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Abstract

We consider the problem of mapping large scale FEM graphs for the solution of partial
differential equations to highly parallel distributed memory computers. Typically, these
programs show a low-dimensional grid-like communication structure.

We argue that conventional domain decomposition methods that are usually employed
today are not well suited for future highly parallel computers as they do not take into
account the interconnection structure of the parallel computer resulting in a large com-
munication overhead.

Therefore we propose a new mapping heuristic which performs both, partitioning of
the solution domain and processor allocation in one integrated step. Our procedure is
based on the ability of Kohonen neural networks to exploit topological similarities of an
input space and a grid-like structured network to compute a neighborhood preserving
mapping between the set of discretization points and the parallel computer.

We report about results of mapping up to 44,000-node FEM graphs to a 4096-processor
parallel computer and demonstrate the capability of the proposed scheme for dynamic
remapping considering adaptive refinement of the discretization graph.
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1 Introduction

While the theoretical computational power of modern parallel computers already exceeds
those of classical vector computers considerably, their broader acceptance grows with caution.
This is mainly due to a lack of software support, i.e. automatic parallelizing compilers,
automatic data partitioning and mapping.

Nowadays, most research laboratories have a parallel computer at their disposal, mainly
used to simulate technical and physical systems (i.e. structural mechanics, fluid dynamics, n-
body systems, etc.). Most of those parallel computers are MIMD message passing systems but
only of limited degree of parallelism (less than 1024). One of the most fundamental feature
of parallel computers is scalability, the possibility to configurate parallel computers with as
much computational power as is needed just by adding more processors. In the near future
also highly parallel systems will be affordable with much more than 1024 processors. This
will increase the problems with poor efficiencies due to load unbalance and communication
overhead, much bigger as it is already the case with today’s affordable small- and medium-size
parallel computers with small communication network diameters.

In this paper we consider the partitioning and mapping of a special but typical kind
of application, namely solving partial differential equations (PDE) with the finite element
method (FEM) on such highly parallel machines.

Today the usual approach for parallelizing such problems is to exploit the knowledge of
the shape and dimension of the solution domain to perform some kind of domain partitioning
into as many partitions as processors are available in a way that minimizes load unbalance and
the amount of data dependencies between different partitions but without taking into account
the topology of the parallel computers communication network [7, 10, 11, 12, 18, 19, 21].
In a second, independent step these partitions are mapped onto the processors such that
communication is minimized either by employing some kind of processor allocation heuristic
[10] or by generating a corresponding partitioning of the parallel computer [7, 11, 12, 18].
Even simpler is just to rely on load balancing that can also lead to good efficiencies for small
parallel computers with a high computational load [1, 2]. The communication scheme which
is then needed is an all-to-all broadcast. This can be done in logarithmic time on a hypercube,
not more than is needed for a scalar product, but the amount of data that has to be exchanged
is much larger.

However, also if partitioning is performed, because partitioning and mapping are inde-
pendent of each other, it is possible that the partitioning found is highly inappropriate to
establish a good mapping with low communication cost to a highly parallel computer with
its specific interconnection topology.

On the other hand, the general approach for the mapping of parallel programs to parallel
computers, not only applicable for such geometry based problems, is to model the parallel
program as a general graph with the nodes representing parallel tasks and edges between
communicating tasks (the so-called Task Interaction Graph or short TIG). Analogously the
parallel machine is modeled as a graph as well (the so-called Processor Connection Graph,
or short PCG), with the nodes representing processors and the edges communication links
between them. The mapping problem can then be formulated in terms of a graph embedding
problem of the TIG into the PCG with optimization goals related to load balancing and
communication cost minimization. Several general heuristic techniques for combinatorial
optimization are employed to find good embeddings, i.e. Simulated Annealing [3], Mean
Field Annealing [4], Genetic Algorithms [5], Evolution Algorithms [15] and graph theoretical



techniques, e.g. [14].

All of these heuristics have the common property that they are computationally very
expensive and therefore are only applicable for small and medium size problems and parallel
machines. One reason for this is that they are designed for TIGs with arbitrary structures
and do not exploit any further knowledge of the structure of the TIG that may be available
(like in the case of FEM graphs). Also some of them are not well suited to be executed in
parallel or are even inherently sequential (like Simulated Annealing).

In [6, 8] we proposed an embedding heuristic based on Kohonen’s Neural Networks and
their ability to establish topology conserving mappings between a feature vector space into
which the TIG is suitably embedded and a neural network of fixed topology, representing the
parallel computer. Although it is a procedure for the general problem instance it exploits
coarse similarities between the structure of the TIG and the PCG. In [9] we presented its
application to mapping discretized PDE’s to small- and medium-size parallel computers using
a pre-computation step to reduce the problem size. Using such mappings we solved the
resulting systems of linear equations with the well known cg-algorithm (conjugate gradient).

While our previous work dealt with general task interaction graphs, we are now focusing on
a particular class of problems that make up the lion’s share of current parallel supercomputer
applications. Not surprisingly, this specialization leads to much more efficient algorithms. We
will show how to incorporate knowledge concerning the special problem structure, namely the
fact that the FEM-Graph is of a low-dimensional space (2- or 3-dimensional) and the prop-
erty that only geometrically nearby nodes need to exchange information, into the procedure
based on Kohonen Networks. Using this information results in a procedure that performs
partitioning and mapping in one single step and provides very good solutions also for large
scale problems and highly parallel machines and can be executed in parallel on the target
machine itself.

This paper is organized as follows: We start with a short description of the problems
that arise if conventional recursive bisection methods are used to map a FEM graph to a
highly parallel computer in Section 2. In Section 3 we formalize the specific problem we
address. Section 4 describes the proposed mapping procedure that is based on Kohonen
Neural Networks. Section 5 shows the results of the proposed scheme for a non-trivial large-
scale realistic example problem and the ability of fast dynamic remapping if the FEM graph
changes in time and we conclude with some summarizing remarks in Section 6.

2 Motivation

As already mentioned, the usual approach for mapping discretized PDEs to parallel computers
is to perform some kind of solution domain decomposition in conjunction with a correspond-
ing partitioning of the parallel computer (for an overview see e.g. [18]). Afterwards the
partitions of the solution domain are mapped to their counterpart partitions of the parallel
computer. Optimization goal for that decomposition is the minimization of inter-partition
dependencies under the constraint of load balancing, i.e. all partition should include the
same number of discretization points (or finite elements). Typically, this is done by recursive
bisection: in each step, each partition is bisected independently of the others into two new
ones, resulting in 2, 4, 8, 16, ... partitions. At the same time, the parallel machine is also par-
titioned by recursive bisection into as many compact partitions as there are solution domain
partitions. For the usual hypercube- and mesh-connected parallel computers the procedure
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Figure 1: Partitioning of a rectangular solution domain and a mesh-connected parallel
computer into 16 partitions by orthogonal recursive bisection. Corresponding partitions are
shaded equally.

and the resulting correspondence between solution domain partitions and parallel computer
partitions is obvious.

Figure 1 shows a small artificial example of a rectangular solution domain and a 16-
processor parallel computer. Both are recursively partitioned in four steps resulting in 16
balanced partitions. Corresponding partitions are shaded equally. If we observe the evolution
of the black and the white partitions which share some data dependencies we recognize that
their counterpart machine partitions drift apart more and more. Once the distance of two
partitions that share some data dependencies is more than one in at least one direction
(horizontal or vertical) it grows further within at least every second further partitioning step
because the machine partition in between is also partitioned further. This results in high-
dilation embeddings and high communication cost especially for highly parallel computers.

Although this example is quite artificial, it demonstrates potential problems that arise
when applying usual domain decomposition methods that treat all partitions independent of
each other and do not take into account the interconnection topology of the parallel com-
puter. Using more powerful recursive bisection methods than that of figure 1 may reduce the
problems but cannot remove them. Nevertheless, recursive bisection methods perform well
for today’s mostly small- and medium-size parallel computers with small network diameters
(e.g. hypercubes).

3 Formulation of the Problem

A parallel computer can be modeled as a so-called Processor Connection Graph PCG =
(P, ET) with :

P set of identical processor elements
EF set of bidirectional processor connections (links)
¥(p,q) ¥(p,q) € EF the communication delay (time/data unit)

Using the edge weights (that can be assumed to be unity for a homogeneous intercon-
nection network) a distance metric on the PCG between arbitrary pairs of processors can be

defined:
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where d(p, ¢) indicates the length of the shortest (weighted) path between the processors
p and q.

Although this definition allows interconnection networks of arbitrary topology we restrict
ourselves to 2- or 3-dimensional grid architectures (depending on the dimension of the solution
domain) or a virtual embedding of such a grid into the physical topology (e.g. hypercube;
for an overview of such embeddings see e.g. [16]). The advantage of such interconnection
topologies is that they are relatively cheap to realize because of their small and constant
node degree (independent of the machine size, in opposite to hypercubes) and that they are
sufficient for the kind of problem we want to attack because of their topological similarity.
Also a lot of actual existing parallel computers are built using these interconnection topologies,
e.g. Cray T3D, Intel Paragon, MasPar MP1 and MP2 and Parsytec GC.

The problem for which we want to compute an appropriate partitioning and mapping to
a parallel computer can be described as follows :

It consists of a 2- or 3-dimensional solution domain modeling a technical or physical system
on which we want to solve a certain PDE numerically. This solution domain is discretized
in an arbitrary, problem dependent way such that at each discretization point some kind of
calculation has to be performed that depends on other discretization points. We make the
following assumptions :

Assumption 1 :

The solution domain Q is embedded into [0,1]* (k = 2 or 3) depending on the actual
dimension of the solution domain itself, not its embedding space (e.g. the roof of a
building that is actually a 2-dimensional domain but probably embedded into a 3-
dimensional space). If the dimension of the embedding space is larger than that of the
solution domain it is assumed to be projected suitably into the corresponding lower-
dimensional unity square.

Assumption 2 :

The solution domain Q is discretized resulting in a number of discretization points
z; € [0,11F . i =1,..,N, AQ := Uz;. To perform the desired calculations, only
information exchange between geometrically nearby points is necessary, i.e. points z;,
x; for which ||2; <;|| is small. The interpretation of geometrically nearby depends on
the actual problem and the numerical method used, respectively, and the actual local
discretization precision .

This last assumption represents the geometrically based communication structure of the
problem that would have been hidden if the problem had been explicitly modeled as a general
Task Interaction Graph with the discretization points representing the smallest unity that
can be regarded as a task and drawing edges between all pairs of tasks that need to exchange
information (as it was done in [9]). This is the same assumption that also underlies the con-
ventional geometrically based partition strategies.

Next we define the mapping function :

T:AQ &= P (2)



to be the result of a mapping procedure that for each discretization point determines its
corresponding processor to which it is mapped. Note that the function 7 implicitly defines a
partitioning of the solution domain.

The measures of quality we consider for the evaluation of our mapping heuristic are quite
general. They do not depend on special hardware properties like SIMD vs. MIMD or packet-
switching vs. wormhole routing but allow to assess the quality of a mapping for different
areas of application due to their diversity. The first two measures refer to load unbalance
that can be expressed as the maximum load (here the number of discretization points) of all
processors:

LUsas := I;lealgd{w € AQr(z) = p} (3)

from which an upper bound of the overall computation speed can be derived. The second
load balance measure is the average percentage load deviation from the load average :

1 [{z € AQ|x(z) = p}|
LUjey i= — g -
d |P| ot T (4)
with
- |AQ]
L= "5 (5)

To measure the communication overhead we define the maximum dilation of the mapping,
i.e. the maximum distance of two nodes that need to exchange information under the mapping
T

dil oy = max d(m(z),7(y)) (6)
X,y € AQ
communicating

which can be used as a lower bound of the communication overhead especially on SIMD
parallel computers. To measure the total communication overhead the communication costs
are defined as the accumulated communication relations of all pairs of nodes that need to
exchange information, weighted with the distance under the mapping = :

CC = > d(m(x),7(y)) (7)

X,y € AQ
communicating

Because our heuristic is geometry based and does not explicitly minimize a certain objec-
tive function we do not need to combine all these measures to one all-embracing function
which is considered an art because of the contrary nature of the objectives.



4 Description of the mapping procedure

The Kohonen type of neural network has been developed as an approximate model for the
self-organization process of the stimulus response of real, physiological neurons in the cerebral
cortex [13, 17].

The Kohonen network can be simplistically explained as a set of artificial neurons denoted
by P, arranged as a fixed grid (typically 2- or 3-dimensional) which adapt their response in
terms of weights to external input from a feature or input vector space in a way that nearby
neurons in the neural network respond to similar (nearby) stimuli in the feature vector space.
Looking at a weight vector of a neuron as a reference vector or prototype for those stimuli
vectors of the feature vector space for which it responds maximally (i.e. those stimuli vectors
for which it is the geometrically nearest) the process organizes the weight vectors of the
Kohonen network in a way that the Kohonen network can be regarded as a vector quantizer
[17]. The induced Voronoi tesselation decomposes the feature vector space into compact
partitions. Additionally, the Kohonen network has the property that neighboring partitions
of the solution domain correspond to nearby neurons of the neural network. It is this point
of view in which we want to explain Kohonen neural networks neglecting all its biology based
features.

Roughly speaking, the idea how to use Kohonen neural networks for the mapping problem
we consider, is to look at the set of discretization points of the solution domain as the discrete
feature vector space and the parallel computer with its fixed communication topology as
the neural network. The intuitive idea is that the self-organization process results in a good
partitioning as well as mapping of the solution domain, optimizing both those aspects together
with mutual consideration. This contrasts to usual domain partitioning methods that do not
take into account the interconnection topology of the machine.

Assuming a feature vector space X of dimension k, each neuron p holds a weight vector
w, € R*. The response of a neuron p to an input signal z € X C R is inversely proportional
to the distance ||z ©w,||. The neuron p* for which ||z ©w,|| is minimum is called the ezcitation
center for that specific input and is the neuron where z is mapped to. The Kohonen algorithm
to adjust the weights in a way that a topology conserving mapping of the input space to the
neural network is established, is to repeatedly and randomly choose an input vector of the
feature vector space, compute the excitation center in the neural network and to adapt the
weight vector of this neuron and those in its neighborhood in direction to the input vector.
The stepsize for this adaptation is the smaller the larger the distance of the specific neuron to
the excitation center is. In this way, the neurons adapt their weight vectors such that a good
vector quantization is achieved and neighboring partitions correspond to nearby neurons of
the neural network.

So the algorithm is as follows :

0 Kohonen algorithm

1 initialize all weight vectors w, € P

2 For t:=1 to t,,,, do

3 select # € X randomly

4 compute p* with ||w,« <z|| = mpin ||w, <zl
5 wit — w! 4 (1) hpys (1) (2 Sw))

6 end for



\ P
P \
[ ]
° | 17X
X /
Feature vector space X with Neural network, projected into Neura network, projected into
one sample vector X. the feature vector space. Neuron p* the feature vector space after
isthe excitation center. the weight-adaptation step.

Figure 2: A single weight-adaptation step.

€(t) is a monotonically decreasing stepsize; hy,+ (1), the so-called neighborhood function, is
monotonically decreasing in d(p,p*) and describes the decreasing influence of an adaptation
step to a specific neuron p with increasing distance from the excitation center p*. This
function is normally chosen to be Gaussian : hpyy«(t) := exp(<d(p, p*x)?/20(t)*) where o(t),
the neighborhood size, also decreases with time such that the network can evolve towards a
roughly global order at the beginning of the process and is allowed to fine-tune at the end.

For each feature vector 2 € X we can define the mapping function 7 : X <— P implicitly
by 7(z) = p & ||z©w,|| = mingep ||z-©wy||, its specific excitation center or in terms of vector
quantization its reference neuron. So each discretization point is mapped to that processor
that holds the weight vector with the smallest Euclidian distance to it. Using this we can
define the receptive field F(p) of a neuron p as the set of all feature vectors that are mapped
to it:

F(p) = {z€ X|r(z)=p} (8)

In the special case of by = 6pps (6 denotes the Kronecker-Delta) this algorithm is just the
stochastic online version of the well known k-means clustering algorithm [17]. In distinction
to it, the soft-maz adaptation rule employed in the Kohonen algorithm enforces the process
to consider topology conservation also in the neighborhood defined by the metric d(p, q).

For the adaptation of the self-organization process described above to the mapping prob-
lem we assume a k-dimensional solution domain of a PDE discretized in some way, complying
with assumptions 1 and 2 and embedded into [0,1]* and according to this a parallel com-
puter with a k-dimensional rectangular grid interconnection topology, representing the neural
network.

The set of vectors of the discretization points A is taken as the feature vector space. This
is justified, because in accordance with assumption 2, geometrical closeness of discretization
points also denotes mutual data dependency. The weight vectors of the neurons, i.e. the
processors respectively, are initialized according to the a-priori knowledge concerning the
shape of the solution domain (assumption 1). That is: they are regularly and neighborhood
preservingly distributed over [0,1]*, giving a first rough ordering. For example the weight
vector of a processor with coordinates (1, j, k) of a parallel computer with a {0..n; &1} X
{0..n2 &1} x {0..n3 &1} 3-dimensional interconnection topology is initialized to :
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Figure 3: The distribution of processors (nodes of the neural network) in an 1-dimensional
example : the load of the three processors (i.e. elements of the feature vector space) is not
well balanced as the result of the self-organization process although the vector quantization
error is minimum.

i1 41 k+1N\T
Wik 1= ( J ) (9)
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This ordered initialization allows to start the self-organization process with a small neigh-
borhood-size o(t = 0) and prevents it from falling into bad sub-optimal, neighborhood violat-
ing solutions, generally a very hard problem. At the end of the process, a compact partition
of the solution domain is mapped to each processor, i.e. its receptive field, in a way that
neighboring partitions that share data dependencies are mapped to nearby processors.

The self-organization process described so far tends to distribute the processors in a way
that minimizes (for ¢ — 0, i.e. at the end of the process) the vector quantization error:

EVQ = Z ||$ <:>>w7r(aa’)||2 (10)
rEAQ

This behavior is not in a good agreement with our objective of load balancing (see figure
3 for an example). Consequentely we need an additional mechanism to explicitly enforce load
balancing. In [8] we proposed a mechanism that balances load by increasing or decreasing the
size of the receptive fields of the processors (depending on whether they are underloaded or
overloaded) at the expense of neighboring processors leading to a diffusion-like load balancing
process. Because this process allows only load exchange between neighboring neurons (i.e.
processors) and because it considers only local load unbalance, it would take a long time to
achieve load balance between far off neurons if the load unbalance is more global and coarse
grain. Hence, this mechanism is no longer applicable for highly parallel computers. Here we
propose a new one but based on similar ideas.

The idea is to overlay the Kohonen algorithm with a drift-like process that guides the
processors towards regions of the solution domain where processors hold a very heavy load,
indicating that the processor density in such regions is not sufficient in comparison with the
discretization fineness. This has to be done very carefully so that the global topological order
established by the Kohonen process is not violated too much.

During the Kohonen process we periodically compute the complete mapping function 7 to
determine the actual load of each processor. To save computational resources this can be done
incrementally because it can be assumed due to the smooth behavior of the Kohonen process
that the distance of the destination processors for each discretization point from one load-
determination step to the next is very small. Each processor is then able to compute a local



Figure 4: For each processor a small arrow shows the direction and the magnitude of it’s
load gradient. Processors adapt their weight vectors according to these load gradients to
enforce load balancing.

load gradient and to adapt its weight vector a little bit in the direction to the neighboring
processors’ weight vectors according to the load gradient (see figure 4 for an illustrative
example). According to the moves of the weight vectors, the receptive fields change in a way
that load is balanced in a local surrounding depending on the number of nearby processors
that are taken into account for the calculation of the gradient vector. In order to establish a
roughly global load balance at the begining of the iterative process and a locally fine-tuned
load balance at the end, being in accordance with the mode of operation of the Kohonen
process, the region taken into account for the load gradient computation decreases in time.
Considering a larger surrounding at the beginning does not only speed up the process but also
results in a somewhat smoother gradient surface (see figure 5a). To ensure that a rough global
topological ordering has been established before the self-organization process is overlayed with
the additional load balancing process and probably disturbed by it, load balancing starts not
until 1/3 of all iterations of the Kohonen process are already performed.

To bound the magnitude of the load gradient (otherwise resulting in too large, topology
violating moves of weight vectors) and to ensure a smoother load gradient surface, the load
gradient is not computed using the actual load values of the processors. Instead, each pro-
cessor in the surrounding taken into account for a load gradient calculation contributes to it
with a value monotonic in its actual load situation but bounded with respect to the average
load (see also figure 5b) :

&3, load(p)<0.4-1L
&2 , 04-L<load(p)<0.6-1L
&, 0.6-L <load(p)<0.8-L
bounded_load(p) = 0 , 08-L<load(p)<1.2-1 (11)
1, 14-L> load(p)> 2-L
2 , 1.6-L>load(p)>1.4-1L
3, load(p)>1.6-1L

The specific boundaries depend on the ratio of the number of discretization points to the
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Figure 5: (a) All processors whose load state contribute to the horizontal component of the
load gradient for a specific processor are shaded more darkly. This region decreases to only
the left and right adjacent processor at the end of the process. (b) boundedload - values that
contribute to the load gradient calculation with respect to the average load (L).

number of processors. For a higher total load the boundaries can be more restrictive because
the load that is to be distributed evenly occurs in a finer granularity.

For example, the horizontal component of the load gradient for a specific processor p of
a parallel computer with a 2-dimensional interconnection network with coordinates p = (4, 5)
is computed according to :

+b k-1
gradload,(i,j):= > > boundedload(i+ k,j+1)-sgn(k) (12)
k=—bl=—k|+1

where b = b(t) denotes the size of the surrounding taken into account. The resulting
algorithm looks like :

0 Load Balancing Process

1 Do every 150 iteration steps of the Kohonen Process :

Do every 15th call :
update the mapping function m and each processor’s load
compute load gradient vector for each processor

EndDo

adapt each processor’s weight vector according to :

- grad_load(p)

1
Wy — Wy + 15052

EndDo

0 N O Ok WwN

5 Demonstration of an application
To demonstrate the capability of the proposed mapping heuristic and to give some more

insight into it’s mode of operation we report about some possible applications on a large-
scale, non-trivial sequence of FEM-graphs.
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Figure 6: A sequence of hypothetical FEM-graphs, resulting from adaptive refinement. The
first, most coarsest consists of 12,199 discretization points, the second of 31,682 and the most
finest of 44,663.

Figure 6 shows a sequence of three FEM graphs, discretizing an irregular 2-dimensional
domain with varying local precision, each resulting from adaptive refinement of the preced-
ing graph as they emerge if the neccessary discretization precision is not known in advance
or changes in time. These graphs are mapped to a 4096 processor machine (64x64 grid).
The implementation and timing-measurement was done on a MasPar MP1 SIMD parallel
computer, although this is not the type of machine we adress at first.

The first experiment we would like to report is the mapping of the FEM graph with
the highest precision to the 4096 processor machine without consideration of the preceding
coarser graphs. The Kohonen algorithm ran for ¢,,,, = 600,000 time steps incorporating
the load balancing process in the last 400,000 time steps. Figure 7 and 8 show a sequence
of figures demonstrating the evolution of the mapping during the self-organization process.
Figure 7 shows the grid of the communication network of the parallel computer projected
into [0,1]? according to the coordinates of the weight vectors of the processors. It can be
seen that this projection approximates the shape and the discretization precision of the FEM
graph better and better with progressing time in a topology conserving way. This leads to an
embedding of the FEM graph into the parallel computer with small overall communication
cost and small dilation. Figure 8 shows the corresponding sequence of the 64x64 processor
array shaded corresponding to the computational load of the individual processors (black for
high load, white for low load). As can be seen the load distribution converges to an almost
uniform density (gray level) as desired. The white areas correspond to processors with no
computational load at all. In the very early stages of the process this occurs because they
are mapped to regions of [0, 1] outside the solution domain. But during the self-organization
process they move towards the solution domain in a topology preserving way, leading to a
decrease of the number of idle processors and to a better load balance. At the end of the
process, the tremendous global load unbalance of the initial mapping has disappeared leaving
only a few processors with a noticeably higher load than their neighbors. This remaining
unbalance could be further removed by a simple local balancing step to be performed only
on these few processors without affecting neither communication cost nor maximum dilation
significantly.

While the quality of the values for load unbalance, maximum load and maximum dilation
are easy to assess, the quality of the values for communication cost remain quite abstract. To

11
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Figure 7: Snapshot sequence of intermediate mappings during the Kohonen process. The
Processor Connection Graph is projected into the solution domain whose boundary is drawn
only. Discretization points are mapped to the geometrically nearest processor. (Process
parameters were tpq, = 600,000, 0(t) = 6 ©5.75:"—, €(t) = 0.06 ©0.02:—, b(t) = |5 &

)

12



t=20 ¢t =100, 000 t = 250,000
LUpmaz =75 LUpmar = 404 LUpmaz = 218
LUgew = 0.93 LUgeyw = 0.60 LUgew = 0.49

t = 400, 000 t = 500,000 t = 600, 000
LUpas = 110 LUpas = 48 LUpas = 22
LUgeo = 0.35 LUgew = 0.25 LUgey = 0.17

Figure 8: Snapshot sequence of intermediate load states of the processor array during the
Kohonen process. Black benotes heavy load, white a very low load (L = 10.90).
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Figure 9: Optimum compact domain partitions consisting of 10 (a) and 11 (b) points,
assuming a rectangular grid.

get an impression how this value can be assessed we perform the following rough estimate :

The example FEM graph consists of 44,663 discretization points. Assuming a rectangular
grid discretization, inner points have 4 neighbors, boundary points only 3 (a few of them
only 2). For the FEM graph given, this results in an average number of data dependencies
of 3.96 per point. On a 4096-node processor the load average is 44,663/4096=10.9, so with
an optimum balanced load, most processors (3703) are assigned 11 points, the rest (393)
are assigned 10 points. Assuming optimum domain partitions (minimum data dependencies)
each partition (regardless whether it has 10 or 11 points) would have 14 edges to other
partitions if all points had 4 neighbors (figure 9). Since the average number of neighbors
is actually 3.96 we obtain 14x(3.96/4)=13.86 data dependencies for each partition or 13.86
communication relations crossing processor boundaries, respectively. If, ideally, only nearest
neighbor communication were necessary, the communication cost would be C'C' = 4096 x
13.86 = 56, 770. This is a lower bound which is theoretically unreachable because due to the
goal of load balancing, dilations greater than 1 are often unavoidable. Also the assumption
of optimum compact partitions is unrealistic.

Compared to our results, partitioning and mapping using the orthogonal recursive bisec-
tion method leads to communication costs that are about 10% higher (25% for a 16,384
processor parallel computer) and maximum dilations that are 3 times larger (4 times for a
16,384-processor parallel computer). To confirm the predicted problems of recursive bisection
methods that served as a motivation for this work, figure 10 shows the embedding of the most
finest FEM graph into a 256-processor parallel computer, computed with orthogonal recursive
bisection and with the algorithm proposed here. The predicted large dilations (dil,qa. = 6)
develop exactly at the boundaries of the different bisection steps. Additionally these dila-
tions lead to an unintentional edge congestion resulting in further communication overhead
which is not considered in our quality measures. So even if dilation is not an issue (since the
interconnection network has small global propagation delays), there might occur some hot
spot communication links, that could degrade the overall performance. As can be seen, the
Kohonen based mapping shows smaller dilations (dil,,., = 4) and more evenly distributed
communication edges avoiding congestion.

The next experiment demonstrates the dynamic remapping capabilities of the procedure.
Assuming that a mapping for one of the more coarser FEM graphs has already been com-
puted we show how to exploit this mapping to find a good mapping for the succeeding FEM
graph within less time than starting from nothing. Such situations are very typical when the
discretization precision that is necessary to solve a certain PDE within a given precision varies
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Figure 10: Mapping of the 44,663-node FEM graph to a 256-processor parallel computer
using orthogonal recursive bisection (left) and the algorithm proposed here (right). Different
sizes of the black circles in the boxes (i.e. processors) represent different computational loads.
An edge is drawn between all pairs of processors that need to perform communication under
the computed mapping.

from region to region and is not known in advance (this corresponds to a transition from the
first FEM graph of figure 6 to the second one) or if the necessary local discretization precision
changes from one time step to the next in non-stationary circumstances (this corresponds
especially to the transition from the second FEM graph to the third).

To compute such successive mappings we take the last mapping (more precisely its com-
puted weight vectors) as an approximation for the mapping that is to be computed. The
similarities of such successive mappings allow us to start with a more narrow neighborhood
function h(p, p*) assuming that a rough ordering already exists and we need only to perform a
fraction of the iteration steps that would have been necessary if starting from nothing. Doing
so we can save about 2/3 of computation time. Figure 11 shows the transition from the first
graph to the second. Note the good correspondence to the results of mapping the second
FEM graph with starting from nothing although the differences between the first and the
second FEM graph are quite drastic.

The run time needed to compute mappings with the proposed heuristic is e.g. for the
third FEM graph about 16 minutes on 4096 processors of a MasPar MP1 with a theoretically
peak performance of 300 32-bit MFLOPS.

6 Conclusions

We presented a new mapping heuristic specialized for application to large-scale grid-like prob-
lems that exhibit very local communication patterns. These properties are typical for numer-
ical methods for solving partial differential equations, e.g. with Finite Element or Finite
Difference Methods.

As the presented results demonstrate it is possible to perform data partitioning (or domain
partitioning) and processor allocation at the same time under consideration of each other
within a reasonable amount of time. This gives the potential of better mappings which
is particularly important for highly parallel computers with larger communication network
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Figure 11: Dynamic remapping when changing from FEM graph 1 to FEM graph 2. The
first column shows the mapping of graph 1 from that the computation started. The middle
column shows the resulting mapping if the weight vectors of the preceding mapping are used
to map the new graph, the last column shows the result of the mapping process (result of
mapping the second FEM graph with starting from nothing using 600, 000 iteration steps are:
CC = 68150, dil;yu = 8, LUge = 15, LUge, = 0.16).
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diameters. More precisely, not only the amount of data dependencies between interacting
partitions is minimized but this is done with respect to the mapping problem resulting in lower
communication cost finally. This is possible because special properties of the communication
structure are exploited, namely the low-dimensionality, the locality and topological similarities
of the communication structure and the target parallel computer.

The proposed mapping heuristic can be parallelized itself very efficiently and is also capable
of dynamic remapping which is necessary if the communication structure changes in time. The
necessity for dynamic remapping is often mentioned but only very rarely demonstrated for
other mapping heuristics.
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Appendix

Time complexity and implementation issues

As already mentioned, there is a one-to-one correspondence between the Kohonen neural
network and the parallel computer with its interconnection network for which a mapping is
to be computed. Consequently, a parallel implementation presents itself. We will not give a
closed-form expression for the asymptotic parallel time complexity of the proposed algorithm
because this depends also on hardware and architectural specific properties of the parallel
computer. Instead we discuss each component of the algorithm separatly, giving also some
implementation hints.

The first point to be discussed is the number of iteration steps of the Kohonen algorithm
that are required. This number depends exclusively on the complexity of the shape of the
solution domain of a certain PDE and the discretization precision variations along the solution
domain and not on the actual number of discetization points or on the machine size. This
astonishing statement needs some more explanation. On the one hand, when applying the
procedure to a smaller machine with less processors, the corresponding weight vectors move
more rapidly through the feature vector space to approximate its shape and discretization
density because an individual neuron will be more often the excitation center or at least
near to it. On the other hand we choose the neighborhood size o(t) larger when applying
this procedure to a larger machine with more processors. So the total amount of weight
vector adaptation in one iteration step accumulated over all neurons that take part (with the
specific step-size dependent on the neighborhood function h(p,p*)) scales with the machine
size. Furthermore, increasing the number of discretization points without modifying the
shape and the complexity of the discretization precision variations of the solution domain
(this means scaling the discretization precision equally everywhere) does not change the task
for the geometrically based mapping procedure that is to approximate the shape of the given
solution domain and the density of the discretization points, although this discretization
precision is then given more detailly.

Every single adaptation step contains the distribution of the choosen discretization point
to all processors, a minimum-operation over all processors and some calculations that can be
performed just locally in parallel. The cost for these communication operations depend highly
on the specific parallel computer. Some of them are able to perform such operations very
fast (especially most SIMD machines, like the MasPar MP1) or provide special hardware to
support such operations (like the CM-5). To further reduce this communication overhead it
is possible to modify the algorithm such that these communication operations can be grouped
together over some iterations, reducing the communication overhead. Therefore, not just one
but a whole set of discretization points that are choosen as stimuli vectors are distributed to
the processors together as one package. Then, each processor computes locally the distance of
its weight vector to all the stimuli vectors, neglegting changes of the weight vector that would
have happened in the meantime considering the original algorithm. The excitation centers
of all these stimuli vectors can be computed simultaneously and all weight vector adaptation
steps also altogether. This modification is usually called epoch learning and has generally no
negative influence on the result of the process.

The discussion of the load balancing process is somewhat more difficult. The main and
most expensive operation is the calculation of the mapping function © which is needed to
compute each processor’s load state. Because this process starts not before a rough ordering
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has already been established, it can be assumed that the mapping does not change very
fast any more so it is sufficient to update the mapping and the load state only from time
to time (the actual frequency we used in our experiments is every 2250 iterations of the
Kohonen process). Because of the smooth behaviour of the Kohonen process it is reasonable
to assume only local changes resulting in an almost local communication pattern for this
parallel mapping calculation. Although, up to this end the mapping function has to be
computed for each discretization point. But following the same argumentation as before, it is
sufficient for load balance purposes to consider nearby discretization points only in clusters,
taking their center of gravity as position in the solution domain and weighted with respect to
the number of discretization points included for load calculation. As long as only the density
variations of the discretization points is described sufficiently precisely this heuristic does
not change results very much. The clustering can be done in a pre-computation step. An
upper bound for the size of the clusters is given by the complexity of discretization precision
variations.

All together, the parallel time complexity of the whole procedure is almost independent of
the problem size. It is influenced by the machine size only in how fast broadcast and combine
communication operations can be performed. Instead it depends on the complexity of the
shape of the solution domain of a certain PDE and the complexity of discretization precision
variations, which is a highly desirable feature considering the typically very large problem
sizes.
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