A Lightweight XML -based Middleware Architecture

Welf Lowe

Markus L. Noga

University of Karlsruhe
Program Structures Group
Adenauerring 20a, D-76131 Karlsruhe, Germany
{l oewe| noga}@ pd. i nf 0. uni - karl sruhe. de

Abstract

Components are built for reuse, so component integra-
tion is usually personally, physically, and temporally sep-
arated from component design. For components from dif-
ferent sources to interoperate, adaptations are usually re-
quired. Unfortunately, most existing architectures treat
them as mere work-arounds for design problems. This
paper presents a lightweight XML-based middleware for
component communication. In our architecture, compo-
nent adaptation is considered an integral part of component
deployment.
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1 Introduction

Component systems are usually built in two stages. First,
preexisting components are bought or extracted from
legacy systems, while missing components are designed
and implemented. In the second stage, components are
assembled to a system. Systems integration is personally,
physically, and temporally separated from component de-
sign. Hence, mismatches between components are the rule,
not the exception. This makes adaptation an integral part
of component-based systems design.

Classic middleware architectures for components in-
clude CORBA [19], (D)COM [17], and Enterprise Java-
Beans [22]. They power scalable distributed systems
whose processing performance is crucial. Thus, they em-
ploy highly efficient binary encodings to marshal data
structures and method calls in a distributed system. Un-
fortunately, these dense encodings are not easily amenable
to adaptation. A different approach is necessary.

In addition to supporting adaptations, a new com-
ponent system should satisfy the requirements to existing
ones. That is, it should be general-purpose, independent
of platform and language, support both value and reference
types, support serialization and deserialization, support re-
mote invocation, and offer good performance.

1.1 Stateof theart

XML — Extensible Markup Language [25] — has emerged
as the standard in general purpose, platform-independent

data exchange. XML documents carry logical markup:
they are tagged according to their content structure. Docu-
ment Type Definitions (DTDs) and XML Schemas [26, 27]
provide type-checking for XML documents. Documents
are easily accessible to standard transformation techniques,
e.g., XSLT — Extensible Stylesheet Language Transforma-
tion [28] — processors. This makes XML a good candidate
to connect components and host adaptations.

Most available XML parsers and XSLT transforma-
tion processors are interpreters: they read arbitrary well-
formed XML, read and analyze the definition of the re-
quired structure and validate the document against it.
Along with many others, the parsers provided by the
Apache project [3], James Clark [9] and IBM [2] fall into
this category. Most XSLT processors are interpreters as
well, e.g., xt [9] and saxon [14].

In a component context, the data definitions (DTDs or
Schemas) for individual components are available at com-
pile time. Respectively, adaptation transformations (XSLT
scripts) must be provided at deployment time for the sys-
tem to work. These data allow considerable optimizations
in parsers [18] and transformers [20, 10]. They reduce the
considerable performance penalty of XML versus binary
encodings.

In [8], Chen et. al use Enterprise JavaBeans run-
time introspection to serialize bean state to XML. Their
approach is interpretative, although they formulate gener-
ation of specific serializers as a possible future enhance-
ment. They discuss typing and DTD generation, but do not
mention Schemas. Their application context is web page
generation, which does not require deserialization. Conse-
guently, this topic is not discussed.

The Castor project [7] provides a generic framework
for Java data bindings. Among other targets, Castor sup-
ports relational databases and XML. The project employs
generator techniques to create specific serializers and de-
serializers, but does not create specific typed DTDs and
Schemas for Java classes.

Modern component architectures like MS.NET [1]
use XML to encode calls between components and XML
serialization and deserialization techniques to encode and
decoder, resp., the data to exchange. Emerging web service
standards like SOAP and WSDL [23, 24] guarantee inter-
operability with other architectures: SOAP defines a com-
munication envelope for XML data exchange, and may thus



carry messages originating from our infrastructure. WSDL
is a web services definition language, which widely peruses
XML Schema. It may be used to encapsulate schema def-
initions when calling via SOAP. However, it provides very
little in the way of extensions: typed references to services
are a missing concept, as well as standardized language
mappings.

1.2 Overview

Component IDLs include typed references to components.
They support both call-by-value and call-by reference, us-

ing generators to supply stubs and skeletons for remote in-
vocations. In contrast to all other XML based approaches,
we provide these classic concepts while using XML as

our interchange format. Unlike all techniques mentioned

above, we additionally support the adaptation of the calls

and parameters by transforming the XML streams.

We distinguish components and data. For call-by-
value data, object graphs are serialized to XML by the pro-
ducer, transported via some channel and rebuilt from the
stream by the consumer. This way, widely available XSLT
processors can be employed for data adaptation. For call-
by-reference data, the inverse transformations are also re-
quired. In general, they cannot be derived automatically
and must thus be provided to the system. Components are
always communicated by reference. We provide proxies in
the consumer’s address space. Of cause, transformations
may apply recursively to their method arguments.

As components and deployment contexts may change
rapidly in software evolution, manual implementation is
not an option. Our generative approach analyzes com-
ponent sources with thRecodersystem [16] to gener-
ate DTDs and Schemas. In contrast to generic solutions,
this approach allows for application-specific DTDs and
Schemas which carry full type information. Specialized se-
rializers and deserializers are automatically generated and
subsequently woven into the components iéitoder To
optimize the entire processing pipeline, we also employ
XSLT script compilers [20, 10].

The remainder of this paper is organized as follows:
first, we introduce the basic model for communication be-
tween components and discuss the problems to solve, Sec-
tion 2. Section 3 specifies the processing pipeline to seri-
alize a data structure, to transform it, and rebuild the new
data structure. Finally, section 4 summarizes our results
and outlines directions for future work.

2 Basic Mod€

We first define a model for components building on existing
object oriented type systems. Then we model the problem
of communicating data structures and subsequently con-
sider the impact of adaptations and transformations.

2.1 Component and Type M odel

We define components to be software artifacts with typed

input and output ports. Input ports are connected to output
ports via communication channels called connectors. The
notion of ports and connectors are known from architecture

systems [21, 6]. While connectors may be as complex as
components, and thus require the same amount of consid-
eration in design, we assume most connectors to be simple
point-to-point data paths. Components are active, i.e. they
execute their code autonomously. At input ports they re-

quire data from other components. At output ports they

provide data to other components. Figure 1 sketches this
basic model.
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Figure 1. Basic Component Model

In general, ports are implemented by sequences of ba-
sic constructs like method calls, RPCs, RMIs, input — out-
put routines etc. provided by the implementation language
or the component system. In contrast to those basic fea-
tures, a port abstracts from implementation details. A con-
nector is defined by an out-port and an in-port sharing the
same connector identity. We refer to [4] for automatic com-
ponent adaptation by changing port implementations and to
[12] for extracting ports from legacy code.

Most type systems in modern programming lan-
guages are roughly equivalent. They distinguish:

- value types (where the identity and the value of an
object is the same) vs. reference types (where identity
and value of objects can be distinguished),

- concrete types (with implementation of methods) vs.
abstract types (interfaces),

- language defined types (where the implementation of
methods is not accessible) vs. user defined types
(where we consider the implementation of methods
available).

Users define types with classes. In fact, a class defines two
types: a class type with the shared (or static) attributes and
an object type capturing the attributes of the instance ob-

jects of that class. There are inheritance relations between
types, subtype inheritance (the subtype declares to imple-
ment the supertype interface) and implementation inheri-

tance (the subtype gets the supertype’s method implemen-
tations, conflicts are resolved, however.). Only the former

pertains to component systems, the latter only offers con-
venient editing and consistency.



Our middleware architecture communicates data as
well as references to components. Therefore, we need com-
ponent types suitable to out type system. Given an active
component with ports in its code, it can be transformed into
a passive service by the techniqugaigram inversioncf.

[13]. Each in-port is represented by a method, each out-
port by a method call. The set of methods is the type of
the service. This notion of components as passive services
corresponds to the IDL or WSDL view.

2.2 Data Structuresand Services Provided

In analogy to the EJB concepts, we distinguish data struc-
tures and services. The former capture state and only define
access methods, the latter only provide interfaces. Imple-
mentations of services must not be communicated — only
interfaces.

Let A and B be two different components. " pro-
vides a data structure (object)to its environment at an
out-port, there exists a data type (clads)n the scope of
Ato definex. In addition to the attribute fieldsy may also
define some methods on them. Aebject may be commu-
nicated to an in-port of3 expecting a data structugede-
fined by a clasy”. Providedr captures all necessary infor-
mation to generatg objects, we can define an adaptation
routine, however. Adaptation may involve filter, rename,
permutation and other transforming operations. As the ac-
cess pathes changd&, methods may become ill-defined.
Instead,Y methods apply. Therefore, there is no need to
transmit field names or methods along with the pure data
objects.

Now consider communicating the servidetself. In
general, its methods require local state and sub-services,
both captured in attributes of. Beside possibly being pri-
vate, access to those attributes could be restricted for syn-
chronization reasons. Hence, we cannot communicate lo-
cal attributes. Thus, service method implementations can-
not be communicated either. Apart from a service interface
description, we only provide an identifier for the service
object. Some adaptations are allowed on services: renam-
ing of methods, permutation, binding and filtering of pa-
rameters as well as filtering of results. Recursively, further
adaptations may apply on the parameters and results them-
selves.

For data, there are two main approaches to commu-
nication: value or reference semantics. With value seman-
tics, the producer passes a copy of the data structure to the
consumer. As data may consist of structured objects with
mutual references, deep copies are required. This makes
for large initial transmissions, but all subsequent consumer
operations act on the local copy. Using reference seman-
tics, the producer passes a global identifier to the consumer
and exposes a remote access interface. While identifiers
are usually of fixed and small size, all subsequent con-
sumer operations must traverse the network to act in the
producer’s address space. Depending on access profiles,
communication overhead and latency, either approach may
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Figure 2. Adapted value communication between compo-
nents.

be optimal. [15] discusses general data structure transfor-
mations to optimize w.r.t. an access profile.

If we went for marshalling only, we could handle ref-
erence objects and services in the same way. However,
adaptations and transformations complicate the architec-
tural choice. With reference semantics, the remote access
interface must provide access to the transformed data struc-
ture. Not every data transformation can be expressed by a
service transformation, i.e. a transformation of the access
routines to the attributes. E.g., a transformed data structure
contains the sum of two integers in the original structure.
Furthermore, this example shows that the semantics of the
inverse transformation are not unique. In general, it has to
be explicitly defined.

The straightforward approach to implement reference
data structures is to trigger complete transformations (forth
and back) atomically for every access on either side of the
communicating components. This preserves reference se-
mantics, but leads to huge inefficiencies for repeated ac-
cesses. In general, there are no partial transformations to
alleviate this problem A modification of this approach
caches the transformed data structure in the producers’ ad-
dress space. To preserve reference semantics, cache con-
sistency must be maintained, however.

3 Architecture

We present our XML-based architecture for connectors.
Then, we discuss the generator architecture to automate
connector generation. Finally, we briefly discuss the effi-
ciency of the generated code.



3.1 Connector Architecture

For two components to communicate, an output port must
be linked to an input port via a connector. Often, this con-
nector will be an entirely passive construct. In general,
it may perform data adaptations. Until now, we have ab-
stracted from connectors’ internal structure. We propose
the connector architecture shown in Figure 2.

In addition to a basic transport channel capable of
transmitting byte streams, e.g., a UNIX pipe, a TCP/IP
socket or an HTTP connection, a connector consists of the
following parts:

1. A serializer that traverses the internal data structures
of the producing component and captures their state in
an XML document written to the channel. In general,
state may extend over an entire object graph — indi-
vidual objects and references are just a simplification.

2. An optional XSLT processor that reads, filters and
transforms the generated XML document to make
it appropriate for the consuming component. For
services, some restrictions guarantee, that the trans-
formed structure has still a well-defined semantics. It
may be operate either at the producing or the consum-
ing end of the channel.

3. A deserializer parses the incoming XML document
and reconstructs the object graph or a transformed ver-
sion thereof in the consumer’s address space.

In our component model, both input and output ports are
typed. This translates into grammatical restrictions on the
possible outputs of a serializer and the legal inputs for a
deserializer. We obtain tight bounds on the admissible data
exchange language by generating specific DTDs from the
respective input and output port types.

While value objects are simply copied and passed
form the producer to the consumer, references and services
establish a permanent channel between them: an access
on either side to a reference and an access of the remote
side to a service (could) trigger communication. Moreover,
depending on synchronization, both sides could access the
referenced data or service at the same time. However, the
implementation of synchronization is outside our current
scope. We assume local protection against unintended use.

According to the above discussion, the implementa-
tion of the general architecture now differs for each type of
object to transmit:

- Value data are copied to an XML representation, pos-
sibly transformed, and then reified on the remote side,
cf. Fig. 2.

1We can reduce the number of transformations in accordance with the
consistency model of the programming language or system. E.g., Java
requires a back propagation only at synchronization points. In between,
each side may work on its local copy.
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Figure 3. Adapted service communication between com-
ponents.
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Figure 4. Adapted reference communication between com-
ponents.

- Service objects are given an identifier (encoded in
XML) and an XML description of the service inter-
face. The latter may be transformed by renaming and
filtering the service methods, and by reordering, bind-
ing or transforming the parameters. (Note that pa-
rameters are in-ports and the calls binding them are
out-ports; the architecture recursively applies on those
ports, as well.) Services are implemented with prox-
ies on the remote side providing the transformed in-
terface, cf. Fig. 3.

- Reference data are copied to an XML structure, trans-
formed and reified on the remote side as values. Ad-
ditionally, we define a synchronization channel. Ac-
cesses on either side operate on the local copy of the
reference. At synchronization points, transformations
are triggered as for the value data, cf. Fig. 4.

Synchronization points depend on the memory consistency
model. If sequential consistency is required, each access to
the data can trigger a communication. This could be im-
plemented by defining an owner service for the data, which
has two views on it: the original and the transformed view.
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Figure 5. Generating a connector

Changes are monitored; remote view accesses trigger trans-
formations. Alternatively, we could define a service captur-
ing a dirty bits and communicating changes at the remote
side whenever a read from an inconsistent (dirty) structure
is requested. Otherwise, we operate locally. We choose this
one for our example implementation. Weaker consistency
models would require less communication.

3.2 Generating Connectors

The availability of formal specifications for both data types
and service interfaces greatly simplifies the implementation
of connectors. Writing them by hand is time consumptive
and prone to errors. Using specifications, we can generate
them automatically.

At deployment time, we analyze the types of data and
services to communicate. This code inspection is done with
a static meta programming téolOur implementation uses
Recoder[16], a tool to analyze and transform Java code.
For each data type to communicate, ®ecoderapplica-
tion derives an XML Schema representation.

Using this type information, we generate the XML
data serializer for the sender. ThXMLerateproject [5]
provides a toolkit to generate parsers from DTD and XML
Schema definitions used for the deserialization on the re-
ceiver side. [11] demonstrates the performance benefits
of generated over traditional, interpreted XML processing.
The optional transformation step is defined by an XSLT
script. Again, we use aaXMLerategenerator to com-
pile the script [20] instead of using a standard interpreting
XSLT processor. Figure 5 shows how connectors are gen-
erated in a preprocessing phase.

2A meta programming tool analyzes and transforms program terms.
We distinguish static and dynamic meta programming depending on the
pointin time the analyzes and transformations are performed. While static
meta programs operate on the code before it is executed, dynamic meta
programs analyze and change it while execution. For our purpose, static
meta programming is sufficient.
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Figure 6. Connector woven into the components

A service is represented by an interface description
and an object identifier. The interface description is de-
rived from its implementation interface. With an optional
XSLT script defining the service transformations, this al-
lows to generate the remote proxy object. Note that param-
eters and results are value data, reference data or services.
The generation of serializers, deserializers or proxies recur-
sively applies to them.

At runtime, service descriptions are not communi-
cated. Raw data and service identifiers are sufficient, as
type information is already encoded in serializers, deserial-
izers and proxies.

For deployment, the generated parts of the channel are
closely integrated with the consuming and producing com-
ponents. Again, we ugdeecoderto weave the appropriate
method calls and implementations into the components, re-
placing the abstract ports. Figure 6 sketches the result.

3.3 Efficiency of the Generated Code

Due to generated serializers, deserializers and transforma-
tions and their integration into the components, the effi-
ciency of our middleware is already acceptable.

The generated serializer code traverses an object
graph once in depth-first order and prints XML in docu-
ment order, which is depth-first. It maintains a hash table
of serialized objects for the active session to detect back
edges inO(1). The generated deserializer code parses an
XML document once in document order and reconstructs
the object graph in depth-first order. It maintains an array
of deserialized objects for the active session to reconstruct
back edges i(1). A second pass to resolve references is
not required.

XSL transformations may traverse the input docu-
ment in an arbitrary fashion, although depth-first is an im-
portant special case. They may cache intermediate results
of any size, but the output document is written in depth-
first order. Hence, we can omit the DOM structure for the
output document. Instead of constructing an XML element
in the transformation, we immediately call the appropriate
constructor for the output structure.

4 Conclusion

As components are usually integrated into environments
they are not customized for, the communicated data is to



adapt to make the components interact correctly. We de-
fined an XML-based architecture for component connec-
tion with adaptation as an integral part.

Connectors and their descriptions, i.e. document
types, are generated from specifications. We use static type
information on the provided and required data to serialize
and deserialize the XML representations of services and
data. XSLT specifications define the necessary transforma-
tions.

In contrast to standard XML processing, we exploit
the generated document types encoding service and data
objects. XSLT design tools benefit these from precise in-
put and output document types. Moreover, it improves the
software process for the design of connectors in general,
introducing a notion of static type safety. Last but not least
they enable optimized serializers, deserializers and trans-
formers.

However, not all potential optimizations are imple-
mented yet. E.g. the static analysis of the XSLT scripts
does not exploit the abstract interpretation of the XSLT
scripts on the DTD. Future work will also focus on op-
timization techniques. If we could establish a lazy con-
struction of the XML document encoding the sender ob-
ject structure, we could go beyond the static analysis of the
XSLT scripts and exploit dynamic information.
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