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Abstract

Predefined components often require adaption to interoperate, especially an adaption of the data
they exchange. This paper presents an XML-based approach to the data adaption problem. It
covers serialization of objects to XML, their transformation with XSLT, as well as deserializa-
tion, i.e., parsing and reconstruction of the transformed objects. We statically analyze classes
to generate specific document types and allow static preprocessing. Compared to normal inter-
preted XML processing, this approach eliminates introspection overhead, thus accelerating the
components’ communication.

1 Introduction

Component systems are usually built in two stages. First, preexisting components are bought or
extracted from legacy systems, while missing components are designed and implemented. In the
second stage, components are assembled to a system. Systems integration is personally, physically, and
temporarily separated from component design. Hence, mismatches between components are the rule,
not the exception. This makes adaption, especially adaption of the data exchanged by components,
an integral part of component-based systems design.
Classic middleware architectures for components include CORBA [18], (D)COM [16] and Enter-

prise JavaBeans [21]. They power highly scalable distributed systems whose processing performance
is crucial. Thus, they employ highly efficient binary encodings to marshal data structures and method
calls in a distributed system. Unfortunately, these dense encodings are not easily amenable to adap-
tion. A different approach is necessary.
The XML – Extensible Markup Language [24] – has emerged as the standard in general purpose,

platform-independent data exchange. XML documents carry logical markup: they are tagged accord-
ing to their content structure. Document Type Definitions (DTDs) and XML Schemas [25, 26] provide
type-checking for XML documents. Documents are easily accessible to standard transformation tech-
niques, e.g., XSLT – Extensible Stylesheet Language Transformation [27] – processors. This makes
XML a good candidate to connect components and host adaptions.
Instead of binary channels, we connect components with XML streams. Object structures to be

communicated are serialized to XML by the sender, transported via some channel and rebuilt from the
stream by the receiving component. This way, data adaption may be effected with widely available
XSLT processors.
Most available XML parsers and XSLT transformation processors are interpreters: they read

arbitrary well-formed XML, read and analyze the definition of the required structure and validate the
document against it. Along with many others, the parsers provided by the Apache project [2], James
Clark [8] and IBM [1] fall into this category. Most XSLT processors are interpreters as well, e.g., xt
[8] and saxon [13].



2 BASIC MODEL 2

In a component context, the data definitions (DTDs or Schemas) for individual components are
available at compile time. Respectively, adaption transformations (XSLT scripts) must be provided at
deployment time for the system to work. These data allow considerable optimizations in parsers [17]
and transformers [19, 9]. They reduce the considerable performance penalty of XML versus binary
encodings, but reaping these benefits requires new tools.
As components and deployment contexts may change rapidly in software evolution, manual im-

plementation is not an option. We take a compiler-based approach and analyze component sources
with the RECODER system [15] to generate DTDs and Schemas. In contrast to generic solutions,
this approach allows for application-specific DTDs and Schemas which carry full type information.
Specialized serializers and deserializers are automatically generated and subsequently woven into the
components with RECODER. To optimize the entire processing pipeline, we also employ XSLT script
compilers [19, 9].
The remainder of this paper is organized as follows: we first discuss related work in 1.1 below.

In section 2, we introduce the basic model for communication between components and discuss the
problems to solve. Section 3 specifies the processing pipeline to serialize a data structure, to transform
it, and rebuild the new data structure. Section 4 shows possible optimizations. Finally, section 5
summarizes our results and outlines directions for future work.

1.1 Related work

In [7], Chen et. al use Enterprise JavaBeans runtime introspection to serialize bean state to XML.
Their approach is interpretative, although they formulate generation of specific serializers as a possible
future enhancement. They discuss typing and DTD generation, but do not mention Schemas. Their
application context is web page generation, which does not require deserialization. Consequently, this
topic is not discussed.
The Castor project [6] provides a generic framework for Java data bindings. Among other targets,

Castor supports relational databases and XML. The project employs generator techniques to create
specific serializers and deserializers, but does not create specific typed DTDs and Schemas for Java
classes.
The emerging web service standards SOAP and WSDL [22, 23] complement our approach. SOAP

defines a communication envelope for XML data exchange, and may thus carry messages originating
from our infrastructure. WSDL is a web services definition language, which widely peruses XML
Schema and provides very little in the way of extensions. E.g., typed references to services are a
missing concept. WSDL may be used to encapsulate schema definitions generated by our process
when calling via SOAP.
Classic component IDLs, e.g. for [18], include typed references to components or services. They

support both call-by-value and call-by reference, using generators to supply stubs and skeletons for
remote invocations. For the time being, call-by reference and typed references are outside our scope.
However, our infrastructure is ready for future extension with references, as the RECODER [15]
framework is sufficiently powerful for the required analyses and stub/skeleton generation.

2 Basic Model

We first we define a model for components. This model builds on the existing object oriented type
systems, which is summarized next. In the last subsection, we model the problem of communicating
data structures and subsequently consider the impact of adaptations and transformations.

2.1 Component and Type Model

For the purpose of this paper, we define components to be software artifacts with typed input and
output ports. This definition focuses on computational components, but is sufficiently general to
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cover all other variants. Input ports are connected to output ports via communication channels called
connectors. The notion of ports and connectors are known from architecture systems [20, 5].
While some connectors may be as complex as most components, and thus require the same amount

of consideration in design, we assume most connectors simple point-to-point data paths. Figure 1
sketches this basic component model.

Sender Component Receiver Component

ConnectorOut Port In Port

Figure 1: Basic Component Model

In general, ports are implemented by sequences of basic constructs like method calls, RPCs, RMIs,
input output routines etc. provided by the implementation language or the component system. In
contrast to those basic features, a port abstract from implementation details and defines points in a
component that provides data to its environment and requires data from its environment, respectively.
A connector is defined by an out-port and and in-port sharing the same connector identity.
We refer to [3] for automatic component adaptation by changing port implementations and to [12]

for extracting ports from legacy code.
Technically, we assume the programs contain send and receive calls to objects of type Port naming

the connector identity in the first parameter. The types to send and to receive are the second parameter
and the return type, respectively.
Most type systems in modern programming languages are roughly equivalent. They distinguish

the types in three dimensions:

- value types (where the identity and the value of an object is the same) vs. reference types (where
identity and value of objects can be distinguished),

- concrete types (with implementation of methods) vs. abstract types (interfaces),

- language defined types (where the implementation of methods is not accessible) vs. user defined
types (where we assume the implementation of methods available).

Users define types with classes. A class defines two types, namely the class type with the shared (or
static) attributes and the object type capturing the attributes of the single instance objects of that
class.
There is an inheritance relation between types. We have

- subtype inheritance of types (the subtype declares to implement the supertype interface and

- implementation inheritance (the subtype gets the supertype’s method implementations, conflicts
are resolved, however.).

For the examples and implementations in the present paper, we use the Java type system, which is
briefly defined in the appendix, cf. appendix A.

2.2 Communicating data structures

All data structures reside in an address space associated with their producer. If a prospective consumer
resides in the same space, it may be granted direct access via a local handle. In general, prospective
users may reside in different address spaces, outside the scope of local handles.
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There are two main approaches to distribution: value and reference semantics. Using value se-
mantics, the producer passes a copy of the data structure to the consumer. As data structures may
consist of structured objects with mutual references, this requires deep copying. This makes for large
initial transmissions, but all subsequent consumer operations act on the local copy.
Using reference semantics, the producer passes a globally valid handle to the consumer and exposes

a remote access interface. While handles are usually of fixed and small size, all subsequent consumer
operations must traverse the network to act in the producer’s address space.
Value and reference semantics are not equivalent, but designers are recommended not to exploit

the difference. Clean design simplifies porting between local systems and different distributed archi-
tectures. This includes porting between value and reference semantics. Depending on access profiles,
communication overhead and latency, either of them may be optimal. [14] discusses general data
structure transformations to optimize w.r.t. an access profile.
Adaptations and transformations complicate the architectural choice. Consider the issue of effi-

ciency again. Using value semantics, the data structure is copied and transformed exactly once.
With reference semantics, the remote access interface must provide access to the transformed

data structure. The straightforward approach triggers a complete transformation atomically for every
access to the data structure. This preserves reference semantics, but leads to huge inefficiencies for
repeated accesses. In general, there are no partial transformations to alleviate this problem.
A modification of this approach caches the transformed data structure in the producers’ address

space. To preserve reference semantics, cache consistency must be maintained.
However, in the present paper we focus on values that are to transmit rather than on references

for remote access.

3 Architecture

We first present our XML-based architecture for connectors. Then, we discuss the generator architec-
ture to automate connector generation. Proceeding to details, we then defines our XML representation
of data objects. We discuss the design decisions made. Finally, we briefly outline important properties
of the generated code.

3.1 Connector Architecture

For two components to communicate, an output port must be linked to an input port via a connector.
Often, this connector will be an entirely passive construct. In the general case, however, it may
perform data adaptations. Until now, we have abstracted from connectors’ internal structure. We
now propose the connector architecture shown in Figure 2.

Sender Component Receiver Component

Out Port In  PortXML
Serializer

XSLT XML
Parser

Figure 2: Adapted communication between components.

A connector consists of the following subparts:

1. A basic transport channel capable of transmitting byte streams, e.g., a UNIX pipe, a TCP/IP
socket or an HTTP connection.
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2. A serializer that traverses the internal data structures of the producing component and captures
their state in an XML document written to the channel. In general, state may extend over an
entire object graph — individual objects are just a simplification.

3. An optional XSLT processor that reads, filters and transforms the generated XML document to
make it appropriate for the consuming component. It may be operate either at the producing
or the consuming end of the channel.

4. A deserializer parses the incoming XML document and reconstructs the object graph or a trans-
formed version thereof in the consumer’s address space.

In our component model, both input and output ports are typed. This translates into grammatical
restrictions on the possible outputs of a serializer and the legal inputs for a deserializer. We obtain tight
bounds on the admissible data exchange language by generating specific DTDs from the respective
input and output port types.

3.2 Generating Connectors

The availability of formal specifications for both port types and exchange formats greatly simplifies
the implementation of connectors. Writing them by hand is time consumptive and prone to errors.
Using specifications, we can generate them automatically.
Our aXMLerate project [4] provides a toolkit to generate parsers from DTD and XML Schema

definitions. It is introduced in [10], which additionally demonstrates the performance benefits of
generated over traditional XML processing.
The optional transformation step is defined by an XSLT script. Again, we use an aXMLerate

generator to compile the script [19] instead of using a standard interpreting XSLT processor.
Figure 3 shows how connectors are generated in a preprocessing phase.

Out Port In  Port

TypeInfo

DTD

TypeInfo

DTD

Generators

XSLT

Script

XML

Serializer
XSLT

XML

Parser

Figure 3: Generating a connector

For deployment, the generated subparts of the channel are closely integrated with the consum-
ing and producing components. We use RECODER to weave the appropriated method calls and
implementations into the components, replacing the abstract ports. Figure 4 shows the resulting
program.

3.3 XML Representation

The XML representation must encode all information in an object graph. This includes the value of
variables and references between objects, but also the type information required to resolve polymorphic
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XML
Serializer

XSLT XML
Parser

Sender Component Receiver Component

Figure 4: Connector woven into the components

calls. We first deal with value and reference types. Then, we discuss how to preserve polymorphism
due to subtype inheritance and the representation of implementation inheritance. Finally, we consider
the problem of language and externally defined types.
A variable of a value type may only be assigned identityless values of exactly the same type. There

are two kinds of value types, primitive and complex ones. Primitive value types contain a single
elementary value. We map every one of them directly to an XML element, e.g. a Java int is mapped
to:

<!ELEMENT int #PCDATA>

Complex value types are recursively defined as records, unions or arrays of value types. Their semantics
equal primitive value types in that instances do not have identity other than their contents. We note
that the order of definition imposes an order relation on record fields regardless of their names. Unions
are trivially ordered, as exactly one of their variants is active. Finally, array entries are trivially ordered
by their indices.
Therefore, we can represent records, unions and arrays as XML elements with sequential, alterna-

tive or iterated content models, respectively. To facilitate reconstruction, the array element requires a
length attribute whose value must equal its number of children. Unfortunately, this constraint cannot
be expressed in a DTD. As Java does not support complex value types, we give an example in C
notation:

typedef struct { int x; B y; } A;
typedef union { int x; B y; } B;
typedef B[] C;

are mapped to

<!ELEMENT A (int, B)>
<!ELEMENT B (int| B)>
<!ELEMENT C (B)* >
<!ATTLIST C length CDATA #REQUIRED>

Now we consider reference types. Here, the static type of a variable need not correspond exactly to
the dynamic type of an object assigned to it at runtime. In polymorphism, it may instead be assigned
objects of an arbitrary subtype. We thus need to differentiate between the data layout of an object
of known type on one hand and a reference to an object of known supertype on the other.
We postpone the problem of polymorphism for now by postulating an entity defining a DTD

content model fragment for every reference type, e.g., for every class X, there is some entity definition

<!ENTITY classX "...">

With this postulate, data layout becomes simple. Using these entities, we define elements repre-
senting concrete reference types exactly as for record, union and array value types above. In Java,
there are only record and array reference types. Here is an example for classes (that is, records):
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class X { int a; X b; }

to

<!ELEMENT classX (int, &classX;)>

where &classX; is a reference to the entity postulated above.
In an open world, arbitrarily many subtypes may occur in polymorphism. As DTDs are finite,

we assume that all data types are known at deployment time. In this closed world, the set of types
admissible at run time is the transitive subtype closure over a variable’s static type, minus the abstract
types therein.
Armed with this set, it is now possible to solve the subtyping problem and define the postulated

entities. The necessary content model fragment must admit exactly one of the elements representing
the data layout of every set member. As we serialize object graphs to XML trees, this is not sufficient
for notational reasons. To break cycles, we add one more alternative to the content model: a reference
to a previously serialized element. Thus, if X had exactly two additional concrete subclasses Y and Z,
we would map it to this entity:

<!ENTITY classX "(ref | classX | classY | classZ)">

Notationally, forward references are encoded by recursively inlining the target type. This recursion
terminates for both value types and backward references. The element to encode backward references,
ref , is defined like a primitive type:

<!ELEMENT ref #PCDATA>

By convention, serialized objects are implicitly enumerated sequentially, starting with 1. References
are simply indices in decimal notation, with 0 representing the special value null.
Since we only consider data and not service transmission, the handling of polymorphism completes

the discussion of abstract types and subtype inheritance. Implementation inheritance is captured by
inlining the data layout of the supertypes. This must obeys the conflict resolution mechanisms of the
language. In Java, e.g., there are no conflicts as a class inherits implementations from exactly one
supertype.

Types defined by the language report and in standard or external libraries do not provide an
implementation in source code. For those types, mappings and serializer/deserializer routines must be
defined by hand, as explained for the primitive Java value types above. For all user defined types, the
mapping is automatically constructed by the above definitions and the serializer/deserializer routines
are generated.

By construction, every legal object graph is mapped to an XML document valid under the gener-
ated DTD. The inverse does not hold in three cases.

First, a DTD cannot adequately restrict primitive values. An integer must be encoded as #PCDATA,
so arbitrary sequences of letters will appear valid according to the DTD. Unless a more powerful
document type system like XML Schema is used in future versions, there is no way around this.
Second, there is no guarantee that a reference actually points to an object of the correct type,

or indeed an object at all. While the use of ID and IDREF attributes solves the dangling reference
problem, these global keys and references cannot uphold subtype relations. They should also be
deprecated due to poor nesting behavior. We chose the implicit enumeration scheme because it allows
for one-pass processing: all references are guaranteed to point backwards. The scheme also reduces
document sizes compared to explicit encoding.
Third, the DTD cannot verify that an array’s length attribute does indeed equal its number of

children. There is no way around this.
Several other design decisions were involved in devising this mapping scheme. We only discuss the

three most salient ones here.
Our mapping does not explicitly state field names, using types instead. We took this stance

because DTDs do not separate element names and element types. They are separate in XML Schema.
Currently, we point to the bijective map between field names and sequence positions.
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Modern programming practice disdains macros. Entities are macros, so their use should be depre-
cated. However, current alternatives are even less appealing. It is possible to encode them as elements,
which would keep DTD sizes roughly the same, but double the number of elements in every document
without encoding any additional information. As DTDs are generated, we could also expand entities
in the generator. This would leave document sizes unchanged, but vastly increase DTD sizes and
reduce their readability. When moving to XML Schema, named content model fragments provide an
elegant solution to this problem.
The class names used in 3.3 are of cause simplified examples. In practice, we use a configurable

mangling mechanism to map names and escape illegal characters like Java package separators and array
brackets. If readability is completely peripheral, it may be desirable to use still terser encodings. A
Namespace approach may be another interesting route, but DTDs do not support them explicitly.

3.4 Generated Code

The generated serializer code traverses an object graph once in depth-first order and prints XML in
document order, which is depth-first. It maintains a hash table of serialized objects for the active
session to detect back edges in almost O(1).
The generated deserializer code parses an XML document once in document order and reconstructs

the object graph in depth-first order. It maintains an array of deserialized objects for the active session
to reconstruct back edges in O(1). A second pass to resolve references is not required.
Generated XSL transformations may traverse the input document in an arbitrary fashion, although

depth-first is an important special case. They may cache intermediate results of any size, but the
output document is written in depth-first order.
Due to programming language access restrictions, e.g. private and protected member variables

in Java, the data access sections of serializers and deserializers must be woven into the classes they
act on. To properly deal with null references, public access to the serializers cannot occur via class
members. We chose to group all static access methods for a package in a separate serializer class.
Encoding and decoding of backward references and primitive types is handled by DTD-invariant
serializer stream classes.

4 Optimizations

The generation of components specialized to actual communication and adaptation task per se im-
proves the performance of communication. However, we can achieve additional speed-ups by consid-
ering the connector subparts as a whole.

4.1 Skipping Explicit Intermediate Structures

There are quite a view intermediate structures constructed during communication and adaptation.
First, the serializer produces an XML encoding of the object structure to communicate. Second, the
transformator parses the XML document and constructs an internal DOM representation of it. Third,
it serializes the transformed XML encoding. Forth, the deserializer parses the latter XML document
builds an internal DOM representation which is traversed to call the respective object constructors in
the receiver component context. Figure 5 sketches the process and the produced data structures.

The first optimization is to execute the transformer and deserializer in the receiver component pro-
cess. Then we can skip the explicit XML structure encoding the transformed object graph. Together
with this structure, the writing of XML documents in the XSLT transformer is obsolete. Measure-
ments show that this writer consumes 30% of the whole transformation [19]. Moreover, the parser in
the deserializer can be omitted as well.

Recall a property of the transformator and the deserializer: however the transformation access
the input XML structure, it produces the output in document (depth-first) order. The deserializer
also visits the transformed XML document in document order to call the appropriate constructors.
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Figure 5: Meta structures (displayed in grey) in the connector implementation.
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Figure 6: Meta structures that remain if the communication and adaptation processes are merged
with the receiver process.
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Hence, we can also omit the DOM structure for the output document. Instead of constructing an
XML element in the transformation, we immediately call the appropriate constructor for the output
structure. Figure 6 shows the remaining structures in the process.
Note, that above approach remains applicable also for XSLT 1.1, where snippets of the output

can be assigned to variables and used later to construct the actual output document. Only for those
snippets, we construct a DOM structure.
The second optimization applies if the sender and receiver component run in the same process.

In this special case we have additional opportunities: there is no need for the serializer to generate a
textual XML encoding of the source object structure. Instead, the serializer can construct its DOM
representation directly. As before, the XML writing in the serializer and the XML parsing in the
transformator disappear. Figure 7 shows the only remaining meta-structure in the process.

Serializer/Transformator/Deserializer

XML

Tree

Transformer/

Deserializer

Object

Graph

Sender

Component

Object

Graph

Receiver

Component

Figure 7: Meta structure that remains if the communication and adaptation processes are merged
with the sender and receiver processes.

4.2 Optimizing Serializer and Transformer

In addition to the general optimization above, we optimize the communication by preprocessing the
DTD and the XSLT scripts. If static analysis detects parts of the document type that are provably
never visited by the transformation then there is no need to generate an XML representation for these
elements, however. Filtering transformation extremely profit from this optimization.

5 Conclusion

As components are usually integrated into environments they are not customized for, the commu-
nicated data is to adapt to make the components interact correctly. We defined an XML based
architecture for component connection with adaptation as an integral part.
The connectors are deployed automatically from specifications. We use type information from

the components on the provided and required data in order to serialize and deserialize the XML
representation of the data. XSLT specifications define the necessary transformations.
In contrast to standard XML processing we exploit the pre-agreed and specialized document types

encoding special data type objects. This approach supports the design of transformations XSLT
design tools benefit from precise input and output document types. Moreover, it improves the software
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process for the design of connectors in general introducing a notion of static type safety. Last but not
least they facilitate to optimize serializer, deserializer and transformator.
The next step is the extension of the architecture and the deployment process to references in

order to get full marshalling opportunities.
Furthermore, not all optimizations are implemented in our system. Especially the static analysis

of the XSLT scripts does not exploit the abstract interpretation of the XSLT scripts on the DTD.
Future work will also focus on our optimization techniques at hand. If we could establish a lazy

construction of the XML document encoding the sender object structure, we could go beyond the
static analysis of the XSLT scripts. Whenever a XML element is visited by the XSLT processing for
the first time, we generate this element from the object structure.
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[12] Dirk Heuzeroth, Welf Löwe, Andreas Ludwig, and Uwe Aßmann. Aspect-oriented configuration
and adaptation of component communication. In Jan Bosch, editor, Third International Con-
ference on Generative and Component-Based Software Engineering, GCSE, page 58 ff. Springer,
LNCS 2186, 2001.

[13] Michael Kay. The SAXON XSLT Processor. http://saxon.sf.net/, 2001.
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A Sample Type System

Most type systems in modern programming languages are roughly equivalent. For our example in this
paper and for our running system, we chose the Java type system for its platform-independence. Any
other object-oriented type system may be substituted instead.
The Java type system is defined in the Java language report [11]. It defines three kinds of types:

primitive types, class types and array types.
The language report defines eight primitive types: byte, short, int, long, float, double, char

and boolean. Users may not define additional ones. Primitive types are value types. A variable of a
primitive type is a container for a single value of the type’s value set. Values have no identity — two
fives are always the same. I.e., assigning an integer five to a long variable simply assigns the value,
five. There is no notion of subtypes, although some primitive types’ value sets may contain others’.
There are two kinds of class types: interfaces and classes. The language report defines several class

of them, most prominently java.lang.Object, but in contrast to primitive types, users may create
both new interfaces and classes. A class consists of a set of method signatures S, a map M : S → I
from signatures to implementations and a set of fieldsF , i.e., named and typed variables. Interfaces
have neither implementations nor fields.
A class C = (S, M, F ) inherits from exactly one parent class C ′ = (S′,M ′, F ′) and arbitrarily

many interfaces C ′′, C ′′′, . . . (possibly none). Inheritance is implemented by union of the method
signature sets S, S′, . . . and union of the field sets F and F ′. Where the new class does not define an
implementation mapping M(s) for a signature s ∈ S, the parent’s mapping M ′(s) applies.

A class is either concrete or abstract. Interfaces are always abstract. Only concrete classes may
be instantiated, i.e., objects of this class may be created at runtime. Each such object has an innate
identity — it can be distinguished from another object of the same type containing the same values.

A variable of a class type contains a reference to an object of any subtype of the class type, or
null . The subtype relation is simply the transitive closure of the inheritance relation.

Array types may be defined by the user. Every array type is characterized by its base type, which
may be any arbitrary type. Arrays are always concrete and may be instantiated like classes. An array
instance has innate identity and consists of a fixed-length sequence of containers of the base type. A
variable of an array type can be assigned a reference to an instance of any subtype of the array type,
or null. In Java, an array type is a subtype of another array type if this holds for their base types.

All predefined class types are subtypes of java.lang.Object. So are all arrays1. This makes all
user-defined types subtypes of java.lang.Object. Therefore, the class and array types form a lattice
with top element java.lang.Object and bottom element null.

1Object arrays are the only source of dimension mismatch: Object[] x=new Object[y][] is legal because all array
instances are objects.
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B Example

Consider the following Java class definitions. Although stripped of methods and constructors, they
use most features of the type system: abstract classes, concrete classes, interfaces, inheritance and
arrays.

abstract class A { int i; A a; }
interface B { }
class C extends A { float f; B b; }
class X extends C implements B { X x; }
class Y extends X { boolean[] b; }
class Z implements B { X x; }

Figure 8 shows an object graph built from these classes. We wish to pass it between component ports.
The generator analyzes all classes and produces a DTD, serializers and deserializers.

class Z
X x=

boolean[]
int length=3
{false,
 true,
 false}

null

class Y
int i=42
A a=
float f=3.1415
B b=
X x=
boolean[] b=

Figure 8: A sample object graph

Here, we reproduce the generated DTD without its invariant header. The effects of computing the
transitive subtype closure are clearly visible in each class’ entity definitions.

<!ENTITY classY "(ref | classY)">
<!ELEMENT classY (int, &classA;, float, &classB;,

&classX;, &arrayOfboolean;)>
<!ENTITY classA "(ref | classY | classX | classC)">
<!-- class A is abstract -->
<!ENTITY classX "(ref | classY | classX)">
<!ELEMENT classX (int, &classA;, float, &classB;, &classX;)>
<!ENTITY classC "(ref | classY | classX | classC)">
<!ELEMENT classC (int, &classA;, float, &classB;)>
<!ENTITY classZ "(ref | classZ)">
<!ELEMENT classZ (&classX;)>
<!ENTITY classB "(ref | classY | classX | classZ)">
<!-- class B is abstract -->
<!ENTITY arrayOfboolean "( ref | arrayOfboolean )">
<!ELEMENT arrayOfboolean ( boolean )*>
<!ATTLIST arrayOfboolean length CDATA #REQUIRED>

The generated XMLSerializer class contains one static serializer for every class, array and interface.
It handles backward references and nulls, then uses virtual dispatches to serialize the appropriate
runtime type. E.g., for Y:



B EXAMPLE 15

public static void
serializeClassY(mlnoga.util.XMLSerializerStream s, Y o) {

if(s.serializeReference(o))
return;
o.serializeXML(s);

}

Two additional methods are woven into Y itself. The first is invoked by the static serializer above. It
serializes the runtime data type and invokes the second to serialize the data layout. Prior to serializing
its own fields with the appropriate static serializers, this method invokes the superclass data layout
serializer for X.

public void serializeXML(mlnoga.util.XMLSerializerStream s) {
s.openingTag("<classY>");
serializeBodyClassY(s);
s.closingTag("</classY>");

}

protected final void
serializeBodyClassY(mlnoga.util.XMLSerializerStream s) {

serializeBodyClassX(s);
XMLSerializer.serializeArrayOfBoolean(s, this.b);

}

The following XML fragment is the serialization of Z in figure 8 performed by the generated code.

<classZ>
<classY>

<int>42</int>
<ref>2</ref>
<float>3.1415</float>
<ref>0</ref>
<ref>2</ref>
<arrayOfboolean length="3">
<boolean>false</boolean>
<boolean>true</boolean>
<boolean>false</boolean>

</arrayOfboolean>
</classY>

</classZ>


