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Foreword

With the rising application of the Java programming language, the demand for
powerful Java compilers is growing rapidly in all sectors of industry, in particular
in the field of embedded systems. However, to produce efficient Java code for
these systems many hard problems in compiler construction have to be solved.

The JOSES workshop (Java Optimization Strategies for Embedded Systems)
called for innovative ideas in this area, solutions that meet the efficiency require-
ments of today’s and tomorrow’s embedded systems. Position papers were pre-
sented in 4 main areas, optimized memory management, static program analysis
and optimizations, performance measurement and improvement, and run-time
issues. The workshop presents an exciting overview of on the current work in
the area. Several of the approaches presented have a great potential to optimize
Java such that it meets the requirements of embedded systems very well.

The JOSES workshop took place as a satellite event of ETAPS 2001. My
thanks go to Maura Cerioli, the workshop organizer, for her continuous help,
the program committee, that took the work to review the papers, and finally,
to all authors who made the event happen.

The JOSES program committee consisted of the following people: Prof. Dr.
Uwe Afimann, Linkopings Universitet, Sweden; Prof. Henk Sips, TU Delft,
Netherlands; Prof. Reinhard Wilhelm, Universitit des Saarlandes, Germany;
Prof. Peter Fritzson, Linkdpings Universitet, Sweden; Dr. Arthur Veen, ACE
Associated Compiler Experts bv, Amsterdam, Netherlands; Dr. Par Emanuel-
son, Ericsson SoftLab AB, Sweden.

On behalf of the JOSES program committee

Uwe Assmann
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Abstract

Object-oriented languages allow to encapsulate the data; the unit of
the encapsulation is an object. Programmers are advised to reflect the
structure of the data while designing the layout of objects. This means
that a lot of objects may be created. The semantics of Java dictates that
such objects are stored in the heap and are accessed through references.
Direct implementation of this would suffer from the overhead of memory
management and pointer dereferencing. Object Inlining is an analysis to
detect, whether some child objects could be stored together with their
parent—the reference from the parent object to the child object would be
replaced with the actual data of the child object. We present our analysis
for Object Inlining, whose improvement over the previous ones is, that it
can also detect, when a child object is replaced with a new one.

1 Introduction and Related Work

Java has a simple, uniform object model—all objects are accessed via refer-
ences. This simplifies programming, as the programmer is faced with only one
possible behaviour of objects. On the other hand, implementing such a model
literally—each object is represented as a pointer to the heap, where the object’s
data resides—generates several kinds of overhead. The most explicit of them
is the necessity to dereference a pointer each time an object is accessed. Also,
the memory manager has to handle each object separately—the information
that a group of related objects is always allocated and deallocated together is
not available to it. Handling related objects together may also increase cache
performance, if a profitable representation can be chosen for the group.

The object-oriented programming paradigm advises programmers to write
the code in a way that increases the overhead described above. They are advised
to distribute the data across several classes to reflect its structure.

In other languages, most notably in C++, the programmer can manually
tune the representation of data in memory by declaring the fields of objects to
be either objects or pointers to objects. In this way the program can be made
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free of the overhead described before, but from the software design point of
view, such non-uniform object model is of course inferior to the uniform one.

Our approach is to look for automatic possibilities of object inlining—deter-
mining, when the type of a field of an object can be changed from “pointer to
object” to “object”. The best known work in this area is probably that of Dolby
and Chien, see [5] and the references it contains. Their approach is to find pairs
of objects (r, €) together with a field f of r, where the only operation of storing a
reference (i.e. an assignment of the form x.f = y), where e stands on the right-
hand side, is r.f = e; the same operation of storing a reference also has to be the
only one where r.f stands on the left-hand side. This constraint ensures that
the following program transformation does not change the aliasing information
(the sharing patterns). We generalise their analysis by also considering the
possibility that several objects (e1,...,e,) are inlined into the field f of an
object T in succession. Still, the same requirement remains.

In a transformed program it is generally not statically known whether the
field f in an expression x.f is a reference field or an inlined one. Also, the
layout of the object pointed to by x is not known, hence the offset of the field
f in this object is not known, either. Thus, if nothing is done about it, all field
accesses must be done via a dynamic call of an accessor method. The analysis of
Dolby and Chien makes sure that if the class (incl. layout) of the object pointed
to by x is not known statically, then the field f is not inlined. Their cloning
framework [7] appears to be well-suited for this. This ensures that dynamically
dispatched accessor methods are not needed. Our analysis also handles the same
issues (possibly more conservatively, as the cloning framework that we use is less
powerful). Our approach differs from Dolby’s and Chien’s by clearly separating
the issues of preserving sharing patterns (Sec. 3) and statically knowing, how
to access fields (Sec. 6).

Our analysis proceeds as follows. We start with parts of the analyses that
are described in Sec. 3, namely with those that do not require the results of type
inference. They are described in the beginning of Sec. 3, in enumeration items
1 and 2. Cloning (Sec. 4), based on the results of these analyses, follows. Next
are the type inference [4] and the rest of Sec. 3. This is followed by the data
flow analysis described in Sec. 6 and another cloning, based on the results of
analyses after the first cloning, except type inference, which is not a bit-vector
analysis (and thus cannot be handled by our cloning framework). We finish by
creating a constraint system over the values of the predicate “field f is inlined
at objects created at the new-statement s” and the predicates described in Sec.
5 and 6. We feed this system to a generic constraint solver, together with the
objective to inline as many fields as possible.

Our contributions are the semantic model of the heap and the analysis based
on it, which are presented in Sec. 2 and 3. Also, we believe that our way of
coinductively stating when the field accesses do not need dynamic dispatch, can
be superior to the methods of Dolby and Chien, when one considers complex
recursive data structures.

2 Semantics of the Memory

The memory at a certain program point consists of a set of variables Var, con-
taining both global variables and local variables of all methods in the execution



stack, and a heap #. The heap is a set (with no further structure) of objects.
There is also a set of fields Fld; each object is assumed to have all fields in it.
There is a function

Ref : (VarL+J (H x Fld)) —>H,,

where W denotes disjoint union and H := HW{L}. This function describes, to
which objects the variables and object fields point. NULL is denoted by L. We
assume that the values of all fields and variables are references; we can overlook
the atomic values for our purposes.

There is a predicate inl over H x Fld, which says whether a particular field
in a particular object is inlined or not. We require that if a field f of an object
o is inlined (i.e. inl(o.f) holds) and Ref(o.f) # L, then there exists no other
field f' of an object o', such that Ref(o'.f') = Ref(o.f).

We are going to define the sharing pattern of the memory, which must be
preserved by program transformations. A pointer chain pc is either a variable
in Var or a pointer chain followed by a field. Define a partial function £ from
pointer chains to objects in H as follows:

E(v) = Ref(v), if v € Var
E(pc- f) = Ref(E(pc).f), otherwise.

We call the relation Ker £ the sharing pattern of the memory (Var,H, Ref)
(this relation is actually the same as the alias relation of Deutsch [3]).

We assume to have the following statements in our programming language:
x = new(f1,...,fk),x = y,x = y.f (we call these statements “field loads”),
x.f = y (we call these statements “field stores”), x.f := y (we call these state-
ments “deep copies”) and statements for controlling control flow. The arguments
of a new-statement are fields that will be inlined in the newly generated object.
The semantics of new-statements and simple variable assignments is fully intu-
itive. The statement x.f = y denotes making the reference field x.f point to
the object pointed to by y; it semantics is intuitively clear, too. The statement
x.f := y denotes making the inlined field x.f reference the object pointed to
by y. It works as follows: If the value of the field £ of the object pointed to
by x (i.e. the quantity Ref(Ref(x).f)) was NULL before the assignment, then
a new object is created (with the same inlined fields as Ref(y)) and x.f is set
to reference it. Then, in any case, x.f := y makes a deep copy of the object
pointed to by y—the value of y.g will be assigned to x.f.g for all g € Fld.
This is recursive with respect to the inlined fields of y (which must be the same
as the inlined fields of x.f).

3 Heap Analysis

We are given a program P that works with objects that have no inlined fields.
We want to have a transformation that makes as many fields inlined as possible.
More precisely, we are looking for a transformation that

e only changes the new-statements in the program (by marking some fields
inlined) and turns some field stores to deep copies;



e is correct in a sense, that the resulting program P’ has the same sharing
patterns as P at each program point, if we only consider live pointer chains.

Assume w.l.o.g. that the program P is such, that after each statement x.f = y,
the variable y is dead. This can easily be ensured by following this statement
byy = x.f.

The main constraint for inlined fields was, that no other field may point to
the object that this field points to. The crucial point for the analysis is therefore
finding out, the references of which objects may be stored in the fields of other
objects several times. Also, for each field store we must know whether we change
it to a deep copy or keep it as is. The analysis is as follows:

1. For each field store x.f = y find out, whether y may have flown from a
field load. If this is the case, then this field store may not be turned to a
deep copy. Also, the field £ of objects that x may point at (and which are
found by type inference [4]), cannot be inlined. This is done by a simple
forward data flow analysis, which assigns to each variable at each program
point either “not from a field load” or “may be from a field load”.

2. For each field store x.f = y find out, whether y may have flown from a
new-statement, and if this is the case, then find out whether y may have
live aliases at this program point. If this is the case, then this field store
cannot be turned to a deep copy, as this could change the fact, whether
x.f and the alias of y point to the same object or not. This is done by a
simple may-alias analysis that considers only variables, and not all pointer
chains, see [6, Sec 4.2.3]. The results of this analysis have to be combined
with the liveness analysis. Again, the field £ of objects potentially pointed
to by x, cannot be inlined.

3. For each field store x.f = y find out, whether the field £ of all objects
that x can point to, may be inlined. If this is not the case, then this field
store cannot be turned to deep copy and the field £ of none of the objects
that x can point to, may be inlined. We have to iterate this marking of
field stores that cannot be deep copies, and fields that cannot be inlined,
until a fixpoint has been reached.

The analyses considered so far ensure that at a deep copy x.f := y, the right
hand side has flown directly from a new-statement and that after this statement,
the only way to access the object pointed to by y, is through x.f. We also have
to ensure that the object Ref(Ref(x).f) is dead before a field store x.f = y, if
we want to turn it into a deep copy. This amounts to determining, whether for
each field load w = z.f

e x and z may be referring to the same object;
e w or variables, where it has flown, are alive at the statement x.f = y.

This is done by a forward data flow analysis that assigns to each variable at
each program point a set of pairs (new-statement, field). For w at the statement
w = z.f, the first components of the pairs would be the possible creation points
of the object that is pointed to by z, and the second component of the pairs
would be f.



We have thus found out, which objects cannot be put into inlined fields
and which field stores can be deep copies and which ones cannot. From this
information we can easily deduce, which fields of the objects at which creation
points can be inlined fields and which cannot. The resulting transformation
satisfies the conditions presented at the beginning of this section.

There exists a simple extension of the analysis and transformation, that does
not preserve sharing patterns, but is obviously allowed. It concerns “constant
objects”—objects, that are modified only at the beginning of their lifetime, i.e.
that are initialised first and afterwards only read. The “beginning of lifetime”
runs from the creation of the object until the object has been stored in a field
of some other object. Obviously, one can create several copies of the same
object later, because these copies cannot get “out of sync”, as they are not
modified at all. This increases inlining possibilities. Extra care has to be taken in
transforming the comparisons of references that may point to constant objects,
though. As they may point to different copies of the same object afterwards,
an extra “identity” field should be added to such objects.

4 Cloning

Interprocedural data flow analyses use interprocedural control flow graph which,
in itself, does not reflect that after the end of each method the control returns to
the point where this method was called from. In general, this causes propagating
the analysis information from some call-edge coming to the method, to a return-
edge returning to some other call-site. This can cause the analysis to lose
precision. Code reuse, promoted by the object-oriented programming paradigm,
magnifies this problem.

A technique to avoid the propagation of information over invalid paths is
effect calculation a.k.a. the functional approach to the interproc. DFA by
Sharir and Pnueli. If the data flow analysis A assigns an element A(N) of an
upper semilattice £ to each program point IV, then we transform the analysis in
a way, that for each possible call context C' of some method, the analysis assigns
a value Ac(N) to the program point N inside that method. Additionally, we
just let the call contexts to be all possible analysis results for the start node
of the method, i.e. we let the set of analysis contexts be £. In principle, this
amounts to replacing £ with £ — L.

Generally, effect calculation has a high price tag. It may greatly increase
the complexity of the analysis or even make it nonterminating. For bit-vector
analyses, the effect calculation can be made quite cheaply, however. In the case
of a bit-vector analysis, the semilattice £ has a quite small set of generators
B—the set of all vectors where a single bit is set. Also, the result of effect
calculation A : £ — L is an upper semilattice homomorphism. This means that
its values are uniquely determined by its values on some set of generators. Thus
we only have to save the analysis results for all possible call contexts from the
set B for doing the effect calculation. All analyses described in the previous
section, except type inference, are bit-vector analyses.

Suppose that we use the analysis A for determining whether a particular
transformation is valid. Also suppose that we have determined, that it is valid
for some calling contexts Bgooq and invalid for contexts Bp,q. We can still do
the transformation if we first create a clone of the current method and then
redirect all calls to the method, that create bad calling contexts, to this clone.
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In this way only calling contexts from Bgooq remain and the transformation can
be done. If a call site generates both good and bad contexts, then we may
attempt to clone the method that contains this call site.

5 Representing Objects in Memory

An object is represented in the memory of a computer as a sequence of fields.
Thus, at new-statements, the layout of the object has to be fixed. For each field
we have to fix its offset. If a field is inlined, then we also need to know how much
room to leave for the objects that can be copied into it (the size of a reference
field is fixed—it is the length of an address). For objects o and fields £ we have
an equation system to determine their sizes:

) predefined, f is reference (and also if it is atomic)
size(f) = max  size(o), f£ is inlined
o€ Creations(f)

size(o) = Z size(f) + (administrative overhead),
£€fields(o)

where fields(o) C F1d is the set of fields that are actually used in o; Creations(f)
is the set of objects (actually the set of creation points of objects), that f
may point to; administrative overhead may contain information about object’s
runtime type, may include necessary attributes for memory management etc.

The constraint that follows directly from this system of equations is: No ob-
ject may be inlined into its own field (not even indirectly). Le. if ¢1,... ,¢, = co
are creation points and fo,..., fn—1 are fields and c¢;y1 € Creations(c;.f;) for
all ¢ between 0 and (n — 1), then at least one of the values inl(c;.f;) must be
false.

Another constraint is caused by the type system of Java—each field of each
class must have a fixed type. Thus, if the objects created at several different cre-
ation points may end up inlined into the same field, then these objects must be
compatible enough to fit into the type system. The predicate coinlinable(cy, c2)
describes whether objects created at the creation points ¢; and ¢, may be inlined
into the same field.

coinlinable(cy, ¢2) & Class(c1) = Class(c2) A
V£ € fields(cy) : ((inl(cl.f) & inl(ca.£)) A (inl(c; .£) =

Vey € Creations(ci.£)Vey € Creations(ca.£) : coinIinabIe(c’l,c'2))), (1)

where Class(c) is the actual class that is named in the new-statement at the
program point ¢. We see that coinlinable is defined recursively. To make this
definition a correct one, we state that coinlinable is defined coinductively—it is
the biggest relation satisfying (1) (for the given predicate inl).

We require that for all creation points ¢, for all fields £ € fields(c) and all
creation points ¢1,ca € Creations(c.f) the formula inl(c.f) = coinlinable(cy, ¢2)
holds.



statement transfer function

x = new, C | Fy, = F,[x = {c}]

X=y F, = Fo[x — F,o(y)]

x =y.f Fo=F,Jx— |J MakeTag(t,£)]
teF,(y)

x.f =y Fy = F,

MakeTag({c1f1---cn),tn) = {{c1f1 - - cnfncni1) | cnt1 € Creations(cn.£,)}

Table 1: Analysis of accesses of inlined fields

6 Accessing the Fields of Objects Uniformly

We already mentioned in the introduction, that we do not want to use dynam-
ically dispatched accessor methods to access the fields of objects. This requires
the following:

e All objects that a reference variable may point to at a certain program
point, must be compatible enough.

e If a reference variable at a certain program point may have been defined by
a field load x = y.f, where £ was an inlined field, then it must have been
defined by such a field load. Our program transformation will be such,
that a statement x = y.f, where f is an inlined field, will be changed to
x = y and it will be statically remembered, that x actually points to the
inlined field £. Such static remembering is impossible, if it could have
been some other inlined field or no inlined field at all.

The required compatibility is the following: copointable(cy, ca, C') describes,
whether objects created at the creation points ¢; and ¢, can be accessed through
the same pointer with type “reference to an object of class C”.

copointable(cy, c2, C) :& Class(cy), Class(c2) < C A
VE € fields(C) : ((inl(cl,f) & inl(cs, £)) A

Ve € Creations(c1.£) Ve, € Creations(ca.£) : copointable(c), ¢, Class(C.f)),

which is again defined coinductively. For all creation points ¢, fields £ € fields(c)
and creation points ¢i1,ca € Creations(c.f) we require that the statement
copointable(cy, 2, Class(c.f)) holds.

For the second issue we record, from which fields of which objects the refer-
ence variables have been loaded. This part is similar to [5]. Let Tag be the set
of strings {c1f1 - cnfncny1), where n > 0 and for each ¢ between 1 and n we
have ¢;11 € Creations(c;.f;). The analysis associates each reference variable at
each program point with a set of tags. Let F, and F, denote the analysis result
before and after some statement, respectively. F, and F, are functions mapping
variables to sets of tags. The transfer functions are depicted at Table 1.

The elements of Tag can be of any length, thus the described analysis may
be nonterminating. The set Tag can be made finite, if we take into account that
we are only interested in such tags (¢1£; - - - ¢pfncnt1), where inl(c;.f;) may hold
for all ¢ between 1 and n. Thus, if we already know from the analysis presented



in Sec. 3, that some inl(c;.f;) does not hold, then we may identify this tag
with {ciy1fi41 - cnfncny1). Also, we had the requirement that an object may
not be inlined into a field of itself. Hence, if ¢; = c¢,41, then this tag may
be identified with {c;11f;41 - - cnfncny1). The last identification makes the set
Tag effectively finite and the analysis terminating.

We require that all tags for some variable at some program point have the
same length and contain the same fields in the same order. If this is not the
case, then we have to not inline some fields.

We have to pick the “best” value for the predicate inl, that satisfies all the
requirements presented above. Thus we have got an optimisation problem. The
simplest definition of the objective function of the problem (i.e. the definition
of “best”) would just be the number of the fields that can be inlined. With help
of some profiling information, one may be able to derive other, more advanced,
objective functions. Still, we do not believe that the different maximal values of
inl that satisfy all presented requirements, are very different, thus such simplistic
objective function may be good enough.
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ABSTRACT

With the paradigm shift in computer systems towards ubig-
uwitous computing, energy, together with performance, has
become an important parameter to measure efficiency. Java
is increasingly becoming the programming language of choice
for applications expected to run in embedded and mobile en-
vironments. Java’s platform independence and security fea-
tures serve the needs of these environments very well, which
expect the same application to run in a variety of environ-
ments in a secure manner. The devices used in these envi-
ronments, for example hand-held computers, have a limited
battery life. The needs to increase the period between re-
charging and decrease the cooling costs provide the incentive
to use energy as a performance parameter.

This paper presents object co-location, an optimization method

for Java applications. Object co-location exploits the tempo-
ral locality in heap references, to achieve better cache per-
formance. This reduces the cache miss rate of programs,
and subsequent reduction in memory energy consumption s
observed due to fewer main memory accesses.

1. INTRODUCTION

Computing is no longer limited to desktop computers and
servers alone, but it is becoming more and more pervasive
with the emergence of mobile and embedded systems. De-
vices are becoming smarter, and it is the result of a well inte-
grated hardware-software interface. The trend of connecting
all these myriad devices together calls for an environment
which facilitates application development and ensures cross-
platform delivery.

Java [1] is widely regarded as a platform for the seamless in-
tegration of these myriad devices. It is becoming one of the
programming languages of choice for networked and embed-
ded environments. Java’s platform independence and secu-
rity features make it suitable for these environments. Java
Virtual Machine (JVM) [2], the cornerstone of Java technol-
ogy has made it possible. Java programs are translated to
a machine independent format called bytecodes, and these

bytecodes are subsequently executed by an implementation
of the JVM for that device/hardware. These bytecodes can
be interpreted, compiled at runtime (called Just In Time
(JIT) compilation) or implemented completely in hardware.
The JVM specification provides only the semantics of these
bytecodes, implementation of the runtime environment is
left to the designer of the virtual machine. The JVM is also
responsible for the efficient execution of Java programs.

The phrase “efficient ezecution” no longer refers to perfor-
mance efficiency alone, but energy has also come to be in-
cluded in it. There are two main reasons why energy con-
sumption has become an important performance parameter.
First, the energy dissipated as heat increases the packaging
cost required for cooling the device. The increased cost is
particularly important in low-cost end products in mobile
environments. Saving energy in battery-operated embedded
devices is also motivated by need to increase operational
periods of devices between battery recharges. Many tech-
niques have been proposed at the circuit and architectural
level for energy optimizations. But software, which runs
on these hardware also needs to be energy efficient, as it is
the primary factor which determines the dynamic switching
activity (and hence dynamic power dissipation).

In this paper, we present object co-location, an optimiza-
tion scheme for Java applications. Using static memory pro-
files of Java programs, we present a methodology to exploit
inherent temporal locality in heap references. Our results
show that intelligent placement of objects on the heap can
improve cache performance and energy. We also suggest
a possible implementation of the scheme using a modified
garbage collector component of the JVM.

2. RELATED WORK

Lately, work has been done to characterize and optimize
memory system energy of Java applications[24, 6, 7]. A
detailed study of memory energy in the JVM was done in [5,
24]. [6] provides an annotation based scheme for allocating
arrays on the heap in a way that reduces energy. [7] also
provides an energy profile of applications running on a hand-
held device.

Improving the performance of dynamically allocated mem-
ory has been the subject of many research papers. Seidl
and Zorn [12, 13] have investigated improving virtual mem-
ory performance by segregating objects based on lifetime,
frequency of references and call sites. Following the genera-



tional hypothesis (most objects die young), and the fact that
short-lived objects constitute a large portion of the objects
allocated [12], a large number of objects can be allocated in
a relatively small portion of the heap. This improves the
spatial locality on the heap and leads to improved virtual
memory performance.

Truong etal. [19] have suggested class field reorganization
and instance interleaving as two data layout techniques for
dynamically allocated data structures. Field reorganization
groups more frequently referenced fields together in struc-
ture declaration so that they fit in the same cache line. In-
stance interleaving groups more frequently referenced fields
of different instances of a data structure together. The argu-
ment behind this scheme is that identical fields in different
instances of a data structure are often referenced together,
and hence, they should remain in the cache together.

Chilimbi etal. [18] describes a generational garbage collec-
tion algorithm, in which objects with temporal locality are
placed next to each other, so that they are likely to reside
in the same cache block. Every load and store to heap data
is profiled and based on this data, temporal relationships
between objects are established. Objects with high tempo-
ral affinity are then placed next to each other on the heap
during the next run of the garbage collector.

For Java, Chilimbi etal. [16] implemented a scheme called
structure splitting. In this scheme, Java classes of instance
size greater than a cache block are split into hot and cold
portions depending upon which portion is used more fre-
quently and vice versa, respectively.

Source code level changes have also been shown to improve
performance [14, 15]. Liberal use of Java constructs leads to
the creation of many objects and a high frequency of object-
to-object copy operation [14]. These costly operations can
be avoided by using techniques like object reuse, adequate
object initialization and object and thread pooling [14].

3. MOTIVATION

Memory system can consume a large fraction of the total
energy in Java applications and other embedded environ-
ments [24]. Hence, it is a good candidate for various hard-
ware and software optimizations. For Java, heap is a very
good candidate for memory optimizations, as a large frac-
tion of all memory references go to the heap [4]. Further,
it has been observed that most of the object references are
confined to a small number of objects [17]. As a result,
assigning random addresses to these objects can cause two
problems in the cache. First, if two highly referenced ob-
jects are mapped to two addresses that conflict in the cache,
then unless the cache is set associative, a significant number
of conflict misses will occur. Second, the entries in a single
cache line can be under utilized. Since the object addresses
are assigned randomly, on a given cache line, only a small
fraction of the line maybe assigned to a highly referenced ob-
ject, while the rest of the line is essentially wasted because
the objects that occupy it are infrequently referenced.

This observation leads us to conclude that assigning con-
secutive addresses to highly referenced objects can result in
improvement in the cache miss rates. This is especially true

for Java, because the average object size in Java applica-
tions is quite small, about 25-30 bytes [21]. The reason for
this improvement is, that when a highly referenced object
is fetched from the main memory on a cache miss, another
highly referenced object is also fetched (because they are
intelligently placed next to each other). Thus, there is good
chance that when this object is referenced in future, it will
be found in the cache and the penalty of a miss will be saved.
The chances of this cache line being replaced are small, as
the object adjacent to it is also frequently referenced. This
reduction in cache miss rates translates into energy savings
as accessing larger off-chip memories is much more expensive
(in terms of energy) than accessing on-chip caches. In this
paper, we experiment with an object co-location scheme, in
which objects displaying temporal locality are co-located.

4. EXPERIMENTAL FRAMEWORK

In this section, we describe the framework we used for our
experiments. We first give details of the JVM we used for
running our Java applications. We then describe the bench-
mark applications and the cache simulator used for generat-
ing memory system information and profiling different com-
ponents of the JVM. Our energy model is described after
that.

4.1 Java Virtual Machine (JVM)

All our experiments were carried out using the Sun Labs Vir-
tual Machine for Research (ExactVM (EVM)) [10], currently
known as ResearchVM. EVM is designed to facilitate experi-
mentation in memory management, especially soft real-time
garbage collection. It is a high performance VM, which pro-
vides fast memory system, fast synchronization and a fast
JIT compiler [10]. The EVM can execute Java programs
in two modes: pure interpreter and an adaptive JIT mode.
In the adaptive JIT mode, the EVM starts executing the
application in the interpreter mode, and gathers profiling
information regarding the runtime characteristics of the ap-
plication. It then uses this information to dynamically com-
pile certain methods. Specifically, methods with loops are
compiled at the first invocation itself, while methods without
loops are compiled when the invocation count reaches 15 [5].

4.2 Benchmarks

The benchmarks we used in our experiments are seven pro-
grams from the SPECjvm98 Benchmark Suite [3]. SPECjvm98
is an attempt to define an industry standard benchmark
suite for Java programs. These programs are chosen by
SPEC based on several criteria including high bytecode con-
tent, flat execution profile, repeatability, heap usage, and
allocation rate [21]. Of the three input sizes of 1, 10, and
100, we have concentrated on the largest one (s100). Ta-
ble 1 briefly describes each of the SPECjvm98 benchmarks.
‘While the chosen applications are more likely to be executed
in high-end (battery-operated) mobile devices like laptops,
we believe the techniques presented in this work are also
relevant to other applications typical of low-end mobile and
embedded environments. We were constrained in our choice
by the lack of a standard for embedded Java applications.

Cachesimb, which is a part of the Shade Tool Set [22], was
used to obtain cache behavior statistics for benchmark ap-
plications. Shade simulates the execution of an application



[ Program | Description |

db Small data management program; performs
database functions on a memory resident
database

compress | Utility to compress/uncompress large files;
makes five passes over the input

jack A Java parser generator with lexical analysis;
makes several passes over the same input
Jjavac The JDK 1.0.2 Java compiler

jess Java expert system shell; based on NASA’s
CLIPS expert system

mpeg MPEG-3 audio stream decoder

mtrt Multi-threaded raytracer

Table 1: SPECjvm98 programs

and provides a programming interface that allows the user to
collect arbitrary data while the application runs. Cachesim5b
simulates a cache, traps each memory reference made by the
application, and checks whether the reference will hit or miss
in the cache. The information gathered at run time was fed
to an analytical cache energy model [11] for our energy cal-
culations. The model expresses cache energy in terms of the
read and write port numbers, the number of registers, and
several other relatively simple system and parameters for
0.35p¢ CMOS technology.

5. METHODOLOGY

Performance and energy results with objects co-located in
memory were obtained in the following three steps:

Generating temporal information graph: In order to
obtain information on how objects were temporally related,
we generated a temporal information graph. This graph
tries to relate all objects that are accessed within a specific
window of references. To generate this graph, a program was
written, which took object information generated through
EVM, and memory reference trace as inputs. The program
stepped through the memory trace of a benchmark, n refer-
ences at a time (All experiments use n = 100). The objects
in two adjacent windows (current and previous) of refer-
ences are considered to have temporal locality and a node is
assigned for each object in these windows and an edge is as-
signed between each pair of objects. To account for multiple
references of an object within these adjacent windows, if an
edge already exists the weight of the edge is incremented.
This task is performed repeatedly for the subsequent win-
dows until the entire memory trace is scanned. At the end of
the entire scan of the memory trace, we had a temporal in-
formation graph, which depicted temporal affinity between
objects. The higher the weight of the edge between two
objects, the more closely (temporally) they were referenced
throughout the program. The edges were then written to
a file and sorted in decreasing order of weights. The gen-
eration of the temporal graph can be improved further by
employing techniques such as sliding windows, and varying
the size of the window, n. We are currently experimenting
with alternate techniques for generating the temporal infor-
mation graph.

Co-locating objects: The graph obtained in the first step
was input to a program which co-located objects based on
the information on temporal relationship contained in the
graph. The program read edges of the graph in the decreas-
ing order of weights.

Following algorithm (scheme a) was used by the program to
place objects next to each other:

while(edges remain in candidate set) do

select edge in the candidate set with the maximum
weight and remove it from candidate set;
if (neither object incident on the selected edge has
been relocated)

relocate both objects;
else

if(only one of the objects incident on the selected
edge has been relocated)

relocate the other;

end while;

After determining the objects to relocate, the references be-
longing to the relocated objects were changed to reflect their
new position. The trace with new references was then used
as the input to the cache simulator to obtain cache statistics.

We also experimented with another allocation strategy. In
this scheme, we identified the paths in the temporal informa-
tion graphs that span all the nodes. The paths are selected
to maximize the sum of the weights of edges across all the
paths spanning the graph. All objects within the same path
were then co-located.

The algorithm is presented below (we call it scheme b):

while (edges remain) do
select edge in the candidate set with the maximum
weight;
if (neither node incident on the selected edge is found
in any existing paths)
add this edge to a new path and remove the edge
from the candidate set;
else
if ((adding this edge does not cause a cycle) &&
(does not cause any vertex to have degree > 2)
add the edge to the appropriate path and remove
it from the candidate set;
else
remove the edge from the candidate set;
end while;

The paths selected were then used by our program to co-
locate objects. The traces obtained using the modified co-
location algorithm were then input to the cache simulator
to generate cache statistics. The purpose of experimenting
with allocation scheme b was to take more temporal rela-
tionships into account (and not just between two objects).
Since both the schemes a and b provided comparable results,
the results are presented only for scheme a.

6. ENERGY SAVINGS WITH CO-LOCATION



Table 2 shows energy savings with co-location for seven
SPECjvm98 benchmarks. For a 16K, direct mapped cache,
average energy reduction of 21.36% (averaged over seven
benchmarks) is observed. Figure 1 shows the absolute en-
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Table 2: Percentage energy reduction with the co-
location scheme as compared to similar configura-
tion without co-location. For the three cache sizes
of 16K, 32K, and 64K, values are shown for block
sizes 32, 64, and 128, in that order.

ergy reduction obtained with co-location for benchmark db.
Larger savings are obtained for bigger block sizes. It is ex-
pected, as, with a bigger block size, more objects can be
brought into the cache at a time. These objects have been
clustered together because they exhibit temporal locality,
hence, soon other objects will also be referenced, and those
references will not cause the additional penalty of a main
memory access. These reduced main memory accesses re-
sult in energy improvements.

Figure 2 shows the effect of block size on energy savings ob-
tained with co-location scheme. In going from a block size
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Figure 1: Absolute Energy values for db. Cache con-
figuration are represented by the tuple (size in K,
associativity). The results are presented for the dif-
ferent configurations for three block sizes 32, 64, and
128 bytes from left to right.
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Figure 2: Energy savings for block sizes of 32, 64,
and 128 bytes with the co-location scheme as com-
pared to a similar configuration without colocation.
Configuration is 16K, Direct-Mapped cache.
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Figure 3: Miss rates with and without co-location
for db. Cache configuration are represented by the
tuple (size in K, associativity). The results are
presented for the different configurations for three
block sizes 32, 64, and 128 bytes from left to right.

of 64 bytes to 128 bytes, smaller improvements in energy
are observed. The reason for this is lower reduction in the
corresponding miss rates. Next subsection explains the rea-
son why cache miss rates do not reduce as much as expected
with co-location, in case of larger block sizes.

6.1 Cache Miss Rate Reduction

Reductions in cache miss rates obtained with co-location
scheme are shown in Table 3. The results shows that sig-
nificant improvements can be obtained from the co-location
scheme in terms of cache performance. For a 16K, 2-way set
associative cache, an average reduction of 35.4% is obtained.
As can be observed, larger cache sizes of 32K and 64K get
more benefits from the scheme.

Effect of block size: Figure 3 shows cache miss rates for
the benchmark db. As would be expected, miss rates de-
crease with increasing associativity for a given cache size.
Effect of block size can also be observed from this figure.
Increasing the block size from 32 bytes to 64 bytes brings
about larger benefits with co-location. This is because now,
more objects which are temporally related can be fetched in
one access. Because these objects are referenced relatively
frequently with respect to each other, this results in larger
benefits. This can be observed from Table 3 also.

Although the benefits from using larger block sizes can be
seen with co-location, a general property of caches can be
observed from the results: The reduction in cache miss rates
for the random allocation case, and the co-location case in-
dividually, is smaller in case of block sizes of 64 and 128
bytes. This happens because the benefits obtained from
bigger block size are somewhat offset by the fact that now a
block takes up more memory in the cache, and there maybe
more frequent replacements. It can be observed from figure
4 that the savings for block size 128 bytes are lower than
those for block size 64 bytes.

Effect of associativity: Direct mapped caches gain more
from the co-location scheme as compared with 2, 4, or 8-
way set associative caches for both 32K and 64K caches

Size| Assoc | javafp comp| jack| db | jess| mpeg| mtrt
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40.8| 41.0| 41.1| 40.9| 40.8| 41.2| 41.3

2891 29.9| 28.8| 31.1| 28.5| 28.7| 30.1

=l co &~ N

16K 203 224 22.6] 22.8| 22.3] 31.7| 32.6

39.8| 39.7| 40.1| 40.0| 39.7| 37.9| 38.0
42.8| 42.6| 42.5| 42.6| 424 41.2| 41.6
47.8 | 47.6| 47.3 | 48.6| 47.6 | 46.6 | 47.0
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53.5| 52.8| 52.8| 53.4| 53.6| 51.3 | 51.5

|00 I~ N

64K

2 52.8| 52.7| 52.7| 52.9| 52.6 | 52.9 | 53.7
4 449 44.9| 45.1| 44.9| 44.6| 44.5| 45.0
8 439 44.1| 44.0| 44.0| 43.8| 44.3| 446

Table 3: Percentage reduction in miss rate due to
co-location optimization. For the three cache sizes
of 16K, 32K, and 64K, values are shown for block
sizes 32, 64, and 128, in that order.
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Figure 4: Effect of block size on cache miss rate
reduction with co-location scheme. A 16K direct
mapped cache is used.

in most cases. Higher associativity caches give lower miss
rates even with random allocation. Direct mapped caches
perform worse with random allocation because of the one-
to-one mapping between main memory and cache addresses.
Hence, direct mapped caches benefit more due to the con-
flict reduction after intelligent co-location of objects. This
effect can be observed in Table 3.

7. DISCUSSION

Our results have shown that co-location can improve the
performance of Java programs from performance and en-
ergy viewpoints alike. Our experiments were based on static

memory profiles of SPECjvm98 benchmark applications. There-

fore, we generated the temporal information graph based on
this perfect knowledge about future. In practice, such infor-
mation is not available while a program is running. Hence,
we need some mechanism to obtain this information at run-
time and provide it to the JVM. The JVM then needs to
co-locate objects based on this information about memory
references. In this section, we discuss how this information
can be conveyed to the EVM, and present a possible solu-
tion.

Using garbage collector to co-locate objects: The
garbage collector can be used to co-locate objects based on
the temporal information made available to it. The EVM
uses a compacting, generational garbage collector. If tem-
poral information is available at garbage collection time, the
collector can place candidate objects for co-location contigu-
ously during the compaction phase.

We simulated the impact of such a runtime optimization by
using our co-location method at each run of the garbage
collector. A sentinel was inserted into the profiled memory
reference trace every time the garbage collector was invoked
by the virtual machine. This sentinel is used to create the
temporal information graph whenever the garbage collector
is invoked. Based on this temporal information, objects are
co-located.

Table 5 shows the reduction in cache miss rate when this
scheme we used. Corresponding reduction in energy values

is shown in table 4. This simulated scheme performed as
well as the scheme based on perfect knowledge. The appli-
cations in the SPECjvm benchmark suite are long running,
and the garbage collector invocations are spaced apart by
large number of memory (and heap) references. Hence, at
each run of the collector, we have collected enough infor-
mation about the past references to produce benefits from
co-location.

8. CONCLUSION

Our experiments have shown that object co-location can sig-
nificantly improve the cache miss rate of Java applications.
‘We have gauged benefits from energy viewpoint also. In or-
der to test a possible implementation of the scheme, we sim-
ulated co-location using the garbage collector to co-locate
objects. Results obtained were comparable to the scheme
based on perfect knowledge of all memory references. How-
ever, it must be noted that the creation of the temporal
information graph and analysis will involve run time over-
heads. Our current study is on investigating low overhead
techniques to translate the improved cache locality observed
in this work to performance improvements in JVM imple-
mentations.
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32K 9 [ 47.51] 45.71] 47.50| 47.40| 47.47| 45.92 32K 2 44.78] 36.61] 45.12| 44.20| 44.62| 37.64
4 [828 [823 [ 841 | 831 | 835 | 361 4 [42.86] 42.45] 43.26] 42.80] 42.98] 43.71
8 [725 [7.05 | 730 | 7.27 | 7.34 | 6.74 8 [ 42.55] 41.32] 42.71] 42.58] 42.87| 40.11
1 | 21.68| 21.00| 21.12| 21.38] 21.62| 21.44 1 54.99] 53.35] 53.52| H4.11| 54.45| 54.32
64K 9 [T10.72] 10.68| 10.68| 10.71] 10.72] 10.92 64K 9 [ 53.94] 53.66| 53.68| 53.46| 54.06] 54.29
4 [696 [697 | 7.06 | 6.96 | 6.98 | 6.93 4 [ 4585] 45.81] 46.18] 45.71] 45.91 45.67
8 [ 45.66] 45.63] 45.68| 45.65] 45.66 45.66 8 [ 45.37] 44.97| 45.54] 45.22] 45.28| 45.31
Table 4: Percentage energy reduction when co- Table 5: Percentage reduction in miss rate when co-

location was performed at each run of the garbage
For the three cache sizes of 16K, 32K,
and 64K, values are shown for block sizes 32, 64,

collector.

and 128, in that order.

location was performed at each run of the garbage

collector.

For the three cache sizes of 16K, 32K,

and 64K, values are shown for block sizes 32, 64,
and 128, in that order.




[11] V. Zyuban and P.Kogge. The Energy Complexity of [24] N. Vijaykrishnan et. al. Energy Behavior of Java
Register Files. International Symposium on Low Applications from the Memory Perspective. (To
Power Electronics and Design, pages 305-310, 1998. appear) Proceedings of USENIX JVM Research and

Technology Symposium, April 2001.
[12] Matthew L. Seidl and Benjamin G. Zorn. Segregating

heap objects by reference behavior and lifetime.
Proceedings of 8th international conference on
Architectural support for programming languages and
operating systems, October 1998.

[13] D. Barrett and B. Zorn. Using lifetime predictors to
improve memory allocation performance. Proceedings
of SIGPLAN’98 Conference on Programming
Languages Design and Implementation, ACM
SIGPLAN Notices 28(6), Albuquerque, NM, June
1993, ACM Press, pages 187-196.

[14] Reinhard Klemm. Practical Guidelines for Boosting
Java Server Performance. Proceedings of ACM 1999
conference on Java Grande.

[15] Allan Heydon and Mark Najork. Performance
limitations of the Java core libraries. Proceedings of
ACM 1999 conference on Java Grande.

[16] Trishul M. Chilimbi, Bob Davidson and James R.
Larus. Cache-conscious structure definition.
Proceedings of ACM SIGPLAN ’99 conference on
Programming language design and implementation,
May 1999.

[17] M. Siedl and B. Zorn. Low Cost Methods for
Predicting Heap Object Behavior. Technical Report,
Department of Computer Science, University of
Colorado, Boulder, CO.

[18] Trishul M. Chilimbi and James R. Larus. Using
generational garbage collection to implement
cache-conscious data placement. Proceedings of
International symposium on Memory management,
October 1998.

[19] D. Truong, F. Bodin and A. Seznec. Improving Cache
Behavior of Dynamically Allocated Data Structures.
International Conference on Parallel Architectures and
Compilation Techniques, October 1998.

[20] Bill Venners. Inside the Java Virtual Machine, Second
Edition. McGraw-Hill, 1999.

[21] Sylvia Dieckmann and Urs Holzle. A Study of the
Allocation Behavior of the SPECjvm98 Java
Benchmarks. Proceedings of Furopean Conference on
Object-Oriented Programming, June 1999.

[22] Bob Cmelik and David Keppel. Shade: A Fast
Instruction-Set Simulator for Execution Profiling.
Proceedings of ACM SIGMETRICS Conference on
the Measurement and Modeling of Computer Systems,
pages 128-137, May 1994.

[23] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, W. Ye
and H. Kim. Energy-driven integrated
hardware-software optimizations using SimplePower.
Proceedings of International Symposium on Computer
Architecture, June 2000.



Global Configuration of Cache Optimizations *

Rubino Geif and Gé6tz Lindenmaier

Institut fiir Programmstrukturen und Datenorganisation
Fakultdt fiir Informatik, Universitdt Karlsruhe,
{rubino|goetz}@ipd.info.uni-karlsruhe.de

Abstract. Compiler constructors increasingly face a dilemma: Compute
intensive applications that are written in Java to improve maintainabil-
ity need to be executed on small embedded processors. Therefore we
address cache optimizations for Java programs that target an embedded
processor. We present a bytecode to native code compiler that performs
these optimizations. It incorporates an analysis that finds Java arrays
which can be subject to layout optimizations. A novel framework then
determines a cache specific layout for these arrays. The framework can
incorporate any layout optimizations that addresses a single loop. Based
on proposals of such individual optimizations it decides on a dynamic
layout for a whole procedure, i.e., if desirable the layout is changed be-
tween loops. The framework compares the efficiencies of the proposals
and also considers the cost of establishing the layout. With preliminary
experiments we show the potential of our framework.

1 Introduction

Object oriented languages are designed to support writing structured programs
that are easy to maintain and to improve programmer efficiency. Many embed-
ded applications are developed for different systems that perform similar tasks.
Nowadays these systems reach sizes that make careful software design an im-
portant factor in product design. This development asks for tools and languages
supporting careful software design. Unfortunately object oriented languages, and
in particular Java, do not achieve the performance necessary on typically small
embedded systems. Therefore the EU project JOSES explores compiling Java to
native code and optimizing it for embedded systems.

Many embedded applications deal with large amounts of data, as, e.g., any
applications that record or display video and audio data. Therefore recent em-
bedded processors use caches to speed up processor performance. Due to the size
constraints of these processors the caches are less powerful than those in multi-
purpose processors and require programs specially tailored for them. This can be
achieved by programming under consideration of the memory architecture or by

* This work is supported by Esprit LTR Project #28198 “JAVA and CoSy Technol-
ogy for Embedded Systems” (JOSES). Any opinions, findings, and conclusions or
recommendations expressed in this material are the authors and do not necessarily
reflect the views of the sponsors.



support of the compiler. Java does not allow to consider memory aspects during
programming as writing portable and maintainable software prohibits processor
specific coding. Therefore Java compilers for embedded systems need automatic
cache optimizations.

Cache optimizations employed in a compiler have two basic handles to im-
prove a program: code transformations and data layout transformations. Code
transformations typically transform compute intensive loops. This changes the
order individual iterations are executed in. Java defines very restrictive exception
semantics: Code, and in particular loop iterations, must be executed in the order
of the source code if exceptions can occur in this code. Le., loop transformations
for Java require to prove that the loop can not cause any exceptions. Layout
transformations do not raise this problem as they do not affect the execution
order. The layout of objects and especially arrays in memory is not defined by
the Java semantics — any changes are legal. A layout change merely affects the
addresses used during program execution.

This paper presents an approach to optimize the layout of arrays in Java
programs. We automatically find dynamic allocated arrays that can be allocated
statically so that the compiler can optimize their layout. We propose a framework
that allows to choose from and combine a set of different layout optimizations for
individual loops. Further our framework implements an algorithm that chooses
the layout under procedure global aspects. Typically layout transformations are
performed for the scope of an individual loop nest or independent of the actual
access pattern [BCcRJ1T94,RT98 PNDN97], often specifying a static layout for
a procedure with a single loop nest by adjusting declarations of local variables.
Our algorithm in contradiction chooses a dynamic layout, i.e., if desirable the
layout is changed during runtime. In contradiction to other work we further
consider the cost of changing the layout [LRW91].

The next section explains the compiler environment our optimization is
placed in. Section 3 details how the optimization decides which arrays can be
allocated statically. We explain our cache optimization in detail in Section 4. In
Section 5 we present and discuss first experimental results and in Section 6 we
delimit our approach from related work. Finally we conclude.

2 Cache optimizations in JOSES

Our cache optimizations are integrated in the JOSES optimizing compiler [Vee01],
i.e., they operate on its intermediate representation. This compiler is based on
the compiler construction framework CoSy [AAvS94] and translates Java to ex-
ecutable binaries. It employs three different intermediate representations (IR):
OMIR, a traditional IR incorporating object oriented constructs; SMIR, an IR
in SSA form developed at University of Karlsruhe [TLB99]; and finally CCMIR,
a low IR with the object oriented constructs removed.

The optimization is separated into three phases. The first phase finds arrays
that can be allocated on the stack. For each such array it changes the type
represented in the IR, the local variable declarations and all accesses to the



array. The second phase analyzes the control flow graph of each procedure for
optimizable loops and gathers all those arrays whose layout can be controlled by
the compiler and can be subject to certain optimizations. The third phase is the
actual optimization system we call OptiCache. This system divides into several
further steps internally. It is explained in detail in Section 4.

3 Analysis of Java Arrays

This section details the analysis of phase one as introduced in Section 2. The
goal of this analysis is to find Java array objects that are actually used as local
array variables of a procedure. An inter-procedural heap analysis that is under
construction [Lie00] will assist this analysis.

To optimize the layout of arrays during compile time it is necessary that the
compiler has precise information about them. This is not possible with arrays
as used in Java. Dynamic allocation deprives the compiler from controlling the
base address and size of an array. The treatment of multidimensional arrays as
cascading arrays of arrays obstructs controlling the layout of the dimensions.

FOR (all calls to array allocation function)
Evaluate size expression;
IF (size expression not constant) NEXT call;
FOR (all users of pointer returned by call)
IF (user is Store) NEXT call;
IF (user is Call) NEXT call;
IF (user loads length fields) remember node in listi;
IF (user selects array field) remember node in list2;
add local array variable;
remove call to array allocation;
FOR (all members in listl)
replace by constant length;
FOR (all members in list2)
replace by access to local array;

Fig. 1. Basic algorithm to find static arrays.

The analysis takes advantage of SMIR. SMIR represents a procedure as a data
flow graph. All local variables are data flow edges. Any side effects are represented
by explicit load and store nodes in this graph. To sequentialize these operations
the memory that is used by the program is modeled as a data flow value itself. A
data flow edge that represents a local array must start at a procedure call node
that calls the compiler known array allocation function and returns a reference
to the array. The analysis must assure that such edges only end at nodes that
access individual array elements. In particular they may not end at store or call
nodes. This would mean that the reference to the array can be copied or passed
out of the procedure. A stronger analysis would try to find out whether such a



case actually produces an alias. This would find more arrays and thereby amplify
the effect of the optimization.

The call node for the compiler known array allocation function in the SMIR,
graph has an incoming edge that represents the expression that computes the
size of the array to allocate. A strong procedure global constant propagation and
constant expression evaluation algorithm tries to evaluate this expression to a
constant. If it succeeds, this array can be transformed to a static array in the
procedures stack frame.

The compiler creates a new local variable for the array of the known fixed
size and removes the call to the array allocation. Now all accesses to the length
field of the array need to be replaced by the constant length. As a side effect this
turns loops that iterate over the array by loading the upper loop bound from
the array object into loops with constant loop bounds making them easier to
optimize. Further the array accesses need to be replaced by accesses to the array
on the stack. As a side effect this removes one indirection in accessing the array
fields. This algorithm is summarized by Figure 1. Due to the structure of SMIR
the cost of this analysis is proportional to the number of nodes actually changed
in the IR. Only the cost of the search for calls to the allocation is proportional
to the number of nodes in a procedure.

int [] a; int a[14];
int b = 7; int b = 7;
int i; int i;

a = new int [b*2];

a[3] = b; a[3] = b;

for (i=0; i<a.length i++) {...} for(i=0; i<14; i++) {...}

Fig. 2. Java code and transformed code represented in C.

Figure 2 shows the effect of the transformation with an example. The left
program fragment in Java shows an array that is allocated with a size computed
from constants. Then an array field is accessed. This access involves two offset
computations (stack frame pointer plus offset of & and array base plus array
index) and a dereference (load a to get array base). The access of the length
field, which typically is array element -1, requires the same indirection. The
right program fragment only exists in the internal representation of the compiler,
but here this is expressed in C. The size expression is evaluated and the array
is allocated statically on the stack!. The access of the array element does not
require a dereference any more (This can not be seen explicitly in this code).
Instead of the access to the length field a constant is used. The loop now has
constant bounds.

! Here we actually change the semantics of the program. A possible out of memory
exception would not occur any more, instead we could get a stack overflow.



4 The Cache Optimization

This section details the analysis of phases two and three as introduced in Section
2. The herein described optimizer uses a problem representation that is separate
to the IR. This is built up by analyzing CCMIR in phase 2 and enriched in
each step of the optimizer with new pieces of information. Finally it represents
a layout for the arrays in a procedure that is a dynamic optimal configuration
out of the proposals.

4.1 Gather Information

In the second phase we gather all needed information from the IR and check the
optimize-ability of the procedure.

First we find all loops in the IR and build a data structure to represent them.
This is done by a module that comes with the CoSy framework?. Based on this
we to judge whether a loop nest meets the criteria necessary for optimization. If
the procedure does not contain any loop optimization of this procedure is futile.
If there are loops we have to check whether the loops are strong-for-loops. A
loop is a strong-for-loops if and only if it is cleanly nested, has no procedure
calls or conditions in its body and the loop bounds are compile time constants.

Furthermore there are things necessary to know about the arrays accessed
in those loops. All those arrays have to be local. With some more precaution we
can handle globally defined arrays, but this is not done here. The optimization
can tolerate the existence of other arrays, but it can not control the effects
between the optimized and the other arrays. Therefore we decided to optimize
only procedures where we can control all arrays. All accesses to the arrays have
to be affine in the iteration variables. This is a convenient restriction that makes
it easier to program an effective cache simulator as detailed later. The size of the
arrays have to be known at compile time. Finally we have to assure that none
of the arrays considered for optimization are passed to a called procedure.

All information talked about in this subsection resembles the initial problem
representation.

4.2 OptiCache

The OptiCache System [Gei00] itself consists of three steps: First, we dispense
some layout proposals according to the problem representation. Then we choose
one of those layouts per loop nest, and finally we implement this configuration
into the IR.

Layout Proposal To propose a data layout we use simple heuristics. It would
be a bad idea to do really clever things here, because most of them will not be
chosen. It is much smarter to get plenty proposals such that there is a chance

2 The loopmarker engine in the CoSy framework.



they will fit together without the need (and extra work) of a dynamic layout
change.
We use the following three sources of proposals:

— No padding at all.
— Padding with 1-cache line size, 2-cache line size, 3-cache line size.
— A modified version of the InterPadLite-Algorithm introduced in [RT98].

The framework can easily be extended by further heuristics as, e.g., trans-
position or merging of arrays.

Choice of Layout This phase is the core of the optimization. We do some
very computational intensive tasks to get a rather exact cost model as well as
to find an optimal choice based on that. To get this done we introduce a graph
representation of our problem. With this view of the problem we can simplify
its structure that far that we are able to use standard operations research tools
to solve it.

We want to describe the influence of different data layouts in different loop
nests in terms of cache misses. Therefore we have to keep two things in mind:
First, the execution of a loop nest in respect to a certain data layout of the array
accessed in it. Second, the extra work (and cache misses) needed to change
the data layout dynamically. The second task is easy to do as we define the
template for the dynamic array layout change ourselves. We only have to provide
a parametric cost function in terms of array size, dimension etc. The first task
is not that easy, because we have to predict the cache behavior. Systematic
approaches to estimate the amount of misses restrict the optimizable programs
as certain constraints need to be met. Further these tend not to be exact, i.e.,
do not permit an optimal choice out of the proposals. Others as the Cache Miss
Equations proposed in [GMM97] are very hard to implement and computational
intensive. Therefore we chose to simulate the behavior of the loop nest in terms
of cache accesses. To control the runtime of the simulation we plan to employ a
randomized simulation. By simulating only parts of the iteration space of a loop
nest we can scale runtime and preciseness of the simulation.

To use a standard binary program solver (an operation research tool like
the ”1p_solve” system [Sch96]), we transform our problem representation into a
graph-like structure and combine the different costs into an uniform measure.

Layout Implementation Finally we have to implement the chosen global
configuration of layouts in the IR. This is done by replacing the access to all
optimized arrays by an access to a pointer variable of appropriate type. Before
every loop nest we let these pointers point to the actual data location in memory.
We have to completely control the layout of this data memory on the stack; it
may not be rearranged by the backend. If there is a layout change between two
loop nests, we insert a suitable loop in between.



5 First Experimental Results

In this Section we describe first experiments with our optimization and the
JOSES compiler.

The test programs are compiled with the JOSES compiler. As the backend
for the TriMedia is not yet appliable we use a C outlet. Then we compile the
output code with the TriMedia C compiler and include a rudimentary runtime
system. We execute the result on the TriMedia (TM 1100, 125MHz). To measure
the performance we instrument the intermediate C code.

float [] a = new float [131072]

int [ b = new int [131072]

for (i = 0; i < 131072; i++) /* nest 1 %/
afil, b[il

for (i = 0; i < 131072 - 3584; i++) /* nest 2 */

ali+ 0], ali+ 512], a[i+1024], a[i+1536]
al[i+2048], a[i+2560], a[i+3072], al[i+3584]
bl[i+ 01, bli+ 512], b[i+1024], b[i+1536]
b[i+2048], b[i+2560], b[i+3072], b[i+3584]
for (i = 0; i < 131072 - 3600; i++) /* nest 4 x/
ali+ 161, a[i+ 528], a[i+1040], al[i+1552]
al[i+2064], a[i+2576], a[i+3088]1, al[i+3500]
b[i+ 0], b[i+ 512], b[i+1024], b[i+1536]
b[i+2048]1, b[i+2560], b[i+3072], b[i+3584]
for (j = 32; j < 33%16; j+=16) /* nest 4 */
for (i = 0; i < 131072 - 4096; i++)
ali+j+ 01, ali+j+ 5121, ali+j+1024], a[i+j+1536]
a[i+j+2048], al[i+j+2560], a[i+j+3072], a[i+j+3584]
b[i+ 0], b[i+ 512], b[i+ 1024], b[i+ 1536]
b[i+ 20481, bl[i+ 25601, b[i+ 3072], bl[i+ 3584]

Fig. 3. Example program.

We equipped our compiler with a set of flags to influence the optimization.
The following list explains the settings of flags we use for the experiments.

jvm Bytecode executed on a Java Virtual Machine (kaffe). This code is executed
on a 400MHz Pentium IT as we do not possess a jvm for TriMedia.

java Java code translated without any optimizations, i.e., it contains dynamic
allocated arrays.

loc arr Arrays found by analysis transformed from dynamic allocation to allo-
cation on stack. No cache optimization.

static A static padding for the analyzed arrays.

dyn A dynamic padding for each loop.

glob Global configuration of dynamic padding.



Figure 3 shows a first example program with a set of loops containing nu-
merous array accesses. The offsets used to access the two arrays are chosen so
that a single layout can not suffice for all loops.

Table 1 shows execution numbers. It lists the total execution time (row “to-
tal”) in milliseconds for the 6 different versions of the program. Rows “1” to “4”
give the execution times of the four loops of the example program executed on
the TriMedia. Further the table lists the time spent to fix the dynamic layout
(row “pad”).

The code executed on the jvm is about as fast as the native code. As the
jvm code is executed on a far faster machine this states that the native code
is actually faster. The program with arrays as local variables is slower than
the program with dynamic allocated arrays. Dynamic allocation chooses base
addresses of arrays randomly. This corresponds to a random pad. The numbers
for the individual loops show that the random pad generates a few misses for
the third loop and performs the worst for the fourth loop. The static layout
manages to reduce the misses for the fourth loop, but must choose a layout that
is suboptimal for the third loop. Only the dynamic layout manages to find layouts
that perform well for all loops. It chooses three layouts, one for the first, one for
the second and third, and another for the last loop. The global configuration now
decides for a single layout for the first three loops and eliminates one of the loops
needed to change the padding. This version also is the fastest. The table further
shows that the cost of the loops increases almost linearly with the number of
accesses in the loop. Further the gain by reducing conflict misses (about 400ms)
outweighs the cost of the layout change (7 ms) by far.

|program|loop || jvm| java|loc arr|static| dyn| glob|

demo 1 9 11 11 11] 11
2 98 512 98| 98| 98
3 109 97| 482| 95| 96
4 3532 3523| 3113(3113|3113
pad - - —| 3*%7| 2*7
total||3560(3752| 4147| 3710|3346|3338

Table 1. Performance numbers (execution times in milliseconds)

As this is a constructed example this can only be a first step in testing our
optimization. But these numbers show the potential of cache optimizations for
data intensive Java programs.

6 Related Work

Several researchers concentrate on optimizing the layout for individual loops
by padding. Recent work on Padding is performed by [BCcRJ*94], [RT98] and
[PNDN97]. Their heuristics propose paddings between arrays or between rows of



multidimensional arrays. The algorithms all try several pad sizes until they find a
suitable one, but they differ in the way of evaluating the use of a certain pad size.
This evaluation depends on the side conditions (access expression complexity,
loop structure). The padding is determined for a single loop or access pattern
and is performed statically by changing the variable declarations of Fortran
programs.

To us no approach is known that effectively uses dynamic layouts. Copying
in tiled loops is the only work in this direction. [TGJ93] improve work first
proposed by [LRW91] on copying to reduce conflicts in tiled loops. As loop tiling
is a code transformation it is not applicable in our context. [PNDN97] discuss
copying arrays passed to library routines to establish a padding suitable for
the computations in the routine, but do not propose a technique that decides
whether this copying will pay off.

Cierniak and Li ([CL98]) follow a similar approach as the JOSES project.
They build a compiler reading bytecodes and performing target specific cache
optimizations. They also have to recover nesting structures of loops, array access
expressions and allocation statements. They implement array transposition for
arrays allocated with the multinewarray bytecode. In [CL95] they give an al-
gorithm to combine loop and layout transposition for several loops for Fortran.
Their algorithm finds a static layout for the arrays that allows to optimize a
maximal number of loop nests with loop transposition. They mention that sev-
eral accesses to an array might cause conflicts within the array but do not give
a solution. They do not consider to change the layout during runtime. [CL98§]
does not detail how they implement this optimization in their Java compiler,
but as they argue that they can not perform loop transformations for java they
obviously skip these. The restriction to transposition of arrays allocated with
multinewarray simplifies the optimization: they can keep the dynamic alloca-
tion of the array.

7 Conclusion

With this work we present a unique framework to unify layout transformations.
We show how to apply these to Java programs, and that it is feasible to apply
them to embedded systems. Our framework considers dynamic layout changes as
well as their cost. It is implemented in a real compiler that targets an embedded
processor.

Our work is not yet complete, neither the optimization nor the compiler.
It is necessary to finish this work and profoundly evaluate the optimization.
We plan to add other layout transformations to our framework as transposition
or merging. Further we will explore how to reduce the cost of evaluating and
comparing the benefit of individual optimizations.
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Abstract. Using automatic memory management eliminates many pro-
gramming errors that are both hard to find and to correct. Automatic
memory management has been used frequently in functional and ob-
ject oriented languages. These languages have rarely been used in hard
real-time systems in the past. However, JavalM has made the hard real-
time community interested because of it robustness and platform inde-
pendence. Introducing Java™ in the hard real-time domain causes many
problems. One of them is how to adapt the automatic memory manager
to be fully predictable in both execution time and memory usage. This
paper proposes such a technique.

1 Introduction

Automatic memory management (garbage collection or GC) is used to reclaim
memory that is no longer used by the application. This greatly reduces the risk
of memory related errors in programs. Memory related errors are often very
hard to find and correct, since they may be located at places other then where
they appear, e.g. deallocating the same memory region twice may not cause a
problem until the region is reused.

Reference counting [7] is known to have many disadvantages, and many
will not use it because of those. However, reference counting also has numerous
advantages, especially for use in embedded and distributed systems.

The idea of reference counting is simple: count the number of references to
every object and recycle the object if its reference count becomes zero. A refer-
ence counting memory handler consists of two main operations: increment and
decrement reference counters. The decrement operation also handles dealloca-
tion when a reference counter becomes zero. These operations can be imple-
mented as shown in Figure 1.

The advantages of reference counting are its simplicity, fine grainedness (only
a few instructions need locking in multi-threaded systems), it does not use sepa-
rate garbage collection code to reclaim memory (all work is done by the increment
and decrement operations), and that data is not moved back and forth between
different memory regions.

* Supported by the ESPRIT LTR project #28198 “JAVA and CoSy Technology for Em-
bedded Systems”.



algorithm incrc(obj)
if obj # null then
obj.rc «— obj.rc + 1
end if
end

algorithm decrc(obj)
if obj # null then
obj.rc « obj.rc- 1
if obj.rc = 0 then
foreach c in obj.children() do

decrc(c)
end loop
free(obj)
end if
end if
end

algorithm assign(lhs,rhs)
incrre(rhs)
decrrc(lhs)
lhs « rhs

end

Fig. 1. Standard reference counting

Having a simple technique makes reference counting more feasible in safety
critical systems, since it is easier to implement and to prove correct. Because of
its fine grainedness, reference counting is suitable for multi-threading, espe-
cially for uniprocessor systems where locking is cheap. Since all updates are
performed by the increment and decrement operations, there is no need to exe-
cute garbage collection code when allocating memory or at any other time other
than when performing reference count updates. This simplifies worst-case ex-
ecution time analysis. Reference counting keeps data in its fixed memory loca-
tions, in despite of copying garbage collection techniques. Keeping data in fixed
locations simplifies interfacing to other systems and languages. Copying data
also requires more memory, it takes time and makes synchronization between
the garbage collector and the program harder.

However, there are also some disadvantages. Cascading deallocation occurs
when the last reference to a large data structure is removed. This may cause
long interruptions that may be hard to predict. Since memory is not compacted,
fragmentation may be an issue. In most systems fragmentation causes no prob-
lem, but it may in a safety critical system. Reference counting is often consid-
ered to be slow, and the basic technique is. The inability of reclaiming cyclic data
structures is often considered the major drawback of reference counting.

Cascading deallocation can be eliminated using a technique described by
Weizenbaum [16]. The decrement operation is changed to put the object into a



list instead of decrementing its children and deallocating it. If the system runs
out of memory when allocating an object, the list is processed and dead mem-
ory is reclaimed. This solves the problem of cascading deallocation, but garbage
collection code needs to be executed when allocating objects. The technique is
designed for systems where all objects are of the same size, but can easily be
adapted to suit other systems as well.

Splitting objects into blocks of equal size can be used to handle external
fragmentation. This approach is further discussed below.

Several techniques to reduce the execution time overhead of reference count-
ing have been proposed. All aim to reduce the number of reference count up-
dates either by not counting all references [8, 1] or by statically finding redun-
dant reference count updates [2].

Cyclic data structures can be reclaimed using several techniques. These in-
clude weak pointers [5], partial mark-sweep [6] and reference counting cyclic
data structures instead of their components [3]. Partial mark-sweep algorithms
require no manual administration, but the others do. This can cause problems
since people are known to make mistakes, so they should be used with caution
in safety critical systems. Partial mark-sweep techniques are feasible in interac-
tive systems, but have not been proven to work in hard real-time systems.

In this paper everything that is allocated on the heap is called an object.
A dead object is an object that will not be used by the program anymore. The
children of an object are the objects that are referred by the object.

The remainder of this paper is organized as follows. Section 2 presents re-
lated work. Section 3 proposes a technique to eliminate external fragmentation
in a reference counting system. Section 4 discusses the worst-case execution
time of the operations in the proposal. In Section 5 a prototype implementa-
tion is presented. Section 6 presents an evaluation and Section 7 presents the
conclusion and future work.

2 Related Work

We classify real-time systems into three categories: interactive, soft real-time
and hard real-time. Interactive systems are any systems that interact with the ex-
ternal world, e.g. X-Windows. There are not any deadlines on the response on
these systems, but too long response times are annoying to the user. Soft real-
time systems have deadlines but slightly missing one now and again does not
cause any problems. Multimedia applications are examples of soft real-time.
In hard real-time systems a deadline should never be missed. Missing a dead-
line could cause disaster. Medical equipment is an example of hard real-time
systems.

The term “real-time garbage collection” is often used even for interactive
applications. This is not the target of our research. The technique presented in
this paper targets the hardest of real-time systems.



2.1 Scheduling Garbage Collection

Henriksson proposes a scheduling analysis that can be implemented using many
different garbage collectors. An implementation using an incremental copying
garbage collector based on Brook’s algorithm [4] is presented in Henriksson’s
thesis [10]. The processes are divided into high and low priority processes. The
high priority processes do a minimal amount of garbage collection work to
increase their speed. The work is instead performed when entering the low
priority processes and during their execution. To guarantee that high priority
processes do not run out of memory, enough memory must be preallocated.
Henriksson provides the analysis needed to calculate the amount of memory
needed and the execution time of the garbage collector.

2.2 Real-Time GC in the Jamaica JVM

Siebert [13, 14, 15] proposes a combination of scheduling and splitting objects
into equally sized blocks in an incremental mark sweep collector. The blocks
are garbage collected as separate entities. Arrays are stored either continuous if
continuous memory can be found fast enough, otherwise arrays are stored as a
tree.

Siebert also provides an analysis to guarantee non-disruptiveness of the ap-
plication. The input to the analysis is upper bound of reachable memory and
the output is the number of GC increments needed per allocated block.

3 Eliminating External Fragmentation

In most systems fragmentation causes no problem [11], but in hard real-time
systems it must be guaranteed that fragmentation does not cause the system
to run out of memory. Fragmentation can be eliminated by compacting mem-
ory, e.g. using copying [9] or mark-compact [12] garbage collection, but that is
often considered too expensive and/or unpredictable. Compaction also makes
interfacing to other systems harder. Other solutions include prohibiting heap
allocation or limit it to allocation into arenas that are deallocated as a whole.

The technique proposed in this paper is based on splitting objects into equally
sized blocks as in many file systems and virtual memory systems. This elimi-
nates external fragmentation, but introduces internal fragmentation of half a
block size per object in average. An important difference between internal and
external fragmentation is that internal fragmentation is predictable, but exter-
nal is not. There are several ways to connect blocks into an object, e.g. linked
list [15] and index blocks.

Below we assume that the blocks are kept in a linked list, but other tech-
niques work as well. The requirement is that member access should be pre-
dictable, taking a step in the iteration through the blocks of an object should
take constant time, and it must be possible do disconnect a block from the ob-
ject in constant time.



3.1 Selecting Block Size

Selecting the size of the blocks is crucial to limit the loss in both execution time
and internal fragmentation. You would like to find a size that makes most ob-
jects to fit in one or two blocks, but still does not cause the internal fragmenta-
tion to be too large.

The best block size depends on the application. The allocation function can
be used to produce statistics about how many objects of different sizes are al-
located. This information can be used to select block size. One should also con-
sider the behavior of the cache when selecting the block size.

4 Worst-Case Execution Time

The increment operation of reference counting just increments a variable, and
that is predictable. However, the decrement operation is potentially recursive.
In the worst case a decrement operation can deallocate all objects on the heap,
and even if that is bounded, it is too long for close to every systems. By us-
ing deferred reference counting [16] the decrement operation becomes constant
in time. Using deferred reference counting, objects are added to a to-be-free list
instead of decrementing its child references and deallocating the object (see Fig-
ure 2). The child references still need to be decremented, which now is done by
the allocator instead.

algorithm decrrc(obj)
if obj # null then
obj.rc «— obj.rc-1
if obj.rc = 0 then
freelist.add(obj);
end if
end if
end

Fig. 2. Deferred reference counting

When the allocator needs more memory, objects are taken from the to-be-
free list. Before they are reused their child references are decremented. Deferred
reference counting assumes that all objects are of equal size, but that is not case
in most systems. All blocks are of equal size, but the objects can contain multiple
blocks. It is not desirable to decrement all child references of the next object in
the to-be-free list if only a few blocks are needed for the new object. Thus, it
must be possible to get a single block from the free list and this must be done
in constant time.

We now have a system without external fragmentation with predictable al-
location and reference count update operations. It is also guaranteed that all



dead blocks are immediately available to new objects. If it is desirable to in-
crease the speed of allocation in high-priority processes [10] this can be achieved
by forcing the free list (which contains blocks which child references have al-
ready been decremented and initialized) to contain the number of blocks needed
by the high priority process.

Two disadvantages remains in this proposal: the inability to reclaim cyclic
data structures and the execution time overhead. Cyclic data structures can by
reclaimed by using a backup garbage collector. The collector should be a non-
moving incremental garbage collector, e.g. mark-sweep or the treadmill [1]. A
disadvantage of using these techniques as backup is that both the reference
counter and the garbage collector must be maintained. Thus, the execution time
and memory overhead increases. Then why not skip reference counting com-
pletely? This is not a good idea, since no automatic memory manager except for
reference counting can guarantee that dead memory is immediately available
to the allocator. This is one of the main advantages to the technique presented in
this paper. If this is not required, the treadmill can be used in combination with
splitting objects into blocks. A disadvantage of using the treadmill as backup is
that it requires two pointers in each object, which is quite expensive.

Splitting objects into blocks introduces an overhead in both memory usage
and execution time. Using a linked schema each objects need a pointer to the
next block. These pointers need to be traversed when accessing data in blocks
other than the first. The number of pointers to traverse to get a field is known
at compile time. Large objects such as arrays should not use a linked schema,
because that would make the execution time of an indexing operation linear
to its argument. Arrays can be stored as trees that make the execution time
logarithmic to the size of the array. To reduce the execution time of reference
counting, all reference counting optimizations can be used.

4.1 Comparison

As stated above, reference counting has some disadvantages to other garbage
collection techniques. There do exist real-time copying and mark-sweep collec-
tors, so the need for a real-time reference counting technique might be ques-
tioned. Table 1 compares the worst-case execution time of the operations of the
real-time reference counter presented in this paper, to the worst-case execution
times of other real-time garbage collectors. Neither the copying nor the mark-
sweep algorithm use either increment or decrement operations. However, both
use read/write barriers that perform equivalent operations. In the table the
worst-case execution time of the barriers are compared to the worst-case ex-
ecution time of the increment/decrement operations. The size of an object is
denoted by s and the minimum amount of free memory denoted by f.

In real-time systems, the amount of memory is often limited. The real-time
reference counting technique enables the usage of all of the memory. This is not
possible using the other techniques due to the behavior of the allocation/free
operations. This is especially advantageous in embedded systems.



RT-Copying RT-Mark-Sweep RTRC

Increment (or equivalent) O(1) O(1) O(1)
Decrement (or equivalent) O(1) o(1) o(1)
Allocation/Free O(s+ %) O(s+ %) O(s)
Member access o(1) O(s) O(s)
Array access o(1) O(log s) O(log s)

Table 1. Worst case execution time of operations in real-time garbage collectors

5 Implementation

A prototype of hard real-time reference counting has been implemented using
the CPP macro preprocessor and a run time system implemented in C. The
object splitting must currently be done manually.

In Figure 3 the types needed by the reference counter is defined. The type
type_t declares a type containing type information. The only information
needed be the reference counter is the size of objects of a type and a function
which decrements a specific block of an object of the type. Next the type of a
block is defined. It is defined as a union of the head of an object and a char array
of BLOCK_SIZE cells. Here the block size is 32 but that is just a compile time
constant. The head of an object contains a pointer to the next block in the ob-
ject. This field also connects the blocks in the free list. Next is a union containing
the reference counter or the next field used in the to-be-free-list. The reference
count is always zero when the object is in the to-be-free-list, so it is not needed.
Finally the type of an object is stored. Only the next pointer is used in blocks
after the first in an object. Thus, the overhead is 12 bytes in the head block of an
object and 4 in the following. The sizes can of course differ on other platforms.

The global state of the implementation is kept in the variables shown in
Figure 4. Users of the reference counter should not touch these variables. The
freelist keeps all blocks that are ready to be used by the allocator. These
blocks should no longer refer to objects. Most systems would gain speed if all
non-header cells where initialized to zero. The available variable keeps the
number of blocks in the free list. The tbf1list keeps the to-be-free list. Here all
dead objects are listed before they are either moved to the free list or directly
allocated to an object. Before the objects leave this list their references to other
objects need to be decremented. The head variable points to the next block
to be allocated or NULL. If the pointer equals NULL, the next object in the to-
be-free list should be examined. The type variable keeps the type of the object
whose blocks are currently being reclaimed. Variable blockseqis the sequence
number of head in the current object. Finally an array called heap keeps all
blocks available to the system.

Initiating the reference counter is just a matter of connecting the blocks into
one huge free list. There is no need to initiate anything to zero since that is
done automatically with global data. The function is shown in Figure 5 and its
execution time is linear to the number of blocks on the heap.



#define BLOCK SIZE 32

typedef struct type_t {
size_t size;
void (*decchildren) (struct type_t *t,
struct objhead_t *b,
int n);
} type_t;

typedef struct objhead_t {
struct objhead_t *next;
union {
struct objhead_t *next;
unsigned int rc;
} nr;
type_t *type;
} objhead_t;

typedef union block_t {
objhead_t head;
char data[BLOCK_SIZE];

} block_t;
Fig.3. Type declarations
static objhead_t *freelist = NULL;
static size_t available = 0;
static objhead_t *tbflist = NULL;
static objhead t *head = NULL;
static type_t *type = NULL;
static int blockseq = 0;
static block_t heap [NUM_BLOCKS] ;

Fig.4. Global data

void rc_init () {
int 1i;

for (i = 1; i < NUM_BLOCKS; i++) {
heap[i—-1] .head.next
= (objhead t *) &heapli];
}
heap [NUM_BLOCKS-1] .head.next = NULL;
freelist = (objhead t *) heap;
available = NUM_BLOCKS;

Fig. 5. Initialization



Allocating blocks from the free list is done by: traversing the free list until
the requested number of blocks has been found, terminating the list of blocks,
and adjusting available and freelist. This is shown in Figure 6. The exe-
cution time of the function is linear to the number of blocks being allocated.

static objhead_t *
alloc_from_freelist (int nb,
objhead_t **plast)
{
objhead_t *bs = freelist;
objhead_t *last;
int n;

available —= nb;

for (n = 1; n < nb; n++) {
freelist = freelist->next;

}

last = freelist;
freelist = freelist->next;
last—->next = NULL;

*plast = last;

return bs;

Fig. 6. Allocating from the free list

Allocating from the to-be-free list is slightly more complicated. One object
is taken from the list. The type information is stored in t ype, blockseq is set
to zero, and head points to the first block of the object. For each block being
allocated its child references are decremented using the childdec function
stored in the type information. If we run out of blocks in the current object, the
next object in the to-be-free list is taken and its blocks are used. The function
is shown in Figure 7. The execution time of function is linear to the number of
blocks being allocated.

The user function used to allocate objects allocates as many blocks from the
free list as possible. The rest of the blocks are allocated from the to-be-free-
list. Finally the lists of blocks are concatenated and the object is initiated. The
function is shown in Figure 8 and its execution time is linear to the size of the
object being allocated.

To guarantee a number of blocks in the free list the rc_prealloc function
can be used. It simply allocates the necessary number of objects from the to-be-
free-list and puts them into the free list. The function is shown in Figure 9, and



static objhead_t *

alloc_from TBF (int nb, objhead_t **plast)
objhead_t *bs = head, *last = NULL;
int n;

for (n = 0; n < nb; n++, blockseg++) {

if (head == NULL) {
head = tbflist;
if (head == NULL) {

fprintf (stderr, "Out of memory\n");

exit (5);

tbflist = tbflist->nr.next;
type = head->type;
blockseq = 0;

if (last == NULL) {
bs = head;

} else {
last—->next = head;

{

’

type->decchildren (type, head, blockseq);

last = head;
head = head->next;

}
last->next = NULL;
*plast = last;

return bs;

Fig.7. Allocating from the to-be-free list



object_t *rc_alloc(type_t *t) {
int nb;
int fromfree;
objhead_t *blocks, *tbfblocks = NULL;
objhead_t *last, *dummy;

nb = t->size;
fromfree = MIN(nb, available);

if (nb - fromfree > 0) {
tbfblocks = alloc_from_ TBF (nb - fromfree,
&dummy) ;

if (fromfree > 0) {
blocks = alloc_from_ freelist (fromfree, &last);
last->next = tbfblocks;

} else {
blocks = tbfblocks;

blocks—>type = t;

return blocks;

Fig. 8. Allocating objects



its execution time is linear to the number of blocks requested. This function is
typically called when leaving a high-priority process and start executing a low-
priority process. The allocation function must keep the number of pre-allocated
blocks in the free-list, so that they are available the next time a high-priority
process starts executing. The only change needed in rc_alloc is to subtract
the number of pre-allocated blocks from the number of available blocks when
calculating fromfree.

void rc_prealloc(int nb) {
objhead_t *bs, *last;

if (available >= nb) return;
bs = alloc_from TBF (nb - available, &last);

available = nb;
last->next = freelist;
freelist = bs;

Fig.9. Pre-allocating blocks

Finally the function used to put objects onto the to-be-free list called by
the decrement operation is presented. This function should be inlined. On a
Pentium processor it expands to three assembler instructions. The function is
shown in Figure 10 and its execution time is constant.

void rc_release (objhead_t *b) {
b->nr.next = tbflist;
tbflist = b;

Fig. 10. Releasing objects

The decrement and increment operations are implemented according to the
algorithms presented in Figure 1 and 2. The execution times of both operations
are constant.

51 Summary

The overhead per object (on x86-Linux-2.2 using gcc-2.96) is 4 bytes for refer-
ence counter/next pointer in free lists and 4 bytes for type information plus 4
bytes per used block. For most objects this should give a total overhead of 12 —
16 bytes.



Initiating the memory manager is a matter of putting all blocks in a linked
list. The worst-case execution time is linear in respect to the size of the heap.

Allocation (from the to-be-free-list or free-list) takes blocks from respective
list. When blocks are taken from the to-be-free-list their references must also
be released. Since releasing references of a block takes constant time (the size
of blocks are constant and thus the maximum number of references), the worst-
case execution time of an allocation is linear in respect to the size of the allocated
object.

In some systems it is desired that allocation in high-priority processes should
be as fast as possible. This can be accomplished by pre-releasing references of
blocks in the to-be-free-list and moving these to the free-list. When a high pri-
ority process starts executing it must be guaranteed that the number of blocks
needed by the high-priority process is in the free-list. This is done by the
rc_prealloc function. The worst-case execution time of this function is linear
in respect to the number of blocks that should be pre-released.

Finally, both the increment and decrement operation have a constant worst-
case execution time.

6 Benchmarks

To conduct an evaluation of the technique, a small simulation application has
been implemented. The application simulates two water tanks. A pump pumps
water in to the upper tank, which in turn is connected to the lower tank via a
pipe. The lower tank has a hole in the bottom. The application aims to keep a
specified level in the lower tank by controlling the pump. The simulation con-
sists of five objects: two tanks and three flows. The system has been tested in 12
variations with and without: splitting objects in two blocks (of 64 bytes each),
separating the blocks of an object with half the heap size, reference counting,
and running thousand simultaneous simulations. The test was performed by
running the system for 40 000 000 iterations, except when thousand simulations
where run simultaneously then 40000 iterations where run. Every variation
where run five times on a bare Linux machine. The shortest execution times
of each variation are presented in Figure 11.

The conclusion from these tests is that splitting objects is expensive when
using more memory. Choosing a different block size might improve this behav-
ior. It is remarkable that reference counting is almost for free in the tests. This
is most likely due to that the floating-point calculations in the simulation hide
the effect of the reference count updates. Over 24 million increment and decre-
ment operations where performed in every run of the system (with reference
counting enabled).

7 Conclusion and Future Work

This paper presents an automatic memory management technique for hard
real-time systems. It does not suffer from external fragmentation, all opera-



180

160

140

120

100
80
60
40
20

rs 1SS t ts tr trs trss

bare No GC code

s  Splitting objects

ss  Splitting and separating
r Reference counting

t Thousand simulations

Fig.11. Execution time in percent compared to a bare run

tions are predictable in memory usage and execution time. All (non-cyclic) dead
blocks are immediately available to new objects. And finally, the high priority
processes can be given the benefit of faster allocation if that is desired. Thus,
the presented technique is fully predictable.

The remaining disadvantages are the inability to reclaim cyclic data struc-
tures and the execution time overhead.

Currently we have to use a backup garbage collector to reclaim these. A
backup garbage collector can be run continuously or it can be activated at spe-
cific times. What to choose depends on how much cyclic garbage is produced.
This might not be a good solution if much cyclic data is produced, but in most
systems cyclic garbage can be avoided. One could use weak pointers that are
not counted, or one could break cycles manually before they become garbage.
A good idea would be to run a backup garbage collector during development.

The execution time overhead can be greatly reduced using static optimiza-
tions. The optimizations can turn heap allocations into stack allocations and
remove redundant reference count updates.

Next this technique will be implemented in a Java™-to-assembler compiler.
This will provide the figures for execution time and memory usage overhead,
which will be used to tune the implementation.

Looking on how to connect blocks into objects, choose block size, integrate a
backup garbage collector, and what to do with large objects will then continue



this work. Another topic is to optimize the reference counter. This is done in
parallel with this work.
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Abstract. The Joses project is going to develop techniques and tools to
enable the use of Java for embedded systems. The necessary tasks include
developing analyzers for object oriented languages. One problem in ana-
lyzing these languages is that the exact control flow graph is not known
statically due to dynamic method dispatching. This, however, is needed
in order to apply the large class of known inter-procedural analyses. Con-
trol flow analysis generally aims to determine which closures appear at
which points in the execution of the program. For object oriented lan-
guages this means to calculate possible target classes for method calls. In
contrast to the widely spread techniques, we will present a flow-sensitive
approach.

1 Introduction

Object oriented languages are more difficult to translate into efficient programs
than traditional imperative languages such as C. A major reason for this are the
different levels of optimizations applied to these classes of languages. One key
problem is the lack of an exact control flow graph at compile time.

However, this graph is required for most traditional data flow analyses, which
rely on the ability to identify all possible successors or predecessors at every
program point. With procedures as parameters and method calls depending on
the actual object stored in a variable (dynamic dispatch) this identification is
no longer possible.

Control flow analysis solves the problem by computing for every subexpres-
sion a number of functions or program points it may evaluate to at runtime.
Having this information one can for every function application determine its
successors, thus enabling the projection of traditional techniques onto higher
order languages. While control flow analysis is usually believed to be rather run-
time consuming, recent experiments suggest that this might not be completely
true. Rather it looks like the additional runtime seems to be acceptable taking
into account the analysis’ precision.

Nevertheless, only flow- and context-insensitive approaches are widely spread
today. In this paper we present a flow-sensitive approach that may easily be

* Supported by the Esprit LTR project #28198 “JAVA and CoSy Technology for
Embedded Systems”



extended to include context-sensitivity. The standard approach is to add condi-
tional constraints at method call points. However, this may mean that a lot of
constraints are added that might never be evaluated. The concept we present
will allow for constraint addition on demand only for those methods that really
will be called.

In what follows we will first give a brief sketch of control flow analysis. After
that we will show a simple example, give the rules how to generate the con-
straints, and show how to solve them.

rtype m() { --- } method definition
rtype m(p) { --- } method definition

Vi = V2 assignment

v = new CQ) object creation
v = o.m(a) method call
return v return

Fig. 1. Statements in the example program

2 Control Flow Analysis

Classical control flow analysis (CFA) computes for each subexpression the func-
tions that it may evaluate to. Thereby it is possible to determine where the flow
of control may be transferred to at that point. This means that control flow anal-
ysis in its usual area of analyzing functional languages is functional in the sense
that it takes functions as abstract values and traces them through the program
being analyzed. The analysis itself is similar to the computation of definition—
use—chains (DU) known for imperative languages in the sense that both trace
how definition points reach points of use [3]. For object oriented languages CFA
traces sets of either classes or objects a variable may point to at runtime. The
point of usage, however, is still function application or, in object oriented words,
method send.

Different kinds of CFA may be distinguished based on the amount &k of con-
text they take into account [3,2]. This can be compared with the call-string
approach used in traditional data flow analysis and allows the analysis to re-
member the last up to k& dynamic call points.

In order to compute the CFA-solution we need to label method parameters,
variable occurences, and ends of procedures with unique tags ! € Lab (the
superscripts in figure 3). The example is stated in a subset of Java using the
statements given in figure 1. Labels are assigned to all occurences of variables,
parameters, method ends and expressions.

In figure 2 we define a 0—CFA. The abstract values it propagates through the
program are elements of Val = P(Classes), i.e. sets of classes. Cache = Lab —
Val is the abstract cache, associating the program labels with abstract values.
The result of the control flow analysis then is C € Cache that associates a set
of classes with each labelled program point.



[variable] Civ'l:= U {c@)co@)}

"'eDU(v,s)
[assignment]  Ci[v't := expri2] = Cylexpr2] U {C(l2) C C(h)}
[creation] Cil(new C()Y] := {{C} CC()}
[return] Ci[return v'] := C,[v' ] U{C(l) C C(lm)}
where I, is the end label of the method body analyzed
[noarg] Cil(v'r.m())'2] := CALLp (11, 12)
[arg] Ci[(v"1.m(a'2))3] := CALLy, (Ih,13,12)

[method_noarg] rtype m() body' : ConstraintSet(id(m)) := (1,[])
[method_arg]  rtype m(p't) body'? : ConstraintSet(id(m)) := (2, [l1])

Fig. 2. Constrained based 0—-CFA

Let’s have a look at some of the rules in figure 2. The [variable] clause means
that an expression consisting of a variable may evaluate to all the abstract values
associated with definitions reaching this program point. For the assignment of
an arbitrary expression to a variable ([assignment]) we first evaluate that ex-
pression (C(l2)). This set must be assignable to the variable z, so C(l2) C C(l1)
must hold.

One of the more interesting clauses is [arg], i. e. a method call with an argu-
ment. The object (z!*) and the argument (a'2) must be analyzable. Performing
these analyses results in C(l;) and C(l3) holding the respective values. These
will be accessed by the CALL construct which will be introduced in section 3.2.

2.1 Preprocessing

Before generating constraints we will need to perform one further step — for each
variable v and each program point p we compute the labels of definitions of
v that are visible in p. This is a simple intraprocedural definition-use analysis,
computing DU (v, p) := {l € LAB |label [ is a definition of v visible at p}. Thus
for each variable v the computed value is either a set of labels contributing to
the set of v or it is identified as related to a method call (i.e. it is the result of a
call, a parameter or the end of a method). For our running example in statement
s the variables va and vb are used. The computed DU-sets are DU (va, s) = {16}
and DU (vb,s) = {20}. After this we know for each labeled use of a variable
which labels may contribute to its set.

3 Generating Constraints

3.1 Generating the intraprocedural constraints

Generation of interprocedural constraints is fairly easy - just add the constraints
according to figure 2. In order to be prepared for handling calls we will store infor-
mation related to methods by defining a function ConstraintSet : Methods —
Lab x list(Lab). The first element is the label of the method’s end point, the
second is the list of labels of the method’s parameters.



class test {

class A { A generate (test this®) {
A a: A t%=(new BO)'’;
void set (Object this',A x* ) {} return t'';
void print (Object this®) {} 12
} void main (test this'®) {
class B extends A { A va'* = (new AQ))'®;
void print (Object this?) {} B vb;
} val® = (this”.genera‘te(thislg))lg;
class C extends A { vb?° = (new C())?;
void print (Object this®) {} (va??.set(va2®, vb?%))325; //s

void set (Object this®,A x7 ) {}

}

}2
}

(va?t. print(va
9

27))28;

Fig. 3. Example program

3.2 Adding procedure calls

In figure 1 we have already given the rules how to label occurences of parameters
and end of procedures. Of course this is not enough, as we will have to let flow

— the values of actual arguments of a procedure to its parameters
— the values associated with the procedure’s endlabel to the label of the call

expression.

id(generate) = 5, id(main) = 6

ConstraintSet(5) = (12,[8]) {B} C C(10) C(10) C C(9)
c(9) C C(11) C(11) € C(12)
ConstraintSet(6) = (29,[13])  {test} C C(13) C(13) C C(17)

{4} C C(15) C(15) C C(14)

C(13) C C(18) CALLgenerate (17,19, [18])
cag)ccoie)  {C}co@)

C(21) C C(20) C(16) C C(22)

C(16) C C(23) C(20) C C(24)

C(16) C C(26) CALL,.;(22,25,[23,24])
C(16) C C(27) CALLyyint(26,28,[27])

Fig. 4. Constraints and ConstraintSet for the example program

The standard approach is to add conditional constraints, one for each method
that might be callable at run time. However, this may mean that a lot of con-
straints are added that will be evaluated but may never contribute to their target
sets. The concept we present will allow for constraint addition on demand only
for those methods that really will be called. As already shown in figure 2 we
will arrange for this by adding a macro constraint CALL,, that will serve as a
template for the constraints associated with procedure m. CALL,, gets as its
arguments



— the label [, of the variable that contains the object whose m is called
— the label [, to which m’s result is going to be stored
— the labels I; of all arguments (if any) that are passed to m

That is, in the example program the constraints for method main would be
extended by CALL,e(11,13,12) and CALLpyint(14,15). When evaluating the
macro during constraint solving care will have to be taken that only callable
methods are selected, that constraints are added for letting the arguments flow
into the parameters, and for letting the procedures result flow back to the label
of the method calling expression.

3.3 Adding global variables

For the analysis of global variables things are slightly more complicated. For
a use of such a variable the associated definition might be located in another
procedure. Thus we will need to extend the information in the C ALL macro with
information about the definitions of global variables currently visible. This can
be done in a way similar to that how we computed the definition information - we
simply run a use-definition analysis using the already computed DU-sets. We now
get for every global variable gv and every program point p a set UD(p, gv) that
gives for each method entry point the first uses of gv. Thus when evaluating the
CALL,, macro for a call in statement p we will be able to connect the reaching
definitions of gv as known from the DU(p, gv) with the first uses of gv in the
method m.

4 Solving the constraints

Having created the constraints for all the methods in a program, we will now
start to solve them. In order to do so we first transform them into a graph and
then let the solver work on this representation. For the example program the
construction of C results in the function and the constraints given in figure 4.

4.1 Graph generation

Having computed C, we construct a directed graph following [3]. That is for each
C(l) and CALL(---) a node n; respectively ncarr() is created. For each con-
straint C'(l;) C C(l2) an edge from n;, to ny, and for each CALL(obj,res, [args])
an edge from each of {nopj,Nargs} t0 NcaLL(...) is created.

With each node n a field D[n;] is associated, which will hold the computed
set of classes for n;. It is initialized by the set {t|{t} C C(I) € C.}. For the
example program the generated graph is given in figure 5. We have left out the
annotation of edges with the associated constraint as this is evident from the
nodes being connected.



CALLprint(26,28,127] ; CALLset(22,25,(23,24]) -

Fig. 5. The start graph for the solver
4.2 The solver

The solver works on a worklist that is initialized from the constraints for the
program’s entry points with those nodes n for which D[n] # @. Due to space
limitations we will only sketch an outline of the algorithm, it is implemented
along ideas of [3,6,4].

The solver iterates over the nodes in the worklist until the list is empty.
Depending on the type of the selected node n and its successors, several actions

may be taken.
el
efin] [ ) [eo] ]

{B}

\/

{ CALLgenerate(17,19,[18]) ‘(test) }

[C(IS)‘ {A} } {C(19)‘ }
C14)| {A}

CALLprint(26,28, [27]) CALLset(22,25,[23,24]) -

Fig. 6. Constraint graph before and after (dashed edges) visiting the first CALL node

If n is a node C(l1) and the successor is a node C(l3) then the constraint on
the edge (ny, ,ny,) is evaluated and D[l5] := D[ls]UD[l]. If D[l;]NDJls] # @ then
ny, is added to the worklist. Figure 6 represents the situation after all normal
propagations have taken place. Note that the graph on the right side has not
been proceeded as it represents the constraints of method generate which has
not yet been called.



If n is a CALL,,(obj,res,[args;]) node it represents a method call on the
object labelled with obj. The solver then looks up the current set of possible
classes, instances of which may be stored in the variable, and computes the
identifiers of such methods that may be called. This computation is performed
by inspecting the class hierarchy graph [5]. Using this information it looks up in
the function ConstraintSet the stored values for the callable implementations
of m. Thus it obtains a set of pairs ¢t; = (endlabel;, [param;]).

For the call CALL(13,15,[14]) the object to which the message is sent has
type {test}, thus the call goes to the method generate in class test. Thus t; =
(10, [6)).

First an edge nendiaper; t0 Nres is added, as the information computed for the
end point of the procedure will have to be stored in the label of the method call
expression. Furthermore for each argument and parameter pair (args;, param;)
an edge (Nargs; s Nparam;) Must be added. In addition, one must assure that all
uses of global variables in the added procedure are connected to the current
visible definitions.

The new constraint graph is given in figure 6 by the dashed edges. The new
edges resemble that the value of the call’s argument (label 18) flows to the
method’s parameter (label 8) and that the method’s result (label 12) flows to
the method call expression (label 19).

{C(ﬂ)‘(test) ] {C(ls)‘(lesl) ]—>[C(8) {test} } C®

{ CALLgenerate(17,19,[18]) ‘(test) }

C(11)| {B}

. E

{C(IS)‘ {A} } {C(19)‘ {B}
C(14)| {A}

J

.!

C(20)| {C}

C(23)| {B}

C(27) {B} C(22) {B} C(24)| {C}

CALLprint(ZG,Zs,[27]) CALLset(22,25,[23,24]) | {B}

Fig. 7. The final constraint graph

Having added those edges worklist iteration continues, ignoring the calls to
print and set assuming that they may not contain access to object variable. It
finally results in the graph given in figure 7.

5 Ewvaluation

The D].] fields of the CALL nodes tell us, which classes the object at the specific
call site may have at run time. As one can see in figure 7, each object may only
have one type, namely test in the call to generate, B in the call to print and B



in the call to set. By inspecting the class hierarchy one finds out that each of the
calls has got an unique target - the impletation of generate in test, set in A and
print in B. The following table gives the computed number of classes for the
object at the call site. It compares our numbers (CFAy with results from other
techniques, namely class hierarchy analysis (CHA, [5]), raid type analysis (RTA,
[1]) and variable and declared type analysis (VTA, DTA, [7]). The differences
mainly result from the other techniques being not flow sensitive.

call to ‘ CHA ‘ RTA ‘ VTA‘ (DTA) ‘ CFA,
generate |1 1 1 1

1
set 2 2 1 1 1
print 3 3 2 2 1

6 Conclusions

We have presented a flow-sensitive approach to control flow analysis. By intro-
ducing a macro concept for method call handling we get rid of a potentially great
set of conditional constraints. The macros allow for a constraint generation that
occurs on demand only for those methods that may really be called. What needs
to be done in the future is to add full support of global variables.
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Abstract. Dynamic method call is one of the major advantages gained
by object-oriented languages. However, it entails severe performance
penalties. Static program analysis is used to identify cases where dy-
namic dispatch can be replaced by static binding. This is done by com-
puting the dynamic type of method invocation expressions. Whenever
such an expression may only call one method, the dynamic call can be
replaced by a static call. Unlike most approaches, we present a data flow
analysis allowing the flow- and context-sensitive approximation of types
of expressions. We start with a conservative approximation of the control
flow graph constructed by means of standard techniques.

1 Introduction

Object-oriented programming languages like C++ and Java have become very
popular in the last few years. Unfortunately, in general object-oriented programs
are slower and bigger than programs written in pure imperative languages like
C or Fortran. This is especially true for Java which offers many features that
make Java programs simple and secure, but also slow.

One of these features is dynamic method call, a typical feature of object-
oriented languages involving inheritance. A class may redefine any method in-
herited from its superclass. When calling a method, the dynamic type of the
method invocation expression decides which of the (possibly many) applicable
method definitions will actually be called.

Dynamic method call is usually implemented using wvirtual function tables
(vtbls). Every class has its own vtbl with a pointer to the appropriate defini-
tion for every method visible in that class. When a class redefines an inherited
method, the pointer in the vtbl is changed to the new definition. At runtime,
the vtbl is used to look up the correct method definition based on the dynamic
type of the method invocation expression.

Method calls using virtual function tables are more expensive than direct
function calls for a number of reasons. The pointer has to be looked up, opti-
mizations like method in-lining are not possible. These problems are the reason
why it is desirable to compute the dynamic type of method invocation expres-
sions at compile time.

The rest of the paper is organized as follows. In section 2 we give a short
introduction to data flow analysis and the program analyzer generator PAG. In



section 3 we give a description of the problem the analysis wants to solve. In
section 4 we present the analysis in some detail.

2 Data Flow Analyses with PAG

The analysis presented in this paper uses the PAG [3] program analyzer generator
to define a data flow analysis computing the dynamic type of method invocation
expressions. Data flow analyses are a standard tool for compiler optimizations [4].
They are based on the control flow graph (CFG) representation of a program. The
CFG consists of nodes for atomic statements and edges representing the possible
flow of control between statements. The analysis associates each edge with an
element of a domain, representing the information computed by the analysis.
A transfer function is defined for each node, specifying how the information is
changed by the statement represented by the node.

PAG is a tool for specifying and generating program analyzers. It offers an
ML-like specification language for specifying the domain, the transfer functions,
and all other information necessary to define an analyzer.

One special feature of PAG is the ability to generate interprocedural analyz-
ers. Interprocedural analyses can cope with data flow between functions, whereas
intraprocedural analyses can only analyze functions separately.

To allow data flow between functions, call edges are created from a call site
to the function. To bypass caller information that is unchanged or should be
invisible in the called function, local edges to special PAG return nodes are used.
The data flow at function return is implemented by return edges.

- calledge [ oy
Begin Function

Return
return edge pagReturn

local edge

Fig. 1. Interprocedural control flow graph.



Figure 1 shows part of a control flow graph with a call node, a PAG return
node, a function, the call edge, the local edge, and the return edge.

3 The Problem

As mentioned in the introduction, the goal of the analysis is to approximate the
dynamic type of method invocation expressions. The dynamic type is defined
as the class of the reference the expression evaluates to during runtime. This
information can then be used to limit the set of applicable method definitions
as determined by the static type of method invocation expressions at call sites.
Ideally, only one method definition can be called and the dynamic method call
can be replaced by a more efficient direct function call.

The elimination of an applicable method definition corresponds to the elim-
ination of the call edge to that particular method definition in the CFG. Thus,
the information computed by the analysis can also be used to create a more
precise CFG to improve subsequent data flow analyses.

The problem can be stated more precisely as follows:

Given a method invocation e.m(. . .) at a specific program point, what
is the set of types of the references the expression e can evaluate to at
runtime?

Once this set is computed, the set of applicable method definitions can be
easily determined.

To analyze a method invocation expression, one must first ask how such an
expression can look like. The Java Language Specification [2] gives the following
answer.

MethodInvocation:
MethodName ( ArgumentListop; )
Primary . Identifier ( ArgumentListop; )
super . Identifier ( ArgumentListyp; )
ClassName . super . Identifier ( ArgumentList,y )

Method calls involving the keyword super statically determine the appropri-
ate method definition. They can be resolved at compile time and are thus not
interesting for the analysis. The first case is for instance methods semantically
equivalent to

this . MethodName ( ArgumentListypy; )

which is covered by the second case.

The definition of Primary is too complex to give in full detail here. Basically
it covers simple expressions, i.e. literals, class literals, the keyword this, field
accesses, array accesses, and method invocations.

For the analysis this means that the following language constructs need to be
analyzed: variables, class fields, instance fields, arrays, and method invocations.

When the set of dynamic types of the above constructs is known, the dynamic
type of any arbitrary method invocation expression can be determined.



4 The Analysis

4.1 The Control Flow Graph of a Java Program

Before any data flow analysis can be started on a given program, the CFG
for this program needs to be constructed. For a Java program this is rather
straightforward, with the exception of dynamic method call sites. In those cases,
the set of applicable methods as target of call edges needs to be conservatively
approximated, i.e. any method definition that can be called at runtime must be
an element of the set.

There are many efficient algorithms to construct a conservative CEFG. We use
rapid type analysis [5] which is simple and efficient and provides a good starting
point for the analysis.

4.2 The Domain

The main aim of the analysis is to collect all references that may be assigned to
locations, i. e. to variables, fields, and arrays. Every location is therefore mapped
to a set of references.

The definition of the domain of the analysis is as follows.

(str x bool) — P(unum X snum X unum X str)

We use a functional domain. As stated above, each function maps IDs of
locations to a set of abstractions of references. The location ID consists of a
unique ID string (of string type str) and a flag (of boolean type bool) indicating
whether the location is a local variable or a field. This is needed for correctly
handling the interprocedural flow of data.

The reference abstraction consists of four parts. The first part is the ID of
the node where the reference was assigned to the location (an unsigned number
of type unum). This is used mostly for debugging the analyzer.

The second part of the reference abstraction is the context number, a signed
number of type snum. This is one attribute used to distinguish references. The
context number stems from the way PAG handles interprocedural data flow.
A standard way of tracking the context of a function and to thus distinguish
instances of function calls are call strings. A call string is a string of call nodes.
The last part of the call string is the node that called the current function,
the part before is the node that called that function and so on. The different
call strings of a function are enumerated by PAG, and these numbers are the
context numbers. The analysis uses these context numbers to distinguish between
references created at the same program point but in different contexts of the
function. The maximum length of the call string can be set by the user of the
analysis. Longer call strings result in higher precision, but also in higher costs.

The third part is the ID of the node where the reference was created and
is of type unum. This is the main attribute for distinguishing references: if two
references are created at two different program points, they are treated as dif-
ferent; if two references are created at the same program point and in the same



context, they are treated as being identical. The reason why we use abstractions
of references instead of tracking every reference individually lies in the nature of
data flow analyses. Iterations of loops e.g. are only repeated until a fixed point
is reached. This way, the analysis will always terminate, but may not identify
each iteration of the loop individually.

The fourth and final part is the dynamic type, i.e. the class name of the
reference, of type str. This is the information needed to determine the dynamic
type of method invocation expressions as explained before.

4.3 The Identification of Locations

For greatest precision it is important to track every location individually, if
possible. For class fields this is easy. Class fields are statically accessed using
class names. They are global locations that exist as long as the class they belong
to exist. The identification string for class fields consists of the class name and
the class field name. This way, any class field can be uniquely identified.

Variables, i. e. (method) local variables and parameters, can also be uniquely
identified. They have a unique identification number in the internal represen-
tation (IR) that is also used by the analysis. However, variables are objects on
the stack. As such the analysis does not track every instance on the stack of a
specific variable individually. Instances of method calls are only distinguished as
specified by the context numbers as explained above.

It turns out that instance fields cannot be identified individually. Instance
fields are accessed the same way as instance methods: through expressions of
reference type. To track every instance individually means identifying every ref-
erence individually. As explained above, this is not possible. Instead, the same
abstractions of references as used for the dynamic method calls are used. The
identification string for instance fields consists of the context number, the cre-
ation node ID, and the class name of the reference that was used to access the
field when its value was assigned to it, plus the field name.

Arrays can be seen as a special kind of instance field. In Java, arrays are
objects which support the operator [] for accessing the elements of the array.
Array references are therefore handled the same way as other object references.
Furthermore, the analysis does not distinguish the elements of an array but
treats them all together as one. The identification string of arrays is the same
as for instance fields except that it does not contain a field name.

Obviously the analysis loses some precision when dealing with certain kinds
of locations. Some precision is lost when dealing with local variables: different call
instances of the variable’s method may not be distinguished. However, since the
analysis eventually computes only one set of types for every program point, but
not for every call instance, this only affects the precision of the data flow. More
precision is lost when analyzing instance fields and arrays. Fields of instances
created at the same node and in the same context will not be distinguished.
Whether this is a problem depends on the nature of the program. Very often
instances created at the same program point will also have similar properties
and thus the imprecision should not matter. Finally, we believe that ignoring



the index of arrays should not be a major problem. The elements of an array
are usually accessed within a loop, which means that all elements are accessed
at the same program point, for which, again, only one set of types is computed
anyway.

4.4 The Analysis of Assignments

As an example for a transfer function we now present in some detail how assign-
ment statements are handled by the analysis. Let the assignment be le = re.

First the right hand side expression re is analyzed. The support function
getClassList is used to get the list of references (possibly) rendered by re.
This is the value that is being assigned to the left hand side expression [e. Three
different cases are considered for le.

Variable or Class Field If /e is a local variable, a parameter, or a class field
the identification string is constructed and then updated to the new value
given by re. The update is destructive, i.e. the old value is destroyed.

Instance Field If /e is an instance field access of the form e.f, first the set of
references given by e is computed by getClassList. Then for every element
C in this set, the appropriate update for C.f is executed. The update for
instance fields may not be destructive. This is because of the impreciseness
of the analysis when handling instance fields. At runtime, only one reference
is rendered by the expression e, and only the field f of that reference is
changed. However, the analysis may compute redundant references for e.
The field f of these references, however, will not be changed, and therefore
the information associated with these references may not be destroyed.

Array Arrays are basically handled the same way as instance fields. The only
difference lies in the fact that an array has no fields and all elements of the
array are treated the same.

Note that method invocations cannot be part of an assignment. The front-end
extracts any method invocation from expressions and creates separate statements
for them.

Example Consider the following Java program.

class X class App {

{ public void foo(O{} } private X x;
public void m() {

class Y extends X x = new YO ;

{ public void foo(O{} } x.foo(); } }

In figure 2(a), the analysis result for the x = new Y(); statement of method
App.m() is given. For simplicity, we use names instead of numbers for variables
and only show the relevant information. The variable v holds the value of the
this pointer, the variable v2 holds the result of the new Y() expression. After



‘ D> {}
false (vz,T) -> {(42,0,23,Y2,%}
‘ (v1,T> > {(17,0,37,App),}

D> {3

(v2,T) > {(42,0,23,Y),}

bb_intern [(v1,T) -> {(17,0,37,App),}
(OH3THAPPHAPP_x,F) —> {(64,0,23,Y),3

(a)
D> {}
(v2,T) => {(42,0,23,Y),}

false |(y1.T) => {(17,0,37,App) 3
(0#3TH#App#App_= ,F) —> {(64,0,23,Y),}

v1.App_x.foo (vml, v1.App_x))
id #2729

local call call

\ \ |
(b)

Fig. 2. (a) assignment x = new Y(); (b) method invocation x.foo()

the assignment, the field App_x as accessed through the reference in v holds
the value of v2.

Figure 2(b) shows the result for the method invocation x.foo (). The method
invocation expression vI.App_z is an instance field with the dynamic type Y.
Therefore, the call edge to method X.foo() can be eliminated and the method
invocation can be replaced by a direct function call to method Y.foo().

4.5 The Interprocedural Part of the Analysis

So far we have only covered the treatment of locations. However, the analysis
of values returned by method calls are just as important. By using PAG, most
of the work needed for interprocedural analysis is done by the generator. The
designer of the analysis only needs to decide which data to send over each of the
call edges, local edges, and return edges.

The data of a location is sent over the call edge if it is visible outside of
the current method. That is true for fields only. Local variables and parameters
are therefore sent over the local edge. As already mentioned, the boolean flag of
every location is used to make that decision.

In the case of the return edge, the expression associated with the return
statement is analyzed and the appropriate data is sent back over the return
edge.



4.6 Restrictions

It is vital for the correctness of the analysis not to miss any reference creations
and assignments. Therefore, the analysis needs to see the complete code of a
program, i.e. it is a whole-program analysis.

The analysis cannot cope with multi-threaded programs.

5 Related Work

Several flow- and context-insensitive analyses are presented in [5], including rapid
type analysis (RTA). These analyses use different strategies to improve precision,
such as computing one set of types for every method instead of just one set for
the whole program as RTA does. However, our analysis is still more precise than
each of these as it computes one set of types for every expression.

Another analysis presented in [5], k-CFA, is an example for a context- and
flow-sensitive analysis, which also computes one set for every expression. How-
ever, it is still more imprecise than our analysis because it abstracts objects to
their classes, while our approach abstracts objects to their creation-node and
-context. This allows for a more precise analysis of instance fields.

6 Conclusion

We have presented a flow- and context-sensitive analysis which computes the set
of references stored in locations and returned by method invocations. The result
of the analysis is used to approximate the dynamic types of method invocation
expressions and replace calls to only one method definition with a static call.
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Abstract

Java is becoming an important programming language
for parallel and distributed computing. Large scientific
problems are increasingly being implemented using mod-
ern programming languages such as Java. One application
area is simulation code for hardware in the loop simula-
tions, written in Java. We have designed an automatic par-
allelization tool that at compile time can schedule a pro-
gram written in a subset of Java to parallel code to be exe-
cuted on a multi-processor architecture. In the current im-
plementation we consider Parallelization of Java methods
with side-effect free, sequential code. Such code often exist
in numerical simulation code. This paper gives an introduc-
tion to our work within this area, and identifies problems
with static scheduling of such Java programs.

Keywords: Java, Multi-processors, Scheduling, Simula-
tion

1. Acknowledgments

This work is performed in the JOSES project, supported
by EC in the IST program.

2. Introduction

Java is a modern object oriented language that is becom-
ing wide spread not only in general software development
areas, but also in embedded systems and parallel and dis-
tributed computing. There are also several attempts to use
Java for high performance computing [1]. Another emerg-
ing area for Java is software in embedded systems.

Embedded systems requires that the software can be op-
timized to fully exploit the capacity of the limited hard-
ware. Therefore, there is a great need for new and inno-
vative optimization methods, both for optimizing speed of

the program, as well as memory consumption. For com-
putationally heavy programs with short deadlines in an em-
bedded systems, there is also a need for parallel execution,
using a multi-processor architecture. A typical application
can be hardware in the loop simulations, where an embed-
ded systems sometimes is a requirement. Such applications
are studied in another EC project, called RealSim, where
research within the field of real-time simulation for multi
physics is conducted [3, 2]. An industrial application from
ABB, used in the Realsim project, is hardware-in-the-loop
simulation of power electronics in an electrical train, with
extremely hard real time requirements, with response times
down to 40 us.

To be able to meet hard real time requirements, often
found in embedded systems, automatic parallelization of
Java programs is needed. In this paper we explore the pos-
sibilities of building such a tool for a subset of Java. Our
tool should parallelize a Java method, containing side-effect
free, sequential code. Such code is commonly used in sim-
ulation code for hardware-in-the-loop simulations.

The automatic parallelization tool parses a Java program
and produces a task graph, G = (V,E). Ataskv € V' is
defined as an arithmetic operation, or a function call, etc.
Each Edge (e € F) imposes a data dependency on the
tasks. For instance, the following code:

float calc(float a, float Db,
float ¢, float d)

Exception e;

float x,vy,z;

try {
x = b*d + foo(a*c);

} catch (Exception e) {
dump_errormsg () ;
exit ();

}

y = bar(fie(c+d),a);

if (y==0) {



z = foo(a);
} else {
z = fie(x);

}

return z;

}

will produce the graph depicted in figure 1. Nodes for repre-
senting if statements, i.e. control flow, are collected as one
task, but we still represent the internal structure (also using
a data dependency graph) of the if statement. The exam-
ple also shows that we disregard exception handling, even
though this is an important feature of the Java programming
language. However, this can be added later in the imple-
mentation. There are some issues to deal with when allow-
ing exceptions. For instance, can we throw an exception on
one processor, and catch it on another processor.

ifStart

ifEnd

Figure 1. An example graph of a DAG.
A scheduling algorithm also needs an execution cost

e(v) for each node v € V and a communication cost ¢(e)
for each node e € E.

3. Related Work

A large number of static and dynamic scheduling and
partitioning algorithms for scheduling of task graphs to a

multiprocessor system are presented in the literature. Some
of them use a static technique called list scheduling [4, 7,
10, 6, 5, 9]. A list scheduler keeps a list of tasks that are
ready to be scheduled, i.e. all its predecessors have already
been scheduled. It selects one of the tasks in the list, by
some heuristic, and assigns it to a suitable processor.

Another technique is called critical path scheduling [11].
The critical path of a DAG is the path having the largest sum
of communication and execution cost. The algorithm calcu-
lates the critical path, extracts it from the DAG and assigns
it to a processor. After this operation, a new critical path
is found in the remaining DAG, which is then scheduled
to the next processor, and so on. One property of critical
path scheduling algorithms is that the number of available
processors is unbounded, because of the nature of the algo-
rithm.

A third class of scheduling algorithms is the task dupli-
cation scheduling algorithms [11][8]. These algorithms rely
on task duplication as a means of reducing communication
cost. However, the decision if a task should be duplicated or
not introduces additional complexity to the algorithm, push-
ing the complexity up in the range O(v?) until O(v*).

4. Scheduling of Java Programs

After parsing Java programs (or programs written in a
subset of Java) and building the task graph(DAG), we need
to add costs to the graph. Each node v € V is assigned an
execution cost. This means that we must be able to estimate
the execution time for each expression in the Java program.
For arithmetic expressions, this is trivial, but for functions
and loops, it can be a bit more complicated.

The execution cost for a function can be estimated by
summarize the execution cost of all statements in the body
of the function, and adding a constant execution cost for the
actual calling of the function. Recursive functions are not
considered in our tool, i.e. they are not part of the subset of
Java that we are targeting.

The execution cost of a loop can be easily calculated if
the loop iterator is known. However, if the loop iterator is
unknown at compile time, we need to estimate the execution
cost of the loop. Here we can use several approaches. First,
we can allow annotations to the Java program, informing
the compiler of the maximum number of iterations for each
loop having an unknown iterator. Another approach, suit-
able in for instance simulation code, is to use profiling in-
formation to determine the execution cost for a node. By ex-
ecuting the program and measure the time each loop takes,
we can use that information as an approximation on each
loops execution cost.

The scheduling algorithm also needs a communication
cost associated with each edge ¢ = (v1,v2) € E. This
cost is proportional to the communication time for sending



a message from task v to task vq if v and vy are scheduled
on different processors. If they are scheduled on the same
processor, the cost is assumed to be zero. As a simplified
model, we can have a cost proportional to the amount of
data to send.

We have deeply investigated an algorithm for scheduling
of task graphs called TDS. It is a critical path scheduling
algorithm with task duplication, that produces optimal re-
sults, given some constraints on the graph. This constraint
relates the communication costs and the execution costs of
join nodes, i.e. nodes having more that one predecessor.
And the optimality constraint is fulfilled if the task graph
is coarse grained, The complexity of the TDS algorithm is
O(v?), where v is the number of tasks. The TDS algorithm
can not guarantee a fixed number of processors used for a
particular problem. Early implementations of our tool indi-
cated that such a scheduling algorithm needs a second phase
for limiting the number of processors to a fixed number.

One problem with the TDS algorithm is that it can only
guarantee optimality given a certain constraint [11]. This
constraint is somewhat related to the granularity of the task
graph. Therefore, for a practical use of the TDS algorithm,
it is necessary to cluster tasks into sufficient sized grains
(several tasks) prior to scheduling.

Another problem with the TDS algorithm is that it can
not guarantee a limit on the number of processors needed
for a specific problem. This is due to the nature of the algo-
rithm, where in each iteration the critical path of the graph
of non-scheduled nodes is extracted and assigned to a pro-
cessor. One solution to this problem is to have a second
phase after the TDS algorithm that merges task lists, thus
reducing the number of needed processors. This is repeated
until the actual number of physical processors is met.

The strength of the TDS algorithm is the low complex-
ity, combined with the optimality. However, if the task is
fine grained or if the amount of physical processors is ex-
ceeded for a given task graph, the optimality is no longer
guaranteed. In these cases, we believe that the TDS algo-
rithm combined with a pre clustering phase that increase the
granularity of the task graph can produce good results, com-
pared to other scheduling algorithms of higher complexity.

5. Implementation

‘We have implemented a framework for an automatic par-
allelization tool that currently parses c-code with additional
macros, specific for simulation code. This is similar to the
subset of Java mentioned earlier in this paper. However, in-
dications from early results showed that the two problems
discussed in section 4, namely grain size and number of
processors needed, have to be addressed.

The number of processors problem has been solved in
the current implementation by merging tasks lists. A selec-

tion criteria is needed for selecting two task lists (proces-
sors) for merging. Possible criterias for merging are load
balancing, and communication cost.

One naive approach is to merge the two lists (processors)
that have the maximum communication cost between each
other. This approach does not guarantee any load balancing,
and might give poor result.

Another approach could be to only look at load balanc-
ing when merging task lists. This can however produce too
much communication overhead.

A third approach is to merge the two task lists (proces-
sors) with the earliest finish time, thus ensuring that the ex-
ecution time of the program will not increase. This will of
course only be true if the total execution time is larger than
the execution time for the merged task list.

6. Future Work

Ongoing work includes adapting the current framework
for Java code. This means that the tool should read Java
programs, and generate Java programs using MPI, like for
instance JavaMPI [1].

The current investigations and adaptions made on our
parallelization tool are suitable for simulation code, con-
taining a large number of simple arithmetic expressions,
which makes the granularity of the task graph for such code
small, i.e the tasks are small compared to the communica-
tion cost. This may not be the case for numeric computa-
tional sequential code, written in Java. For Java programs,
method calls in the sequential code is more frequently rep-
resented. Thus, the task granularity is more spread. This
can for instance affect the choice of which pre clustering
approach is taken, and also how to merge.

Future extensions of the automatic parallelization tool is
to introduce dynamic scheduling, to solve problems where
the task execution and communication costs can not be de-
termined at compile time. Dynamic scheduling can also be
more useful when we have applications that contain a large
proportion of control dependencies.
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Abstract

Analytic cost estimation is a valuable aid to assess the effect of various machine and
mapping parameters on program performance. Cost estimation is either based on a model
of the parallel algorithm or on a model of the actually generated machine code. Especially
in case of a distributed-memory system the difference in abstraction is large. In this paper
we study the trade-off between analytic cost estimation at high (program) level and low
(machine) level. We show that, despite its high abstraction, program level cost estimation
provides the best prediction quality. This approach is implemented in a cost estimation
engine within a compiler for Spar, a parallel Java dialect.

1 Introduction

In parallel/distributed embedded systems programming performance prediction plays an im-
portant role, either to predict the effects of a particular design choice, or to diagnose the cause
for some observed performance behavior. Especially in the case of distributed-memory architec-
tures mapping the program to the machine includes task and data placement which significantly
complicates the mapping problem.

Symbolic performance modeling is an analytical technique concerned with mapping a pro-
gram into an explicit, algebraic expression in terms of the program and machine parameters of
interest, that typically predicts the execution time. An important benefit of symbolic perform-
ance models is that they offer analytic information regarding the complex interplay between the
various program and machine parameters involved (e.g., problem size, task/data partitioning
parameters, number of processing and/or communication resources, interconnection paramet-
ers). Another important benefit of symbolic performance modeling is that the resulting model
has minimum solution cost, both in space and time. Especially in view of the large problem
and /or system dimensions involved in embedded parallel processing, ultra-low prediction cost is
essential for performance models to be of interest in interactive performance evaluation and/or
optimization. The trade-off, compared to alternative estimation techniques based on queuing
models, Petri nets, and Markov models, and, of course, simulation, is that the symbolic models
generally have a limited accuracy. However, when applied at the first stages of program design
where a user is more interested in quickly finding his/her way in the multi-parameter design
space than in percent level prediction accuracy, symbolic cost estimation is the preferred option.

A fundamental issue in parallel program performance prediction is at what intermediate level
program modeling should be performed. We distinguish between two modeling levels, namely the



program level and the machine level. The program level, i.e., the level at which the (intermediate)
program is still expressed in terms of the original source level, is attractive because at this level
the original control flow parallelism is still visible (allowing better analysis [3]), while at the
same time, there are better chances for compiling cost estimates that have a reasonable source
level interpretation. At the same time, however, many aspects relating to the behavior of lower
level transformation (optimization) engines must be predicted which is inherently difficult. On
the other hand, the machine level, i.e., the level at which the code has already been transformed
in terms of the SPMD message-passing machine interface, offers the opportunity of deriving
cost estimates of the actually generated code, potentially gaining prediction accuracy. A serious
drawback, however, is that symbolic cost estimation is not amenable to the message-passing
paradigm. Consequently, the gain in prediction accuracy cannot be realized. Moreover, due to
the various code transformations, cost estimation with any form of source level interpretation is
practically infeasible [8].

In this paper we study the trade-off between performance modeling at program and machine-
level in the context of symbolic cost estimation for message-passing architectures. More spe-
cifically, we demonstrate that the choice for machine-level modeling inhibits the use of symbolic
prediction techniques. We also show that, despite the abstraction, program-level symbolic pre-
dictions can indeed be derived that account for the most significant performance effects that
occur in the actual message-passing SPMD code. At first glance, this result may seem somewhat
counter-intuitive. Yet it underlines the great potential of program-level prediction, provided the
right symbolic cost modeling methodology is used.

In Section 2 we present this modeling methodology, which is based on a concept called
contention modeling. In Section 3 we demonstrate the effectiveness of this methodology when
applied at program level in contrast to machine level cost estimation. In Section 4 we describe
an implementation of our methodology in a parallel Java compiler. In Section 5 we summarize
our work.

2 Symbolic Cost Estimation

In this section we introduce our cost modeling approach which is based on the PAMELA (Per-
formAnce ModEling LAnguage) methodology [5]. More specifically, we focus on the PAMELA
subset for which symbolic, closed-form cost estimations can be derived. Though the formalism
and associated cost estimation technique is described at length elsewhere [4], for convenience of
reference we will briefly summarize the technique in Section 2.1. In Section 2.2 we describe our
specific modeling approach called “contention modeling”. In Section 2.3 we present the rationale
behind our approach.

2.1 Modeling Algebra

The language subset we consider comprises a process algebra based on sequential, parallel, and
conditional composition operators. The algebra features binary infix operators to describe se-
quential composition (’;’), and fork/join-style parallel composition (’||’). Sequential and parallel
replication are expressed by seq and par prefix operators, defined by seq (i = a,b) L; =
Ly ; ... ; Ly and, similarly, par (i = a,b) L; = L, || ... || Ls- The algebra also features if and
while operators which are defined in the usual way.

While the condition synchronization [2] (CS for short) provided by the above operators
allows for the expression of any series-parallel (SP) computation structure, mutual exclusion [2]

2



(ME for short!) can be specified by the use construct, like in use(r,7) where the invoking
process exclusively acquires resource 7 (FIFO without preemption, non-deterministic conflict
resolution) for 7 time (excluding possible queuing delay). In fact, any time delay associated
with spending cycles (i.e., work) in a computation is expressed (i.e., charged to some resource)
by use statements. A resource s can have a multiplicity, denoted |s|, that may be larger than 1.
Like in queuing networks, it is convenient to define a resource p such that |p| = 0o, usually called
infinite server. Instead of use(p, 7) we will simply write delay(7). Unlike the use operation, a
delay operation will never entail additional queuing delay on top of its programmed delay.

As a simple example, consider the PAMELA model (by convention denoted L), of some parallel
computation described by the following process expression L = par (p = 1, P) use(cpu(p), 7p)
where cpu; denotes processing resource number ¢ and 7, models its workload. If cpu () is unique
(e.g., a mapping f(p) = p), L represents a time delay equal to T' = 7y max...max 7, as each
use statement runs in parallel. In contrast, however, if f(p) = ¢ (i.e., constant, each process
is mapped to the same CPU), it follows T = 71 + ... + 73, as a result of the serialization of
the N parallel requests due to ME. Although PAMELA features more operators our approach to
modeling parallel computation will be essentially expressed in terms of par, seq, and use.

A PAMELA model L can be directly executed which corresponds to performance simulation.
However, the highly structured operators for both CS (par, seq) and ME (use) enable a simple,
compile-time analysis technique where PAMELA models are compiled into symbolic cost models
through a completely mechanical procedure. Due to the non-determinism that arises with ME,
the time cost of computations in which ME plays a role is typically stochastic. Aimed to provide
a low-cost, analytic (i.e., deterministic) estimate, the analysis algorithm computes a lower bound
which in some cases entails a prediction error. The specific advantage of the estimation algorithm
compared to conventional techniques (static analysis, complexity analysis), however, is that the
estimation error of T' is bounded. Theory and experiments show that the average estimation
error due to the synchronization effects is less than a constant factor 2, regardless of the type
of parallel computation (as long as it can be expressed in terms of our process algebra), while
in most cases the average error is well within tens of percents. Although applied in the sequel,
due to space considerations the cost estimation algorithm itself is not described in the paper.
Details can be found in [4].

2.2 Contention Modeling

A classical example in performance modeling is the machine repair model (MRM) [9] in which
P clients either spend a mean time 7; on local processing, or request service from a server s
(s = 1), with mean service time 75, for a total cycle count of N iterations. Both time delays are
typically stochastic. The PAMELA model of the MRM is given by

L=par (p=1,P)seq (i =1,N) {delay(n;) ; use(s,75)}

in which the exclusive service is expressed by the use operation applied to the passive resource s
that represents the server. Note that in our modeling approach the server is a passive resource.
The ME arising from sharing the resource is modeled in terms of contention, rather than com-
munication. (In a message-oriented approach s is modeled by a reactive process.) Hence, we

1 CS represents the static form of process synchronization, while ME represents dynamic process synchronization
(“contention”).



have coined our modeling approach contention modeling?. We will discuss the disadvantage of
the alternative, message-oriented approach later on.

Despite the advantages in analytical sense as described earlier, it would seem that the con-
straints imposed by the highly structured synchronization operators entail a drastic reduction in
modeling power. For example, the SP restriction with respect to CS would make it impossible
to model a fundamental parallel computation schedule such as pipelining. However, the use of
contention modeling does allow pipelining to be expressed in terms of our cost modeling frame-
work. Consider a pipelined computation involving N data sets processed by an S stage pipeline
(e.g., vector unit, packet-switched communication pipeline, software pipeline). In a message-
oriented paradigm each pipeline unit would map to a process that would synchronously receive
a data set, process it, and send it to the next unit. In contention modeling, however, the entire
computational process is expressed for each data set. Each data process is executed in parallel
and contends for each unit in the course of its propagation through the pipeline. The PAMELA
model is given by

L=par (i=1,N) seq (s =1,5) use(us, 7)

where u; denotes the resource corresponding to stage s, and 7, denotes the associated processing
time (cycle time) per unit. The above model correctly accounts for both startup delay as well as
the bandwidth of the pipeline. Note that, while the absolute order in which data is processed is
left undetermined, the time cost prediction is always valid. Application of the earlier estimation
algorithm (including optimizations [5]) yields the exact result T'= (S + N — 1)7.

Notice that in our contention modeling paradigm the pipeline can be conveniently expressed
as an SP model based on the use of ME, whereas a usual description of all the task precedences
merely in terms of CS would necessitate a non-SP description (which is not amenable to our
cost compilation algorithm). Hence, the example is a typical illustration of the modeling power
of the contention modeling technique. It should be stressed that contention modeling is not
some contrived way of describing parallel computation. It essentially expresses (and preserves)
the potential parallelism that exists within the algorithm independent of the actual machine
implementation, where ME models the specific resource limitations. This separation of algorithm
and machine offers a portable way of modeling.

2.3 Rationale

The choice for the high-level, contention-oriented modeling paradigm in PAMELA is motivated
by the fact that message-oriented models are not amenable to symbolic cost estimation. This is
why symbolic cost modeling is best applied at program level where the programming model is
still a shared-memory model instead of at the message-passing machine level. We illustrate the
fundamental problems involved with analyzing message-passing models with a simple example.
Recall the MRM. In a message-oriented paradigm, both clients and server would map to processes
that communicate (and synchronize) using message-passing constructs. Consider a message-
oriented version of PAMELA based on the use of a CSP-like scheme [6] using synchronous send
and receive operators combined with a selective communication construct (’0’) to achieve
scheduling non-determinism. Let L,, p = 1,...,P denote the P client processes and let S
denote the server. The MRM is then modeled by the following set of process equations

®The original terminology material-oriented modeling, and its dual, machine-oriented modeling, stem from the
domain of simulation of, e.g., plant production lines [7]. We feel that the application of the material-oriented
paradigm in the specific domain of parallel programming justifies using the distinct name “contention modeling”.
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L= S| {par (p=1,P)seq (: =1,N) {delay(n;) ; send(S) ; receive(S)} }

S = while (true) {
receive(L;) — delay(7;) ; send(L;) O
receive(Ls) — delay(7s) ; send(Ly) O

receive(Lp) — delay(7;) ; send(Lp)

}

By the way, note that in this model the mutual exclusion at the server (implicitly) results from
the single thread of control within S while the required non-determinism results from the ‘0’
operator.

In contrast to the contention model, for the above CSP-type solution there exists no gen-
eral, automatic analysis scheme that produces a useful symbolic cost estimate. Especially when
message-passing models become complex, it is impossible to efficiently deduce the critical syn-
chronization path that now actually runs across multiple processes. The problem is due to the
explicit use of a non-deterministic operator (O), in combination with providing separate con-
structs for sending and receiving which might lead to non-SP structures. In contention modeling,
CS and ME are kept orthogonal, both in terms of single, high-level operations. Consequently,
the need to first “reverse engineer” to a higher level model (impossible in a mechanized scheme)
is completely avoided.

This property of the message-oriented modeling paradigm implies that program code ex-
pressed in terms of a message-passing architecture cannot be symbolically analyzed in terms of
closed-form expressions. This is essentially the rationale for choosing a program-level contention
modeling approach for deriving program optimization logic. Another striking example of the
problems associated with analyzing message-passing code is described in the following section.

3 Case Study

In this section we will study a simple distributed-memory application kernel in order to demon-
strate the prediction problems associated with the choice of a machine level as the basis for
performance feedback. Consider the simplified line relaxation algorithm fragment [1] applied to
an N x N matrix A in which the relaxation sweep direction is in the 7 direction (see Fig. 1). In

—J —J

weziern A

A[l’J] = A[l_l’J] + A[1+1’J];

j-partitioning i-partitioning

Figure 1: ADI algorithm and data partitioning choices.

the parallelization for a P processor distributed-memory machine we shall consider the choice
between two regular block partitioning strategies, i.e., either on the j axis or along the 4 axis (a
choice, by the way, that is clearly trivial from a human point of view). The j axis partitioning
does not introduce any problems and the machine level code clearly reveals the O(P) speedup



involved. The 7 axis partitioning, however, introduces prediction problems when modeled at
machine level.

The SPMD code in the 7 partitioning case is characterized by the following pseudo code
(following the usual “owner-computes” convention including a number of trivial index optimiz-
ations), where p denotes the processor index and L and U denote the processor-specific index
bounds (U(p) — L(p) = O(N/P)). Note that the original (shared) data indexing is used for
readability.

if p>0
send(p-1,A[L(p),:1);

ifp>0 // get A[L(p)-11[:]
recv(p-1,tmp_1);

else
tmp_1 = A[0,:];

if p<P // get A[U(p)+1]1[:]
recv(p+1,tmp_u);

else
tmp_u = A[N-1,:];

for i = L(p) .. U(p) { // update partition
if i = L(p)

for j =0 .. N-1
Ali,j] = tmp_1[j1+A[i+1,j]1;
if i > L(p) and i < U(p)
for j =0 .. N-1

Ali,j] = A[i-1,j]1+A[i+1,5];
if i = U(p)
for j =0 .. N-1
Ali,j] = A[i-1,j]+tmp_ulj];
}
if p<P

send(p+1,A[U(p),:1);

In this example, we will ignore the fact that the 5 loops can be vectorized.

The above SPMD code illustrates the difficulties involved when compiling generated SPMD
code into a symbolic performance model. Although the local bounds on the i loop are reduced by
a factor P (as in the j-partitioning), and therefore suggest O(P) speedup, in reality the SPMD
code has no speedup at all. This is due to the communication scheme, which totally serializes the
entire computation (all but the first processor initially block at the recv statement). As discussed
in Section 2.3, however, especially in a symbolic analysis it is generally hard to deduce that the
the critical path now runs through each individual SPMD process (note that the serialization
phenomenon is even hard to notice for humans).

Clearly, the critical path that is obscured by the above message-passing implementation
is nothing but the result of the explicit sequential ¢ loop at program level. Consequently, it
is much more attractive to consider a modeling approach at algorithm level (program level)
than at implementation level (machine level). In order to abstract from the actual partitioning
implementation (either for shared-memory or distributed-memory systems) we model the original
computation with its full (potential) parallelism while each mapping decision is expressed in
terms of a contention model. In fact, we will used the same contention modeling approach as in
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the vectorization example where the potential parallelism of the vector operation is expressed
while the machine resources determine the actual parallelism.
The performance model of the algorithm is then expressed according to

Lypr=seq (i=1,N —2) par (j =0, N — 1) update(, j)

where update(i, j) denotes the update of element A;;. Let the mapping function p (4, j) denote
the processor resource responsible for the update of A;;. Then the model of update is given by

update(i, j) = use(cpu,( jy, Tr)

where 7; denotes the computation time associated with the update of A;; (in this example we
ignore communication delays for simplicity). Note, that this represents a “processor contention
model”.

Based on this model, the evaluation of both partitionings is straightforward. For the i axis
partitioning it holds u(i, j) = i/B. Consequently

Lypr =seq (7’ =1L,N - 2) par (.7 =0,N — 1) use(cpui/Ban)

which, in contrast to the actual SPMD code, directly reveals the algorithm’s sequential nature
and the absence of speedup. Indeed, L directly compiles to T'= (N —2)Ny. Thus by exploiting
the algorithm’s inherent sequential semantics present in its original description, from a simple
cost estimation it directly follows that in the present algorithmic form an ¢ axis partitioning will
not yield any speedup. In contrast to the SPMD implementation, the inherent sequentialism is
easily detectable. Clearly, at this point the potential accuracy benefit from modeling at machine
level is hardly relevant.

The line relaxation case study illustrates the advantage of the contention modeling approach
when applied at program level in order to express compile-time (i.e., symbolic) optimizations.
Although the approach cannot deal with message-passing programs, the information contained
at the high, shared-variable level captures the high data mapping sensitivity of the application,
which is totally blurred at the lower, message-passing level anyway. Of course, there are cases
where the choice to abstract from the actual message-passing implementation may induce a
considerable error as the low-level code generation model is not included in the cost model.
For instance, a naive message-passing code generation model could completely sequentialize
an inherently parallel operation3. Clearly, the above prediction method will not take this into
account (although inherent sequentializations at algorithmic level would still be accounted for, of
course). Note, however, that the focus of our approach is towards predicting the effects of user-
level code and/or data mapping decisions, rather than capturing performance idiosyncrasies
of an underlying compilation model that does not properly implement a source program of
which the code and data mapping degrees of freedom have already been determined by a user.
A mature code generation model must therefore be assumed, e.g., which does not introduce
such pathological schedules as in the above example (note that a simple inspector/executor
implementation would already solve the problem just mentioned in the footnote).

3For example, consider a simple computation y; = f(x;—1) where each element of z and y are mapped onto
a separate processor (z and y aligned). A naive, scalar “owner-computes” scheme in which each processor
(sequentially) traverses the entire index space in the positive i direction will completely (and unnecessarily)
sequentialize the computation.



4 Implementation

Our program level cost estimation approach is being implemented in the cost estimator engine
(or CE for short) which is integrated in the Delft University Spar compiler. Spar [12, 11] is a
Java derivative that extends Java with language and annotation (pragma) constructs to enable
parallel computing on both shared-memory and distributed-memory architectures.

The CE interfaces to the Spar compiler in the following way. The Spar compiler front-end
parses a Spar file, producing an intermediate representation expressed in terms of the intermedi-
ate language Vnus [10]. The CE interfaces at the Vnus level, before the transformation towards
the SPMD message-passing machine interface has been performed. This essentially reflects our
program level approach. The cost estimation approach is depicted in Figure 2. The CE engine

myprog.spar myprog.pam ce_myprog.c
— ) - ) 5 —_
— modeling - analysis —
— e — T —
p— z
A
Gpp .pam
modeling =
e |

Figure 2: CE Approach

can be divided into the following two modules:

e A modeling module in which a Spar program (myprog.spar) is transformed into a PAMELA*
model (myprog.pam). Based on the processor type pragma in the Spar program that des-
ignates the specific PAMELA* machine model(s) to be used, the program model contains
an include statement referring to the corresponding machine model (Gpp . pam), effectively
yielding a complete PAMELA* model of the application. The machine model is to be sup-
plied by the user according to a pre-specified interface format. As the PAMELA* language
has been chosen as interface formalism between the application and the actual CE analysis
engine, machine model coding is performed in the PAMELA* language itself, which makes
coding straightforward [5].

e An analysis module in which the PAMELA* model is transformed into a symbolic cost
model [3]. The analysis is performed by a PAMELA* compiler that has been developed as
a stand-alone tool. The application cost model is exported to a parameterized C function
(as in the figure), and/or a Maple file to allow the user to perform interactive parameter
(e.g., mapping or scalability) studies.



5 Conclusion

In this paper we have studied the trade-off between modeling at program level and machine
level in the context of symbolic cost estimation for message-passing architectures. Despite the
abstractions involved, we have shown that program level modeling is to be preferred for symbolic
cost estimation, provided this method is used in conjunction with a modeling technique called
“contention modeling”. We outlined this modeling technique in terms of the PAMELA language,
which is specifically tailored to this way of modeling, and which automatically produces low-cost,
symbolic time cost expressions to guide the algorithm design and mapping process.
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Summary

The high memory consumption and the low speed of current Java
implementations have prevented the wide-spread usage of Java for
embedded systems. In the JOSES research project a highly optimizing
Java compiler is implemented to overcome these problems.
Optimizations have been designed to deal with the overhead of
dynamic method invocation, object representation, pointer de-
referencing and automatic memory management. Special attention is
paid to effective usage of the data cache.

1 Introduction

Java is a powerful and sophisticated language that offers many software engineering advantages. Some of these
advantages, ease of maintenance, re-use of components and portability, are especially important for the
embedded systems market, because of the rapid succession of hardware components. However, Java has hardly
been used in this market segment, because current Java implementations do not provide sufficient speed or
consume too much memory. The JOSES project investigates whether sophisticated compilation techniques can
solve this problem, i.e. whether a state-of-the-art Java compiler can generate code that is efficient enough in size
and speed to make the usage of Java for embedded systems attractive.

The JOSES project is an example of fruitful cooperation between academic and commercial partners. The
object-oriented features of Java require the development of new and complicated optimization techniques. For
such developments the freedom and stimulation of the academic world is most suitable. On the other hand the
tuning and realistic evaluation of such techniques require access to an efficient and flexible compilation system.
A consortium was therefore formed consisting of Europe's leading compiler technology manufacturer, ACE
Associated Compiler Experts, and some of the best academic compiling groups in Europe: Universitit des
Saarlandes, Universitit Karlsruhe, LinkSping University and Technical University Delft. To keep the
researchers focussed on commercially relevant optimizations two companies, Philips and Ericsson, were added
to the consortium in the role of end-user.

The JOSES project has been funded as an ESPRIT long term research project by the European Union (EP
28198). It started at the beginning of 1999 and will end in the middle of 2001. About 20 people are involved and
the total budget is the equivalent of 17 person years.

The JOSES project entails more than can be described in this paper. An important part of the project not covered
in this paper investigates the introduction of parallelization constructs into Java and the efficient compilation of
these. A sophisticated symbolic cost estimator is also under development, that generates an analytic cost model
of the parallelized Java program. The cost model is to be used by the parallel programmer to assess the
performance effects of machine parameters such as the number of processors, computation and communication
bandwidth, etc., and to predict the effects of different code and data mapping schemes. All of this work is
especially relevant for heterogeneous multiprocessors on embedded systems. Further information on this exciting
work can be found in [Gemu94], [GeGaO1] and [RDKSO00]. The use of multiprocessors is also investigated in a
project task that investigates the automatic partitioning of sequential programs into tasks [ArFrO1].
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The JOSES Java compiler is being developed with ACE's proprietary CoSy compiler development system (see
//www.ace.nl and [AAS94]). The power of CoSy is that it unifies compilers for many different source
languages and many different target processors. This unification is achieved by providing an integrated set of
front-ends and back-ends. Each front-end translates a particular source language to one rigidly defined common
Intermediate Representation (IR). Each back-end translates the IR to code for a particular processor target. The
power of the compiler is greatly enhanced by a large collection of analyzing and optimizing engines: analyzers
merely deposit information into the IR, while optimizers actually transform the IR. Since these engines all work



on the IR, they are available for every combination of source language and target processor. Despite the power
and complexity of the total CoSy system it is easy to add new source languages, target processors or optimizers.
This is facilitated by the use of task-specific generators for the intermediate representation, the engines and their
interfaces. An important task of these generators is to enforce strict modularization rules.

The figure shows the main components of the JOSES compiler. Rectangles depict formalisms (languages),
ellipses depict engines, i.e. software components working on these formalisms, and the pentagons depict
generators. The Java front-end is generated from a specification in the formalism Natural Semantics by the RML
generator developed by the University of Linkdping. There are different levels of IR. Java is first translated to an
object-oriented IR, called OMIR. On this level a number of analyzing and optimizing engines work, most of
them generated by the PAG Program Analyzer Generator [Mart98] developed by the Universitit des Saarlandes.
Certain optimizations require a Static Single Assignment view of the OMIR, called the SMIR. The LowerOO
engine transforms the OMIR into the common IR (CCMIR). At this level the cache optimization engines work as
well as all the standard analyzers and optimizers available in CoSy. Currently the JOSES compiler is tested for
two target processors, SPARC and TriMedia, but other code generators can be added easily.

The generated code is linked with the standard class library from SUN (interfaced through JNI) and a small
JOSES-specific run-time system. The latter provides multi-threading support and contains a special real-time
garbage collector that prevents unbounded interruptions.

3 Object-Oriented Optimizers

Most of the performance and memory consumption problems of Java are due to its object-oriented nature or to
its automatic memory management (garbage collector). In this section we describe the optimizers that are
developed in JOSES to deal with these problems. All of these optimizations improve the performance, while
most of them reduce memory consumption as well.

3.1 Static Method Invocation

Since Java is a pure object oriented language, all (non-static) method invocations are dynamically dispatched.
Unfortunately, dynamic dispatching imposes direct run-time cost: the time spent in performing the dispatch and
the memory for storing the data structures that are needed to perform the dispatch. There are indirect costs as
well due to lost opportunities for in-lining and inter-procedural analysis. Furthermore, the object-oriented style
of programming tends to distribute code that would have been a single procedure in traditional languages across
multiple procedures. As a consequence, methods have small bodies which hampers traditional intra-procedural
compiler optimizations. Even more important, the object-oriented style results in substantially more method
invocations than the traditional, imperative style of programming. Thus method invocation is one of the major
sources of inefficiency. If it can be determined statically that a specific method call will always result in the
same procedure call, the method call can be resolved statically. This not only avoids the overhead of dynamic
dispatching, but also creates opportunities for inter-procedural optimization.

In JOSES two alternative methods have been implemented to enable static method invocation.

e The first one starts with a conservative control flow graph constructed by using Rapid Type Analysis
[TiPa00]. It then statically evaluates the program using data flow analysis and computes for each variable
the object-types this variable may hold at run time. If a method call results in the same method being called
for all of these object-types, the call can be replaced by a direct procedure call. This engine has been
generated by the generator PAG [Mart98]. To enable the inter-procedural analysis for PAG a Call Graph
Construction Engine has been implemented.

® An alternative way to determine statically the possible targets of method calls is Control Flow Analysis.
CFA traces the sets of classes a variable may point to by formulating a set of constraints for each method
invocation and by computing the least solution of this set. Usual CFA implementations generate conditional
constraints. The CFA engine built in JOSES replaces these conditional constraints by macros that are
evaluated when the system is solved. This promises to be a fast and scalable approach.

These methods are two different ways to look at the same problem. The first one starts by computing a

(conservative) control flow graph and tries to eliminate edges from this graph. The second one starts with no

inter-procedural edges at all and only introduces edges to really callable methods at call points.

A full description of this work can be found in [DePr01] and [ProbO1].

3.2 Representation Analysis

Since Java is a pure object-oriented language, all data structures have to be represented by objects. Objects can
only contain primitive data types or references to other objects. Furthermore, objects contain additional
information, for instance about the class of the object. Thus, representing classical data structures (lists, trees,
queues) by objects may introduce a lot of overhead, both in terms of memory consumption and runtime. Object
creation is slow, and access to non-primitive components always has to follow reference chains. Therefore, one



should seek for more compact representations of aggregate objects that decreases memory consumption and
accelerates access to components.

Representation analysis (also known as unboxing) has been devised and successfully applied to the
implementation of functional languages. In JOSES this work is extended to object-oriented languages. The
optimization that is pursued is called object in-lining. The ObjectInliner is a composite engine that searches for
fields of objects that are in-linable, i.e. that can safely be replaced by the object itself. It consists of a large
number of small engines, many of which have been generated by PAG. They compute which variables in which
statements may have live alias. On the basis of this it detects which object fields and which stores are candidates
for in-lining. This set of candidates has to fulfill certain restrictions. By formulating this as an optimization
problem (with the total number of in-lined fields as cost function) the dynamic equation solver is used to arrive
at an optimal solution. If necessary objects are cloned to relax certain constraints. A full description of this work
can be found in [LaudO1].

3.3 Static Garbage Collection

In an object-oriented program a large fraction of the execution time is consumed by the creation and destruction
of objects. Creation of an object requires the allocation of heap memory and destruction leads to the overhead
associated with garbage collection. If the life-time of an object can be determined statically, the overhead of the
garbage collection can be avoided by inserting an explicit de-allocation statement at the end of its life-time. This
we call static garbage collection. In some cases the overhead can be further reduced by allocating the object on
the stack. This is the case when the life-time of the object does not extend beyond the life time of the stack frame
in which it was allocated.

The StaticGC engine attempts to determine the life-time of each object. If successful the end of the life-time of
that object is marked and explicit de-allocation nodes are inserted in the graph. If it can also be determined that
references to that object cannot escape its creation context, the allocation of the object is marked as stack-
allocatable.

3.4 Cache Optimizations

Modern embedded processors use data caches to boost performance. The effect of data caches depends on
locality properties of the executed program. Typical embedded applications, such as image or voice processing,
have locality properties that could greatly benefit from the data cache. If these applications are programmed in
languages such as Fortran or C, the application programmer has the possibility to influence the cache
performance of his application, e.g., by choosing a specific memory layout for the crucial data sets. Hence,
these languages make it rather easy to code applications in a way that improves data cache utilization. When

Java is used, however, it is very difficult for the programmer to influence memory lay-out. Improving cache

efficiency is therefore an important function of the optimizing Java compiler.

The purpose of the analyzers and optimizers described in this section is to increase cache efficiency by reducing

either the proportion or the cost of cache misses. In JOSES the first method is used for accesses to arrays within

loop nests and the second one for dynamic data structures as graphs and lists.

e The proportion of cache misses for array accesses within loops can be reduced by either changing the
memory layout or by loop restructuring. Loop restructuring is complicated in Java programs due to the
abundance of exception handling code that prevents reordering of statements. JOSES therefore concentrates
on memory layout optimizations.

First a set of analyzers (labeled SmirOptArr) working on SMIR finds

® regular arrays, i.e. arrays of which the size in each dimension can be statically determined.

e regular loops, i.e. loop nests with statically computable iteration sets

e regular access patterns, i.e. accesses to regular arrays within regular loops with regular and statically
computable index sets

Since subsequent loop nests may have conflicting requirements for the memory layout, a cost based

optimizer determines the optimal layout for each regular array across all regular loops. This reduces the

overhead that would be needed to adjust the memory layout for subsequent loop nests with different

optimization requirements. A set of engines (labeled OptiCache) working on CCMIR implements this

transformation. The Local OptiCache engine proposes for each loop nest the best memory layout using

techniques such as padding, transposition, cache line allocation and merging. A Global Cost Optimizer picks

the optimal set of proposed optimizations, using the Cache Performance Estimator as a cost function.

e The second method to increase cache efficiency (reducing the cost of cache misses) can be achieved by
either prefetching or by load sensitive scheduling. The latter is not explored in JOSES, since it requires
sufficient Instruction Level Parallelism which is very scarce in object-oriented programs.

The SmirOptPre engine searches for an instruction that is likely to cause a cache miss and inserts a
prefetching instruction early enough in the execution path to ensure that the corresponding cache line is



loaded in time. This engine works for iterative as well as for recursive traversal of dynamic data structures
such as lists and graphs.

3.5 Real Time Garbage Collection

Objects of which the static garbage collection engine could not determine the life time have to be de-allocated by
the dynamic garbage collector. A copying or mark-and-sweep garbage collector interrupts the execution of a
program whenever there is insufficient free memory to serve an allocation statement and de-allocates all garbage
by traversing the entire heap. This is not appropriate in a real-time environment since it makes the execution time
of an allocation statement unpredictable. Predictable mark-and-sweep garbage collectors have been introduced,
but these consume extra memory. In JOSES garbage collection based on reference counting is adopted, since it
distributes the garbage collection overhead throughout the program: each creation or destruction of a reference to
a garbage collected object involves maintenance of the reference count. Redundant reference count updates are
removed by a peephole optimizer.

Although reference counting solves the problem of the unbounded execution time of an allocation statement, a
straightforward implementation would shift the problem to the de-allocation statement due to cascading de-
allocation (recursive decrement). When an object is de-allocated, the object is scanned for child references. The
reference counts of its children are decreased. If the reference count of any of the children falls to zero, that child
is also de-allocated. This makes the execution time of the de-allocation statement unpredictable. This problem is
tackled by not recursively de-allocating the child objects, but by adding them to fo-be-freed lists which are
processed during later allocation statements.

For objects that are accessible from multiple threads the reference count maintenance code has to be protected by
locks. It is currently investigated how this can be done efficiently.

A major drawback of reference counting is that it cannot remove cyclic data structures. In JOSES the application
programmer is responsible for breaking cycles when a cyclic data structure has to be removed. This task is
facilitated by a tool that finds all recursive classes. This tool can be extended to include shape analysis [WSROO].
Random allocation of heap may cause fragmentation of memory, which may significant increase memory
consumption. In JOSES such fragmentation is reduced by maintaining a set of free lists, each containing memory
regions of fixed size. Since using free lists is not suitable for large objects such as bit maps, an additional large
object region is used.

4 Validation

One of the advantages of using CoSy is that most of the engines used in the compiler are existing CoSy engines
that have already been validated in compilers for other languages. Only the engines specifically designed for
JOSES need to be validated. The correctness of the compiler including all the new engines is checked by
compiling, running and checking the output of a large number of Java test sets.

A first indication of the speed of the code generated by the JOSES compiler is obtained by running several
popular benchmark suites, such as SPEC JVM98.

A thorough study of the quality of the code (both with respect to speed as well as size) is made using two large
proprietary Java codes supplied by the JOSES partners Philips and Ericsson. The code from Philips is a
simulator for the 8051XA processor.

The code supplied by Ericsson [Hagg01] is a Java application that implements a small part of a Radio Network
Control system. The main component of the prototype application is a Base Station Controller (BSC) handling
simplified call setup and release. The BSC is implemented in Java and intended to run on a soft real-time
platform. It consists of approximately 5600 lines of Java code. The main work of the BSC is to handle call setup,
call release and handover of a number of simultaneous mobile calls. Each call is handled by a Java thread during
its lifetime. The BSC code will be appropriately instrumented so that factors such as communication cost and the
cost for task switching can be factored out of the measurements. As performance target has been chosen that the
JOSES compiler should produce code that is at least twice as fast as when using the Solaris HotSpot JVM.

5 Status and Planning

The different components of the compiler have been implemented in 2000 and the compiler with all its analysis
and optimizing engines has been configured in the Winter of 2001. Thorough testing and evaluation by the end-
user partners as well as tuning of the components is currently in progress. We expect to have benchmarking
figures available in the Summer of 2001. Those components that have proven to be commercially relevant will
be integrated in the CoSy product in 2002.
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Abstract

A BSC simulator has been benchmarked for the purpose of evaluating
Java implementations in the JOSES project. So far five implementations
have been evaluated: Sun’s JDK 1.2, Sun’s Java 2 SDK 1.3 with the
Hotspot Client and Server VM, Kaffe 1.0.6, and NewMonics’ Perc VM
3.0.1. No major performance difference was shown between these imple-
mentations. However, Kaffe showed a small performance lead.

More work remains to be done. The JOSES compiler (when it is
available) and some other Java implementations will be included in the
evaluation and the benchmark will be improved.

1 Introduction

This work is a part of the JOSES project, and its final purpose is to evaluate
the performance of the JOSES compiler for applications written by FEricsson.

The simulator application was written by an application design apartment
within Ericsson for the purpose of evaluating Java on TelORB (an Ericsson-
specific operating system). The application was also selected before Ericsson
SoftLab entered the JOSES project. Therefore, we started the work with the
following basic questions:

What to measure? A program that traced all network traffic was con-
structed. This helped us to understand how the simulator worked. The
BSC program keeps a record of the state of all communication channels
and handles channel allocation when a mobile phone wants to make a
call, and cell handover requests. The time that passes between an incom-
ing request (network message) arrives in the BSC and the corresponding
response is sent (over the network) has been recorded (see figure 2).

How to measure? This showed to be a surprisingly hard problem to solve.
The application sleeps most of the time, and when there is some CPU
activity, it typically lasts for less than one millisecond.

We tried two different approaches: By monitoring the network traffic,
and by using a UNIX microsecond-resolution clock, gettimeofday, through



Java Native Interface calls. We also realized that the process that is mea-
sured has to be scheduled in a POSIX real-time scheduling class (by using
sched_setscheduler) to get repeatable results.

A small client-server application was written to see how much time it takes
to just communicate over network sockets in Java.

Why this application? A real BSC is a huge application, and at Ericsson
such applications are not currently written in Java. The simulator was
chosen because it was assumed that it resembles a real BSC well enough for
the purpose of a performance evaluation; possibly after some customiza-
tion.

However, the BSC simulator does not do much CPU-intensive work and
therefore, is not ideal as a Java benchmark. It remains to add some
relevant CPU-intensive task of a real BSC.

Class loading has been removed from the BSC simulator to customize it for
the JOSES compiler. Unfortunately, the JOSES compiler was not ready when
this article was put together, but it will be included in this evaluation as soon
as it runs the application.

2 The BSC simulator application

The BSC simulator is accompanied with a MSC (Mobile Switching Center)
and one or more BTSs (Base Station Transceiver Systems), that communicate
with the BSC. Figure 1 below also shows some switching system components
that usually is used in conjunction with an MSC, such as the Visiting Location
Register (VLR) and the Home Location Register (HLR), but not included in
this simulator.

P (VIR | _
< BTs [+ Bsc — msc [{amsc]
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Figure 1: Typical GSM configuration

The Gateway Mobile Switching Center (GMSC) in the figure (which usu-
ally is just an ordinary MSC) connects the mobile network to other telephone
networks.

The simulator consist of about 10.000 lines of pure Java code. The BSC
application itself consist of approximately 5.600 lines of code.

The BTSs connect to the mobile phones (mobile subscribers) and each BTS
administrates the radio communication in the cell that belongs to that BTS.
A BSC administrates a number of BTSs and collects measurement data that is
used to decide when a mobile subscriber is to be moved from one cell (BTS) to
another within the area that the BSC administrates.



An MSC administrates a number of BSCs and is more oriented to telephone
services than to radio communication. A MSC can also act as a gateway to
other networks.

TCP sockets are used for the communication between the programs in this
simulator. A TCP connection is used for each of the channels, currently 23
between the BSC and each BTS, and one between the BSC and the MSC. The
size of a message varies between 2 to 45 bytes, but is typically about 15 bytes.
For each TCP connection the socket option TCP_NODELAY is used to prevent
queuing delays of small messages’.

2.1 Typical behavior of the BSC

The BSC simulator program does not send any messages on its own initiative.
It just waits for incoming messages from a BTS or the MSC. When an incoming
message arrives it responds with an appropriate answer message as soon as
possible.

Figure 2 shows the typical messages that have been implemented in the
simulator and which we have measured.

MSC BSC BTS
ChannelRequired
1 t ChannelActivation
12 ChannelActivationACK HE:
2 ¢ ImmediateAssignment
Establishindication
ServiceRequest 3 ¢
1" ServiceRequestACK
13 AssignmentRequest
4 t ChannelActivation
ChannelActivationACK ¢ 9
5 ¢ ChangeOfChannelCommand

ChangeOfChannelComplete

ChannelRelease

ChannelReleaseACK

AssignmentComplete

HandoverRequest

6 ¢ ChannelActivation
14 ChannelActivationACK ¢ 10
7 ¢ ChangeOfChannelCommand

Figure 2: Sequence diagram over measured response times. 1-7 are response
times of the BSC. 8-10 are response times of the BTSes. 11 is the response time
of the MSC. 12-14 are response times of the BSC for typical message sequences
(with external delays included).

The amount of CPU work is low and the response time for any message is
typically below one millisecond (on a Pentium IIT 500MHz running Linux).

The CPU work performed between an incoming message and a response is
divided into about 30 to 50 percent for the TCP communication (see section 3)

LUDP may have been a more natural protocol for sending small messages, but the specifi-
cation for the simulator specifies TCP as the protocol to be used.



and the rest for miscellaneous bookkeeping of for example the internal state and
the queue of incoming messages.

If the response time from the BSC to a BTS exceeds 200 ms (in some cases
250 ms or 500 ms) the message is resent from the BTS to the BSC. If these
time-outs occur too often then BSC is considered to be overloaded. We have
tested the BSC with up to 40 BTSs (memory exhaustion prevented us from
starting more BTSs) but not seen any sign of the BSC to be overloaded in our
measurements.

3 Measurements

The benchmarking was performed on a 500MHz Pentium III running Linux
2.2.18 and glibc 2.2.1. The following Java implementations have been bench-
marked:

e Sun’s JDK 1.2.2.006 (Interpreted mode, green threads).

e Sun’s Java 2 SDK 1.3.0_01 Hotspot Client VM (Adaptive compiler, native
threads).

Sun’s Java 2 SDK 1.3.0_01 Hotspot Server VM (Adaptive compiler, native
threads).

Kaffe 1.0.6 (Just-in-time compiler, thread implementation unknown).

e NewMonics’ Perc VM 3.0.1 (Just-in-time compiler, green threads).

The Java source code was compiled to byte-code with Sun’s JDK 1.2.2_006
for all benchmarks.

To be able to get an idea of how the time is divided into communication time
and other kind of CPU work, a small Java server-client application was written
and benchmarked too (see section 3.2). This application was also implemented
in C to relate the measurements to something that is known to give close to
optimal performance.

3.1 The BSC simulator

All processes in the simulator were executed on the same machine. There-
fore, the BSC process is executed in a POSIX real-time scheduling class,
SCHED_FIFO?, to make the timing more cohesive and repeatable. (When
real-time scheduling on Linux 2.4.0 was used, unexplained network delays that
seemed to be multiples of 2 seconds were experienced. Therefore, Linux 2.2.18
was chosen instead.)

10 BTS processes were started in each test and the time samples were col-
lected during approximately one minute. A process that listens to the network
traffic is used to collect the time-stamps of each message.

In figure 3 we can see for the response times of the BSC, columns 1-7,
that most of the samples are gathered at the lower end, but that some delayed
responses deviate from the rest. These delays may be caused by for example

2Processes in the SCHED_FIFO scheduling class are assigned a fixed priority and are only
preempted by processes with a higher priority (in this case none).



garbage collection in the Java VM or some activity in the Linux kernel. No
response comes below 0.2 milliseconds (200 microseconds).

Column 8-11 are response times for the MSC and BTSes. Column 12-14 are
“compound” responses from the BSC (see figure 2). Column 15-17 represents
the same responses as 12-14 but with delays in external processes (the MSC and
BTSes) removed.
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Figure 3: Measured response times for Sun’s JDK 1.2.

Unfortunately, the Java SDK 1.3 VM can not be executed under a real-
time scheduling class (bug id 114498). This makes the response time more
unpredictable and spreads the samples in figure 4 and figure 5.

A second problem with JDK 1.3 was the amount of memory used for each
thread. About 70 threads are used for each BTS which caused memory exhaus-
tion when we tried to start 10 BTSes. Therefore, the JDK 1.2 VM was used for
the BTSes and the MSC in this test.

No noticeable difference between the client and server version of the Hotspot
VM can be seen in this benchmark. The Hotspot Server VM probably need more
execution time to show its potential strength.
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Figure 4: Measured response times for Sun’s Java 2 SDK 1.3, Hotspot Client
VM.
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Figure 5: Measured response times for Sun’s Java SDK 1.3, Hotspot Server VM.

The Kaffe VM shows a solid behavior and is the Java implementation that
gave the best performance in this test.
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Figure 6: Measured response times for Kaffe 1.0.6.

The Perc VM shows rather bad performance figures in this test, as shown in
figure 7. We do not know the reason for this but plan to investigate it.

3.2 The trivial client-server application

The trivial client-server application consists of a server process that listens to
a TCP port and echos incoming messages. The client sends 30000 messages of
15 bytes each. The response time of the server is measured by a third process
that listens to the network traffic, and the server is scheduled with a real-time
scheduling class as described in section 3.1 above.

As for the BSC we can see that responses occasionally are delayed, which
probably are caused by Java garbage collection or activity in the Linux kernel.
The typical response time is about 100 microseconds, which can be compared
to 200 microseconds for the lowest response time in the BSC.
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Figure 7: Measured response times for Perc VM 3.0.1.

Trivial client-server benchmark
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Figure 8: Measured response times for Sun’s JDK 1.2

As stated above, the Hotspot VM can not be scheduled in a real-time schedul-
ing class, which makes the samples in figure 9 and 10 quite noisy.
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Figure 9: Measured response times for Sun’s JDK 1.3, Hotspot Client VM



No significant difference between the Hotspot Client VM and the Hotspot
Server VM can be seen in figure 9 and 10.

Trivial client-server benchmark
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Figure 10: Measured response times for Sun’s JDK 1.3, Hotspot Server VM
Kaffe (figure 11) is a few microseconds faster than Sun’s JDK 1.2 and the

thin line of samples at about 350 microseconds seems to have disappeared.
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Figure 11: Measured response times for Kaffe

The Perc VM (figure 12) does not seems to get a predictable response time
despite the use of a real-time scheduling class. We currently have no explanation
for this.

A C implementation of the trivial client-server have also been measured for
reference. When this application runs in parallel with a Linux performance
monitor, close to 100% of the time is reported to be spent in the operating
system kernel.

The typical response time is about 55 microseconds as shown in figure 13.
There is no garbage collection in C and all delays therefore have to be due to
activity in the Linux kernel.

We can now conclude that the abstraction layers in Java for socket commu-
nication adds about 45 microseconds.

The process that listens to the network traffic adds some overhead to the
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Figure 12: Measured response times for the Perc VM
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Figure 13: Measured response times for C

network processing time in the kernel. Therefore, a second monitoring approach
way evaluated: A microsecond clock (gettimeofday) was called inside the server
program just before an incoming message is received and after the response is
written. However, the system call that reads from a TCP socket (read) blocks
until there is something to read and that idle time can only be excluded by
inserting a superfluous second system call (select) that blocks until the data is
ready for reading, and starting the clock in between.

This time the measured response time is about 30 microseconds as shown in
figure 14, 25 microseconds faster than before.

Unfortunately, this method requires knowledge of the operating system file
descriptor associated with the socket used, and this information is not available
(without guessing) in Java.

4 Future work

When the JOSES compiler is able to compile any of our programs we will
benchmark that compiler. Some more Java implementations will be included
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Figure 14: Measured response times for C. Times measured with calls to a
microsecond clock within the server program.

too. GCC’s Java compiler gcj, and IBM’s JDK version 1.1.8 and 1.3 have been
benchmarked but the result has not yet included in the report.

We plan to use some standard benchmark suite to get a more complete
picture of the differences between the implementations.

We will also investigate how the BSC application can be extended to include
more CPU intensive operations.

5 Conclusions

No major performance difference was shown between the implementations that
have been evaluated. However, Kaffe showed a small performance lead.

For the simple client-server application, a noticeable performance gap was
shown for Java compared to C.
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ABSTRACT

In this paper we present a platform independent analysis
of the dynamic profiles of Java programs when executing
on the Java Virtual Machine. The Java programs selected
are taken from the Java Grande Forum benchmark suite,
and five different Java-to-bytecode compilers are analysed.
The results presented describe the dynamic instruction usage
frequencies.

These results, presenting a picture of the actual (rather
than presumed) behaviour of the JVM, have implications
both for the coverage aspects of the Java Grande benchmark
suites, for the performance of the Java-to-bytecode compil-
ers, and for the design of the JVM.

KEYWORDS

Java Virtual Machine Interpreter

1 INTRODUCTION

The Java paradigm for executing programs is a two stage
process. Firstly the source is converted into a platform in-
dependent intermediate representation, consisting of byte-
code and other information stored in class files. The second
stage of the process involves hardware specific conversions,
perhaps by a JIT compiler for the particular hardware in
question, followed by the execution of the code. The prob-
lem addressed by this research is that while there exist static
tools such as class file viewers to look at this intermediate
representation, there is currently no easy way of studying the
dynamic behaviour at this point in the program. This re-
search therefore sets out to perform dynamic analysis at the

©2001, Charles Daly, Jane Horgan, James Power and John
Waldron
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platform independent level and investigate whether or not
useful results can be gained. In order to test the technique,
the Java Grande Forum’s Benchmark suite was used.

The remainder of this paper is organised as follows. Sec-
tion 2 discusses the background to this work, including the
rationale behind bytecode-level dynamic analysis, and the
test suite used. Sections 3 and 4 summarise the profiles of
each of the Grande programs studied. In particular, sec-
tion 3 presents a method-level view of the dynamic profile,
while section 4 presents a more detailed bytecode-level view.
Section 5 discusses the influence of compiler choice on dy-
namic analysis, and describes the variances caused by five of
the most common Java compilers. Section 7 concludes the

paper.

2 BACKGROUND

The increasing prominence of internet technology, and the
widespread use of the Java programming language has given
the Java Virtual Machine (JVM) a unique position in the
study of compilers and related technologies. To date, much
of this research has concentrated on the performance of the
bytecode interpreter, yielding techniques such as Just-In-
Time (JIT) and hotspot-centered compilation.

However, the production of bytecode for the JVM is no
longer limited to a single Java-to-bytecode compiler. Not
only is there a variety of different Java compilers available,
but there are also compilers for extensions and variations of
the Java programming language, as well as for other lan-
guages such as Eiffel and Scheme, all targeted on the JVM.
In previous work we have studied the impact of the choice
source language on the dynamic profiles of programs running
on the JVM [2]. In this paper we examine the impact of the
choice of Java compiler on the dynamic execution of JVM
bytecodes, and analyse the degree to which the Java Grande
[1] applications can fulfill the role as a standard test suite
for these and other aspects of the JVM.

2.1 Dynamic Bytecode-Level Analysis

The output of a dynamic bytecode analysis will therefore be
important for the design of both Java to bytecode and Just-
In-Time bytecode to native compilers. Of particular interest
also is the instruction set used by an intermediate repre-
sentation to implement platform independence. By dynami-



mol methods freq
java/lang/Math.sqrt 19.4
moldyn/particle.velavg 18.8
moldyn/particle.mkekin | 18.8
moldyn/particle.force 18.8
moldyn/particle.domove | 18.8
moldyn/random.update | 1.4

moldyn/random.seed 0.6

java/lang/Math.log 0.6
seq methods freq
search/Game.wins 46.5
search /SearchGame.ab 10.3
search/Game.makemove 10.3
search /Game.backmove 10.3
search /TransGame.hash 9.3
search /TransGame.transpose | 5.3
search /TransGame.transtore | 4.0
search /TransGame.transput 4.0

eul methods frequency
java/lang/Math.abs 24.5
java/lang/Object.<init> 19.6
euler/Statevector.<init> 19.5
euler/Statevector.svect 19.2
java/lang/Math.sqrt 11.5
euler/Vector2.dot 1.8
euler /Vector2.magnitude 14
java/lang/Math.pow! 0.3
ray methods frequency
raytracer/Vec.dot 47.0
raytracer/Vec.sub2 23.2
raytracer/Sphere.intersect 22.8
java/lang/Math.sqrt! 1.6
java/lang/Object.<init> 1.3
raytracer/Vec.<init> 0.7
raytracer/Vec.normalize 0.6
raytracer /Isect.<init> 0.6

Table 1: Dynamic method execution frequencies for the most heavily used methods for the Grande application including native

methods, indicated by t.

cally analysing the Java bytecodes, lessons may be drawn to
facilitate construction of more efficient intermediate repre-
sentations for both procedural object-oriented programming
languages like Java and programming languages from differ-
ent categories.

Speed comparisons of the Java Grande benchmark suite
using different Java Platforms have been performed [1] and
differences in execution times have been found, but it has
not been known whether the resulting differences measured
have been due to the Java compiler, the JIT compiler or the
virtual machine implementation on the particular underly-
ing operating system and hardware architecture. This paper
shows, by means of the dynamic bytecode analysis technique,
that the bytecodes executed by a particular Grande appli-
cation are very similar for a wide variety of Java compilers,
implying compiler choice is not the main explanation of ex-
ecution speed variations for these programs. In addition, it
is possible to study how representative of Grande programs
those chosen for the benchmark suite are.

In order to study dynamic bytecode usage it was necessary
to modify the source code of a Java Virtual Machine. Kaffe
[3] is an independent implementation of the Java Virtual
Machine which was written from scratch and is free from
all third party royalties and license restrictions. It comes
with its own standard class libraries, including Beans and
Abstract Window Toolkit (AWT), native libraries, and a
highly configurable virtual machine with a JIT compiler for
enhanced performance. Kaffe is available under the Open
Source Initiative and comes with complete source code, dis-
tributed under the GNU Public License. Version: 1.0.5 was
used for these measurements.

2.2 Grande Programs Measured

A Grande application is one which uses large amounts
of processing, I/O, network bandwidth or mem-

Charles Daly, 12. January 2000

ory. The Java Grande Forum Benchmark Suite
(http://www.epcc.ed.ac.uk/javagrande/) is intended to
be representative of such applications, and thus to provide
a basis for measuring and comparing alternative Java
execution environments. It is intended that the suite should
include not only applications in science and engineering
but also, for example, corporate databases and financial
simulations.

e The moldyn benchmark is a translation of a Fortran
program designed to model the interaction of molec-
ular particles. Its origin as non object-oriented code
probably explains its relatively unusual profile, with few
methods which make intensive use of fields within the
class, even for temporary and loop-control variables.
This program may still represent a large number of
Grande type applications that will initially run on the
JVM

e The search benchmark solves a game of connect-4 on
a 6 x 7 board using alpha-beta pruning. Intended to be
memory and numerically intensive, this is also the only
application to demonstrate an inheritance hierarchy of
depth greater than 2.

e The euler benchmark solves a set of equations using a
fourth order Runge-Kutta method. This suite demon-
strates a considerable clustering of functionality in the
Tunnel class, as well as a comparatively high percentage
of methods with very large local variable requirements.

e The raytracer measures the performance of a 3D ray
tracer rendering a scene containing 64 spheres. It is
represented using a fairly shallow inheritance tree, with
functionality (as measured in methods) fairly well dis-
tributed throughout the classes.

JOSES-2001



Program Total API % API
methods native %
mol 5.45e+05 22.0 20.0
sea 7.12e4+07 0.0 0.0
eul 3.34e+07 58.0 12.6
ray 4.58¢+08 | 3.1 1.6
average 1.41e+08 20.8 8.6

Program Java method calls bytecodes executed
number | % in API | number | % in API
mol 4.36e+05 2.5 7.60e+09 0.0
sea 7.12e+07 0.0 7.39e+09 0.0
eul 2.92e+07 51.9 1.58e+10 20.9
ray 4.50e+08 1.5 1.18e+10 0.8
average 1.38e+4-08 14.0 1.06e+10 5.4

Table 2: Measurements of total number of method calls in-
cluding native calls by Grande applications. Also shown is
the percentage of the total which are in the API, and per-
centage of total which are in API and are native methods.

e The montecarlo benchmark is a financial simulation
using Monte Carlo techniques to price products derived
from the price of an underlying asset. Its use of clas-
sical object-oriented get and set methods accounts for
the relatively high proportion of methods with no tem-
porary variables and 1 or 2 parameters (including the
this-reference).

3 DYNAMIC METHOD EXECUTION
FREQUENCIES

In this section we present our first dynamic profile of the
Grande programs studied. Here we partition the execution
profiles based on methods, since these provide both a log-
ical level of modularity at source-code level, as well as a
likely unit of granularity for hotspot analysis. It should be
noted that these figures are not the usual time-based analy-
sis, which will vary considerably between different computer
configurations and architectures, but are based on the more
platform-independent bytecode frequency analysis.

As Kaffe and the JVM are not yet mature technologies
for Grande applications, some programs in the suite fail to
compute the correct result. It was decided to exclude the
montecarlo benchmark from this study as it failed by a large
amount when interpreted, but raytracer was included as the
error in the result was very small.

Table 1 shows dynamic method execution frequencies for
the most heavily used methods for the Grande applications
including native methods. It can be seen that virtually all
execution time is spent in at most five methods for these
applications.

Table 2 shows measurements of the total number of
method calls including native calls by Grande applications.
For the programs studied, on average 8.6% of methods are
API methods which are implemented by native code. As
the benchmark suite is written in Java it is possible to con-
clude that any native methods are in the API. This paper is
confined to studying how the Java methods execute.

Table 3 shows measurements of the Java method calls ex-
cluding native calls. With the exception of the eul bench-
mark, Java method execution time is virtually all in the
non-API bytecodes of the programs. This is a significant
difference from traditional Java applications such as applets
or compiler type tools which spend most of the time in the
API [4]. Mixed compiled interpreted systems which precom-
pile the API methods to some native format will therefore
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Table 3: Measurements of Java method calls excluding native
calls made by Grande applications.

Program || io | lang | net | text | util
mol 40| 747 | 1.1 | 04 | 19.8
sea 49 | 684 | 1.5 | 0.0 | 25.2
eul 24| 975 | 0.0 | 0.0 | 0.0
ray 0.0 | 100.0 | 0.0 | 0.0 | 0.0

Table 4: Breakdown of Java API method dynamic usage per-
centages by package for Grande applications. None of the ap-
plications used methods from the applet, awt, beans, math,
security or sql packages.

not be as effective at speeding up Grande applications like
these. The finding that API usage is very low may imply
that the benchmark suite may not be fully representative of
a broad range of Grande applications (see Table 4). It is
also possible to observe that since 51% of Java methods are
API for the eul benchmark, but only 21% of the bytecodes
executed, that the API methods are smaller in size than the
Grande program’s methods. All measurements in this paper
were made with the Kaffe API library, which may differ from
other Java API libraries.

Table 4 shows dynamic measurements of the Java API
package method percentages. As would be expected for the
programs considered, the applet and awt packages are not
used at all as graphics has been removed from the bench-
marks. Of major interest is that the math package is not
used by the benchmarks which implies either the benchmarks
are not representative of numerical programs or the math
package is not in fact of much use to such programs which
simply use the java.lang.Math class. A Grande application
should use large amounts of processing, I/O, network band-
width or memory, yet it is interesting to note how little of
the API packages are dynamically used by this benchmark
suite.

4 DYNAMIC BYTECODE EXECU-
TION FREQUENCIES

In this section we present a more detailed view of the dy-
namic profiles of the Grande programs studied by consider-
ing the frequencies of the different bytecodes used. These
figures help to provide a detailed description of the nature
of the operations being performed by each program, and
thus give a picture of the aspects of the JVM actually be-
ing tested by the suite. This also provides an alternative to
typical time-based analysis, which, while useful for efficiency
analysis, can be considerably influenced by the underlying
architecture’s proficiency in dealing with different types of
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mol sea, eul ray
dload 33.3 || iload 13.2 || iload 19.7 || getfield 26.1
iload 7.0 aload_0 8.6 aaload 18.2 || aload-0 16.1
dstore 6.8 || getfield 7.3 || getfield 16.2 || aload-1 10.9
dcmpg 5.5 iaload 5.4 aload_0 8.3 dmul 6.5
dsub 4.7 istore 5.3 dmul 4.1 dadd 4.7
dmul 4.3 || ishl 4.3 || dadd 4.0 || dsub 3.7
getstatic | 4.3 bipush 3.8 putfield 3.3 putfield 3.1
getfield 4.3 || iload-1 3.6 || iconst_1 3.2 || aload_2 2.8
aaload 4.2 iand 3.5 dload 2.8 || dreturn 1.9
dneg 4.1 iadd 3.5 || isub 2.0 || invokevirtual | 1.9
dcmpl 4.1 iload_2 2.6 daload 2.0 invokestatic 1.9
ifge 4.1 iload_3 2.5 || dup 1.7 || dload2 1.9
ifle 4.1 ior 2.3 aload-3 1.5 iload 1.8
dadd 3.4 iconst_1 2.3 dsub 1.4 aload 1.3
iinc 14 iconst_2 2.1 aload 1.3 dload 1.1
ifgt 14 || dup 2.0 || aload-2 1.3 || dconst0 1.0
if icmplt | 1.4 iinc 1.7 || 1dc2w 1.1 dcmpg 1.0
dload-1 1.0 || ifeq 1.6 || iload-3 1.1 || ifge 1.0
putfield 0.1 iastore 1.5 iadd 1.1 return 1.0
aload-0 0.1 if_icmplt 14 dstore 1.0 dstore 1.0
nop 0.0 iconst_4 14 ddiv 0.6 iinc 0.9
isub 0.0 iconst_5 1.4 dconst_0 0.4 || ificmplt 0.9
Isub 0.0 if_icmple 1.3 aload-1 0.4 areturn 0.9
fsub 0.0 || invokevirtual | 1.0 || iinc 0.3 || arraylength 0.9
imul 0.0 dup2 1.0 if_icmplt 0.3 ifnull 0.9
Imul 0.0 isub 0.9 dload-1 0.3 aconst_null 0.9
fmul 0.0 || ificmpgt 0.9 || dload-3 0.3 || aaload 0.9
idiv 0.0 ldcl 0.8 dstore_1 0.2 astore 0.9
1div 0.0 istore_3 0.8 dstore_3 0.2 dstore_2 0.9
Iconst_1 0.0 imul 0.7 dastore 0.2 dload-1 0.2
fdiv 0.0 ifne 0.7 || dneg 0.1 ddiv 0.1
ddiv 0.0 putfield 0.7 || dcmpg 0.1 dcmpl 0.1
irem 0.0 iconst_0 0.7 || ifge 0.1 ifle 0.1
Irem 0.0 || istore_1 0.7 || ificmpge | 0.1 || goto 0.1
frem 0.0 if_icmpne 0.6 if_licmple 0.1 invokespecial | 0.1

Table 5: Total (API and non-API) dynamic bytecode usage frequencies by Grande applications compiled using SUN’s javac
compiler, Standard Edition (JDK build 1.3.0-C) The top 35 instructions are presented.

bytecode instructions.

Table 5 shows total (API and non-API) dynamic byte-
code usage frequencies by Grande applications. The JVM
instruction set has special efficient load and store instruc-
tions for the first four local variable array entries, and less
efficient generic instructions for higher local variable array
positions. The first thing that stands out from Table 5 is
that for mol, sea and eul the highest frequency instruction is
a generic load, rather than an efficient load from one of the
first four elements of the local variable array. For mol one
third of instructions are a single load of this type.

Although the Java to bytecode compiler does not have
access to dynamic execution data, it should be able to put
the most heavily used local variable into one of the efficient
slots most of the time (see also Table 8). Alternatively, if the
compiler just assigns the local variables in the order they are
declared, the application programmer might be able to alter
the sequence to increase efficiency in some cases, but not if
the compiler always puts the parameters first and there are
a large number of these.
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The mol benchmark has the same number of getfield
as getstatic instructions, uses a much smaller set of in-
struction than the other benchmarks, and does not have
method invocations in its high frequency instructions, sug-
gesting it may not have been designed in an object-oriented
fashion. The comparison instruction dcmpl is also at very
high frequency in mol relative to the other benchmarks, sug-
gesting something different is happening in the structure
of the code involving a high number of dynamic decisions.
invokevirtual does not appear at all in the high frequency
instruction for eul or mol, and is at 1% for sea and 1.9% for
ray suggesting that worries about the inefficiencies of vir-
tual method invocation in the Java language may have been
overstated for Grande applications. Of course, the execu-
tion time for the invokevirtual instruction will be much
higher than for ordinary instructions on any hardware plat-
form. ray seems to be the most object-oriented program,
using getfield as its most frequent instruction, followed by
aload_0 to access the this-reference.

In order to study overall bytecode usages across the pro-
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Compiler mol sea ray

kopi 7599606497 | 12475753926 | 7388409738 | 11706547525
pizza 7704747144 | 11431095142 | 7311241755 | 11919084828
gcj 7704740202 | 12540807644 | 7527673585 | 11810849733
jdk13 7599606435 | 11394409844 | 7103719939 | 11706547247
borland 7705054344 | 11431120742 | 7324210788 | 11919084856

Table 6: Total Non-API dynamic bytecode usage counts for Grande Applications using different compilers. For gcj, a minor
alteration to the sea program source was needed to get it to compile.

grams, it is possible to calculate the average bytecode fre-

quency
n

1 100 x Cik
fi=~ 256
n ; Z'L:l Cik

where ¢;1, is the number of times bytecode ¢ is executed dur-
ing the execution of program k and n is the number of pro-
grams averaged over. f; is an approximation of that byte-
code’s usage for a typical Grande program.

5 COMPARISONS OF DYNAMIC
BYTECODE USAGES ACROSS
DIFFERENT COMPILERS

In this section we consider the impact of the choice of Java
compiler on the dynamic bytecode frequency figures. Java is
relatively unusual (as compared to, say, C or C++) in that
optimisations can be implemented in two separate phases:
first when the source program is compiled into bytecode,
and again when this bytecode is executed on a specific JVM.
‘We consider here those optimisation which are implemented
at the compiler level, and thus may be considered to be
platform independent, and which must be taken into account
in any study of the bytecode frequencies.

For the purposes of this study we used five different Java
compilers, from the following development environments:

kopi KOPI Java Compiler Version 1.3C
http://wuw.dms.at/kopi

pizza Pizza version 0.39g, 15-August-98
http://wuw.cis.unisa.edu.au/"pizza/

gcj The GNU Compiler for the Java Programming Lan-
guage version 2.95.2
http://sources.redhat.com/java/

jdk13 SUN'’s javac compiler, Standard Edition (JDK build
1.3.0-C)

borl Borland Compiler 1.2.006 for Java

The figures for the Java compiler from 1.2 of SUN’s JDK,
as well as version 1.06 of the IBM Jikes Compiler were also
computed, but since the code produced was almost identical
to that produced by the compiler from version 1.3 of the
JDK we do not consider them further here.

Table 6 shows total Non-API dynamic bytecode counts
for the Grande programs using different compilers. The API
was not recompiled and those bytecodes were excluded from
the dynamic comparisons. While it is difficult to draw direct
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conclusions based on these figures, two facts are at least ap-
parent. First, examining each column of Table 6, it can be
seen that there are significant differences between the byte-
codes executed for a single application between the different
compilers. Second, this variance is not consistent through
all four applications, and it is clear that a more detailed
analysis is necessary to account for these differences.

Ideally, the optimisations implemented by each compiler
should be described in the corresponding documentation; re-
grettably this is not the case in reality. Also, since each of
the applications produces significantly large bytecode files,
a static analysis of the differences between these files is not
practical. Further, a bytecode-level static analysis would not
be sufficient for determining those differences which resulted
in a significant variance in the dynamic profiles.

Instead, a detailed analysis of the dynamic bytecode exe-
cuted frequencies was carried out. The raw statistics are pre-
sented in Table 7, Table 8, Table 9 and Table 10, which show
the top 35 most executed instructions for each application.
In order to analyse these tables, the differences in each row
were selected, and the relevant sections of the corresponding
source code was then examined. Below we summarise the
main differences exhibited in these tables.

5.1 Main Compiler Differences

There were three main differences between the optimisations
implemented by the compilers:

Loop Structure The figures show a difference in the use
of comparison and jump instructions between the compilers.
For each usage of the if_cmplt instruction by kopi and jdk18
there is a corresponding usage of goto and if_cmpge by pizza,
gej and borland. This can be explained by the implementa-
tion of loop structures. for example, a loop of the form:
while (ezpr) { stats }
is implemented by the different compilers as follows:

kopi/jdk13 pizza/ gcj/ borland
beg: expr
goto end if_cmpge end
beg: stats stats
end: expr goto beg
if_cmplt beg end:

A simple static analysis would regard these as similar im-
plementations, but the dynamic analysis clearly shows the
savings resulting from the kopi/jdk13 approach.

Specialised load Instructions Table 8 and Table 9 high-
light an important difference between the compilers in their
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Instruction | kopi | pizza | gc¢j | jdk13 | borl fi

dload 33.3 | 32.8 | 32.8 | 33.3 | 32.8 | 33.0
iload 7.0 6.9 6.9 7.0 6.9 6.9
dstore 6.8 6.7 6.7 6.8 6.7 6.7
dcmpl 9.7 4.1 4.1 4.1 4.1 5.2
dsub 4.7 4.7 4.7 4.7 4.7 4.7
dmul 4.3 4.3 4.3 4.3 4.3 4.3
dcmpg 0.0 5.4 5.4 5.5 5.4 4.3
getstatic 4.3 4.2 4.2 4.3 4.2 4.2
getfield 4.3 4.2 4.2 4.3 4.2 4.2
aaload 4.2 4.2 4.2 4.2 4.2 4.2
dneg 4.1 4.1 4.1 4.1 4.1 4.1
ifge 4.1 4.1 4.1 4.1 4.1 4.1
ifle 4.1 4.1 4.1 4.1 4.1 4.1
dadd 34 34 34 34 34 34
iinc 1.4 1.4 1.4 1.4 1.4 1.4
ifgt 14 1.4 1.4 1.4 14 14
dload-1 1.0 1.0 1.0 1.0 1.0 1.0
if icmpge 0.0 14 1.4 0.0 1.4 0.8
goto 0.0 14 1.4 0.0 1.4 0.8
if_icmplt 14 0.0 0.0 1.4 0.0 0.6
putfield 0.1 0.1 0.1 0.1 0.1 0.1
aload-0 0.1 0.1 0.1 0.1 0.1 0.1
nop 0.0 0.0 0.0 0.0 0.0 0.0
isub 0.0 0.0 0.0 0.0 0.0 0.0
Isub 0.0 0.0 0.0 0.0 0.0 0.0
fsub 0.0 0.0 0.0 0.0 0.0 0.0
imul 0.0 0.0 0.0 0.0 0.0 0.0
Imul 0.0 0.0 0.0 0.0 0.0 0.0
fmul 0.0 0.0 0.0 0.0 0.0 0.0
idiv 0.0 0.0 0.0 0.0 0.0 0.0
1div 0.0 0.0 0.0 0.0 0.0 0.0
Iconst_1 0.0 0.0 0.0 0.0 0.0 0.0
fdiv 0.0 0.0 0.0 0.0 0.0 0.0
ddiv 0.0 0.0 0.0 0.0 0.0 0.0
irem 0.0 0.0 0.0 0.0 0.0 0.0

Instruction kopi | pizza | gcj | jdk13 | borl fi

aaload 21.6 | 19.8 | 21.5 | 199 | 19.8 | 20.5
iload 22.4 20.7 5.4 20.8 20.7 | 18.0
getfield 17.3 17.0 174 17.0 17.0 | 17.1
aload_0 10.0 9.0 10.1 9.0 9.0 9.4
dadd 3.8 4.1 3.8 4.1 4.1 4.0
dmul 3.7 4.1 3.7 4.1 4.1 3.9
iconst_1 2.7 2.9 2.7 2.9 2.9 2.8
putfield 2.6 2.8 2.6 2.8 2.8 2.7
dload 2.5 2.7 2.9 2.7 2.7 2.7
iload_3 1.3 14 7.7 14 14 2.6
isub 1.7 1.9 1.7 1.9 1.9 1.8
iload-2 0.0 0.0 9.1 0.0 0.0 1.8
aload-3 1.7 1.9 1.7 1.9 1.9 1.8
daload 1.6 1.8 1.6 1.8 1.8 1.7
dup 0.1 2.0 0.1 2.0 2.0 1.2
dstore 1.0 1.1 1.4 1.1 1.1 1.1
dsub 0.9 1.0 0.9 1.0 1.0 1.0
ldc2w 1.0 1.1 0.7 1.1 1.1 1.0
iadd 1.0 1.0 0.9 1.0 1.0 1.0
ddiv 0.6 0.7 0.6 0.7 0.7 0.7
aload_2 0.3 0.4 0.3 0.4 0.4 0.4
iinc 0.3 0.3 0.3 0.3 0.3 0.3
iload-1 0.0 0.0 14 0.0 0.0 0.3
dconst_0 0.2 0.2 0.2 0.2 0.2 0.2
if_icmpge 0.0 0.3 0.3 0.0 0.3 0.2
goto 0.0 0.3 0.3 0.0 0.3 0.2
dload-1 0.2 0.3 0.0 0.3 0.3 0.2
dload_3 0.2 0.2 0.0 0.2 0.2 0.2
aload-1 0.2 0.2 0.2 0.2 0.2 0.2
dstore_1 0.2 0.2 0.0 0.2 0.2 0.2
dstore_3 0.2 0.2 0.0 0.2 0.2 0.2
dastore 0.2 0.2 0.2 0.2 0.2 0.2
if_icmplt 0.3 0.0 0.0 0.3 0.0 0.1
invokespecial | 0.1 0.1 0.1 0.1 0.1 0.1
new 0.1 0.1 0.1 0.1 0.1 0.1

Table 7: Non-API dynamic bytecode usage frequencies for
mol using different compilers. The top 35 instructions are
presented.

Table 8: Non-API dynamic bytecode usage frequencies for
eul using different compilers. The top 35 instructions are
presented.

treatment of specialised iload instructions. gc¢j gives a sig-
nificantly lower usage of the generic iload instruction rela-
tive to all other compilers, and a corresponding increase in
the more specific iload_2 and iload_3 instructions showing
that this compiler is attempting to optimise the programs
for integer usage.

However, it is interesting to note the failure of this ap-
proach as demonstrated by Table 7 and Table 10, where the
differences in iload instructions are not significant. This can
be explained directly by the nature of the programs involved
- mol and ray make greater use of doubles and objects re-
spectively, and gcj makes no attempt to optimise the stack
positions for these types.

Usage of the dup Instruction There is a dramatic
difference in the use of dup instructions show in Table
8 and, to a lesser extent, in Table 9, with kopi and
gcj having a much lower usage than the other compilers.
(dup instructions do not account for a significant propor-

Charles Daly, 12. January 2000

tion of bytecode usage in the other applications). This
can be explained by the usage of the shorthand arith-
metic instructions (such as +=) in the source Java code.
For example, the eul suite contains lines of the form:
r[il[j1.a += ...
A simple translation of this line to the longer form
r[il[j1.a = r[il[jl.a + ...
results in code which references the expression r[i][j].a
twice.

The pizza, jdk18 and borland compilers optimise for the
first form by duplicating the value of the expressions. The
other two compilers do not, and show a corresponding in-
crease in the usages of aload, aaload and getfield instruc-
tions.

The presence of the line in what is evidently a program
hotspot gives particular relevance to this compiler optimisa-
tion in this case.
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Instruction kopi | pizza | gcj | jdk13 | borl fi

iload 13.4 12.9 124 13.2 12.8 | 12.9
aload_0 9.6 8.3 8.9 8.6 8.3 8.7
getfield 7.9 7.1 7.6 7.3 7.1 74
iaload 5.2 5.2 5.1 5.4 5.2 5.2
istore 5.1 5.2 5.2 5.4 5.2 5.2
ishl 4.1 4.2 4.1 4.3 4.2 4.2
bipush 3.6 3.7 4.3 3.8 3.6 3.8
iadd 4.2 3.4 4.1 3.5 3.4 3.7
iand 3.3 3.4 4.1 3.5 3.4 3.5
iload_1 3.8 3.5 2.8 3.6 3.5 34
iload_2 2.5 2.6 3.3 2.6 2.5 2.7
iload-3 2.7 2.5 3.3 2.5 2.5 2.7
ior 2.2 2.3 2.2 2.3 2.3 2.3
iconst_1 2.0 2.2 2.0 2.3 2.2 2.1
iconst_2 2.0 2.0 2.0 2.1 2.0 2.0
dup 1.5 1.9 1.8 2.0 1.9 1.8
iinc 1.7 1.7 1.6 1.7 1.7 1.7
iconst_5 1.8 1.4 1.7 1.4 14 1.5
iconst_0 0.7 2.5 0.7 0.7 2.6 1.4
iastore 1.4 1.4 14 1.5 14 14
iconst_4 1.4 1.4 14 14 14 14
if_icmpgt 0.9 1.7 1.4 0.9 1.7 1.3
goto 0.8 1.5 1.5 0.5 1.5 1.2
ifeq 1.2 0.1 1.9 1.6 0.1 1.0
invokevirtual 1.0 1.0 0.9 1.0 1.0 1.0
isub 0.9 0.9 0.8 0.9 0.9 0.9
if_icmple 1.3 0.6 0.8 1.3 0.6 0.9
if icmpeq 0.2 1.7 0.2 0.2 1.7 0.8
if_icmplt 1.3 0.5 0.5 14 0.5 0.8
ldc1 0.8 0.8 0.8 0.8 0.9 0.8
istore_3 0.8 0.8 0.8 0.8 0.8 0.8
imul 0.6 0.7 0.6 0.7 0.7 | 0.7
if_icmpge 0.1 1.1 0.9 0.1 1.1 0.7
putfield 0.7 0.7 0.7 0.7 0.7 | 0.7
dup2 0.1 1.0 0.3 1.0 1.0 0.7

Instruction kopi | pizza | gcj | jdk13 | borl fi

getfield 26.3 | 25.8 | 26.0 | 26.3 | 25.8 | 26.0
aload_0 16.2 15.8 16.0 16.1 15.8 | 16.0
aload_1 109 | 10.7 | 10.8 | 10.9 | 10.7 | 10.8
dmul 6.6 6.5 6.5 6.6 6.5 6.5
dadd 4.7 4.6 4.7 4.7 4.6 4.7
dsub 3.7 3.6 3.7 3.7 3.6 3.7
putfield 3.0 3.0 3.0 3.0 3.0 3.0
aload_2 2.8 2.7 2.8 2.8 2.7 2.8
invokestatic 1.9 1.9 1.9 1.9 1.9 1.9
dreturn 1.9 1.8 1.8 1.9 1.8 1.8
invokevirtual | 1.9 1.8 1.8 1.9 1.8 1.8
iload 1.9 1.8 1.8 1.9 1.8 1.8
dload 1.1 1.1 2.9 1.1 1.1 1.5
dload_2 1.9 1.8 0.0 1.9 1.8 1.5
aconst_null 0.9 1.7 0.9 0.9 1.7 1.2
aload 1.2 1.2 1.2 1.2 1.2 1.2
dstore 1.0 1.0 1.8 1.0 1.0 1.2
ifge 1.0 1.0 1.0 1.0 1.0 1.0
iinc 0.9 0.9 0.9 0.9 0.9 0.9
dconst_0 0.9 0.9 0.9 0.9 0.9 0.9
areturn 0.9 0.9 0.9 0.9 0.9 0.9
return 0.9 0.9 0.9 0.9 0.9 0.9
arraylength 0.9 0.9 0.9 0.9 0.9 0.9
aaload 0.9 0.9 0.9 0.9 0.9 0.9
astore 0.9 0.9 0.9 0.9 0.9 0.9
dempg 0.0 1.0 1.0 1.0 1.0 | 08
dstore_2 0.9 0.9 0.0 0.9 0.9 0.7
goto 0.1 0.9 1.0 0.1 0.9 0.6
if_icmpge 0.0 0.9 0.9 0.0 0.9 0.5
ifnull 0.9 0.0 0.9 0.9 0.0 0.5
if_icmplt 0.9 0.0 0.0 0.9 0.0 0.4
if_acmpeq 0.0 0.9 0.0 0.0 0.9 0.4
dcmpl 1.1 0.1 0.1 0.1 0.1 0.3
dload_1 0.2 0.2 0.2 0.2 0.2 0.2
ddiv 0.1 0.1 0.1 0.1 0.1 0.1

Table 9: Non-API dynamic bytecode usage frequencies for
sea using different compilers. The top 35 instructions are
presented. For gcj, a minor alteration to the program source
was needed to get it to compile.

5.2 Minor compiler differences

Some minor differences between the frequencies can also be
noted as follows:

Comparisons with 0 and null As well as generic com-
parison instructions for each type, Java bytecode has two
specialised instructions for comparison with zero: ifeq and
ifne. As can be seen from Table 9, the frequencies for these
instructions for both the pizza and borland compilers is lower
than the other compilers, and a price is paid in a correspond-
ingly higher use of iconst_0 and if_icmpeq instructions.
As before, this variance is shown to differing degrees de-
pendent on the application: none of the other three programs
rate this difference as significant. However, Java bytecode
also has a specialised instruction for comparing object refer-
ences with null, ifnull. The object-intensive program ray
(Table 10) exhibits the results of the pizza and borland com-
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Table 10: Non-API dynamic bytecode usage frequencies for
ray using different compilers. The top 35 instructions are
presented.

pilers not using this instruction, with a corresponding in-
crease in aconst_null and if_acmpeq instructions.

The Decrement Instruction There are two approaches
to decrementing an integer value. Either you can push mi-
nus 1 and add (iconst_ml, iadd), or push 1 and subtract
(iconst_1, isub). Only the kopi and gcj compilers choose
the former, and so Table 9 shows an increase in the use of
iadd instructions, along with a corresponding drop in the
use of iconst_1 instructions.

Constant Propagation The gc¢j compiler does not do as
much constant propagation as the other compilers and this
is evidenced in Table 8. The eul application has a number
of constant fields, and this is reflected by a drop in 1dc2w
instructions, and a corresponding increase in the number of
getfield instructions.
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Comparison operations A minor variation is shown in
Table 7 for the usages of dempl and dempg instructions, with
the kopi compiler showing a strong preference for the for-
mer; the dependent statement blocks in the corresponding
if-statements are reorganised accordingly.

6 CONCLUSIONS

This paper set out to investigate platform independent dy-
namic Java Virtual Machine analysis using the Java Grande
Forum benchmark suite as a test case. This type of analy-
sis, of course, does not look in any way at hardware specific
issues, such as JIT compilers, interpreter design, memory
effects or garbage collection which may all have significant
impacts on the eventual running time of a Java program, and
is limited in this respect. It has been shown above however
that useful information about a Java programs can be ex-
tracted at the intermediate representation level, which can
be partly used to understand their ultimate behaviour on
a specific hardware platform. The technique has also been
shown to help in the design of Java to bytecode compilers.

Although the Java to bytecode compiler does not have ac-
cess to dynamic execution data, it should be able to put the
most heavily used local variable into one of the efficient slots
most of the time, yet only the gcj compiler seems to make
a significant attempt at this. A more common optimisation
was in the translation of loop constructs, where each success-
ful iteration involves executing two branching instructions,
a potential branch if the condition is false and a backward
goto (unconditional branch) at the end of the loop for the
pizza, gcj and borland compilers, whereas the other compil-
ers combine both of these into a single conditional branch at
the end of the loop.

Overall, this study raises questions about the balance of
optimisation work between Java compilers and the inter-
preter component of the JVM. One possibility is that com-
piler writers are trying to produce as closely as possible the
bytecodes produced by the original SUN compiler so as to
avoid incompatibility with the runtime bytecode verifier. If
this is so, it may explain why various other efficiency im-
provements have not been used by different compilers.

Clearly, run-time optimisation techniques will always be
essential within the JVM, because of both the potential un-
reliability of the compiler, and the extra information about
the run-time architecture available to the JVM. However, it
is not obvious that Java compilers are putting much effort

Charles Daly, 12. January 2000

into generating efficient bytecode, and it is arguable that the
JVM may be bearing an unreasonable part of the burden of
performing these optimisations.

Platform independent dynamic analysis has been shown
to be a useful tool for the studying the Grande benchmark
suite. For Grande applications Java method execution time
is shown to be virtually all in the non-API bytecodes of
the programs. This is a significant difference from tradi-
tional Java applications such as applets or compiler type
tools which spend most of the time in the API. Since a
Grande application should use large amounts of processing,
I/0, network bandwidth or memory, it is interesting to note
how little of the API packages are dynamically used by this
benchmark suite. Precompiling the API to some native rep-
resentation therefore will not yield significant speedup.

As would be expected for the programs considered, the
applet and awt packages are not used at all as graphics
has been removed from the benchmarks. Of major interest
is that the math package is not used by the benchmarks
which implies either the benchmarks are not representative
of numerical programs or the math package is not in
fact of much use to such programs which simply use the
java.lang.Math class.

REFERENCES

[1] Bull M, Smith L, Westhead M, Henty D and Davey R.
Benchmarking Java Grande Applications, Second In-
ternational Conference and Exhibition on the Practi-
cal Application of Java, Manchester, UK, April 12-14,
2000.

[2] J. Waldron, Object Oriented Programs and a Stack
Based Virtual Machine, Journal of South African Com-
puter Society, In press.

[3] T.J. Wilkinson, KAFFE, A Virtual Machine to run
Java Code, <www.kaffe.org> URL last accessed on
20/10/2000

[4] J. Waldron, C. Daly, D. Gray and J. Horgan, Compar-
ison of Factors Influencing Bytecode Usage in the Java
Virtual Machine, Second International Conference and
Exhibition on the Practical Application of Java, Manch-
ester, UK, April 12-14, 2000.

JOSES-2001



Feedback directed ahead-of-time compilation for

embedded Java" applications
Aldo H. Eisma,

Object Technology International, Inc.
aldo_eisma@oti.com

1 Introduction

To successfully deploy Java applications on embedded devices, both the target applications and
the Java Virtual Machine (JVM) required to run the applications need to fit the characteristics and
limitations of this class of devices. Due to market pressures, these devices have to be cheap,
small and have low power consumption. The most prominent constraints imposed on the JVM
and the applications, are:

¢ The amounts of ROM and RAM available are limited.

e The processing power of the CPU is limited.

The J9 JVM and its supporting SmartLinker application packager in IBM’s VisualAge™ Micro

Edition [1] have many features that assist application developers to meet these constraints:

1. SmartLinker removes unused classes, methods and fields from an application using an
advanced analysis technique called Rapid Type Analysis (RTA) [6].

2. SmartLinker packages the remaining classes, methods and fields in a ROMable image in a
compact format (JXE) that can be executed in-place out of ROM by the J9 JVM. The JXE
format is far less verbose than the standard Java class file format, and constants are
interned. The JXE format also enables a faster and smaller bytecode interpreter.

3. J9is a portable, componentized Java runtime and set of class libraries that is provided in
configurations ranging in size from 300 KB to a complete Java 1.2 configuration.

Although the J9 interpreter is already highly optimized, some applications may still not execute

fast enough in interpreted mode, due to the limited processing power of the target CPU. To speed

up Java applications further, J9 can employ just-in-time (jit) compilation techniques to compile

Java bytecodes into native machine code at runtime. But, for some embedded systems the jit

compilation approach may not be appropriate because the JIT compiler

e requires excessive ROM and RAM to operate, and

¢ generates native code in RAM, while for embedded applications one would like to execute in-
place out of ROM.

Therefore, SmartLinker supports ahead-of-time (aot) compilation: after removing unused classes,
methods and fields the packager can compile the remaining methods and include the native code
into the JXE, replacing the bytecodes otherwise shipped.

The result is a ROMable JXE that can be executed in-place, without needing a jit compiler at run-
time. The precompiled JXE can be as much as 5 times faster than the interpreted JXE, but if all
methods are precompiled the JXE may also become 4 times larger. This size blow-up may not be
acceptable to resource-constrained devices. The question is whether it is possible to precompile
only a subset of the methods, thereby saving in precious size, and still have a good performance
improvement over the interpreted JXE.

The remainder of this paper describes the results of our investigation into techniques for
feedback-directed ahead-of-time compilation to accomplish the following tasks:

™ Java is a trademark of Sun Microsystems, Inc.
™ VisualAge is a trademark of International Business Machines Corporation, Inc.
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e Maximize the performance improvement of an application while at the same time minimizing
the size of the precompiled JXE.
¢ Profile a given embedded application to obtain the required dynamic execution profile.

2 Feedback directed ahead-of-time compilation

The idea behind this paper is to support feedback directed ahead-of-time compilation in a future
version of VisualAge Micro Edition as follows:

1. An application is packaged for profiling in one or more JXEs, using VisualAge Micro Edition
SmartLinker. This could for example be a JXE without any precompiled methods, with all
precompiled methods, or a mix.

2. The application is run, one or more times, on the target VisualAge Micro Edition J9 JVM
using a feedback-directed ahead-of-time compilation profiling agent hooked into the target
JVM.

3. The resulting profiles are retrieved from the target and imported into the development
environment.

4. The user specifies a desired performance level to the packager

5. The resulting profiles are merged and analyzed by the packager, and the packager selects a
subset of the methods for precompilation to satisfy the constraints.

6. The packager builds the production JXE with the requested performance level.

2.1 Profiling embedded Java applications

A profiling agent for embedded Java applications needs to be deployed in the target JVM, and it
needs to be small and fast so that the profiler does not inhibit the target application.

The profiler must be as portable as the J9 JVM itself. This means that the profiler must work
independent of the operating system and CPU it is running on (VisualAge Micro Edition supports
various operating systems, like for example QNX/Neutrino[2], Linux, WinNT Embedded and
more).

To satisfy these, and other, requirements we decided to implement a dedicated profiling agent
using the Java Virtual Machine Profiling Interface (JVMPI) [3,4]. JVMPI has designed to support a
powerful, flexible and portable mechanism to hook into and probe the JVM.

We have experimented with sample-based profling and instrumented profiling, which will be
explained next.

2.1.1 Sample-based profiling

For relatively long running applications, the sampling technique described by Viswanathan and
Liang [4] works very well. With the sampling technique the profiler runs in a separate high-priority
thread and samples all active threads at a fixed interval. The smallest interval is 1 ms. For each
thread in the application, the CPU time used and the current execution point (class, method and
line number) are retrieved.

Sample based profiling has the smallest possible impact on the running application, while
remaining portable (a technique described in [5] has better real-time characteristics, but is more
difficult to port).

The sampling technique as described also works if the underlying operating system does not
support measuring CPU time usage per thread, by distributing elapsed time over the runnable
threads. We have tested sampling with and without using OS calls to measure CPU time usage
per thread on Windows NT and on QNX/Neutrino, all leading to the same results as presented.
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2.1.2 Instrumented profiling

With instrumented profiling, JVMPI will report back selected events to the profiling agents, like for
example method entry and exit. Potentially, CPU usage can be measured more accurately by
recording the CPU time used per thread for each method entry and exit event.

This only makes sense if the granularity of CPU usage measurement is 1 ms or better. Note: on
Windows NT the granularity of thread CPU time measurement is 10 ms, and on x86
QNX/Neutrino it is 1 ms.

Event-based profiling slows down the application considerably because a JVMPI event call back
occurs for each method entry and exit. In one experiment we attempted to reduce the impact by
enabling only method exit events. When using the resulting profiles to precompiling methods of
the test application ranked by CPU time, it became clear that the profile based on method exits
only was not usable: instead of 99% of the expected performance gain, only 78% was achieved.
Furthermore, instrumented profiling potentially unevenly degrades the performance of the
application because of cache misses.

2.2 The selected target application

To investigate various metrics and implementation alternatives for feedback directed ahead-of-

time compilation, the SmartLinker application itself (which is a Java application) has been

selected as target application for profiling for the following reasons:

e ltis a real application, and not an artificial benchmark.

¢ |tis a sizeable application and has a long run time (for the given input), thereby eliminating
statistical noise.

e ltis easy to reproduce the test results using the same sets of inputs, and it runs unattended.

e |t has well understood distinct phases that are either I/O bound, CPU bound, creating a lot of
objects, doing lots of string processing, etc.

e It has a typical mix of methods implemented in Java and implemented as Java native
methods.

e |tis a single threaded application that processes its input in a number of sequential phases
that can be individually timed, which makes it easier to interpret the results. The phases are:
class loading, profile loading, reduction, inlining and JXE generation.

Techniques that do not work for the selected application are not generally useable. Techniques
that are successful are most likely to work for many applications.

2.3 Base measurements

The following table shows the measured run time (elapsed time in seconds) per phase of a test
run without any precompiled methods, and with all methods precompiled. All measurements are
done on the VisualAge Micro Edition 1.3 JVM, running on Microsoft Windows NT 4 on an idle 700
MHz Pentium Il PC.

% AOT Class Profile Reduce |Inline JXEgen Total Gain  Size (KB)
loading loading Time (s)

0% 26 23 15 274 57 395 0% 999

100% 13 7 3 61 20 104 100% 4317

The table shows that for this application and input data set the maximum possible run time
improvement factor is 395/104 = 3.8. As one may expect, the largest run time improvement can
be found in the phases without I/O. For the remainder of this paper the gain percentage is defined
as the percentage of the maximum possible run time improvement.
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The next graph shows how the size of the JXE varies with the number of methods that are
precompiled.
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The graph shows how the JXE grows from 1 MB to almost 4.5 MB when precompiling
successively more methods (sorted by native code size). The JXE is at its maximum size at 5092
methods. The remaining methods are abstract and native methods. The total number of methods
is the number of methods in the application, including the class libraries it uses, that remain after
all unused methods are removed in the reduction phase.

Now that the test application has been introduced, the question is how to rank the methods in
such a manner that the method that contributes to the largest gain when precompiled comes first.

2.4 Precompile by method execution count

The first metric that comes to mind is method execution count. Many jit compilers are triggered to
compile a method if the number of times a given method is executed exceeds a threshold. The
following table shows the measured execution times resulting from compiling a given percentage
of all methods, ranked by highest execution count first.

% AOT Class Profile Reduce Inline JXEgen Total Gain Profiled
loading loading Time (s) count

0% 26 23 15 274 57 395 0% 0%
1% 20 21 5 112 42 200 67% 96%
3% 20 20 5 115 43 203 66% 98%
8% 15 15 4 93 31 158 81% 99%
15% 13 7 3 91 25 139 88% 100%
25-100% 13 7 3 61 20 104 100% 100%

The table shows, for example, that if 8% of all methods (ranked by highest execution count first)
are precompiled, the execution time is 158 seconds. This corresponds to 81% of the maximum
possible gain for this application. The last column (Profiled count) shows the profiled cumulative
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number of execution counts for the precompiled methods, expressed as percentage of the total
number of counts.

From this measurement the following conclusions can be drawn:

e By precompiling 25% of the methods ranked by execution count, the application performs just
as well as when all methods are precompiled.

e Even though with 15% of the methods nearly 100% of all calls are covered, one gets only
88% of the maximum possible gain. The explanation is that there are methods with heavy
loops that are invoked only a very few times (and often only once).

Can this be improved upon? Yes, as will be shown in the next section.

2.5 Precompile by CPU gain

This metric compares the execution time of every method being interpreted versus being run as
native code. To perform this measurement the application is built, and run and profiled for CPU
time per method against some input twice: once without any precompiled methods, and once with
all methods precompiled. The resulting two profiles are subtracted to obtain the gain in CPU time
per method.

The following table shows the measured execution times resulting from compiling a given
percentage of all methods, ranked by CPU gain.

% AOT Class Profile Reduce |Inline JXEgen Total Gain Profiled
loading loading Time (s) gain
0% 26 23 15 274 57 395 0% 0%
1% 18 10 5 65 27 125 93% 93%
3% 16 8 4 63 25 116 96% 97%
8% 14 7 3 62 21 107 99% 100%
15% 13 7 3 65 21 109 98% 100%
25% 14 7 3 64 21 109 98% 100%
33% 14 7 3 62 21 107 99% 100%
43% 14 7 4 70 21 116 96% 100%
52-100% 13 7 3 61 20 104 100% 100%

The table shows, for example, that if 8% of all methods (ranked by profiled CPU gain) are
precompiled, the execution time is 107 seconds. This corresponds to 99% of the maximum
possible gain for this application. The last column (Profiled gain) shows the profiled cumulative
CPU gain for the precompiled methods, expressed as percentage of the total measured CPU
gain.

This leads to the following conclusions:

¢ By precompiling only 8% of the methods ranked by CPU gain, the application performs
almost as well as when all methods are precompiled. This is a significant improvement over
ranking the methods by execution count.

e Thereis a good correlation between measured gain and profiled gain, which means that this
approach and its implementation is valid (at least for this type of application).

Note: the measured elapsed times for 15% and 25% are unexpectedly slightly higher. Some
variation in general has been noticed over different runs, probably as a result of other processes
running on the system.

Precompile by CPU gain requires that two versions of the application are built, one with all
methods precompiled. This may not be possible on an embedded system because the size of the
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fully precompiled JXE may exceed the memory limits of the target. Can similar results be
obtained using another metric? The next sections show the result for two more metrics.

2.6 Precompile by interpreted CPU time

This metric ranks the methods according to interpreted CPU time. To perform this measurement
the application is built without any precompiled methods, run against some input and profiled for
CPU time per method.

The following table shows the measured execution times resulting from compiling a given
percentage of all methods, ranked by CPU time.

% AOT Class Profile Reduce |Inline JXEgen Total Gain Profiled
loading loading Time (s) cpu

0% 26 23 15 274 57 395 0% 0%
1% 18 10 5 65 26 124 93% 92%
3% 15 8 4 63 23 113 97% 96%
8% 14 7 3 63 21 108 99% 99%
15% 13 7 3 62 22 107 99% 100%
25-100% 13 7 3 61 20 104 100% 100%

The table shows, for example, that if 8% of all methods (ranked by profiled CPU time) are
precompiled, the execution time is 110 seconds. This corresponds to 98% of the maximum
possible gain for this application. The last column (Prof.cpu) shows the cumulative CPU time for
the precompiled methods, expressed as percentage of the total measured CPU time.

Conclusions:

e By precompiling only 8% of the methods ranked by CPU gain, the application performs
almost as well as when all methods are precompiled.

e Just as for precompiling by CPU gain, there is a good correlation between measured gain
and profiled gain. This means that this approach and its implementation are also valid.

2.7 Precompile by execution and target call count

The last metric investigated ranks methods according to number of times a method is executed
plus the number times target methods are called from a method. The hypothesis is that this
metric could compensate the apparent flaw in ranking methods just by execution count. A very
busy method that is called only a few times could be calling other methods in a loop.

As the following table shows, this is not a good metric. It is even worse than ranking just by
execution count!

% AOT Class Profile Reduce |Inline JXEgen Total Gain Profiled
loading loading Time (s) calls

0% 26 23 15 274 57 395 0% 0%
1% 25 17 13 256 51 362 11% 96%
2% 25 17 13 257 51 363 11% 98%
5% 21 14 12 252 45 344 18% 100%
10% 21 14 12 252 45 344 18% 100%
20% 21 13 12 258 46 350 15% 100%
30% 19 9 5 163 42 238 54% 100%
40% 19 8 4 159 40 230 57% 100%
50% 19 8 4 158 40 229 57% 100%
60% 16 8 3 62 39 128 92% 100%
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70% 13 8 3 62 26 112 97% 100%
80% 13 8 3 61 21 106 99% 100%
100% 13 7 3 61 20 104 100% 100%

The most likely explanation is that there are methods that are invoked only a very few times that
do a considerable amount of processing without frequently calling other methods. Further
investigation is required.

2.8 Gain versus size

Since there is a good correlation between gain estimated from the CPU profiles and measured
gain, it is useful to have a look at the following graph, showing estimated gain versus JXE size.

The following graph is a close up of precompiling the first 1 to 500 methods, which makes it
easier to see that, for example, by precompiling 123 methods (2.2% of all packaged methods)
one gets 95% of the maximum possible performance gain. The JXE size is 1049 KB at that point,
which is a mere 53 KB (5%) increase over the base size of 996 KB.

Gain versus Size (close up)
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To get near the maximum performance gain, less than around 400 (7%) methods need to be
precompiled, adding little over 200 KB (20%) to the original size.

3 Conclusion

There is a growing demand from the embedded market for tools that make it possible to develop
complex and highly dynamic applications. New tools are on the market that are tailored to the
specific needs and limitations of embedded programming in Java, like for example IBM’s
VisualAge Micro Edition [1]. One of the techniques to improve the performance of an embedded
Java application is ahead-of-time compilation of bytecodes into machine code — there is usually
no room for a just-in-time compiler on an embedded target. Precompiling all methods in an
application may make the ROM image of the embedded Java application 4 times bigger.
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It has been demonstrated that by precompiling only a small percentage of all methods, the most
CPU-intensive methods, almost the maximum possible performance gain obtainable by
precompiling all methods can be achieved. It has been shown that the set of hot methods can be
determined by profiling CPU time per method, using simple low-overhead sampling techniques.

More investigation is needed to determine if the results and conclusions extend to other types of
applications, like for example heavily multithreaded applications.

4 References

1.
2.
3.

IBM VisualAge Micro Edition 1.3, http://www.embedded.oti.com/

QNX/Neutrino, http://www.gnx.com/

“Java Virtual Machine Profiling Interface (JVMPI)”, Java™ 2 SDK, Standard Edition
Documentation, Version 1.2.2, Sun Microsytems, Inc., available at
http://java.sun.com/products/jdk/1.2/docs/index.html

D. Viswanatan, S.Liang, “Java Virtual Machine Profiler Interface”, in IBM Systems Journal,
Vol. 39, No 1, 2000.

John J. Barton, John Whaley, “A Real-Time Performance Visualizer for Java”, in Dr. Dobb’s
Journal, March 1998.

F. Tip, C. Laffra, P.F. Sweeny, D. Streeter, “Practical experience with an application extracter
for Java”, in SIGPLAN Notices 34(10).

© Copyright IBM Corp. 2001, All Rights Reserved Page 8



Session [V

Run Time Issues






A Fast Java Interpreter

David Gregg!, M. Anton Ertl?> and Andreas Krall?

! Department of Computer Science,
Trinity College, Dublin 2, Ireland.
David.Gregg@cs.tcd.ie
2 Institut fiir Computersprachen, TU Wien,
Argentinierstr. 8,A-1040 Wien,

anton@complang.tuwien.ac.at

Abstract. The Java virtual machine (JVM) is usually implemented
with an interpreter or just-in-time (JIT) compiler. JITs provide the best
performance, but must be substantially rewritten for each architecture
they are ported to. Interpreters are easier to develop and maintain, need
less memory and can be ported to new architectures with almost no
changes. The weakness of interpreters is that they are much slower than
JITs. This paper describes work in progress on faster Java interpreters.
Our goal is to bring interpreter performance to a new higher level by
developing new optimisations for modern computer architectures, and
by adapting recent research on compilers to interpreters.

1 Introduction

The Java virtual machine (JVM) is usually implemented by an interpreter or
a just-in-time (JIT) compiler. JITs provide the best performance but much of
the JIT must be rewritten for each new architecture it is ported to. Interpreters,
on the other hand, have huge software engineering advantages. They are smaller
and simpler than JITs, which makes them faster to develop, cheaper to maintain,
and potentially more reliable. Most importantly, interpreters are portable, and
can be recompiled for any architecture with almost no changes.

The problem with existing interpreters is that they run most code much
slower than JITs. The goal of our work is to narrow that gap, by creating a
highly efficient Java interpreter. If interpreters can be made much faster, they
will become suitable for a wide range of applications that currently need a JIT.
It would allow those introducing a new architecture to provide reasonable Java
performance from day one, rather than spending several months building or
modifying a JIT.

This paper describes work in progress on building faster Java interpreters.
Why do we think that interpreter performance can be improved? One reason is
that interpreters are rarely designed to run well on modern architectures which
depend on pipelining, branch prediction and caches. We also believe that many
compiler optimisations can be applied to interpreters. Finally, there seems to
be a widespread attitude that interpreters are inherantly slow, so there is little



point in worrying about performance. The goal of our work is to show that this
is not true.

This paper is organised as follows. In section 2 we introduce the main tech-
niques for implementing interpreters. Section 3 describes our work in progress
on a fast Java interpreter. Section 4 presents our plans for future optimisations.
Finally, in section 5 we draw conclusions.

2 YVirtual Machine Interpreters

The interpretation of a virtual machine instruction consists of accessing argu-
ments of the instruction, performing the function of the instruction, and dis-
patching (fetching, decoding and starting) the next instruction. The most effi-
cient method for dispatching the next VM instruction is direct threading [Bel73].
Instructions are represented by the addresses of the routine that implements
them, and instruction dispatch consists of fetching that address and branch-
ing to the routine. Unfortunately, direct threading cannot be implemented in
ANSI C and other languages that do not have first-class labels.

Fortunately, there is a widely-available language with first-class labels: GNU C
(version 2.x); so direct threading can be implemented portably (see 1). If porta-
bility to machines without gcc is a concern, it is easy to switch between direct
threading and ANSI C conforming methods by using macros and conditional
compilation.

void engine()

{
static Inst program[] = { &%add /* ... %/ };
Inst *ip; int *sp;

goto *ip++;
add:

sp[1]1=sp[0]+sp[1]; sp++; goto *ip++;
}

Fig. 1. Direct threading using GNU C’s “labels as values”

Implementors who restrict themselves to ANSI C usually use the giant switch
approach (2): VM instructions are represented by arbitrary integer tokens, and
the switch uses the token to select the right routine; in this method the whole
interpreter, including the implementations of all instructions, must be in one
function.

Figures 3 and 4 show MIPS assembly code for the two techniques. The ex-
ecution time penalty of the switch method over direct threading is caused by
a range check, by a table lookup, and by the branch to the dispatch routine
generated by most compilers.



void engine()

{
static Inst program[] = { add /* ... */ };
Inst *ip; int *sp;

for (;;)
switch (*ip++) {
case add:
sp[1]=sp[0]+sp[1]; sp++; break;
/* ... %/
}

Fig. 2. Instruction dispatch using switch

1w $2,0($4) #get next inst., $4=inst.ptr.
addu $4,$4,4 #advance instruction pointer
j $2 #execute next instruction
#nop #branch delay slot

Fig. 3. Direct threading in MIPS assembly

$L2: #for (;;)

1w $3,0($6) #$6=instruction pointer
#nop

sltu $2,$8,$3 #check upper bound

bne $2,$0,$L2

addu $6,$6,4 #branch delay slot

s11  $2,$3,2 #multiply by 4

addu $2,$2,$7 #add switch table base ($L13)
1w $2,0(%2)

#nop

hj $2

#nop

$L13: #switch target table
.word  $L12

$L12: #add:

j  $L2
#nop

Fig. 4. Switch dispatch in assembly



3 A Fast Java Interpreter

We are currently building a fast threaded interpreter for Java. Rather than start-
ing from scratch, we are building the interpreter into an existing JVM. We are
currently working with the CACAO [Kra97] JIT-based JVM, but our intention
is that it will be possible to plug our interpreter into any existing JVM. It is
important to note that we don’t interpret Java bytecodes directly. We first trans-
late them to threaded code. In the process, we optimise the code by replacing
instructions with complicated run-time behaviour to simpler instructions that
can be interpreted more easily. The goal is to put the burden of dealing with
complexity in the translator, rather than the inner loop of the interpreter.

The interpreter system consists of three main parts. The instruction defi-
nition describes the behavior of each VM instruction. The definition for each
instruction consists of a specification of the effect on the stack, followed by C
code to implement the instruction. Figure 5 shows the definition of IADD. The
instruction takes two operands from the stack (iValuel,iValue2), and places
result (iResult) on the stack.

IADD ( iValuel iValue2 -- iResult ) 0x60
{
iResult = iValuel + iValue2;

}

Fig. 5. Definition of IADD VM instruction

We have tried to implement the instruction definitions efficiently. For exam-
ple, in the JVM operands are passed by pushing them onto the stack. These
operands become the first local variables in the invoked method. Rather than
copy the operands to a new local variable area, we keep local variables and stack
in a single common stack, and simply update the frame pointer to point to first
parameter on the stack. This complicates the translation of calls and returns,
but speeds up parameter handling.

The second part of our interpreter system is the interpreter generator. This
is a program which takes in an instruction definition, and outputs an interpreter
in C which implements the definition. The interpreter generator translates the
stack specification into pushes and pop of the stack, and adds code to invoke
following instructions. There are a number of advantages of using an interpreter
generator rather than writing all code by hand. The error-prone stack manipula-
tion code can be generated automatically. Optimisations easily be applied to all
instructions. We can automatically add tracing and profiling to our interpreter.
The interpreter generator can also produce a dissassembler, and some of the
routines needed by the translator. Specifying the stack manipulation at a more
abstract level also makes it easier to change the implementation of the stack.
For example, many interpreters keep one or more stack items in registers. It is
nice to be able to vary this without changing each instruction specification.



The third part, the translator translates the Java byte-code to threaded in-
structions. In the process of this translation, we rewrite the byte-codes to remove
some ineficiencies and make other optimisations more effective. For example, the
JVM defines several different load instructions based on the type of data to be
loaded. In practice many of these, such as ALOAD and ILOAD can be mapped to
the same threaded instruction. This reduces the number of VM instructions and
makes it easier to find common patterns (for instruction combining).

The translator also replaces difficult to interpret instructions with simpler
ones. For example, we replace instructions that reference the constant pool,
such as LDC, with more specific instructions and immediate, in-line arguments.
We follow a similar strategy with method field access and method invocation
instructions. When a method is first loaded, a stub instruction is placed where
its threaded code should be. The first time the method is invoked, this stub in-
struction is executed. The stub invokes the translator to translate the byte-code
to threaded code, and replaces itself with the first instruction of the threaded
code. An alternative way to deal with these difficulties is to use quick instruc-
tions. These are individual VM instructions which replace themselves the first
time they are invoked. Unfortunately, they make instruction combining difficult.

One implication of translating the original byte-code is that the design prob-
lems we encounter are closer to those in a just-in-time compiler than a traditional
interpreter. Translating also requires a small amount of overhead. Translating
allows us to speed up and simplify our interpreter enormously, however. Original
Java byte-code is not easy to interpret efficiently. Currently, our interpreter runs
a small number of Java programs. Once it is fully stable, we will start work on
the optimisations described in the next section.

4 Future Directions

Once our basic interpreter is working we will develop new optimsations to make
it faster. We will start with those techniques which we believe will give us the
most speedup for the least development effort. As out interpreter becomes more
efficient, and we become more familiar with the trade-offs we will apply more
complicated techniques, whose payoff may be less.

4.1 Reducing Branch Mispredictions

Modern processors depend on correctly predicting the target of branches. In re-
cent work [EG01] we show that efficient VM interpreters contain many difficult-
to-predict indirect branches, and that up to 62%-79% of the running time of
many interpreters is spent on branch mispredictions. The indirect branches in
switch-based interpreters are correctly predicted only about 10% of the time us-
ing branch target buffers (the best prediction technique used in current proces-
sors). Unless they contain many other inefficiencies, the run time of switch-based
interpreters is dominated by indirect branch mispredictions.



The branches in threaded interpreters are correctly predicted about 40% of
the time. The reason is that threaded interpreters have a separate indirect branch
for each VM instruction, which maps to a separate entry in the processors branch
target buffer. We believe that accuracy can be further improved by further in-
creasing the number of indirect branches. For example, conditional branch VM
instructions could have two indirect branches rather than one, corresponding
to the different directions of the branch. Replicating commonly used instruc-
tions will also increase the number of indirect branches. To avoid maintenence
problems from multiple versions of instructions, we will modify the interpreter
generator to do this automatically. Reducing branch mispredictions is the single
most important optimisation for current interpreters, and we expect that it will
reduce running time substantially.

Unfortunately, we know of no way to reduce the number of mispredictions in
switch-based interpreters. This suggests that it may not be possible to build
a particularly fast switch-based interpreter. Qur experiments show that the
threaded version of existing interpreters is up to twice as fast as the switch-based
version of the same interpreter. As we apply optimisations to reduce branch mis-
predictions, the gap is likely to widen.

4.2 Automatic Instruction Combining

Interpreter overhead can be reduced by combining several Java instructions into
one “super” instruction that behaves identically to the sequence, but has the
overhead of a single instruction. Previous researchers have used interpreter gen-
erators to automatically combine commonly occurring sequences of instructions
[Pro95]. Our interpreter generator will also do this, and we plan to experiment
with various heuristics for identifying important sequences, based on static and
dynamic frequencies.

Another interesting area is more general instruction combining. There is
scope for combining not just sequences, but groups of instructions containing
branches. For example, it may be that many basic blocks start with a load in-
struction, so a “branch and conditionally load” instruction may be valuable.
Classic optimisations to increase the length of basic blocks, such as tail duplica-
tion, may also help instruction combining.

4.3 Run-time instruction combining

Perhaps the most remarkable research on interpreters in recent years is Piumatra
and Ricardi’s [PR98] technique which copies fragments of executable code to
create longer sequences without jumps. This allows instruction combining to
take place at run-time, when the program to be interpreted is already known.
The technique can be applied to any threaded interpreter, and makes use of GNU
C’s label variables. They report that it reduces the running the running time of
an already fast threaded interpreter by about 30% on a Pentium processor, with
almost no reduction in portability or simplicity.



We are keen to evaluate this technique on more modern processors with
longer pipelines. It appears to have the potential to allow interpreters to come
within striking distance of the performance of JITs. In effect, it allows run-time
code generation, but without loss of portability. Clearly, there are many open
research questions about the use and effectiveness of this technique.

4.4 Translation to Register VM

The Java VM is a stack machine, which means that all computations are per-
formed on the evaluation stack. For example, to implement the assignment a
= b + c, one would use the VM instruction sequence load b; load c; add;
store a;. Register VMs specify their arguments explicitly, so the same state-
ment might be implemented with the instruction add a, b, c;. Note that the
“registers” in a register VM are usually implemented as an array of memory lo-
cations. Register machines have two major advantages. First, as in the example,
register machines may need fewer VM instructions to perform a computation.
Although the amount of work may be the same, reducing the number of VM
instructions reduces the dispatch overhead.

Secondly, register VMs make it much easier to change the order of VM in-
structions. It is very difficult to reorder stack machine instructions, since all
instructions use the stack, so that every instruction depends on the previous
one. Register instructions can be reordered provided provided there are no data
dependences. Reordering opens new opportunities for instruction combining. We
can change the sequence of instructions to better match our “super” instructions.

Register VMs have two important drawbacks. Stack machines implicitly use
the top elements of the stack as their operands, whereas register machines must
specify the operands. Decoding these operands adds additional overhead. Sec-
ondly, there is clearly a cost in translating the JVM stack code to register code.
However, for switch-based interpreters, which suffer a branch misprediction for
almost every VM instruction they execute, almost anything that reduces the
number of executed VM instructions is likely to be of benefit.

4.5 Software Pipelining

Interpreter software pipelining [HATvdW99] reduces the effect of branches on
interpreters by moving some of the dispatch code for the next instruction into the
current instruction. It was developed for the Phillips Trimdia VLIW processor,
which has no branch prediction. Fetching and decoding the next instruction
while waiting for the branch for the current one to resolve allowed them to
greatly speed up their interpreter.

Software pipelining is also likely to be useful on other processors as a way
to reduce the cost of branch mispredictions. Moving the dispatch code into the
previous instruction allows much of the dispatch to take place while waiting for
the mispredicted branch to resolve. A problem with interpreter software pipelin-
ing, is a taken VM branch causes the pipeline to stall. Delayed VM branches
can reduce this problem, but require a register VM rather than a stack one,



since some VM instruction needs to be moved into the VM branch delay slot.
Given that we already plan to experiment with register machines, we plan to
investigate the usefulness of delayed VM branches.

4.6 Cache Optimisations

Cache misses have a large and growing effect on the performance of modern com-
puters. Interpreters need little memory, so they work well with caches. Nonethe-
less, we will investigate how to reduce cache misses further by placing the code
to interpret the most frequently executed Java instructions in the same cache
lines. This may be very important if, as a result of instruction combining or
other optimisations, we greatly increase the size of our VM instruction set.

5 Conclusion

We believe that these optimisations, especially branch prediction ones, will create
a very fast Java interpreter. As our interpreter becomes faster, the proportional
benefit of other lesser optimisations will increase. For example, if we can reduce
running time of our basic interpreter by 50%, then a lesser optimisation that
might not be considered worthwhile, since it might give only a 5% speedup
on the original interpreter, would give a 10% speedup on the faster one. As
interpreters become faster, anything that can eliminate some part of the running
time will give a proportionally bigger benefit. Given their simplicity, portability,
low memory requirements and reasonable performance, we expect that they will
be an attractive alternative to just-in-time compilers for many applications.
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Abstract

The ENSEMBLE communication library exploits over-
lapping of message aggregation (computation) and DMA
transfers (communication) for embedded multi-processor
systems. In contrast to traditional communication libraries,
ENSEMBLE operates on n-dimensional data descriptors
that can be used to specify often-occurring data access
patterns in n-dimensional arrays. This allows ENSEMBLE
to setup a three-stage pack-transfer-unpack pipeline, effec-
tively overlapping message aggregation and DMA trans-
fers. ENSEMBLE is used to support Spar/Java, a Java-
based language with SPMD annotations. Measurements
on a TriMedia-based multi-processor system show that
ENSEMBLE increases performance up to 39% for peer-to-
peer communication, and up to 34% for all-to-all commu-
nication.

1. Introduction

The application domain for embedded systems is rapidly
expanding. Embedded systems are now also used for
multi-media processing (e.g., HDTV) that requires a high
level of sustained performance. On the other hand, the
life-time of applications is decreasing. This calls for a hy-
brid solution, in which a general-purpose processor is used
for flexibility and multiple embedded processors (DSPs) for
high-throughput signal processing. The embedded proces-
sors can be configured as a pipeline, or as a processor farm.
The latter architecture is often implemented by connecting
all processors (host and DSPs) to a shared bus (e.g., PCI)
or network (e.g., Ethernet). We refer to this setup as an
embedded multi-processor system. In such a system all
processors can communicate with each other, which greatly
enhances flexibility.

To ease application development for embedded multi-
processor systems it is crucial to develop compiler and
runtime-system support to handle difficult and error-prone
tasks like processor synchronization and data transport be-

tween (heterogeneous) processors (e.g., host to DSP). Many
parallel programming systems exist ranging from library-
based systems (PVM [15], MPI [9]) to language-based sys-
tems (HPF [6], CC++ [5], Orca [2]). The latter systems are
easy to program because of the parallelizing compiler that
hides the complex interface to the parallel hardware. The
performance, however, is often compromised because of
the layered approach (OS/runtime-system/compiler) taken
to achieve portability. The alternative of writing explicitly
parallel programs using communication libraries is not very
appealing because of the large penalty in development costs
— parallel programming at such a low level is difficult and
error-prone.

Our approach consists of building a complete tool chain
for application development targeting embedded multi-
processors. We combine ease-of-programming (compiler)
and application performance (efficient DMA-based com-
munication). We support data parallel (SPMD) program-
ming through the Spar/Java language, which is a Java
derivative with explicit support for scientific computa-
tions [13, 14]. The Spar/Java compiler recognizes an-
notations for data and code placement, and automatically
generates a parallel program with explicit communication.
On embedded systems communication is handled by the
ENSEMBLE layer, which has been explicitly designed to
take advantage of the hardware capabilities (i.e. DMA
engines) present in embedded multi-processors. Further-
more we tightly integrated the compiler and ENSEMBLE
to overcome the performance penalties (e.g., buffer copies)
associated with portable communication libraries.

In this paper we describe the ENSEMBLE communication
layer, and evaluate its performance on an Athlon/TriMedia
system.

2. ENSEMBLE

Most embedded processors are capable of initiating
asynchronous DMA transfers, so that communication and
processing can be overlapped. In ENSEMBLE we exploit
this feature by overlapping simultaneous DMA transfers



final int SZ = 300;

int A[]

<S$on=(lambda (i) P[(local 0)])$> new int[SZ];
int B[] =

<Son=(lambda (i) P[(cyclic i)])$> new int[SZ];
int C[] =

<Son=(lambda (i) P[(cyclic i)])$> new int[SZ];

<$ independent $> foreach( i
A[i] = B[i]*C[i];

:— 0:A.length ) {

}

Figure 1. Spar/Java code fragment for inproduct.

MESSAGE = MSGBUF;

// all processors: pack outgoing message
for (int i=procno;i<A.length;i+=P)
*MESSAGE++ = B[i] * C[i];

// all processors: send message to owner
send (MSGBUF, owner (A) ) ;

// owner: receive and unpack incoming messages
if (procno==owner (A)) {
for(int pr=0;pr<P;pr++) {
receive (MSGBUF, pr) ;
MESSAGE=MSGBUF';
for (i=pr;i<A.length; i+=P)
A[i] = *MESSAGE++;

Figure 2. Spar/Java-generated C++ code.

and buffer packing and unpacking as much as possible.
The communication performed by data-parallel Spar/Java
programs is implicit: whenever a processor references
data that resides on another processor, the compiler gen-
erates a communication event. The performance of so-
called element-wise communication is poor. Therefore,
the compiler uses message aggregation to send multiple
data elements in a single message. With ENSEMBLE we
are able to overlap message aggregation (computation) and
communication. This is not possible when the Spar/Java
compiler targets traditional message passing libraries like
PVM and MPL

Consider the Spar/Java code fragment in Figure 1. It
computes the inproduct of two cyclically distributed arrays
(B and C), and stores the result in array A located entirely
at processor 0. The Spar/Java compiler generates C++ code
with explicit send and receive primitives. Figure 2 shows
the generated inproduct C++ code (edited for readability).

The Spar/Java compiler performs a sophisticated analy-
sis to identify opportunities for message aggregation [12].
With the inproduct code, the compiler infers that B and C

MESSAGE = MSGBUF;

// all processors: pack outgoing message
for (int i=procno;i<A.length;i+=P)
*MESSAGE++ = B[i] * C[i];

// all processors: send message to owner
emb_send (owner (A) , MSGBUF , MESSAGE-MSGBUF) ;

// owner: receive and unpack incoming messages
if (procno==owner (A)) {
for (int pr=0;pr<P;pr++) {
int stride = P;
int cnt = A.length/P + (A.length%P > pr ? 1:0);

emb_recv (pr,sizeof (int),A,pr,1, &stride, &cnt) ;
}
}

emb_fence () ;

Figure 3. ENSEMBLE-style C++ code.

are identically distributed, so it can compute the expression
B[i]*C[1] at the owning processor and send the result
to processor 0. The individual results computed at one
processor are aggregated in a single message. Processor O
processes all incoming messages (including the message
sent by itself) by storing the result values in the array A.

Note that a message is completely assembled before
being send; likewise, a message is first received before its
contents is processed. This setup rules out overlapping
message aggregation and communication by ENSEMBLE.
Furthermore, the Spar/Java compiler determines in which
order the messages are processed. If messages happen
to arrive in a different order at runtime, they cannot be
processed immediately, but must be buffered. To avoid
unnecessary waiting, we would like to process messages on
a first-come first-serve basis.

Overlapping message aggregation and communication
requires a tight integration: either the compiler must be
made communication aware (e.g., address fragmentation for
pipelining), or the message passing layer must provide a
higher-level interface (e.g., scatter-gather message vectors).
With ENSEMBLE we take the latter approach and operate
on (n-dimensional) data descriptors instead of contiguous
buffers. Furthermore, we require that all sends and receives
are registered before invoking ENSEMBLE to perform the
actual data transfers. This registration-execution mech-
anism provides ENSEMBLE with the opportunity to (re-)
schedule data transfers dynamically to match availability of
data (buffers) at source (destination) processors.

We modified the Spar/Java compiler to generate
ENSEMBLE-style code as shown in Figure 3. At the
sending side nothing seems to have changed, but the actual
transmission of the message is delayed until emb_fence



is invoked. At the receiving side ENSEMBLE is instructed
to unpack messages directly into array A: the data must be
assigned by cycling through the array with stride P starting
at index pr. The net effect is that the data transmission
can be overlapped with the unpacking in any order that the
messages arrive.

2.1. Data descriptors

Both source and destination of a data transfer in
ENSEMBLE must be specified using ‘data descriptors’.
These allow a variety of often-occurring data access pat-
terns to be specified as either the source or destination of a
transfer.

The data descriptors used in ENSEMBLE are based on
the concept of selecting the elements of a one-dimensional
array with index-values ranging from a lower-bound L up
to an upper-bound U, each time incrementing the index
with a stride S. Actually, the specification as used in
ENSEMBLE uses a slight modification of this scheme, using
a fixed lower bound L=0; instead of the upper bound U the
‘element-count’ C'is used, for which the following holds:

o= %]+

The (S,C) specifications can be nested to allow the
specification of complex data access patterns. The lack of
lower-bounds is compensated by having a ‘base-element
index’ B, which designates the element in the source
array that serves as the starting point for strided packing
or unpacking. The advantage of this approach compared
to using a full (L,U,S) specification is that it suffices
to have one base-index value B per (S, C)-specification
list, instead of having one lower-bound value per (L, U, S)
specification.

One obvious way in which nested (S, C')-specifications
can be used is to traverse several dimensions of a
multi-dimensional array. As an example, consider a 3-
dimensional array, residing on one processor, that is to be
cyclically distributed among three processors (Figure 4).
The colors of the layers in the z-direction indicate the
destination processors; the sender will need to specify three
‘send’ operations. Table 1 shows the three data-descriptors
needed in specifying the ‘send’ operations: each of these
consists of one first-element offset B, and three (S, C)
pairs.

Apart from specifying which elements to use, the base
offsetand (.S, C)-pairs also specify an order in which the el-
ements must be traversed. In ENSEMBLE, the first-specified
(So, Co) pair denotes the inner loop. It is allowed for the
source and destination data-descriptors to describe quite
different array-traversals; only the total number of elements
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Figure 4. 3D array to be cyclically distributed.

layers B (So, C()) (51, 01) (52, Cz)
white 0| (1,20 (20,8) | (480.4)
light-gray | 160 | (1,20) | (20.8) | (480,3)
dark-gray | 320 | (1,20) (20,8) (480,3)

Table 1. Data descriptors for the three targets.

must be equal. This feature can be used in interesting ways,
in which the ENSEMBLE layer is effectively used to perform
a data-transforming operation. Suppose we have a square
100 x 100 matrix at processor 0, and that we need the
transposed contents of this matrix on processor 1. Table 2
shows the way in which this can be accomplished using the
ENSEMBLE data-descriptors.

B | (50,Co) | (51,Ch)
sender 0 (1,100) (100,100)
receiver | 0 | (100,100) (1,100)

Table 2. 100x100 matrix transpose descriptors.

For many operations in which standard distributions such as
‘block’, ‘cyclic’, and ‘block-cyclic’ distributions are used, it
is possible to express the send- and receive-operations with
one or two data-descriptors.

2.2. API

This section describes the small set of primitives pro-
vided by the ENSEMBLE layer. The Application Program-
ming Interface (API) comprises ten calls, see Figure 5.

The emb_init () call must be called once at startup,
before using any other function of the ENSEMBLE layer.
The nproc parameter specifies the number of processors
that should be brought online when bootstrapping the multi-
processor system. The value returned by the emb_init ()
function indicates the processor ID, ranging from 0O to
(nproc-1), inclusive. When the emb_init () call returns,
it is guaranteed that the parallel system is online, that the



int emb_init (int argc, char **argv, int nproc);
void emb_done (void) ;

int emb_PID(void);
int emb_NP (void);

void emb_barrier (void);
void emb_send(int dst, int elmSize, void *base,
int offset, int nstrides,
int *strides, int *counts);
void emb_send_block (int dst, void *base, int sz);
void emb_recv(int src, int elm_sz, void *base,
int offset, int nstrides,
int *strides, int *counts);

void emb_recv_block (int src, void *base, int sz);

void emb_fence (void);

Figure 5. ENSEMBLE interface.

program is running on a processor that participates in the
parallel system, and that other ENSEMBLE calls may be
performed. The function cannot fail; if the bootstrapping
process fails within the emb_init () call, ENSEMBLE will
immediately abort program execution.

The emb_barrier () call implements a full barrier,
synchronizing all processors. This means exactly the fol-
lowing: upon return from the ¢-th call to emb_barrier (),
all processors are guaranteed to have at least entered the i-th
call to emb_barrier ().

The emb_send and emb_recv functions are used to
register ‘send’- and ‘receive’-type operations, which will
be executed upon the next call to emb_fence (). The
dst and src arguments specify the ‘peer processor’ of the
specified operation; a matching call must be executed on
that processor. Send-to-self is allowed, and should also have
a matching receive-from-self call. The elm_sz argument
specifies the element size of the array elements, while the
base argument specifies the array pointer. The offset
argument specifies the element relative to which all strides
will be performed; this is the B value that was discussed
in Section 2.1. The nstrides, strides, and counts
parameters specify the number of nested strides, and the
values S; and C}, respectively. These are processed as soon
as the registering call is made; there is no need to preserve
these arrays until the next emb_fence () call.

The emb_send_block () and emb_recv_block ()
calls are shorthand functions for sending and receiving
contiguous buffers. These are treated exactly like the
corresponding emb_send () and emb_recv () calls, and
may be freely mixed.

Invoking the emb_fence () starts the actual data trans-
fers involved in the sends and receives registered since the
last call completed. The order in which the sends (and
receives) are handled is left unspecified, except that sends
to the same destination are handled in FIFO order. This
provides ENSEMBLE with the freedom to schedule a send as
soon as its destination is ready to accept the incoming data
(i.e. entered the corresponding emb_fence () call). The
emb_fence () call returns as soon as all pending sends
and receives are completed; in case no transfer operations
are specified (which is allowed), it will simply fall through.

2.3. Streaming

The goal of ensemble is to overlap message aggregation
(computation) and DMA transfers (communication). This
calls for a pipelined approach with three stages: packing
(at source processor), transmitting (DMA engine at source),
and unpacking (at destination processor). To reduce startup
costs we use relatively small buffers that are passed down
the pipeline; each DMA across the PCI bus transfers 4 KB
(or less for the last fragment) of data. These transfer buffers
are also the basic unit of flow control between sender and
receiver. Flow control is implemented per sender/receiver
pair: each node allocates a small number (4) of buffers per
possible sender (4 x (nproc-1)in total). Whenever a buffer
is emptied (unpacked) at the destination it is returned to
the sender immediately; the receiving processor updates the
administration at the sender node. The arrival of a buffer at
the receiver is similarly indicated by the sender writing in
the receiver’s administration. (By appending an ‘available’
flag at the end of the transfer buffer, the signalling can be
piggybacked nearly for free onto the DMA transfer.)

2.3.1. Zero copying

Before describing the (un)packing of data elements into and
out of transfer buffers it is important to note that in some
cases it is better to avoid the complete pipeline altogether.
When the source data elements are stored at consecutive
memory locations (e.g., a matrix row) and the locations
of the elements at the destination are consecutive also,
then the most efficient communication method is a single
DMA transfer avoiding two intermediate copies. To exploit
zero-copying ENSEMBLE performs a handshake between
sender and receiver at the start of each communication
to check if both source and destination are contiguous
buffers. If so, a single DMA transfer is requested streaming
data directly from source memory to destination memory.
If only one buffer is contiguous, one copy is saved by
directly DMA-ing to/from a transfer buffer. Otherwise,
the complete pack-transmit-unpack pipeline is started (two
copies).



2.3.2. Dimension reduction

When emb_send () or emb_recv () calls are performed,
the client program (generated by the Spar/Java compiler)
passes a list of n stride/count specifiers. To enhance
performance ENSEMBLE processes this data description
to identify consecutive elements (and dimensions). For
example, a matrix row specified as a sequence of cnt
elements (stride 1, size sz), can be regarded as a single
buffer (size cnt x sz). Likewise, a sequence of rows can
be collapsed to a single buffer. The steps performed when
translating a data descriptor to an internal ‘stride-copy state’
descriptor recognize such cases. This process is called ‘di-
mension reduction’ as it may result in a stride specification
with less dimensions than the original specification. The
dimension-reduction process as performed in ENSEMBLE
comprises the following steps:

1 The ‘element size’ is included as the very first dimen-
sion of the stride-copy descriptor.

2 Next, all other dimensions are added. If possible,
an added dimension is combined with the previous
dimension. This is possible if the stride S;;1 of a
dimension to be added is equal to the count C; of the
previous dimension, multiplied by the stride .S; of the
previous dimension.

3 When all dimensions have been processed, we drop the
inner dimension and use its size as the element size of
the resulting descriptor.

These steps assure that the minimal number of dimensions
is specified needed to visit the same array elements as the
original specification, in the same order. If the number of
dimensions is reduced to zero, the data is available as one
contiguous buffer (with length ‘element size’), indicating
that we might engage a zero-copying transfer.

2.3.3. Data (un)packing

During the execution of an emb_fence operation, the
actual message aggregation takes place. The stride-copy
descriptor is used to copy data from the source array into
the next transfer buffer. The stride-pack routine can han-
dle arbitrary specifications of memory traversal; however,
much effort was put into the efficient operation for the most
important case in which the packing code can be written
as operations on aligned 4-byte elements (holding primitive
types like float and int). The stride-pack code contains a
highly optimized unrolled loop for this case achieving a
throughput of 150 MB/s on our embedded TriMedia target.
To use this highly-optimized code in as many cases as
possible we check if the element size (s) is a multiple of
four. If so, we effectively introduce a new inner dimension
with count s/4.

2.4. Communication scheduling

The emb_fence routine will perform all registered send
and receive operations in the correct (FIFO) order. This
is achieved internally by providing each processor with
both an incoming and an outgoing queue of registered
operations with each processor in the system, including
itself. Thus, nprocx2 queues must be managed at each
processor. The queues are filled with stride-copy descrip-
tors by the emb_send () and emb_recv () calls. The
communication scheduler loops over all queues trying to
advance the pending communication action at the head of
each queue until all registered sends and receives have
been performed. We constructed the scheduler such that
each action on some queue is non-blocking and involves
a small amount of work ("pack the next buffer’ being
the most expensive). This avoids deadlock and ensures
fair progress (round robin scheduling); multiple pipelined
communications are effectively interleaved.

With each queue we associate a state machine that
records where execution will continue on the next round of
the scheduler. A communication is initiated by the receiver
who posts a request at the sender. The sender polls for the
request. When it arrives the sender checks if a zero-copy
transfer can be used. If so, it initiates the DMA transfer, and
modifies the queue state to check for completion. When a
future action detects the completion of the DMA, it notifies
the receiver and removes the strided-copy descriptor from
the head of the queue. A buffered transfer is handled by
checking if a free buffer is available. If not, we yield
control back to the scheduler. Eventually a buffer will
become available, it is filled by strided-pack, and a DMA
transfer is initiated. (The strided-pack routine records in the
queue state where to proceed for the next fragment.) When
detecting the completion of the DMA in a future action, we
do not need to explicitly signal the receiver because of the
‘available’ flag appended to the buffer, but may continue
with allocating, filling and transmitting the next fragment.
When the DMA of the last fragment completes we remove
the strided-copy descriptor from the head of the queue.
When all queues are emptied, emb_fence returns control
to the caller.

3. Implementation

We implemented ENSEMBLE (and the Spar/Java com-
piler) on a heterogeneous multi-processor system consisting
of one host CPU (AMD Athlon [1]) and three multimedia
DSPs (Philips TriMedia [11]) connected by a PCI bus.
The Spar/Java compiler generates C++ code, which is then
compiled for the Athlon and cross-compiled for the TriMe-
dia. The Athlon executable downloads the TriMedia code
on the three embedded processors and initiates execution.



The three TriMedia processors perform the actual parallel
computation and return their output to the Athlon.

The AMD Athlon host processor is a high performance,
x86-compatible microprocessor. In our system it runs at
700 MHz and is equipped with a 64 KB level-1 data cache,
a 512 KB L2-cache, and 256 MB of SDRAM. The speci-
fications of the embedded TriMedia TM 1000 processor are
more modest: 100 MHz processor, 32 KB instruction cache,
16 KB data cache, and 8 MB of memory.

The Athlon processor is under control of the Linux oper-
ating system. Linux supports virtual memory, which com-
plicates the ENSEMBLE implementation for two reasons:
1) a TriMedia addressing Athlon memory uses physical
addresses, 2) to avoid Linux from swapping out pages,
DMA-ble areas must be ‘pinned’. Since the user has
no control over the relation between (consecutive) virtual
addresses and hardware pages, the DMA-ble area is limited
to 4 KB (1 page). This prevents ENSEMBLE from using
zero-copy transfers between the Athlon and a TriMedia.

The TriMedia boards are equipped with a DMA engine
that operates independently and can be controlled from the
embedded ENSEMBLE software running on the TM1000
processor. The caveat, however, is that the DMA engine
directly operates on SDRAM without consulting the (copy-
back) data cache. Therefore, ENSEMBLE code is cluttered
with cache-copyback instructions to update memory with
cached values, and cache-invalidate instructions to avoid
stale data in the cache when memory has been updated by
the DMA engine.

Another characteristic of our system that has caused
much grieve is that for some reason DMA transfers and PIO
(programmed 1/0) can not be mixed freely. Handshaking by
directly writing to another processor’s memory occasionally
fails because the PIO write does not get through to the des-
tination’s memory when contending with concurrent DMA
transfers for the PCI bus. This results in data loss and, con-
sequently, in deadlock. We now use DMA for all accesses
to remote memory at the expense of additional latency.

Figure 6 shows the transfer rates for different message
sizes when using DMA. The rates are measured with a
hand-coded program issuing DMA-send/receive requests in
a tight loop. Note that ‘Put’-type operations are invari-
ably faster than ‘get’-type operations. When performing
a ‘get’-type operation, the requester must wait for it to
finish, thereby introducing a synchronization effect with the
remote hardware. ‘Put’-type operations on the other hand
can normally proceed at full-speed, using buffers between
the sender and receiver and requiring no end-to-end syn-
chronization. ENSEMBLE therefore uses sender-initiated
communications, except for Athlon-to-TriMedia transfers
due to the lack of an accessible DMA engine on the Athlon.
Additional measurements, including Athlon-to-TriMedia
and concurrent DMA transfers, are reported in [4].
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Figure 6. DMA performance (TM to TM).
4. Results

To demonstrate the performance of ENSEMBLE (support-
ing Spar/Java) we present two benchmarks capturing the
often occurring peer-to-peer and all-to-all communication
patterns.

4.1. Peer-to-peer

Figure 7 shows the DMA throughput achieved on our
hardware for peer-to-peer communication. Processor 1
transmits a number of matrix elements (4-byte floats) to
processor 0. For reference the basic DMA put performance
from Figure 6 is plotted (top most curve). We measured
the performance of ENSEMBLE under the most favorable
conditions: the matrix elements are stored consecutively.
In this case ENSEMBLE issues a zero-copy DMA transfer.
The ‘Ensemble zero copy’ curve shows that for small data
sizes the ENSEMBLE overhead is significant, for example,
when sending 64 consecutive floats (256 bytes) ENSEMBLE
achieves a throughput of just 11.4 MB/s vs. 46.8 MB/s
that is obtained with hand-coded DMA transfers. The
overhead is caused by two factors: 1) the preprocessing
of data descriptors (dimension reduction, etc.), and 2)
the handshaking between sender and receiver to infer the
possibility for a zero-copy transfer. The relative impact
of the ENSEMBLE overhead rapidly decreases when the
data size is increased; beyond 4 KB it is insignificant.
We also measured the performance of Spar/Java on top of
ENSEMBLE. Spar/Java adds almost no overhead in this
simple case, so the curve closely follows the ‘Embedded
zero copy’; for clarity it is not shown.

To study the performance of ENSEMBLE in less favorable
conditions, we forced it to execute the (buffered) pack-
transmit-unpack pipeline. The ‘Ensemble buffered’ curve
shows the throughput across all data sizes. The performance
drop starts out with a factor 1.6 for 64 elements, increases
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Figure 7. Peer-to-peer performance.

to 2.2 for 1024 elements, and then gradually decreases to
1.3 for 256K elements. This behavior is a consequence of
ENSEMBLE using 4 KB buffers for (un)packing; up until
1024 floats (= 4 KB) pipelining is not effective because only
one buffer is used. For large data sizes one would expect
the pipeline startup costs (pack and unpack of one buffer) to
become negligible. This is clearly not the case. The reason
is that for large data sizes the pack performance reduces
to 70 MB/s due to the need to load (flush) data in (from)
the cache; the 150 MB/s rate reported in Section 2.3.3
was obtained for a single 4 KB buffer that together with
the source data exactly fits in the data cache. Thus, for
large data sizes the bottle-neck in the pack-transmit-unpack
pipeline is the pack phase (70 MB/s), not the DMA speed
(93 MB/s).

Again we studied the impact of Spar/Java. We measured
the performance of a simple test program that assigns a
cyclically distributed array (residing on both processor)
to an array that is completely local to processor 0. The
resulting curve is labeled ‘Spar buffered’. Note that the
throughput is considerably lower than the corresponding
‘Ensemble buffered” curve. The Spar/Java compiler is
not the cause of this performance drop (i.e. it does not
introduce additional copies), but again the performance
of the strided-pack routine. Since the data is cyclically
distributed, the array elements at processor 1 are laid out
in memory with stride 1 (4 bytes). When packing the
elements only 50% of the data in each cache line is used.
The additional loads to fill the cache degrade the packing
rate from 70 MB/s to 51 MB/s.

To measure the benefits of pipelining we ran the same
Spar/Java test program on ENSEMBLE in synchronous
mode; ENSEMBLE waits for each DMA to complete before
continuing with other work (e.g., packing). This effec-
tively simulates the Spar/Java compiler doing all message
aggregation before invoking a traditional communication
subsystem. Comparing the ‘Spar synch’ and ‘Spar buffered’
curves in Figure 7 shows that pipelining is effective. For

throughput [MB/sec]

g% DMA speed 4’*
Ensemble zero copy —><—

Ensemble buffered —4&—

Spar buffered —%—

| Spar synq h ——

4
64 256 1024 4K 16K 64K 256K
#elements (4-byte floats)

Figure 8. All-to-All performance.

example, when communicating 64K elements pipelining
raises the throughput from 35.9 to 49.9 MB/s, an increase
of 39%. Again we can see the effect of using 4 KB buffers:
up until 1024 floats the complete data set fits into a single
buffer so no performance is gained.

4.2. All-to-all

We repeated the measurements for the all-to-all com-
munication pattern, in which each processor sends data to
all others (including itself). We do not broadcast the data,
but send separate messages to individual processors. The
performance results are shown in Figure 8. For each data
size, six messages of that size are transferred across the bus.

In comparison to the peer-to-peer pattern, the throughput
obtained for all-to-all communications are higher (except
for ‘Spar buffered’ with large data sets). ENSEMBLE (both
zero copy and buffered) even exceeds the raw DMA speed.
The reason is that concurrent DMA transfers issued by
multiple processor do better utilize the capacity of the PCI
bus (132 MB/s). The highest throughput is achieved by
‘Ensemble zero copy’: 107.4 MB/s. The performance of
‘Ensemble buffered’ (104.2 MB/s) approaches the zero-
copy throughput closely for large data sizes. This shows
that the packing speed (70 MBY/s) is not the bottleneck in
the pipeline as it was in the peer-to-peer case. Again this is
a consequence of performing multiple transfers in parallel:
3x70 MB/s > 107.4 MB/s.

At the Spar/Java level the performance improvement
over peer-to-peer communication is only observed for small
data sizes (< 4K floats). For large data sizes the per-
formance of ‘Spar buffered’ even decreases below the
49.2 MB/s achieved with a data size of 1024 elements. The
reason is (again) the data layout. The Spar/Java all-to-all
test program assigns a cyclically distributed array to a repli-
cated array. Since three processors are involved (against
two for peer-to-peer) the cache lines holding the source data
are used even less efficiently (33%) than with peer-to-peer



(50%). The end result is that the buffered all-to-all through-
put for 256K elements (43.7 MB/s) is less than the buffered
peer-to-peer throughput (50.7 MB/s). In the non-pipelining
case (‘Spar synch’) all-to-all performs slightly better than
peer-to-peer: 37.3 MB/s versus 36.0 MB/s.

The effects of overlapping message aggregation and data
transfer (‘Spar buffered’ versus ‘Spar synch’) for all-to-all
are different than for peer-to-peer. With peer-to-peer no
difference was seen for small data sizes because of the 4 KB
transfer buffers. With all-to-all, however, pipelining pays
off for all data sizes. The reason is that even if the data fits
into one transfer buffer, the time waited for completion of
the DMA transfer can be used to pack a message destined
for another processor. The largest gain is obtained for
1024 floats: ‘Spar buffered’ achieves a 34% increase over
‘Spar synch’. For large data sizes the poor cache utilization
decrease the benefit of pipelining: just a 17% increase for
256K elements.

We plan to enhance our compiler to store all local
data of a distributed array in one contiguous buffer. This
reduces the memory footprint of a distributed array, and
allows the cache to be used more efficiently. This will
raise packing speeds considerably and increase the relative
impact of pipelining. A potential disadvantage is that every
array access requires an additional global-to-local offset
translation, but as we describe in [12] this calculation can
usually be lifted out of loops.

5. Related work

Overlapping computation with communication is a well
known concept; many message passing systems, including
MPI, provide asynchronous send (and receive) primitives.
Making effective use of these primitives is often the task
of the programmer, whereas we use a compiler-based ap-
proach. When sending long messages, manual fragmenta-
tion and assembly to implement a pipeline is cumbersome.
Therefore, thin message passing layers for fast networks
like Fast Messages for Myrinet [7], provide a streaming
interface where a message may be presented as many small
parts; each part is written into the stream using a sepa-
rate call. Although this efficiently supports scatter/gather
message vectors used in many protocol stacks, the function
call overhead is prohibitive for sending strided data like
Spar/Java requires.

In the way it is used, ENSEMBLE resembles irregular
communication libraries such as CHAOS [10]. In both
cases a list of communications that must be done is pre-
pared, and upon execution of this list the library is free
to choose the optimal approach for the particular commu-
nication pattern. However, ENSEMBLE was designed to
implement communication of regularly strided blocks effi-
ciently, not irregularly distributed single elements. More-

over, libraries such as CHAOS are usually implemented
using standard communication libraries, and therefore do
not exploit the possibility of overlapping DMA and message
gather and scatter to the extend that ENSEMBLE does.

The embedded multi-processor systems that ENSEMBLE
targets bear great resemblance with modern SMPs, which
include programmable network interfaces with DMA func-
tionality. Making DMA available to the user in the context
of general-purpose SMPs is difficult because of the kernel
barrier. Several techniques have been proposed to deal with
this issue [3, 8]. Since embedded processors do not support
multi-tasking, no true kernel is needed making the design
of ENSEMBLE much simpler.

6. Conclusions

Embedded systems supporting multi-media must be flex-
ible to support different applications and high-performance
to support the signal processing involved. An embedded
multi-processor system consisting of a general-purpose
CPU and a number of dedicated DSPs connected by a
shared bus is a suitable hardware architecture. To ease
application development for embedded multi-processor sys-
tems we have developed a compiler (for Spar/Java) and
communication layer (ENSEMBLE) that automatically take
care of difficult and error-prone tasks like processor syn-
chronization and data transport between heterogeneous pro-
Cessors.

The interface between the Spar/Java compiler and
ENSEMBLE is designed such that the hardware capabilities
of embedded systems can be exploited. In particular,
ENSEMBLE exploits DMA engines to overlap message
aggregation (computation) and communication. Spar/Java
supports the SPMD computational model and generates
rendez-vous style communication with explicit send and
receive primitives. In contrast to traditional communica-
tion libraries, ENSEMBLE operates on n-dimensional data
descriptors that can be used to specify often-occurring
data access patterns in n-dimensional arrays. This allows
ENSEMBLE to setup a three-stage pack-transfer-unpack
pipeline, effectively overlapping message aggregation and
DMA transfers. If source and/or destination elements
are laid out contiguously in memory, ENSEMBLE (partly)
skips the pipeline to bypass intermediate buffers (zero-copy
transfer) increasing throughput rates.

We implemented Spar/Java and ENSEMBLE on a embed-
ded multi-processor system consisting of an Athlon host
processor and three TriMedia TM 1000 multimedia proces-
sors. Performance measurements show that ENSEMBLE
adds little overhead to the raw DMA speed. When sup-
porting Spar/Java, the actual communication speed largely
depends on the layout of the data elements involved; the
pack and unpack routines are sensitive to how well the



cache handles strided accesses. We determined that over-
lapping message aggregation and communication increases
performance up to 39% for peer-to-peer communication,
and up to 34% for all-to-all communication. We anticipate
an even larger benefit when the Spar/Java compiler will
implement shrinking to store distributed arrays compactly.
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