this formalization, it can be

proven that the workaround behaves like the designated pattern.

The remainder of this paper is organized as follows: The following section

describes work related to ours. In section 3 we discuss the relationship between

language concepts and design patterns. Sections 4 and 5 show the equality of

language concepts and design patterns. It demonstrates how meta programming

can be used to extend languages by patterns. In section 6 we de�ne a method-

ology for correctness proofs for workarounds, i.e. we explain how to proof that a

workaround simulates the expected behavior of the pattern. Section 7 summa-

rizes our results and gives an outlook on forthcoming work.

2 Related Work

[9] introduced the �rst design pattern catalogue. To avoid burdensome de�nitions

of basic language concepts, these patterns are intentionally based on C++ and

SmallTalk. This continues in the catalogue [3] where idioms are additionally

de�ned as language speci�c implementation schemes. In the pattern survey in

2

[23] it can be observed how language concepts begin to arise as design patterns.

[10] de�nes cadets and idioms in order to classify design patterns with respect to

programming languages. In our terminology, an idiom as de�ned in [10] would

roughly translate to a workaround as we will de�ne in a later section.

[2] sees the need to support the evolution of concepts and identi�es a \seman-

tic gap" between design patterns and language concepts which leads to problems.

We agree on this and bridge that gap by the notion of workarounds. Further, [2]

claims that design patterns are conceptually orthogonal to language concepts.

A similar claim can be found in [7]: design patterns should be classi�ed as fun-

damental if they do not use language speci�c concepts. However, we think one

should not try to constitute which design patterns may be allowed to become lan-

guage concepts and what should not. We believe that design pattern hierarchies

as described in [25] nicely extend to language concepts.

In [15], the author notes that it is necessary to provide easy means to include

a pattern into a language and proposes the use of attributed grammars to de-

�ne the syntax of patterns and to enable static type checks based on patterns.

This is reasonable as attributed grammars have proven their worth. The idea

�ts perfectly in our picture as design patterns obviously do not di�er in their

statical semantics from common language constructs. What remains is to look

at the dynamic semantics and to give a precise formal de�nition of uses and

similar relations, both of which we will provide in this paper as part of a pattern

integration process.

3 Design Patterns and Programming Languages

This section describes some basic observations on design patterns and program-

ming languages. We show how design patterns are currently related to program-

ming languages. They can depend on their underlying language in several ways:

{ Design patterns can be language concepts.

{ Design patterns can depend on language concepts.

{ Design patterns can ignore \alien" language concepts.

We observed the following phenomena which we think are consequences of these

dependencies.

First of all, in certain languages design patterns occur as fully supported

language concepts. Some of these concepts have already invaded the domain of

design patterns, such as Try-and-Catch, see [23].

Example 1. In prototype-based languages [19, 4] a Prototype is the only way

to create new objects. An Iterator is a common part of database query lan-

guages and languages incorporating data streams such as Sather [17, 12].

Other design pattern sometimes solve problems that stem from the lack of

support for a language concept.

3

Example 2. A Convenience Class as depicted in [23] can bundle parameters

to reduce long signatures, either to gain expressiveness or to reduce parameter

transfer costs. However, a Convenience Class sometimes arises from the need

for multiple output parameters.

Sometimes, only a part of the functionality of a design pattern deals with

the replacement of missing language concepts.

Example 3. An Object Adapter as depicted in [9] is a general workaround for

the lack of multiple inheritance. If a speci�c language does not support multiple

inheritance or if multiple inheritance does not seem appropriate for any partic-

ular reason, a workaround using delegations is possible. This workaround does

not depend on the problem context Adapter and hence should not be coupled

with it.

Last not least, there are language concepts that could have an impact on

design patterns but are largely ignored by now. A good programmer can use the

idea behind the concept in an \alien" language and transfer it as a workaround to

the language in use. If patterns are written without a full awareness of language

concepts, this is not possible.

Example 4. A couple of pattern variants can be formed using genericity, such as

the Static Bridge [8]. This idea extends nicely to other design patterns such

as Decorator or Proxy.

How do these observations match with the notion of language indepedent

design patterns? Obviously, design patterns are currently tailored to a speci�c

language model that due to [9] is roughly equivalent to a subset of C++. This

clearly stems from the use of C++ for implementation examples.

Our idea is that language concepts can be regarded as design patterns and

that design patterns can be systematically incorporated as new language con-

cepts. We show that both directions are valid.

4 From Language Concepts to Design Patterns

We now present arguments why it is desirable to describe language concepts as

design patterns. Informally, a design pattern is a schematic documentation of

an approved solution for a speci�c design problem which incorporates reuseable

expert knowledge. The most important part of a pattern is its name and the list

of aliae de�ning a common terminology. A pattern also includes a motivation,

a purpose, a discussion of the applicability including its relations to related

patterns, and the limitations or side-e�ects of an application. The pattern gives

hints for possible implementations and illustrates them by examples.

Interestingly, all these requirements for documentation could be repeated for

language constructs. Language manuals, language rationals, language lecture

note books, and language tutorials all try to ful�l these requirements in order

to specify the semantics of the concepts precisely although often informally.

4

Additionally, in the same way as design patterns are assembled in catalogues,

language lecture notes try to collect language concepts systematically in order

to help teaching students. A catalogue for language concepts could look very

similar to the currently used design pattern catalogues. The multiple variants

would require an extra section \known variants" which would compare vari-

ants in di�erent languages including source code examples and refer to corre-

sponding literature. The implementation part would then describe and exemplify

workarounds.

Most design patterns provide a couple of variants and factorize their common

parts. Language concepts also di�er in �ne, but important details between the

languages (see example 5). Thus, the conceptual idea and possible variations

must be pointed out thoroughly. If done properly, this would allow a detailed

con�guration of design patterns derived from those language concepts.

Example 5. Generic classes in Ei�el [16] form a subtype hierarchy that is par-

allel to the hierarchy of their generic parameters, while they do not in C++ [21].

Exceptions have di�erent catch, propagation and resume strategies in di�er-

ent languages. Multiple inheritance comes in di�erent
avors such as interface

inheritance or mixin-based inheritance with early or late con
ict resolution. As-

sertions in Ei�el and C++ are supported at di�erent degrees. Perl [20] provides

associative arrays as standard Collections while most other languages only

support standard arrays.

Design patterns usually assume that there is no prede�ned solution that

matches the problem; hence an implementation by hand must be provided. A

language concept is de�ned in a programming language and therefore does not

have to be implemented. However, in a language that does not support the

concept, an implementation becomes necessary. This is the reason why language

concepts are being described as design patterns: to let a programmer implement

the pattern in a language which does not directly support it.

This leads to two de�nitions. If a design pattern is supported in a given lan-

guage we call it a language pattern wrt. the given language. An implementation

of a non-supported pattern is called a workaround. A workaround is similar to

an idiom [3] but not the same. While an idiom characterizes a certain coding

pattern in a particular programming language, a workaround realizes a pattern

in terms of other design or language patterns.

An example for such a workaround follows in the next section.

5 From Design Patterns to Language Concepts

We have demonstrated that language concepts can be speci�ed as design pat-

terns. It remains to show that the opposite is also true: design patterns can be

incorporated into programming languages.

5

5.1 Applying Workarounds by Program Transformations

[26] showed that the application of a design pattern can be regarded as a program

transformation. In the very same way, we can use dedicated transformations to

implement language concepts:

Example 6 (Visitor). Imagine you want to apply a Visitor pattern. In Ce-

cil [4], multimethods are available and the structure of a Visitor using a double-

dispatched method looks rather di�erent than that depicted in [9]. The following

program transformation scheme replaces a multi-dispatched polymorphic call1

by a cascaded sequence of single-dispatched calls:

f(x�1; x
�

2; : : : ; x
�

n
)fF(x1; : : : ; xn)g ! f1(x

�

1; x2; : : : ; xn)ff2(x1; : : : ; xn)g;

f2(x1; x
�

2; x3; : : : ; xn)ff3(x1; : : : ; xn)g;

: : :

fn�1(x1; : : : ; xn�2; x
�

n�1; xn)ffn(x1; : : : ; xn)g;

fn(x1; : : : ; xn�1; x
�

n
)fF(x1; : : : ; xn)g

The Visitor problem can be handled by a multimethod

visit(e�: Element, a�: Action) f do something with e and a g.

The transformation yields the following function declarations:

visite(e
�: Element, a : Action) f visita(e; a) g

visita(e : Element, a�: Action) f do something with e and a g

After some renaming and with the common notation for the single dispatch

parameter, we receive the well-known pattern from [9]:

Element ::accept(a : Action) f a.visit(this); g
Action::visit(e : Element) f do something with e and this g

Obviously, program transformations are capable to implement design pat-

terns. Unfortunately, the de�nition of a transformation does not provide an au-

tomated solution per se; it would be desirable to integrate such a transformation

directly into a language.

5.2 Patterns as Language Extensions

Since the sixties, researchers investigate extensible programming languages

which can be extended with new syntax constructs [5]. Recently, it has been

discovered that this is possible by static meta-programming. An open language

o�ers its abstract syntax tree as a library, i.e. as a meta-object protocol allowing

the user to annotate a new keyword or syntax construct to a meta-program. Each

time the compiler processes the keyword, it starts the related meta-program; it

1 The dispatch parameters are marked by an asterics�.

6

is able to introspect and to modify the abstract syntax trees of the currently

translated classes, giving a semantics to the new language construct. The later

phases of the compiler { semantical analysis as well as code generation { do not

need to be modi�ed. Since all meta-programs are evaluated at compile-time, no

run-time overhead is created. Two modern open languages are OpenC++ [6] and

OpenJava [22].

Example 7. The OpenJava distribution contains an example workaround for the

language pattern Generic Class: an instantiated template class is
attened to

an ordinary class by heterogeneous template parameter expansion [11].

In consequence, design patterns can be implemented by hand, integrated into

a language as a construct, or implemented by a static meta-program in an open

language. Of course, meta-programs for language extensions can be developed

much faster than new compilers, but they allow only simple optimizations.

5.3 Pattern-based Language Design

These arguments lead to an evolutionary process in language design, the pattern

integration process. When design patterns are implemented as meta-programmed

language extensions language designers can early gain experience with new lan-

guage concepts. When a pattern has proven to be valuable and manageable, it

may be integrated as a native language construct (Fig. 5.3). In this way, more

and more abstract design concepts enrich programming languages and a next

generation of more expressive languages results. Of course, a language designer

will try to de�ne a small language core incorporating only the most important

concepts. To �nd an acceptable compromise, he must evaluate the cost of a

workaround and decide whether to support it as a language pattern, as a lan-

guage pattern in an open language, or leave it to the programmer as a design

pattern.

Consider the example of Java. This language provides only a comparatively

small set of language patterns but this did not prevent its success. The designers

obviously decided that certain language patterns could be worked around easily

and omitted those from the language. Some of the omissions are heavily debated

meanwhile, especially Assertion, Closure, and Generic Class. These dis-

cussions have lead to the development of several language dialects which inte-

grate these concepts as language patterns [18] [11]. Based on an open language,

this process would be greatly facilitated.

5.4 Workarounds and Non-functional Aspects

A general-purpose language allows to work around all functional parts of a for-

eign language pattern.2 However, while a workaround might provide a semanti-

cally equivalent solution, it is usually not as sophisticated as a native language

2 To support concurrency, synchronization as provided by a Semaphore requires a

non-interruptable test-and-set operation.

7

Mapped by meta-program Mapped by hand

L+ L+

Mapped by compiler Language Evolution

Machine Language Concepts

Design Patterns

Design Patterns

Design Patterns

Extended Language Patterns

Machine Language Concepts Machine Language Concepts

Language Concepts

Language Concepts

L

L

Language Concepts

Abstraction

Automation

Implementation

Design

Levels of

Fig. 1. The pattern integration process: design patterns are mapped by hand to a lan-

guage L, then they are implemented with an extensible language yielding an extended

language L+, and �nally compilers integrate them as native language constructs.

construct. This is obviously the case for certain non-functional properties such

as the syntactical representation or the eÆciency of the compiled code.

Loss of syntactical expressiveness A language pattern has a certain syn-

tactical structure. A workaround may come with an \uglier" syntactical code

structure, the source code grows, becomes more complicated, and more diÆcult

to maintain. Especially, this is the case when other aspects are interwoven with

the workaround code so that its purpose is no longer visible. These e�ects have

been noted by [2] as traceability and reusability issues.

Loss of eÆciency A workaround usually does not match the performance of a

supported language pattern. Often the code pattern of a workaround has to be

matched by an optimizer in order to create target code that is tailored to the

pattern. However, the optimizer is not aware of this information.

It is possible that a workaround has a worse asymptotic behavior. As [28] has

shown, pure functional languages would implement array accesses in
(logn).

Luckily, most workarounds produce only a slight overhead that does not change

complexity.

Example 8. A typical workaround in C is to provide Polymorphic Features

using functions pointer arrays and structures with a type tag. However, for a

non-trivial subtype graph only a compiler can provide an enumeration for an

optimal dispatch [24].

8

Subclass
Multiple Inherited

Multiple Output
Parameter

Dynamic
Method
Invocation

Structuring
Flattening &

C++

Property

Assertion

Default Parameter

Enumeration

Function Type

Reflection

Semaphore

Generic Method

Generic Class

Value Type

Iterator

Predicate Class

Rendezvous

Closure

Java

Interface Class

Garbage Collector

Monitor

Nested Class

Prototype

Multifeature

Transient Parameter

Object Pascal

Abstract Class

Subtype

Subclass

Shared Feature

Polymorphic Feature

Package

Multiple Inherited Subtype

Exception
Destructor

Constructor
Collection

Class

Abstract Method

Overloading Method

Fig. 2. Concepts in di�erent programming languages

Loss of statical type and access safety An ordinary language does not

provide access to the static types of a program. When a workaround must grant

more access rights to certain modules or must weaken types, additional statical

type or access checks would be required. This results in a loss of safety since a

workaround by hand must also perform these checks by hand.

Example 9. A Generic Class can be worked around by heterogeneous tem-

plate parameter expansion. While this workaround can be made type-safe, it

enlarges the amount of code enourmously, since the code is replicated. The other

workaround, homogeneous parameter expansion compiles the code only once, but

is not type-safe since the parameters are replaced by the most general type [18].

Loss of memory control Certain operations might require control over the

storage location of a particular data object, e.g. not being stored in a register.

A lack of these concepts cannot be worked around.

5.5 Proof obligations

When a design pattern is implemented by a workaround correctness is a critical

issue. This does not only hold for hand implementations, but is very impor-

9

tant for developing correct meta-programmed workarounds in the the pattern

integration process.

In order to prove a mapping of a pattern to a workaround correct, the pro-

grammer has to select speci�c speci�cation methods for syntax and semantics

of patterns and workarounds. Using these speci�cation methods, it has to be

proved that the semantics of the pattern is the same as the semantics of the

workaround. To simplify the proofs, syntax as well as semantic speci�cation

mechanisms should be the same for patterns and workarounds.

In the next section we choose ground-term algebras as syntactical and Ab-

stract State Machines as semantical mechanism. This is motivated from veri�-

cation in compiler construction [14] and leads to a simple and powerful proof

methodology for the pattern integration process.

6 A Formal Base for Pattern Decomposition

First of all we de�ne the notions of design and language pattern as they are used

in the context of this work. Second, we de�ne syntax and semantics of patterns.

Therefore, we introduce a speci�cation language suitable for syntax and seman-

tics de�nitions. We will see that patterns, design as well as language patterns,

are in general de�ned in terms of other patterns. We de�ne this relation as the

use relation over patterns. A workaround for a pattern simulates this pattern

which is another relation over patterns that we have to de�ne formally. The

simulation relation bases on the operational semantics of the pattern and its

workaround. We use Abstract State Machines (ASM) to de�ne semantics op-

erationally. ASMs have successfully been used for the speci�cation of various

programming languages, e. g. C [13] or Java [1]. In compiler construction cor-

rectness of translations is established by proving a simulation relation on the

semantics of source and target code, see e. g. [27]. We adopt the technique in or-

der to proof correctness of workarounds. The simulation relation on patterns and

workarounds implies some proof obligations which are discussed at the end of

this section. Figure 3 sketches the correctness requirements. ps0 is a workaround

of a pattern ps if the semantics de�ned by ps0 simulates the semantics de�ned

by ps.

ps[[t]] = ASM(t)

"
v simulates

j
ps0[[t0]] = ASM(t0)

Fig. 3. Correctness of Workarounds

10

6.1 Design and Language Patterns

We begin with an example in order to make the de�nitions and proof more

descriptive.

Example 10. A Closure is an object containing a function f with formal pa-

rameters X = x1; : : : ; xn of f and result xr. A possibly empty subset of the

formal parameters B � X can be bound to some actual parameters oi; : : : ok.

The closure can be executed, i.e. f is executed, if all formal parameters are

bound.

In this informal de�nition, we identify other patterns like Function, For-

mal Parameter, Actual Parameter, and Result. Furthermore, we de�ned

functions over closures as bind and execute.

With respect to concrete languages , Closure may be design or a language

pattern. This leads us to a formal de�nition of design and language patterns.

De�nition 1 (Design Pattern). A design pattern d is a many sorted algebra

d = (A;�;Q), with sorts A = D [L [B where D is a set of design patterns, L

is a set of language patterns, and B is the Boolean algebra.

De�nition 2 (Language Pattern). A design pattern l = (A;�;Q) is a lan-

guage pattern wrt. a programming language L i� l is de�ned in L.

Obviously, it holds the following

Theorem 1 (Closedness of Language Patterns). If l = (A;�;Q) is a lan-

guage pattern wrt. a programming language L then for all patterns l0 2 A it holds

that l0 is a language pattern wrt. L.

Example 11. The Closure can be de�ned by the following algebra:

closure = (Aclosure; �closure; Qclosure); where

Aclosure = fclosure; formal parameter; actual parameter; function; resultg
�closure = f

create : function! fbound parameterg ! closure

bind : closure! actual parameter ! formal parameter ! closure

eval : closure! result g
Qclosure = f

bind(create(f; bps); ap; fp) = create(f; bps� f(ap;)g [f(ap; fp)g)
eval(create(f; bps)) = eval(f(bps)) g

For some languages L, Closure can be directly used in programs of L, i.e. is
de�ned in that language L. For those languages, the design pattern is a language

pattern.

11

6.2 Syntax and Semantics of Patterns

For language patterns (language constructs), it turned out helpful to distinguish

syntax of the language from the semantics3. This distinction is common sense

since it allows the construction of modular compilers, i.e. compilers checking

for the static correctness of a language pattern before generating code. It also

is advantageous with extended language patterns, since it allows to prove the

workaround mapper { the meta-program expressing the semantics of the ex-

tended language pattern { correct. As we will see, a workaround for a design

pattern d is nothing but a correct transformation of d to some language patterns

L.

De�nition 3 (Syntax of Patterns). Let d = (A;�;Q) be a design pattern.

The syntax of d is the initial ground term algebra ds = (As; �s) where

� : ds1 ! � � � ! ds
n
2 �s , � : d1 ! � � � ! dn 2 � ^ dn = d

ds
a
2 As , da 2 A ^ 9� : ds1 ! � � � ! ds

n
2 �s : ds

i
= ds

a
; i = 1::n

Note that for language patterns, De�nition 3 is just another notation of

abstract syntax trees which extends the idea of abstract syntax trees nicely to

design patterns.

From the syntax we distinguish the syntactic structure of design patterns.

The syntax de�nes correct programs creating design patterns and operations

over them. The structure de�nes the syntax of instances of a certain design

pattern.

De�nition 4 (Structure of Patterns). Let d = (A;�;Q) be a design pattern

with ds = (As; �s). The structure of d is an initial ground term algebra dstruct =

(Astruct � As; �struct) where

(�struct
i

: dstruct ! dstruct
i

) 2 �struct

for each argument di; i = 1::n of a signature

� : ds1 ! � � � ! ds
n
! ds 2 �s

in the syntax ds.

Example 12. The syntax closures of the Closure is described by the following

initial ground term algebra:

closures = (As

closure
; �s

closure
); where

As

closure
= f closures; bound parameters; functions g

�s

closure
= f

3 Although this is not necessarily required, cf. the �� and �� calculus.

12

create : functions ! fbound parametersg ! closures

bind : closures ! actual parameters ! formal parameters ! closures

eval : closures ! results g
The structure of Closure includes functions

bound parameter : closurestruct ! bound parameterstruct

bound function : closurestruct ! functionstruct

The semantics of a pattern could be de�ned axiomatic by its algebras. How-

ever, our intension is to apply these de�nitions to imperative languages. There-

fore we choose a more operational style of semantic de�nitions and use Abstract

State Machines (ASMs). ASMs describe mathematical machines operating on

algebras which model the states. ASMs introduce the notion of universes as

unary predicates which represent the sorts. Each state of the ASM has the same

signature together with an interpretation. The modi�cation of these interpre-

tations de�ne state transition. In ASM, updates of function interpretations are

speci�ed by update rules. A brief introduction is contained in the Appendix B.

We de�ne three universes: Objects to de�ne state, Tasks to de�ne the program

that in turn de�nes state transitions, and V alue to de�ne basic values. For sim-

plicity, the latter is assumed to be speci�ed in Boolean and Integer algebras,

respectively, and is not de�ned here. Objects may be structured, i.e. there are

functions

� : Object! fV alue;Objectg:

In general, each design pattern de�nes a part of the initial state of a program,

they de�ne some objects o and some functions �(o) and state transitions. The

state transitions change this initial state, i.e they may

1. change the interpretation of some existing function �(o) or
2. de�ne a new, yet unde�ned function �(o) or

3. create a new object o

How this interpretation changes is de�ned by the tasks: for each speci�c task

type we de�ne corresponding updates of functions. A global program counter,

modeled by a 0-ary function ct ! Task de�nes the current task and, thus the

updates to execute. The current task is initially set to the �rst task of a program

and is modi�ed in the updates of the tasks. Finally, we have to model call stacks,

data and sequential control
ow. The call stack is a stack of common objects.

We therefore only de�ne a function

current stack frame :! Object

which de�nes the current top element of the call stack. The data
ow is modeled

by a function

value : Task � N ! fV alue;Objectg:

The value of a task depends on the current recursion level of the execution which

is modeled by

reclevel :! N:

13

The control
ow is de�ned by a function

next : Task! Task:

The update of the function value(t; reclevel) in the context of a task t de�nes

the value that t computes. The update ct := next(ct) de�nes the next task to

compute after t. For non sequential control
ow, ctmust be updated alternatively

according to some Boolean value. W.l.o.g. our transition rules have the following

form
if ct = �(x1; : : : ; xn) then

updates

value(ct; reclevel) := : : :

ct := : : :

endif

We sometimes skip the de�nition of value if it is not required.

Given a term of the syntax of patterns, the semantics ought to de�ne an

initial state I of an ASM, i.e. some objects, functions over these objects and a

set of tasks possibly updating these function.

For each function � in the signature of a design pattern, we de�ne a task.

The result of � is encoded by the value function of the corresponding task and

is de�ned in an update performed by that task.

For each function

� : dstruct ! dstruct
i

in the structure of a pattern d, updates of the corresponding task create an

object d. Additionally it initially de�nes functions

� : d! di

and, hence, the initial state of pattern d.

The de�nition of semantics of a pattern merges ASMs, see appendix B for a

more detailed de�nition4.

De�nition 5 (Semantics of a Pattern). Let d = (A;�;Q) be a design pat-

tern with syntax ds = (As; �s). The semantics of d is a mapping of each program

term p 2 ds to an Abstract State Machine d[[p]] = (�[[]]; S; A[[]] [Task;!; I).

Let d1[[x1]]; : : : ; dn[[xn]] be the semantics, i.e. the corresponding ASMs, of terms

x1; : : : ; xn of patterns d1; : : : ; dn. Let t(x1); : : : ; t(xn) be the tasks of x1; : : : ; xn
in the respective ASMs. Let X =

U
n

i=1 di[[xi]].

d[[�(x1; � � � ; xn)]] = (�[[]]; S; A[[]] [Task [Object;!; I)]X

where

�[[]] = fnext : Task! Task

value : Task � N ! dng

4 Here, we assume merged ASMs to be valid.

14

A[[]] = fd; d1; : : : ; dng

Task = f�g

Initially, only the next function is de�ned according to the intended control
ow.

S is inductively de�ned by I and !. If � is a constructor of d then ! is de�ned

by the transition rule:

if ct = � then

extend dwith x

�struct1 (x) := value(t(x1); reclevel)
.
.
.

�struct
n

(x) := value(t(xn); reclevel)

value(ct; reclevel) := x

endextend

ct := next(ct)

endif

where �struct
i

is in the signature of the structure of di. If � is not a constructor

of d then ! is de�ned by the transition rule:

if ct = � then

updates(x1; : : : ; xn)

ct := next(ct)

endif

and the updates of the functions in the structure of d conform to the axioms Q.

The de�nition of a semantics of a design pattern is generic in the sense that

it requires semantics de�nitions of other patterns for completeness. Additionally,

it poses some restrictions on these other semantics de�nitions. We do not further

discuss the correctness of the de�nitions of syntax and semantics of a pattern d

wrt. its algebra. Instead, we assume syntax and semantics of a pattern d to be

the de�nition of d. Hence, we do not further de�ne the notion of conformance

of updates in an ASM of a pattern and the axioms of its algebra. Our example

may give some more insights:

Example 13. Let f and bp be terms of the patterns Function and

Bound Parameter, respectively. The semantics closure[[create(f; bp)]] adds a

task create to the task universe and extends the transition rules by the following

rule:
if ct = create then

extend Closure with c

function(c) := value(t(f); reclevel)

bound parameters(c) := value(t(bps); reclevel)

value(ct; reclevel) := c

endextend

ct := next(ct)

endif

15

Let ap and o be terms of the patterns Actual Parameter and Object, re-

spectively, and c an term of Closure. The semantics closure[[bind(c; ap; o)]]

adds a task bind to the task universe and extends the transition rules by:

if ct = bind then

let bp = bound parameters(value(t(c); reclevel)in

bp := bp� fvalue(t(ap); reclevel); g[
fvalue(t(ap); reclevel); value(t(o); reclevel)g

ct := next(ct)

endlet

endif

Let c be a term of closure. The semantics closure[[eval(c)]] adds a task eval to

the task universe and extends the transition rules by:

if ct = eval then

if visited(ct; reclevel) then

visited(ct; reclevel) := false

value(ct; reclevel� 1) :=

value(lasttask(bound function(value(t(c); reclevel))); reclevel)

reclevel := reclevel� 1

ct := next(ct)

else

visited(ct; reclevel) := true

extend Object with o

do forall (ap; o0) : (ap; o0) 2 bound parameters(value(t(c)))

ap(o) := o0

endforall

dynamic predecessor(o) := current stack frame

current stack frame := o

endextend

reclevel := reclevel+ 1

ct := firsttask(bound function(value(t(c); reclevel)))

endif

endif

visited depends on the current recursion level. In the beginning visited is set to

false. Evaluation of a function implies an incrementation of the recursion level.

The semantics of closure is complete only with the de�nition of the semantics

of the patterns Function and Bound parameter. It requires that the pattern

function de�nes a firsttask and a lasttask function.

6.3 Correctness of Workarounds

Having de�ned syntax and semantics of patterns, we are now able to de�ne

relations between patterns.

16

De�nition 6 (Use Relation of Patterns). Let d = (ds; d[[]]) be a design pat-

tern. d uses all patterns di with di[[]] 2 A[[]]
of d. We denote this by use(d; di).

The transitive closure of the use relation of a certain design pattern is required

to identify the design and language patterns that are necessary to implement

that design pattern.

In order to prove the correctness of a workaround we have to establish a

simulation relation on the design pattern implemented by the workaround. This

relation is de�ned in terms of the simulation relations over the semantics of

design patterns, i.e. in terms of simulation relations over ASMs. Therefore we

discuss the notion of simulation of ASMs.

In general, not all state transitions of an ASM are observable from outside.

An observer can not distinguish runs of two di�erent programs as long as they

show the same input/output behavior. For our purposes it is suÆcient to as-

sume that only events are observable which read an input of the environment

or write an output to the environment. We model these events by input and

output streams. Thus, observable behavior can be modeled by merging all states

where the following state transition does not change the interpretation of the

input or output stream, see �gure 4. Simulation of two ASMs a and b is now

b:
I/O

i’ 1q’ 2q’ 3
q’

4q’

I/O

a: i q q q
21 3I/O I/O

q
4

ρ ρ ρ

Fig. 4. Simulation of observable behavior

de�ned similar to the simulation notion in complexity and computability theory.

� relates states of ASM b and ASM a showing the same observable behavior5.

ASM b simulates ASM a if for every observable behavior of the b there exists a

corresponding behavior of a. A detailed discussion of observable behavior and

our notion of simulation can be found in [27].

De�nition 7 (Simulation Relation of Patterns). Let d = (ds; d[[]]) be a

design pattern. d is simulated by a set of patterns D =
S

n

i=1 di; di = (ds
i
; di[[]]) i�

d[[]] is simulated by
U

n

i=1 di[[]]. We denote this by D v d.

5 This is a slight simpli�cation since in general it is possible that the observable behav-

ior of a and b is modeled by di�erent functions. Then we have to �nd an additional

function rho which de�nes an injective mapping from observable functions of a to

the observable functions of b.

17

v can be interpreted as a contra-covariant subtype relation over patterns.

Note, that no update in the semantics of a pattern in D can update functions

of the signature in the pattern d. Hence, in order to ful�ll D v d, the signature

of D needs not necessarily contain the signature of d.

Example 14. The design pattern Closure uses the patterns Function and

Bound Parameter. The Closure can be simulated by a class (as usually

available in object oriented languages). This class must implement parameter

binding and currying.

The transitive closure of v for a certain design pattern is required to translate

this pattern to a concrete programming language. We now formally de�ne the

notion of a workaround:

De�nition 8 (Workaround of Patterns). Let d = (A;�;Q) be a design

pattern. A workaround of d is a set of patterns D with

D v d; and

8di 2 D : use+(di; d
0)) d0 is a language pattern;

where use+ is the transitive closure of the use relation over patterns.

A special form of the simulation relation plays an important role for design

patterns and their eÆcient implementation:

De�nition 9 (Extension of Patterns). A design pattern d extends a design

pattern e i� d simulates e but e does not simulate d.

Example 15. Figure 5 shows the relationships between Callbacks, Closures,

Function Types and classes: A Callback can e.g. be simulated by Function

Types. Since a Closure is an extension to a Function Type, the workaround

with Function Types can also be used with Closures.

A pattern that is extended by another pattern can often be implemented

more eÆciently. The combination of a language pattern and a more powerful

language pattern is only sensible if it cannot be decided in general whether

or not a use of the simpler pattern would be suÆcient, since then the task to

produce highly eÆcient code could be left to the optimizer.

Example 16. A Value Type could be applied automatically if no references

must be manipulated. A monomorphic call can replace a polymorphical one if

only one type is possible during the dispatch. A Closure can be replaced by a

Function Type if no parameters are bound.

A workaround de�nes the implementation of a design pattern d = (ds; d[[]]) in

terms of language patterns of a language L. For the de�nition of a workaround

we have to proof D v d. d[[]] is de�ned in terms of d1[[]]; : : : ; dn[[]] 2 A[[]] whose

semantics is de�ned in terms of the semantics of their components and so on. In

our example the semantics of Closure is de�ned on the semantics of Function

18

Callback

Closure

Function Type

Class

Sather-K
Pizza

Object Pascal

C++

Java

simulatesextends

Fig. 5. Implementation of Callbacks based on other concepts

which is build up merging the semantics of Parameters and Stats and so on.

This results in huge ASMs on which we have to proof a simulation relation. We

rather want a structuring of this proof.

As already mentioned, the semantics of a design pattern d = (ds; d[[]]) is

de�ned using di[[]] 2 A[[]]. Nevertheless, in order to de�ne the semantics of d it is

not necessary to know the concrete semantics di[[]]. Instead, we de�ne a design

pattern generically and assume some minimal properties min di of the di. These

minimal properties are de�ned by ASMs. This leads to the de�nition of generic

design patterns.

De�nition 10 (Generic Design Pattern). A generic design pat-

tern d(min d1; : : : ;min dn) is a design pattern d = (A;�;Q) where

min d1; : : : ;min dn describe minimal requirements on the patterns di used by

d.

This means that the semantics of d is not de�ned based on the concrete semantics

of the di but de�nes requirements the di have to ful�ll. The minimal requirements

min di specify the roles of the pattern d. The bounds can be used to detect

errors in the instantiation of a design pattern and to check the consistency of

workarounds.

De�nition 11 (Sound and Correct Instantiation). An instantiation

d(d1; : : : ; dn) of a generic design pattern d(min d1; : : : ;min dn) is sound if for

all di used by d: �
[[]]

di
� �min di

. The instantiation is correct if it is sound and

for all di used by d: di[[]] v min di.

Generic patterns d(min d1; : : : ;min dn) can be used to de�ne generic

workarounds d0(min d1; : : : ;min dn). The correctness of such implementations

can be proven assuming minimal requirements min d1; : : : ;min dn.

The following shows the bene�t of this construction.

19

Theorem 2 (Correctness of Workaround Instantiations). If d(d1; : : : ; dn)

is a correct instantiation of the generic pattern d(min d1; : : : ;min dn) and

d0(min d1; : : : ;min dn) is a generic workaround of d then d0(d1; : : : ; dn) is a

correct instantiation of d0.

Proof. Let d0 be a generic workaround of d. Then the bounds of d0 and d are

equal. Hence, an instantiation of d0 with parameters which de�ne a correct in-

stantiation of d is also correct. ut

Theorem 3 (Simulation of Pattern Instantiations). A correct instanti-

ation d(d1; : : : ; dn) of d(min d1; : : : ;min dn) is simulated by d0(d1; : : : ; dn) if

d0(min d1; : : : ;min dn) is a generic workaround of d(min d1; : : : ;min dn).

Proof. By theorem 2 the instantiation of d0 is correct if the instantiation of d was

correct. A generic workaround d0 simulates a generic pattern d if the components

of d0 ful�l the minimal requirements of d. Therefore, for the same instantiation

d1; : : : ; dn, d
0(d1; : : : ; dn) simulates d(d1; : : : ; dn). ut

Generic design patterns together with generic implementations de�ne a struc-

ture on the correctness proof for workarounds. Existing correct generic imple-

mentations can be reused to de�ne di�erent concrete workarounds for a partic-

ular design pattern. In addition, we are able to de�ne and verify intermediate

forms where parts of the parameters are instantiated while others are left ab-

stract.

7 Conclusions and Outlook

All animals are equal, but some animals are more equal than others.

George Orwell, Animal Farm

The concepts of design and language patterns are equal. Design patterns can

be supported as language concepts directly, whereas language concepts appear as

design patterns for other languages which do not directly support them. There-

fore, language concepts often start o� as design patterns but are later integrated

into a programming language as language patterns.

This paper introduced the term workaround to describe how a pattern that

is not directly supported by a language can be implemented on top of provided

concepts. In contrast to [9], workarounds describe implementation of higher level

concepts in terms of lower level concepts rather than in terms of a concrete

programming language.

Additionally, we describe an evolutionary methodology for pattern based

language design. The idea of that methodology is to use the workarounds as

meta operators in extendable programming languages. This is especially useful

to easily integrate new concepts into a language and to experience the advantages

and disadvantages of the new features before integrating them into a compiler.

20

Finally, we de�ned the notion of syntax and semantics of patterns using

abstract syntax trees and Abstract State Machines (ASM). We introduced re-

lationships between patterns { use, simulation and extension. These allow us

to de�ne the notion of correctness of workarounds and to build the base for a

process of formal language extension.

The next step is to collect a catalogue of language patterns based on top

of the listing we provided in the appendix and include their formal semantics

and proofed workarounds. Language pattern catalogues would broaden the un-

derstanding of programming language concepts and help programmers to adopt

these ideas for software design as well as implementation.

Based on the workarounds described within the catalogue, libraries of meta-

operations should be implemented. Such libraries could start a new software

market for language extensions and help programmers increase their expressive-

ness in programming. The libraries should be tailored to a speci�c implementa-

tion language and cover a wide range of abstract design patterns and language

constructs. All that is needed to make the extension libraries work is a compiler

for an open language; the presented proof methodology will provide a formal

means to verify them.

Our goal is to provide a simple process for the description of patterns and

their integration into programming languages. This may also lead to new com-

piler architectures with respect to a cost e�ective language extensibility.

A Listing of Language Patterns

This listing of language patterns gives an overview over important concepts

and sketches the purpose (B), the central idea of a workaround (�) and the

disadvantages () of the workaround. The very brief description scheme is by

no means a complete pattern documentation, but a detailed discussion of every

pattern would go far beyond the scope of this paper.

As a basic programming model, we assume a structured, procedural, modular

imperative language with user-de�ned data types. We focus on object-oriented

concepts that seem essential to the authors.

Abstract Class (Deferred Class)

B Model an abstraction of similar objects and de�ne their the common features.

� Implement Abstract Methods and hide the Constructors to prevent

instantiation.

Abstract Method (Deferred Method, Pure Method)

B De�ne a method signature and make the implementation a task of Sub-

classes.

� Document the abstract method as such and throw an Exception when the

method is called.

 Loss of robustness since exception appears only at runtime.

21

Assertion (Runtime Check)

B Increase robustness and facilitate testing by checking whether the application

is in an expected state.

� Insert check code and throw an Exception in case of failure. Guard the

checks with a debug
ag (to be removed by the optimizer) or add them in

Decorator classes.

Class

B Encapsulate data with operations to modularize a software system.

� De�ne a record with Function Types corresponding to the operations. Add

the record as �rst parameter where needed.

 Usually there is no notion of access privacy for structured data types.

Closure (Bound Method)

B Enable currying for a Function Type by partially binding parameters

changing the function signature.

� Apply Function Type, add attributes for bound parameters and Over-

loading Methods for di�erent signatures.

 The bound parameters produce an additional overhead.

Collection (Container)

B Model a dynamic 1:N association.

� Implement the appropriate abstract datatype using built-in collections such

as array types.

Constructor

B Ensure that an allocated object becomes initialized immediately.

� Apply a monomorphic Factory Method as a Shared Feature and forbid

pure allocations (as a convention). Call the appropriate superclass constructor

to obtain a pre-initialized object.

Default Parameter

B Omit arguments in calls and have them replaced by default values.

� Add Convenience Methods de�ning sensible combinations of the param-

eters and provide default values in the call to the hook method.

Destructor

B De�ne actions that should take place right before deallocating an object.

� De�ne a method for all objects that is called by the instance responsible for

deallocating the object, e.g. a Garbage Collector.

 Pure deallocations might still be possible.

Dynamic Method Invocation

B Call a method at runtime knowing the name and parameter types but not

the type of the object.

� Implement an interpreter that performs the method call according to dynam-

ically provided names and types.

 The interpreter must be updated when the system changes.

Enumeration

B De�ne a data type from a set of constants.

� De�ne the constants in an Interface Class or provide a special Iterator.

 Range checking might be lost.

22

Exception (Try-and-catch)

B Check whether a method execution { or a set of such { succeeded and provide

alternative code for the exceptional state.

� Pass error codes as additional output parameter, e.g. Multiple Output

Parameters, or de�ne global result variables for groups of methods.

 If exception handling is not enforced it is often not done.

Flattening and Structuring

B Write/read an object structure to/from a �le or stream in order to send the

structure over a network or to make it persistent.

� De�ne
attener and structurer classes or methods, e.g. pretty printer and

parser for abstract syntax trees.

Function Type (Delegate, Higher-Order Function)

B Treat functions as types to pass them as parameters.

� Use an (explicit) Interface Class to de�ne the signature(s) and pass an

object of a concrete subclass.

 Possible loss of eÆciency due to indirection and memory overhead.

Garbage Collector

B Automatically deallocate unneeded objects to provide robust applications.

� Implement a memory manager and create a thread to �nd and deallocate

dead data objects.

Generic Class (Template Class, Virtual Class)

B Parameterize a class with types to avoid unsafe downcasts.

� Use the most general abstraction and create Subclasses that cast to the

more special types.

 Access to more general types is still possible.

Generic Method

B Parameterize a method with types to avoid multiple structurally equivalent

declarations.

� Expand the types manually, use Overloading Methods if possible.

 The workaround does not quite meet the purpose.

Interface Class

B De�ne a behavioral speci�cation for Classes.

� Create an Abstract Class with Abstract Methods only.

Interface Implementation

B Provide an implementation of an Interface Class.

� Declare a Subtype relationship with the Interface Class.

Iterator (Cursor, Stream)

B Navigate through the elements of a possibly hidden data structure.

� De�ne operations that have access to the internals of the data structure, e.g.

by a Nested Class.

 Concurrent iterators may not be possible or encapsulation is broken.

Monitor

B Synchronize access to features of a class.

� Use Semaphores.

23

Multi Feature (Multimethod, Multiple Dispatch)

B Chose the right implementation of a feature depending on the actual types

of the parameters.

� Add the feature to all parents and for multimethods, make the other features

accessible. Resolve polymorphic calls by cascading single dispatches.

Multiple Inherited Subclass (Multiple Inheritance)

B Apply Subclass for a set of superclasses.

� Use explicite delegation instead of inheritance.

 Loss of performance due to indirection.

Multiple Inherited Subtype (Multiple Inheritance)

B Apply Subtype for a set of supertypes.

 No workaround possible if Subtype de�nes an order relation.

Multiple Output Parameters (Multiple Return Parameters)

B Implement a multi-valued function.

� De�ne a Convenience Class to bundle the parameter set.

 Possible loss of eÆciency due to the indirection.

Nested Class (Inner Class)

B Give a class opaque access to private features of the outer class.

� De�ne a separate class with appropriate access rights and hold a reference to

the outer class when needed.

 Appropriate access rights might not be available.

Overloading Method

B Allow methods with disjoint signatures to carry the same name.

� Make single parameters Subtypes of a new supertype and make the method

a Polymorphic Feature. Add dummy parameters or combine parameters

to new types to match the number of parameters.

 Dynamical dispatch is less eÆcient than statical.

Package (Class Subsystem, Group, Namespace)

B Localize the de�nitions of a class system and provide a unique name space.

� Group the compilation units into di�erent subdirectories and add the package

name to each entity name to resolve possible name clashes.

Polymorphic Feature

B Access a feature of a set of types instead of a particular type.

� Add type tags and dispatch using a function pointer table.

 Possible loss of performance due to ineÆcient dispatch.

Predicate Class

B Determine class membership by predicate evaluation at runtime so that ob-

jects may migrate through various classes. Method availability and selection

depends on the determined actual class.

� De�ne predicates as methods that each object must provide and use the

predicates to dynamically check availability or to dispatch methods.

 Type safety is lost if predicates can be checked statically.

24

Property (Virtual Attribute)

B Control access to a possibly virtual attribute, e.g. add range checks or noti-

�cation.

� Implement an attribute with access methods and hide the set-method if the

attribute should be read-only.

Prototype (Clone)

B Avoid expensive re-initialization of new objects and create a type given at

runtime only.

� Implement a (deep) copy function that can be used to clone an object.

Reflection (Introspection)

B Retrieve meta information on an object at runtime, usually for a Dynamic

Method Invocation.

� Implement a de�ned set of re
ection methods for each class.

Rendezvous

B Synchronize two methods at a certain point, e.g. to exchange data.

� Use two Semaphores to synchronize the methods in contrary order.

Semaphore

B Protect a system from data inconsistency by providing exclusive locks.

� Use a lock variable and suspend the current thread if needed.

 The implementation depends on a non-interrupteable test-and-set operation.

Shared Feature (Static Feature, Class Feature)

B Share common state (shared attribute) or common behaviour (shared

method) through all instances of a class.

� Apply State for all instances that require access.

Subclass

B Reuse the implementation of a class and optionally extend it.

� Delegate all the methods to be inherited to a private instance of that class.

Subtype

B Make a type a substitute for a (super-)type indicating that it behaves like

the supertype, usually for Polymorphic Features.

� Often already induced by Subclass or Interface Implementation.

 There might be no way to hinder a Subclass to de�ne a Subtype.

Transient Parameter (In/Out Parameter, Var Parameter)

B Let a method change the value of an object given as parameter.

� Introduce a separated in- and output parameter or de�ne a Convenience

Class with a pair of Access Methods.

 Possible loss of eÆciency due to the indirection.

Value Type (Composite)

B Gain eÆciency by passing or storing values instead of references.

� Extract primitive value types from the compound reference types and resolve

name clashes.

 The former compound type can no longer be referenced.

25

B Introduction to Abstract State Machines

An abstract state machine (short: ASM) is a tuple A = (�;Q; S;!; I), where �

is a signature, Q is a set of �-algebras (the states) with the same carrier set, S

is a set of sorts (the super-universe), !� Q� Q is the transition relation, and

I � Q is the set of initial states.

fq denotes the interpretation of f 2 � in state q 2 Q. Interpretations on

S of function names in � are called basic functions. The super universe does

not change when the state of A changes, the basic functions may. The super

universe contains distinct elements true, false and undef (?) that allow to deal

with binary relations and partial functions. They do not appear in the signature.

A universe U is a special type of basic function: a unary relation identi�ed

with the set fx : U(x)g. Any sort U 2 S denotes a universe. The universe BOOL

is de�ned as BOOL = ftrue; falseg. A function f : U ! V from an universe U

to an universe V is an unary operation on the super universe such that f(a) 2 V

for all a 2 U and f(a) = ? otherwise. In the ASM model there exists a special

universe reserve which can be used as a source for new elements.

A term over the signature � is de�ned as usual. T (�) denotes the set of

terms over the signature �. The interpretation of a term t 2 T (�) in state q

is denoted by [[t]]q . The relation ! is de�ned by a �nite collection of transition

rules of the form:

if Condition then

Updates

endif

for example
if t0 then

f(t1; : : : ; tn) := tn+1

endif
where t0; t1; : : : tn+1 2 T (�) is a transition rule. Let q be the state before and q0

be the state after applying the rule. The meaning of the rule is: If [[t0]]q = true

then for all g 2 � n f gq0 = gq, and fq0 is de�ned as follows:

fq0(x1; : : : ; xn) =

�
[[tn+1]]q if for all i, 1 � i � n, [[ti]]q = xi
fq(x1; : : : ; xn) otherwise

If [[t0]]q = false then fq = fq0 for any f 2 �. Thus the interpretation changes the

value of the basic function f at the value of the tuple (t1; : : : ; tn) to the value

tn+1, provided that [[t0]]q = true. If several updates contradict then one update

is chosen nondeterministically.

In our ASM speci�cation we use the data types SET, LIST, and natural

numbers N with the usual operations. These data types are assumed to be de�ned

by term algebras. The carrier set of a term algebra represents the corresponding

sort of S. Additionally, we use some extensions of the basic ASM model.

26

Extension Informal meaning

do forall v : g(v)

R(v)

enddo

Let q be the actual state. This rule executes R for each

element v with gq(v) = true in parallel.

extend U with u

R

endextend

Take an element u of the reserve universe, add u to the

universe U , and execute the rule R. This means that before

the execution of the rule reserve(u) = true and U(u) =

false and then reserve(u) = false and U(u) = true.

let x = t in

R

endlet

Bind the term t to the name x in R.

A merge of two ASMs is de�ned as follows:

De�nition 12 (Merge of ASMs). The merge of two ASMs a =

(�a; Sa; Aa;!a; Ia) and b = (�b; Sb; Ab;!b; Ib) is the ASM a] b = (�a [
�b; Sa] Sb; Aa [Ab;!a;b; Ia] Ib) where the merge Sa] Sb

of a �a
-algebra

Sa = (A;�a; Qa) and a �b
-algebra Sb = (B;�b; Qb) is de�ned by (A [B;�a [

�b; Qa [Qb). The transition relation !a;b� (Sa [Sb)� (Sa [Sb) is de�ned by

the union of the sets of transition rules de�ning !a
and !b

, respectively.

The merge of two ASMs a and b is valid if the interpretations of all func-

tion symbols de�ned by Ia and Ib are consistent. Interpretations of a function

f : X1 � : : : � Xk ! X are consistent in a state q if 8 x 2 X1 � : : : � Xk :

fa
q
(x) 6= ?^ f b

q
(x) 6= ?) fa

q
(x) = f b

q
(x).

References

1. E. B�orger and W. Schulte. Programmer Friendly Modular De�nition of the Se-

mantics of Java. In J. Alves-Foss, editor, Formal Syntax and Semantics of Java,

LNCS. Springer, 1998.

2. J. Bosch. Design patterns and frameworks: On the issue of language support.

Lecture Notes in Computer Science, 1357, 1998.

3. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael

Stad. Pattern-Oriented Software Architecture { A System of Patterns. John Wiley,

1996.

4. Craig Chambers. The Cecil language speci�ca-

tion and rationale: Version 2.0. Available from

http://www.cs.washington.edu/research/projects/cecil/www/Papers/cecil-

spec.html, December 1995.

5. T. E. Cheatham, Jr., Alice Fischer, and P. Jorrand. On the basis for ELF | an

extensible language facility. In 1968 Fall Joint Computer Conference, volume 33,

part two of AFIPS Conference Proceedings, pages 937{948, Washington, D. C.,

1968. Thompson Book Company.

6. Shigeru Chiba and Takashi Masuda. Designing an Extensible Distributed Lan-

guage with a Meta-Level Architecture. In O. Nierstrasz, editor, Proceedings of the

ECOOP '93 European Conference on Object-oriented Programming, LNCS 707,

pages 483{502, Kaiserslautern, Germany, July 1993. Springer-Verlag.

27

7. Ellen Agerbo and Aino Cornils. How to Preserve the Bene�ts of Design Patterns.

ACM SIGPLAN Notices, 33(10):134{143, October 1998.

8. Arne K. Frick, Walter Zimmer, and Wolf Zimmermann. On the design of reliable

libraries. In R. Ege, M. Singh, and B. Meyer, editors, TOOLS 17 | Technology

of Object-Oriented Programming, pages 13{23. Prentice Hall, August 1995.

9. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison Wesley, Massachusetts,

1994.

10. J. Gil and D. H. Lorenz. Design patterns vs. language design. Lecture Notes in

Computer Science, 1357, 1998.

11. Gilad Bracha, Martin Odersky, David Stoutamire and Philip Wadler. Making the

future safe for the past: Adding genericity to the java programming language.

In Object-Oriented Programming: Systems, Languages, Applications (OOPSLA),

Vancouver, October 1998. ACM.

12. Gerhard Goos. Sather-k { the language. Software { Concepts and Tools, 18:91{109,

1997.

13. Y. Gurevich and J. Huggins. The Semantics of the C Programming Language. In

CSL '92, volume 702 of LNCS, pages 274{308. Springer, 1993.

14. Andreas Heberle, Welf L�owe, and Martin Trapp. Safe Reuse of Source to Interme-

diate Language Compilations. In Ram Chillarege, editor, Proceedings of the Ninth

International Symposium on Software Reliability Engineering, Fast Abstracts and

Industrial Tracks, 1998.

15. G. Hedin. Language support for design patterns using attribute extension. Lecture

Notes in Computer Science, 1357, 1998.

16. Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall PTR, 2

edition, January 1997.

17. Stephan Murer, Stephen Omohundro, David Stoutamire, and Clemens Szyperski.

Iteration abstraction in sather. TOPLAS, 18(1):1{15, 1996.

18. Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into prac-

tice. In Conference Record of POPL '97: The 24th ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, pages 146{159, Paris, France,

15{17 January 1997.

19. Randall B. Smith and David Ungar. Programming as an experience: The inspira-

tion for self. In Walter Oltho�, editor, ECOOP '95 - Object-Oriented Programming

9th European Conference, Aarhus, Denmark, number 952 in Lecture Notes in Com-

puter Science, pages 303{330. Springer-Verlag, New York, N.Y., 1995.

20. Stephen Spainhour, Ellen Siever, and Nathan Patwardhan. Perl in a Nutshell.

O'Reilly, 1 edition, July 1998. estimated.

21. Bjarne Stroustrup, editor. The C++ Programming Language. Addison Wesley,

second edition, 93.

22. Michiaki Tatsubori. OpenJava language manual, version 0.2.3, January 1998.

http://www.softlab.is.tsukuba.ac.jp/�mich/openjava/.

23. Walter F. Tichy. A catalogue of general-purpose design patterns. In Proc. Tech-

nology of Object-Oriented Languages and Systems (TOOLS 23). IEEE Computer

Society, 1998.

24. Jan Vitek and R. Nigel Horspool. Compact dispatch tables for dynamically typed

object oriented languages. In Tibor Gyimothy, editor, Compiler Construction,

6th International Conference, volume 1060 of Lecture Notes in Computer Science,

pages 309{325, Link�oping, Sweden, 24{26 April 1996. Springer.

28

25. Walter Zimmer. Relationships between Design Patterns. In James O. Coplien

and Douglas C. Schmidt, editors, Pattern Languages of Program Design. Addison-

Wesley, 1995.

26. Walter Zimmer. Frameworks und Entwurfsmuster. PhD thesis, Universit�at Karl-

sruhe, February 1997.

27. W. Zimmermann and T. Gaul. On the Construction of Correct Compiler Back-

Ends: An ASM Approach. Journal of Universal Computer Science, 3(5):504{567,

1997.

28. Wolf Zimmermann. Complexity issues in the design of functional languages. In

Proceedings, International Conference on Computer Languages, pages 34{43, Oak-

land, 1992. IEEE Computer Society Press.

29

