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Executive Summary

The availability of indoor three-dimensional (3-D) synthetic aperture radar (SAR) systems

operating in a controlled environment offers a unique opportunity to define optimally the

operational parameters (e.g., the frequency, the polarization and the viewing geometry)

of future SAR systems for a given application. The scanning geometries commonly used

with indoor 3-D SAR systems are planar, cylindrical, and spherical. For these scanning

geometries, a set of efficient near-field algorithms especially suited for these systems is

presently missing.

In this thesis, a set of five 3-D near-field imaging algorithms is introduced, each satisfy-

ing different requirements in terms of computational cost, quality of the resulting imagery,

type of the scanning geometry, and implementation complexity. These algorithms are all

tested by means of numerical simulations and, most important, radar measurements in

the European Microwave Signature Laboratory (EMSL).

At first, a novel 3-D near-field radar imaging technique based on the range migration

algorithm (RMA), which requires frequency domain backscatter data acquired on a two-

dimensional (2-D) planar aperture, is presented. The formulation of this algorithm is

derived by using the method of stationary phase (MSP). The 3-D RMA cannot be directly

applied with cylindrical and spherical scanning geometries. For these scanning geometries,

a new imaging algorithm based on the backpropagation of the backscattered data onto a

planar aperture followed by the 3-D RMA is introduced.

The use of the proposed backpropagation technique with targets electrically very large

is computationally costly. Two alternative solutions are suggested. First, a space-variant

matched filter imaging algorithm especially tailored for spherical scanning geometries,

which accounts precisely for the wavefront curvature and the free space propagation loss.

Second, a polar format algorithm (PFA) with an image rectification. This solution allows

the use of FFT-based focusing algorithms normally used under the far-field condition.

The resulting geometric distortion due to the short observation distance is successfully

corrected by applying a rectification algorithm.

Finally, a subsurface sensing algorithm that corrects for the effects of refraction and

dispersion is outlined. This imaging algorithm is especially tailored for a forward-looking

stand-off platform. In addition, a simple and effective characterization technique is used

to retrieve the dielectric permittivity of the medium surrounding the subsurface objects.
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Chapter 1

Introduction

1.1 Background

The formation of synthetic aperture radar (SAR) images was first accomplished by analog

optical processing in the early 1960’s at the Willow Run Laboratories [1, 2]. This effort was

part of a study concerned with the fine resolution imaging of rotating objects sponsored

by the US Air Force. The SAR data required formatting and photographic recording

to produce the appropriate input to the optical processor. Digital computers were not

used because of their inadequateness to handle the quantity of data and the required

computational load.

The first coherent ground-based radar was built in the late 1970’s under the US Army

sponsorship. Within the framework of this project, Walker [3] designed an experimental

setup to simulate an airborne radar flying around a stationary ground patch. This was the

first attempt to characterize the requirements for optically processing coherent radar data

collected from targets placed on a rotating platform. Contemporaneously, Bojarski [4]

showed theoretically that coherent multi-aspect monostatic or bistatic measurements of

the far field scattered by a non-dispersive object, as a function of the frequency, can be used

to reconstruct a three-dimensional (3-D) reflectivity image. A group led by Mensa [5] at

the Pacific Missile Test Center and Wehner [6] at the Naval Ocean Systems Center worked

extensively on the radar imaging of rotating objects, as did Chen [7] and Ausherman [8].

A group under Farhat [9, 10] formed the first 3-D radar images of a complex shaped

target from actual microwave scattering data. Mensa [11, 12] and Munson [13] analyzed

the relation between techniques used in classical tomography and range-Doppler imaging.

Some years later, this analysis was further developed by Jakowatz [14, 15] and Lawton [16].

The establishment of this relation greatly boosted the development of the radar processing

techniques presently in use [17].



2 1. Introduction

In the late 1980’s, a group led by Rocca [18, 19, 20] at the Politecnico di Milano (Italy)

introduced the use of the wave equation formulation in SAR, applying the method of wave

backpropagation in seismic data processing [21]. This result represented a breakthrough

in the field of SAR because of the low computationally cost and the superb image re-

constructions produced. Furthermore, as opposed to the classical range-Doppler focusing

algorithms used at that time, this technique incorporated the wavefront curvature into the

imaging model [22, 23, 24].

Recently, the development of SAR systems providing full 3-D capability (e.g., a multi-

baseline interferometric or tomographic SAR) has become a field of intensive research [25].

A great extent of the experimental work in this area has been carried out using SAR

facilities operating in a controlled environment. Examples of SAR facilities operating in

a controlled environment can be found in France [26], Sweeden [27], the US [28, 29, 30,

31, 32, 33], Belgium [34], Spain [35], the UK [36], and Germany [37, 38]. Near-field radar

cross section (RCS) measurements have also been used to obtain the far-field scattering

signature of targets [39, 40, 41].

One of the latest developments in the field of near-field radar imaging is the use of fast

multi-level domain decomposition algorithms [42, 43]. These algorithms were previously

exploited in complex integral-equation solvers. Moreover, it is worth mentioning the recent

formulation of tomographic imaging in its full vector form by Langenberg [44, 45, 46]. This

technique has been successfully proven both in SAR and ultrasonics. Finally, the recent

work by Smith [47] assessing the role that the evanescent electromagnetic waves can play

in the detection and identification of a buried object deserves special attention.

Today, SAR has become a well developed technique for producing high resolution

images [48, 49, 50]. According to their working principle the existing radar imaging algo-

rithms can be divided into four general groups:

Polar Format Algorithm: (also known as range-Doppler algorithm) This algorithm was

the first one to be developed and originates from optical signal processing. It is

based on the polar nature of the frequency domain backscatter data, works with

motion compensation to a point and as such needs to be used under the far field

condition, requires an interpolation prior to the Fourier transform, and compensates

only partially the range curvature. Both the 2-D and 3-D versions of this algorithm

are easy to implement and have been used extensively.

Range Migration Algorithm: (in its 2-D version it is also known as ω−k algorithm [19])

This algorithm originates from geophysics. It works with motion compensation to
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a line, requires a 1-D interpolation (known as Stolt interpolation [21]) and compen-

sates completely the curvature of the wavefront. To date, in the radar remote sensing

domain, it has only been used in its 2-D version. The RMA was firstly introduced to

focus 2-D SAR data acquired from a space-borne platform in the strip-map mode.

Later it was adapted to be used in the spotlight mode [20, 51, 52]. Results showing

that the RMA can also focus 2-D SAR data acquired in an anechoic chamber using

the strip-map mode are reported in [53]. Both the 2-D and 3-D versions of the RMA

basically require a 1-D interpolator and FFT codes. As a result, their implementa-

tion on a massively parallel supercomputer becomes fairly straightforward [54, 55].

Chirp Scaling Algorithm: It has the original characteristic of not requiring any inter-

polation [56]. It works with motion compensation to a line and corrects approxi-

mately the range curvature. It is widely used to focus 2-D space- and air-borne SAR

data sets.

Space-Variant Matched-Filter Imaging Algorithm: This is a near-field imaging tech-

nique which accounts precisely for the wavefront curvature and the free space prop-

agation loss. The core of the algorithm resides in the calculation of a near-field

focusing operator, which is convoluted with the backscatter data. It is highly ac-

curate and can be used with different types of scanning geometries. An important

feature of this algorithm is that, in addition to the imaging of targets in free-space,

it can also form subsurface radar images taking into account both the refraction and

dispersion of the wavefield. Implementation examples of this algorithm are presented

in [57, 58, 59].

1.2 Scope and objectives of the Thesis

The research presented in this Thesis has been carried out while working at the European

Microwave Signature Laboratory (EMSL) [60]. This laboratory is one of the experimen-

tal facilities of the Humanitarian Security Unit (HSU), Institute for the Protection and

Security of the Citizen (IPSC), Directorate General Joint Research Center (JRC) of the

European Commission. As shown in Figure 1.1, the overall structure of the anechoic

chamber of the EMSL is formed by the conjunction of a hemispherical and a cylindrical

part, both with radius 10 m. In the gap between the two parts, a circular rail is mounted

where two sleds carrying the antennas can move independently. The radar system is wide-

band, fully polarimetric and can be operated in both imaging and scatterometric modes.

A unique feature of this facility is that it allows the synthesis of 2-D apertures, which can

be either spherical or cylindrical.
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Figure 1.1. Exploded view of the EMSL.

The main objective of this Thesis was to develop a set of rapid and efficient 3-D near-

field imaging algorithms for the identification and characterization of radar reflectivity

components of complex objects. The development of these algorithms has been carried

out considering their subsequent testing with experimental data acquired at the EMSL.

It is important to note that the imaging algorithms presented here rely on the SAR

principle and as such they are based on a linearization of the electromagnetic wave scatter-

ing problem. This means that the interaction between the scatterers present in the scene

is totally neglected. There are a number of microwave and acoustic imaging algorithms

developed in the field of linearized inverse scattering (i.e., under the Born approximation)

which provide alternative solutions to this problem [61, 62]. An example of a non-linear

3-D imaging algorithm dealing with the inverse scattering problem is reported in [63].

Further, the formulation used is always based on the scalar wave equation. Consequently,

in the case of a polarimetric data set, the processing needs to be applied separately to

each polarization channel.

The SAR system is nominally a linear system characterized by a space-invariant im-

pulse response function. However, under the near-field condition, there are factors that

contribute non-linear behavior and space-variant effects. The quality of a SAR system

is normally measured in terms of the spatial resolution and the peak sidelobe levels. In

this Thesis, numerical simulations using scenes with ensembles of ideal point scatterers
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are employed to assess the quality of a near-field imaging algorithm. This is a common

practice in the field of radar imaging.

It is well known that the resolution of any SAR system is subject to fundamental

limitations [64]. Basically, the spatial resolution will depend on the shape and dimensions

of the volume occupied in the spatial frequency space. This volume is larger under the

near-field condition. Consequently, the achievable resolutions with a near-field SAR are

slightly higher than those of a far-field SAR.

This Thesis is organized as follows. Chapter 2 deals with the introduction of the funda-

mentals of range-Doppler radar imaging, which is needed in order to properly understand

the imaging techniques presented thereafter. In addition, the formulation of radar imaging

algorithms under the near-field and the far-field condition is outlined.

Chapter 3 introduces a novel 3-D near-field radar imaging technique based on the

RMA [65]. As an input, the 3-D RMA requires frequency domain backscatter data acquired

on a 2-D planar aperture using a stepped frequency radar. The 2-D synthetic aperture is

assumed to be planar and within the near-field zone of the target. The spatial resolution

in the vertical and horizontal cross-range directions are given by the dimensions of the

synthetic aperture, whereas resolution in ground-range is provided by the synthesized

frequency bandwidth. The frequency domain data is used because the RMA algorithm

works in this domain. Note that the focusing of time domain data sets acquired with a

pulsed system would become straightforward by simply applying a Fourier transform.

The 3-D RMA cannot be directly applied with cylindrical and spherical scanning ge-

ometries. However as an alternative solution for these scanning geometries, it is proposed

to backpropagate the backscattered data onto a planar aperture and then apply the 3-D

RMA [66].

The proposed backpropagation technique of the frequency domain backscatter data

is based on the so-called “radiating reflectors” model [19]. In this model, the scatterers

are assumed to radiate simultaneously a wavefield which propagates at a velocity which

is one half of the actual value. Under this assumption, the backscattered fields can be

approximated as a solution of the 3-D Helmholtz equation. Consequently, field translations

techniques used in antenna measurements (e.g., near-field to far-field transformations of

an antenna pattern) can be adapted to translate the backscattered fields. Here these field

translations are applied to obtain the backscattered fields that would have been measured

on a planar aperture from those actually measured on a cylindrical or spherical aperture.

The work presented in Chapter 3 is the result of a joint effort with Dr.-Ing. Juan-

Manuel López-Sánchez, who was working at the JRC at the time these algorithms were
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developed.

Chapter 4 deals with two novel imaging algorithms. First, a 3-D SAR algorithm based

on the use of a space variant matched filter or near-field focusing function, which accounts

for the wavefront curvature and the propagation losses. The spatial distribution of the

target reflectivity is estimated by means of an azimuth convolution between the near-field

focusing function and the frequency domain data, followed by a coherent integration over

the frequency band and the synthetic aperture in elevation. The circular convolution in

azimuth is performed by applying FFT techniques, which reduce drastically the computing

time. Moreover, instead of using a DFT, the focusing function in the azimuth wavenum-

ber domain is evaluated through an asymptotic expansion obtained by the MSP. This

asymptotic expansion is further optimized by using working matrices with the points of

stationary phase and their second order derivatives. Second, an imaging algorithm based

on the 3-D polar format algorithm (PFA) followed by a geometric rectification of the im-

age. This algorithm is specially tailored to be employed as a quick-look SAR processor.

High quality imagery will only be obtained with narrow spans of the two aspect angles.

Chapter 5 reports on a tree imaging experiment conducted in the anechoic chamber of

the EMSL [67]. The main objective of this experiment was to map the radar reflectivity of

an entire Fir tree in order to support the understanding of the interaction of electromag-

netic waves with natural targets and provide the base for the validation and verification

of existing models.

Chapter 6 presents a novel 3-D near-field subsurface imaging technique [59]. The sub-

surface image is accurately focused taking into account both the refraction and dispersion

of the wavefield. The use of this subsurface imaging technique is subject to a number

of assumptions: the dielectric properties of the ground are known (i.e., the complex per-

mittivity as a function of the frequency), the ground is non-magnetic and therefore it is

unequivocally characterized by its dielectric permittivity, the air-ground interface is pla-

nar, and the ground is perfectly homogeneous out of the region occupied by the buried

objects.

Finally, Appendix A presents the formulation of 3-D RMA making use of the MSP,

Appendix B deals with an assessment of the accuracy and validity range of the translation

of 2-D backscattered fields, Appendix C introduces an algorithm for the efficient calculation

of the amplitudes of the spherical harmonics cm.n, and Appendix D gives the solution of a

Fourier integral using the MSP. Appendix E gives a list of the articles published in refereed

journals.



Chapter 2

Radar Imaging Fundamentals

2.1 Introduction

The purpose of this Chapter is to present the fundamentals of range-Doppler radar imag-

ing. The principal feature of an imaging radar is that it is coherent. Coherent radars

utilize the range-Doppler principle to form the desired image. Thus, the image is formed

using conventional techniques (i.e., a Fourier transform or range compression) to obtain

fine-range resolution. The Doppler frequency gradient generated by the rotation of the

object field relative to the radar is used to obtain a cross-range resolution that is much

finer than that obtainable by the radar’s beamwidth [8, 49].

The fundamentals presented here involve a 3-D imaging geometry with separate (i.e.,

bistatic) transmitting and receiving antennas moving along arbitrary trajectories, as shown
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Figure 2.1. Generic 3-D radar imaging geometries: (a) bistatic and (b) monostatic.
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in Figure 2.1 (a). Both the object and the antennas can have arbitrary motion, although

only the relative motion of the scatterers with respect to the antennas is important for

the radar imaging methods considered here.

The fundamental task of a radar imaging system is to estimate the radar reflectivity

σ(r′) of each element of the object as a function of the spatial coordinate r′. As in any

imaging system, the reflectivity function is approximated by an image function I(r′), which

is calculated from the returned radar signals. Because of the limitations of the radar data,

the function I(r′) will be a blurred representation of σ(r′). This blurring is characterized by

the so-called “point-spread function” or impulse response from an isolated point scatterer.

To obtain imagery of good quality, it is important that the impulse response have its

maximum at the location of the point scatterer and have as sharp a peak as possible with

low side-lobes.

Most of the objects of interest can be modelled as an ensemble of non-dispersive ele-

mentary scatterers and, under the assumption of linearity (i.e., neglecting the interaction

between the scatterers), the image I(r′) can be represented as a superposition of point

target response functions. For a transmitted signal s(t), the signal received from a point

scatterer located at r′ is

sr(t) = σ s

[
t− Rtx +Rrx

c

]
(2.1)

with

Rtx = |rtx − r′|
Rrx = |rrx − r′| (2.2)

where Rtx+Rrx is the time-varying two-way range to the object point, c denotes the speed

of light, and σ is the reflectivity associated with the point scatterer. In general, an image

of the object can be formed if Rtx + Rrx is a different function of time for each point on

the object. All of the imaging methods presented in this Thesis are based on the same

fundamental process of measuring range and changes in range to achieve image resolution.

2.2 Image formation in the spatial frequency domain

A well-known method for processing the received radar data to form an image of the scene

is that working in the spatial frequency domain [3]. The radar returns are first converted

to the frequency-domain by means of a Fourier transform [68, 69], which corresponds to

a polar line segments in the 3-D frequency space of the target. This step can be omitted

when the radar operates in the stepped-frequency mode (i.e., sampling the received signal
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directly in the frequency domain by transmitting a sequence of continuous wave pulses

within the frequency range of interest) [49]. Each segment is oriented according to the

angular coordinates of the radar at the time of transmission. Depending on the relative

motion of the radar and target during the measurement, a portion of the 3-D spatial

frequency space is collected.

The fundamental features of the processing in the spatial frequency space can be de-

rived by observing that for each transmitted pulse s(t), the complex signal received from

a target field is given by

sr(t) =

∫∫∫
V
σ(r′) s

[
t− Rtx +Rrx

c

]
dr′ (2.3)

where Rtx +Rrx is the two-way range to the differential scattering volume dr′, σ(r′) is the

spatial distribution of radar reflectivity associated with the target which, for convenience,

includes the two-way propagation effects and various system gains. The integration in

(2.3) is carried out over the volume of the target.

In the frequency domain, the signal received becomes

Sr(f) =

∫∫∫
V
σ(r′) S(f) exp

[
−j 2πf

c
(Rtx +Rrx)

]
dr′ (2.4)

where sr(t) and Sr(f) constitute a Fourier transform pair. Consequently, Sr(f) is given

by

Sr(f) =

∫ +∞

−∞
sr(t) exp[−j 2πft] dt (2.5)

The main emphasis of this Thesis is on monostatic imaging using a stepped-frequency

radar with a single Tx/Rx antenna, as shown in Figure 2.1 (b). In practice, because of

the poor isolation achieved with a single antenna, two closely spaced antennas forming

a tiny bistatic angle are used. Assuming a monostatic geometry is used, the frequency

domain backscatter data can be calibrated by equalizing the measured returns from the

target. A reference target with known RCS (e.g., a metallic sphere or disc) is measured to

retrieve the equalization factor to be applied to the backscatter data. This is a common

practice in RCS measurements using a stepped-frequency radar [12, 31]. The calibration

of fully polarimetric backscatter data is more complex and requires the measurement of

three-reference targets [70].

Under the assumption that the frequency domain data have been calibrated and the

reference target was positioned at the origin of the coordinates system, the backscattered

fields from a target field can be expressed as

Es(f, φ, θ) = exp

[
+j

4πf

c
ra

] ∫∫∫
V
σ(r′) exp

[
−j 4πf

c
|ra − r′|

]
dr′ (2.6)
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where ra denotes the vector position of the Tx/Rx antenna. For a monostatic geometry

it is evident that ra = rtx = rrx. The complex exponential outside the integral in (2.6)

compensates for the motion of the antenna platform during the aperture synthesis. The

motion compensation step must be performed with great precision to produce high-quality

imagery.

2.2.1 Far-field formulation

Let us consider that the range to the origin of the coordinates system ra is large compared

with the size of the object. This is to say that the Tx/Rx antenna is in the far-field zone

of the object. In RCS measurements, the far-field zone of the object can be defined as [71]

ra ≥
4D2

λ
(2.7)

where D denotes the size of the object and λ is the wavelength at the working frequency.

Note that in antenna measurements the far-field condition is satisfied at half the distance

indicated in (2.7) because the measured phase is associated with the one-way range to the

antenna under test.

If the Tx/Rx antenna is in the far-field zone of the object,

|ra − r′| ' ra − r′ · r̂a (2.8)

where r̂a is the unit vector position of the Tx/Rx antenna. The resulting frequency-domain

backscattered fields can then be expressed as

Es(f, φ, θ) =

∫∫∫
V
σ(r′) exp

[
+j

4πf

c
r̂a(φ, θ) · r′

]
dr′ (2.9)

At this point, the spatial angular frequency variable can be defined as

k =
4πf

c
r̂a. (2.10)

With the above definition, the backscattered fields become

Es(f, φ, θ) =

∫∫∫
V
σ(r′) exp

[
+j k(f, φ, θ) · r′

]
dr′ (2.11)

The above integral equation indicates that an estimate of the target reflectivity σ(r) can

be obtained by carrying out a Fourier transform of the calibrated backscattered fields

Es(f, φ, θ), i.e.,

I(r) =
1

(2π)3

∫∫∫
K
Es(f, φ, θ) exp [−j k(f, φ, θ) · r] dK (2.12)
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Figure 2.2. (a) Point targets in the object space imaged with a circular synthetic aperture;
(b) Data surface observed in the frequency space.

wherein

dK =

(
4π

c

)3

f2 sin θ dφ dθ df (2.13)

The spatial resolution of the resulting image I(r) will depend on the shape and dimen-

sions of the volume occupied in the spatial frequency space.

In practice, only a small portion of the frequency space is observed, with the attendant

limitation on the point target response in each dimension. For example, a linear synthetic

aperture produces planar data collection surfaces and the general 3-D processing problem

reduces to a 2-D Fourier transformation with a resulting 2-D image of the object, i.e., with

no resolution in the direction normal to the collection plane in the frequency space.

As an example, Figure 2.2 shows a generic target consisting of an ensemble of point

scatterers imaged with a circular synthetic aperture and the corresponding surface ob-

served in the spatial frequency space.

2.2.2 Near-field formulation

The Tx/Rx antenna is in the near-field of the object when

ra <
4D2

λ
. (2.14)

Under the near-field condition, the approximation made in (2.8) cannot be used. Conse-

quently, the estimate of the target reflectivity σ(r) cannot be simply obtained via a Fourier
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transform of the backscatter data. An alternative procedure to form the radar image is as

follows. First, the integral equation in (2.6) is rewritten as

Es(f, φ, θ) =

∫∫∫
V
σ(r′) exp

[
−j 4πf

c
(|ra − r′| − ra)

]
dr′. (2.15)

By noting that (2.15) resembles a Fourier integral, one can obtain an estimate of the

reflectivity image using an integral resembling its inverse transform, i.e.,

I(r) =
1

(2π)3

∫∫∫
K
Es(f, φ, θ) exp

[
+j

4πf

c
(|ra − r| − ra)

]
dK. (2.16)

The next chapters present various imaging algorithms which are all based on (2.16).

The efficiency of the proposed algorithms will depend on our ability to make an extensive

use of FFT techniques in the calculation of the integral in (2.16). This will significantly

depend on the geometry of the synthetic aperture used. It is important to mention that

this integral cannot be always formulated in the form of a Fourier transform.

2.3 Image formation in the time domain

The formation of a radar image in the time domain is an alternative approach which

needs also to be considered. SAR or range-Doppler processing in the time domain works

as follows [72]. Each pixel in the image where the reflectivity is estimated will show a

distinct Doppler profile (or phase history in the frequency domain). The Doppler profile is

the two-way propagation time as a function of all the antenna positions on the synthetic

aperture to the location represented by that pixel. Thus, an image can be formed by

simply assigning to each pixel a matched filter to the Doppler profile associated with its

position.

The corresponding time domain formulation for the far-field imaging algorithm takes

the following form,

I(r) =

∫
φ

∫
θ
Ets(t =

2

c
[ra − r · r̂a], φ, θ) sin θ dθ dφ (2.17)

where Ets(t, φ, θ) denotes the backscattered fields in the time domain (i.e., after a 1-D

Fourier transform of the frequency domain backscatter data), which is given by

Ets(t, φ, θ) =
8

c3

∫
f
Es(f, φ, θ) f

2 exp

[
+j

4πf

c
t

]
df. (2.18)

Since the compression in range has already been performed, the integration is only carried

out over the two aspect angles (φ, θ).
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In the time domain, the reflectivity image under the near-field condition can be esti-

mated as follows,

I(r) =

∫
φ

∫
θ
Ets(t =

2

c
[|ra − r| − ra], φ, θ) sin θ dθ dφ. (2.19)

The factor sin θ in (2.17) and (2.19) comes from the Jacobian in spherical coordinates. In

practice, this factor does not play an important role as its effect is totally cancelled out

when the data are windowed prior to the azimuth compression.
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Chapter 3

3-D Near-Field Radar Imaging Using
Seismic Migration Techniques

3.1 Introduction

It is well known that a 2-D reflectivity image can be formed by synthesizing a 1-D aperture

with a wide-band radar [49]. Accordingly, a 3-D reflectivity image can be formed by

synthesizing a 2-D aperture. As an example, typical geometries of the 2-D apertures that

can be synthesized in an anechoic chamber are planar, spherical and cylindrical.

In this chapter a novel 3-D near-field radar imaging technique based on the RMA [65]

is presented. The formulation of the 3-D RMA has been derived by using the MSP [73],

as suggested in [48] for the 2-D RMA. Further details on the use of the MSP are given in

Appendix A. As an input, the 3-D RMA algorithm requires frequency domain backscatter

data acquired on a 2-D planar aperture. The frequency domain data are preferred because

the RMA algorithm works in the frequency wavenumber domain.

The 3-D RMA shows some similarities with the synthetic aperture focusing technique

(SAFT) [45, 74, 75, 76, 77]. This is a focusing technique well known in the fields of

ultrasonics and medical imaging, which is based on a 3-D time domain backpropagation.

However, as opposed to the presented technique, the SAFT is a time domain technique

and does not make any use in its formulation of neither the Stolt interpolator nor the

MSP. On the other hand, both algorithms require planar scan surfaces and can be applied

under the near-field condition. The computational efficiency of these two techniques are

supposed to be of the same order since both algorithms make an extensive use of FFT

codes. Another similar algorithm developed in the field of ultrasonics is the Closed Time

Reversal Cavity [78, 79, 80].

The 3-D RMA cannot be directly applied with cylindrical and spherical scanning ge-
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Figure 3.1. (a) Transmitted and backscattered wavefronts propagating at v = c; (b) The
“radiating reflectors” model with a radiated wavefront propagating at v = c/2.

ometries. However, for these scanning geometries, an alternative solution is to backprop-

agate the backscattered data onto a planar aperture and then apply the 3-D RMA [66].

The proposed backpropagation technique of the frequency domain backscatter data is

based on the so-called “radiating reflectors” model [19]. Note that since the RMA also

originates from geophysics, its validity when applied to SAR is based upon this model.

In the “radiating reflectors” model, see Figure 3.1, the scatterers are assumed to radiate

simultaneously a wavefield which propagates at a velocity which is one half of the actual

value. Under this assumption, the backscattered fields can be approximated as a solution

of the 3-D Helmholtz equation. Consequently, field translation techniques used in antenna

measurements (e.g., near-field to far-field transformations of an antenna pattern) can be

adapted to translate the backscattered fields. Here these field translations are applied

to obtain the backscattered fields that would have been measured on a planar aperture

from those actually measured on a cylindrical or spherical aperture. An assessment of the

accuracy and validity range of the translation of 2-D backscattered fields is presented in

the Appendix B.

Assuming the validity of the “radiating reflectors” model, the translation of the backscat-

tered fields works as follows. First, the modal coefficients or harmonics amplitudes of the

measured backscatter data are calculated. The type of basis functions will depend on the

geometry of the aperture. The basis functions associated with the cylindrical and spherical

apertures are the so-called cylindrical and spherical harmonics, respectively. The modal

coefficients are determined by matching the backscattered fields on the measured aper-

ture. Once these coefficients are known, the modal expansion is then evaluated on a planar

surface in the vicinity of the measured aperture. At that stage, the RMA can be readily

applied to the translated fields provided they are properly sampled on a planar aperture.

Note that in case of a fully polarimetric measurement, the field translation needs to be

applied separately for each polarization.

Due to practical limitations, it is important to note that the measurement aperture will

enclose the target only partially and therefore the validity region of this extrapolation will
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be limited. In fact, the modal coefficients are calculated assuming that the backscattered

fields vanish outside the measurement aperture. This means that the further the backscat-

tered field are backpropagated, the higher will be the truncation errors in the estimation

of the translated fields. The mitigation of these truncation errors is an important topic of

current research in the field of antenna measurements [81, 82, 83, 84, 85].

Since the proposed imaging technique can be used with planar, cylindrical and spher-

ical apertures, the chapter has been split into three sections, each addressing the use of

the 3-D RMA with a different scanning geometry. Section 3.2 presents the formulation

of the 3-D RMA in a highly detailed form, the algorithm implementation, the required

sampling criteria and the resulting resolutions, and the numerical simulations and experi-

mental results obtained with this algorithm. Sections 3.3 and 3.4 address the formulation,

algorithm implementation, the numerical simulations and the experimental results of the

extension of the 3-D RMA to cylindrical and spherical scanning geometries, respectively.

3.2 Planar scanning geometry

3.2.1 Formulation

Consider the measurement set-up shown in Figure 3.2. A stepped frequency radar illumi-

nates a target with a continuous wave (CW) of frequency f . The antenna is positioned

at (xa, Ro, za) and synthesizes a rectangular aperture on the plane x − z at a distance

Z
2-D Planar Aperture

Ro

Y

X
TX/RX Antenna 

a(x  ,Ro,z  )a

Target (x,y,z)

Figure 3.2. Measurement and imaging geometry.
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Ro. The measurement points form a rectangular grid with spacings ∆xa and ∆za in the

horizontal and vertical cross-range directions, respectively. At each antenna position the

synthesized frequency bandwidth is B. Thus, the acquired backscatter data d(xa, f, za) are

a function of two spatial coordinates and the working frequency. The frequency variable is

directly related with the two-way frequency wavenumber kr = 4πf/c. Consequently, the

measurement data can also be denoted as d(xa, kr, za).

Assuming that there is a point scatterer located at (x, y, z) with reflectivity s(x, y, z),

then the measured backscatter is

d(xa, kr, za) = s(x, y, z) exp [+jkrRo] exp [−jkrR] (3.1)

where R is the range to the point scatterer, i.e.

R =
√

(x− xa)2 + (y −Ro)2 + (z − za)2 (3.2)

The first exponential in (3.1) establishes the phase reference at the origin of the coordinates

system which is at a distance Ro from the aperture. In the 2-D RMA this reference is a

line parallel to the linear aperture. The second exponential simply accounts for the phase

history associated with the point scatterer. Note that, for the sake of simplicity, the losses

due to the free-space propagation and the antenna pattern are not considered here.

From (3.1), the 3-D radar reflectivity map associated with a distributed target can be

expressed as

s(x, y, z) =

∫∫∫
A,kr

d(xa, kr, za) exp [−jkrRo] ×

exp

[
jkr

√
(x− xa)2 + (y −Ro)2 + (z − za)2

]
dxa dza dkr

(3.3)

where A denotes the surface of the synthetic aperture. Equation (3.3) can be reformulated

in order to show that the focusing algorithm simply reduces to a 2-D convolution and a

frequency integration

s(x, y, z) =

∫
kr

exp [−jkrRo]
∫∫
A

d(xa, kr, za) ×

exp

[
jkr

√
(x− xa)2 + (y −Ro)2 + (z − za)2

]
dxa dza dkr

(3.4)

Note that (3.3) is a solution of the linearized inverse scattering problem and as such it

only holds under the first-order Born approximation [86]. Here it is also assumed that
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the backscattered fields will vanish at the boundaries of the aperture. This boundary

condition is satisfied by simply applying a 2-D weighting function or window prior to the

focusing, something which is a common practice in any imaging algorithm.

The 2-D convolution in the aperture coordinates (xa, za) can be computed in the Fourier

domain as a complex product if the following 2-D Fourier Transform (FT) were known

E(kx, kz) =

∫∫
exp

[
jkr

√
x2 + (y −Ro)2 + z2

]
exp [−jkxx− jkzz] dx dz (3.5)

This kind of integrals, under certain conditions, can be evaluated analytically by using the

MSP [73]. The MSP states that the main contribution to the integral come from points

with stationary phase (nulls of the phase derivative), and gives an asymptotic expansion

for the integral. The evaluation of the 2-D integral in (3.5) by means of the MSP results

in (see Appendix A)

E(kx, kz) '
2πkr
jk2
y

exp [−jky(y −Ro)] (3.6)

where ky =
√
k2
r − k2

x − k2
z . Replacing the 2-D FT by its asymptotic expansion in (3.4),

the 3-D reflectivity image is given by

s(x, y, z) '
∫∫∫
K

D(kx, kr, kz)
2πkr
jk2
y

exp [−jkrRo] ×

exp [j(kxx+ kzz − ky(y −Ro)] dkx dkr dkz

(3.7)

where D(kx, kr, kz) is the 2-D horizontal/vertical cross-range FFT of the frequency domain

backscatter data. The last exponential term takes the form of the Fourier kernel in a 3-D

IFFT. However, prior to this 3-D IFFT, the wavenumber domain backscatter data need to

be re-sampled uniformly in ky. Then, by substituting the frequency wavenumber variable

kr by ky, the reflectivity image takes the form,

s(x, y, z) '
∫∫∫
K

D(kx, ky, kz)
2π

jky
exp [−j(kr − ky)Ro] ×

exp [jkxx+ jkzz − jkyy] dkx dky dkz

(3.8)

Note that the amplitude term has been modified due to the change of variables (kr → ky).

Equation (3.8) indicates that reflectivity image can be simply obtained through an 3-D

IFFT of the product of the re-sampled wavenumber domain backscatter data by a complex

exponential (also known as matched filter).
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Stolt Interpolation

3-D Reflectivity Image

3-D IFFT

Frequency Domain Data Set

2-D Cross-Range FFT

Matched Filter

Kr      Ky

S(Kx,Kr,Kz)

d(xa,Kr,za)

s(x,y,z)

D(Kx,Kr,Kz)

S(Kx,Ky,Kz)

 exp[-j Kr Ro +j Ky Ro]

Figure 3.3. Block diagram of the 3-D RMA.

3.2.2 Algorithm implementation

This section deals with the practical implementation of the 3-D RMA. From (3.8), the

image reconstruction process can be naturally split into four sequential steps (see Fig-

ure 3.3), namely: a 2-D cross-range FFT, matched filtering, Stolt interpolation, and a 3-D

IFTT. The first and the last steps are obvious and will not be discussed here. However,

the matched filter and the Stolt interpolation deserve special treatment.

The matched filter is necessary to introduce a motion compensation to the wavenumber

domain backscatter data. This motion compensation corrects for the wavefront curvature

of all scatterers at the same ground range as the scene center (i.e., the origin of the

coordinates system). In the next step, the residual range curvature of all scatterers will

be removed. The phase associated with the matched filter is space-invariant and depends

only on the range to the scene center Ro, the frequency and the cross-range wavenumbers.

It is given by

ΦMF(kx, kr, kz) = −kr Ro + ky Ro = −kr Ro +
√
k2
r − k2

x − k2
z Ro (3.9)

where the identity

ky =
√
k2
r − k2

x − k2
z (3.10)

is known as the Stolt transformation [21]. Note that, in (3.10), ky must be real and

therefore the region in the wavenumber domain where the asymptotic expansion of the
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MSP is valid reduces to

k2
r ≥ k2

x + k2
z (3.11)

The field modes which satisfy this inequality are the so-called propagating modes, whereas

those which do not propagate are the evanescent modes. The amplitude of the evanescent

modes is affected by an exponential factor which rapidly vanishes with an increasing dis-

tance to the aperture (y−Ro). In the formulation presented here, it is assumed that (3.11)

is satisfied. In practice, the data points in the wavenumber domain outside the region de-

fined by (3.11) will be discarded by applying a mask prior to the matched filter.

The third step performed in the 3-D RMA is the Stolt interpolation. This interpo-

lation compensates the range curvature of all scatterers by an appropriate warping of

the wavenumber domain backscatter data. After the matched filter the transformed data

continue being equally spaced in frequency, and therefore in the kr variable. In order to

prepare the data for the last 3-D IFFT, the next step consists of a change of variables

defined by the Stolt transformation, which can be implemented as a 1-D interpolation.

As a result, the wavenumber domain backscatter data will be uniformly sampled in the

ky domain. In the present implementation of the algorithm, the sampling frequency is

increased to be highly above the Nyquist limit, then a frequency down-conversion followed

by a Lagrange interpolation is applied.

Once the Stolt interpolation is performed, the wavenumber domain backscatter data are

multiplied by the amplitude terms introduced by the change of variable and the asymptotic

expansion of (3.8). Then, the 3-D reflectivity image is obtained by simply applying a 3-D

IFFT.

3.2.3 Sampling criteria and resolution

The resolution of the resulting 3-D reflectivity image depends on the frequency bandwidth,

the center frequency and the dimensions of the synthetic aperture. The ground-range

resolution is usually expressed as

δy '
c

2B
(3.12)

where B is the frequency bandwidth. The horizontal and vertical cross-range resolutions

are,

δx '
λcRo
2Lx

=
cRo

2fcLx
(3.13)

δz '
λcRo
2Lz

=
cRo

2fcLz
(3.14)
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where Lx and Lz are the lengths of the 2-D synthetic aperture, and λc is the wavelength

at the center frequency fc.

In practice, the frequency domain backscatter data are windowed to lower the side-

lobes in the imagery, and as a result the final resolutions are usually slightly poorer than

those given by the above formulas.

Assuming that the target is confined within a rectangular box of dimensions Dx×Dy×
Dz centered at the origin of the coordinates system, the required sampling steps in the

measurement to satisfy the Nyquist criterion are given by

∆f ≤
c

2Dy
(3.15)

∆xa ≤
λmin

2

√
(Lx +Dx)2/4 +R2

o

Lx +Dx
(3.16)

∆za ≤
λmin

2

√
(Lz +Dz)2/4 +R2

o

Lz +Dz
(3.17)

where λmin is the wavelength at the maximum working frequency.

The sampling intervals given by (3.16) and (3.17) are the usual ones in strip-map

SAR. The measurement points on the aperture require a minimum spacing in order to

sample adequately the phase history associated with all the scatterers after the matched

filter. As a result, the sampling frequencies in a strip-map SAR are much higher than

those in a spotlight configuration. Note that in a spotlight SAR the minimum cross-range

spacing only depends on the target size and the distance to the aperture, but not on the

aperture size as in a strip-map SAR. Consequently strip-map SAR measurements will have

associated larger data volumes and thus longer measurement times.

Running a strip-map SAR measurement at the spotlight SAR sampling frequency will

introduce aliasing in the acquired data set. However, the origin of the aliasing is known

and can be eliminated by introducing a deterministic phase correction term. The phase

correction term which needs to be applied is as follows

HF(xa, kr, za) = exp

[
jkr(Ro −

√
x2
a +R2

o + z2
a)

]
(3.18)

After applying this correction term, the aliasing has been eliminated, the sampling rate

can be increased in order to satisfy (3.16) and (3.17). Then a second phase correction,

complex conjugate of the first one, is applied to restore the original phase reference in the

data. The main advantage of this procedure is the reduction of both the data volume and

the measurement times. From the viewpoint of the RMA, this pre-processing is completely

transparent and does not have any side effect. Note that the 3-D RMA maintains the
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o

Figure 3.4. Pre-processing of data sampled at the spotlight rate.

same requirements in terms of internal memory and computational load. The flowchart

associated with this pre-processing is shown in Figure 3.4. The resulting cross-range

sampling intervals (i.e., the ones used in a spotlight SAR) are:

∆xa ≤
λminRo

2
√
D2
x +D2

y

(3.19)

∆za ≤
λminRo

2
√
D2
z +D2

y

(3.20)

An alternative technique to process strip-map data at the spotlight sampling frequency

is presented in [51, 52]. This technique, known as Frequency domain Replication and

Down-sampling (RMA-FReD), has been used with air-borne data. With this technique,

the blurred replicas due to the aliasing fall ideally out of the scene, and the final image

exhibits a slightly lower signal-to-background-ratio and a wider impulse response. If this

minor degradation in the image quality is accepted, one can use the RMA-FReD as a

quick-look processor. Note that, with the RMA-FReD, the data volume to be processed

is significantly smaller than that of the conventional RMA. In the next section, the results

obtained with these two processors are compared.

3.2.4 Numerical simulations

Figure 3.5 shows a sketch of the target used in the first numerical simulation. The target

consists of a 3-D array of 5 × 5 × 5 point scatterers uniformly distributed within a box

of side 1 m. All scatterers have the same RCS: 0 dBsm. A Tx/Rx antenna synthesizes a
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Tx/Rx Antenna
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z
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Ro = 2 m

Figure 3.5. Measurement set-up used in the numerical simulation with the 3D array of 125
point scatterers.

planar aperture of 2 m × 2 m located at Ro = 2 m from the target center. The number

of measurement points is 51, spaced 4 cm, in both the horizontal and vertical cross-range

directions. These sampling intervals have been selected according to the spotlight criterion.

The resulting sampling intervals without the proposed pre-processing would be 2 cm. The

frequency ranges from 2 to 6 GHz, sampling a total of 41 points with a step of 100 MHz.

According to these parameters the theoretical resolution is 3.75 cm along the three main

axes.

Two 3-D reflectivity images have been reconstructed using the RMA and the RMA-

FReD, respectively. The reflectivity image has been reconstructed in a cube of side 1.2 m,

with a total of 61 voxel in each dimension. Figure 3.6 shows the projection of the images

onto the three main planes. A Kaiser-Bessel (α = 2) window has been applied along the

dimensions of the frequency domain data set [87]. The dynamic range shown in the image

is 50 dB. Both results show a slight dependence on the ground-range coordinate (y). This

effect is common in near field measurements since the algorithm does not focus with the

same accuracy close and distant scatterers. Anyway, the quality of the reconstructed image

is quite satisfactory and, moreover, the processing time much shorter. In the RMA case

the processing time was 3 min and 40 secs, requiring about 13 MByte of RAM. The image

obtained with the RMA-FReD processor shows some inaccuracies at reflectivity values

below –30 dBsm. These imperfections are present in the near range zone because this area

introduces the highest spatial frequencies. However, with this processor, the processing

time took only 1 min, requiring only 3 MByte of RAM.

The second simulation is intended to estimate the dynamic range of the 3-D RMA

processor. The target is similar to that used in the previous simulation. It consists of
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(a) (b)

Figure 3.6. Projections of the 3-D SAR image onto the x − y, x − z and y − z planes.
Simulation of 125 point scatterers. Parameters: Ro = Lx = Lz = 2 m, f = 2–6 GHz,
δx = δy = δz = 3.75 cm, ∆f = 100 MHz, ∆xa = ∆za = 4 cm, Displayed dynamic range
is 50 dB. (a) Original RMA (b) RMA-FReD.

Table 3.1. Measured reflectivity values for the target in Figure 3.7.

Nominal Measured RCS (dBsm)
RCS (dBsm) y = −0.4 m y = 0.0 m y = 0.4 m

0 −0.08 −0.10 −0.12
−10 −10.39 −10.53 −10.71
−20 −20.71 −20.95 −21.30
−40 −40.69 −40.94 −41.30
−60 −60.75 −60.99 −61.31
−80 −79.82 −80.45 −81.07

three parallel planes spaced 40 cm, where 9 scatterers have been uniformly distributed as

shown in Figure 3.7 (a). The reflectivities now vary and range from 0 to –80 dBsm. The

measurement set-up is identical to that of the first simulation. The reflectivity image has

been reconstructed using the 3-D RMA. Figure 3.7 (b) shows the slice corresponding to

a vertical plane parallel to the aperture at y = 0. The dynamic range of this image is

100 dB. As in the previous results, a Kaiser-Bessel (α = 2) window has been applied. It is

seen that the dynamic range of the imaging algorithm is better than 80 dB. In practice, the

dynamic range will be limited by the presence of noise in the system. Table 3.1 compares

the reconstructed values of the reflectivity with the actual ones. The maximum error is in

the order of 1.5 dB.



26 3. 3-D Near-Field Radar Imaging Using Seismic Migration Techniques

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
X (m)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Z
 (

m
)

  
-100

-90
-80
-70
-60
-50
-40
-30
-20
-10

0
  

(dBsm)

(a) (b)

Figure 3.7. Target modelled to evaluate the dynamic range. (a) Sketch of the target; (b) Slice
of the reflectivity image.

3.2.5 Experimental results

The presented 3-D imaging algorithm has been tested experimentally by using an outdoor

Linear SAR system (LISA) of the Humanitarian Security Unit at JRC-Ispra. This facility

is based on a stepped frequency radar which is equipped with a 2-D positioning system.

The maximum aperture dimensions are at present limited to 5 m and 1 m in the horizontal

and vertical cross-range directions, respectively. The positioning accuracy is better than

0.1 mm. The frequency range is primarily limited by the type of antennas being used. The

system performs quasi monostatic measurements using two closely spaced horn antennas.

Figure 3.8 shows the measurement set-up used in the experiment. The target consisted

of a 3-D arrangement of eight metallic spheres of diameter 7.62 cm, positioned as shown

in Figure 3.9. The dimensions of the 2-D synthetic aperture were 1 m × 1 m, with a

total of 41 measurement points equally spaced in the horizontal and vertical directions.

The backscattered fields in the HH polarization were acquired at 401 frequency points

spaced 5 MHz within the frequency range 15.5 to 17.5 GHz. The range from the center

of the aperture to the center of the target was 2.3 m, with the plane of the aperture

tilted 14 degrees from the vertical. The expected resolutions are 2 cm in the horizontal

(x) and vertical (z) cross-range directions, and 7.5 cm in the ground-range (y) direction.

The measurement time required for this experiment was approximately 2 hours. A 3-

D reflectivity image confined in a box of side 60 cm with 61 voxel in each dimension

was reconstructed with a processing time of 1 min and 43 secs. Figure 3.10 shows some

slices out of the reconstructed 3-D image: three slices at different ground-range (y =

−16, 0,+16 cm) and cross-range (x = −16, 0,+16 cm) positions. The displayed dynamic
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range is 20 dB. As expected, the reflectivity at the positions of the spheres is about –

23.4 dBsm, corresponding to the RCS given by the physical optics approximation [88].

The measured spatial resolutions are in agreement with the expected ones. Note that the

reflectivity peaks of the spheres closer to the antennas are narrower because the effective

synthetic aperture is larger in the near range. On the other hand, the spheres have a

diameter of approximately four wavelengths and therefore do not represent ideal point

scatterers. As a result, a minor degradation or defocusing must be expected.

What follows is a description of the field translations which have been applied to obtain

the backscattered fields that would have been measured on a planar aperture from those

actually measured on a cylindrical or spherical aperture. The formulation associated with

the field translation is based on the wave equation in its scalar form. The “radiating

reflectors” model is used in order to extend the validity of the Helmholtz equation to the

backscattered fields.

3.3 Cylindrical scanning geometry

The geometry of the problem is shown in Figure 3.11. A Tx/Rx antenna synthesizes a

cylindrical aperture of radius ρa. The aperture is uniformly sampled both in the z and the

φ directions within the ranges zmin ≤ z ≤ zmax and φmin ≤ φ ≤ φmax. At each antenna

position the synthesized frequency bandwidth is B. The target is assumed to be centered

at the origin of the coordinates system. The axis of the cylindrical aperture coincides with

the z-axis.

Figure 3.8. Photograph of the experiment set-up with LISA.
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Figure 3.9. (a) Arrangement of the measurement set-up used in the experiment with a 3-D
array of eight spheres; (b) Sketch of the target.
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Figure 3.10. Slices of the reconstructed 3-D image with the eight spheres measured by LISA.
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3.3.1 Fields translation

Let us assume the measured backscattered fields are a solution of the 3-D scalar Helmholtz

equation. Thus, the general solution of this equation can be expanded into a sum of

cylindrical harmonics as follows [89]

ψ(ρ, φ, z) =
∞∑

n=−∞

∞∑
kz=−∞

cn,kz
H

(2)
n (kρρ) e

jnφ ejkzz, (3.21)

where H
(2)
n (·) is the Hankel function of second kind and integer order n, cn,kz

are the

amplitudes of the cylindrical harmonics, kρ and kz are the wavenumbers along ρ and z,

respectively. These two wavenumbers are related with the frequency wavenumber through

this equation

k2
ρ + k2

z = k2
r . (3.22)

In practice the two summations in (3.21) will be always truncated at the limits |n| ≤ N

and |kz| ≤ kmaxz . The maximum value of n depends on the radius of the minimum cylinder,

concentric with the cylindrical aperture that encloses entirely the target. If the radius of

this minimum cylinder is ρmin, the following empirical rule gives a value for N

N = [kρ ρmin] + n1, (3.23)

where the square brackets denote the integer part, and n1 is an integer which depends

on the accuracy required. The maximum value of kz is fixed by the sampling rate of the

measurement data along the z direction (i.e., kmaxz = 0.5/∆z).

In order to translate the fields to the planar aperture one first needs to calculate the

coefficients of the modal expansion cn,kz
. The modal expansion of (3.21) can also be seen

Z

X

Y ⇒

Z

X

Y

Figure 3.11. Geometry of the original cylindrical aperture and the final planar aperture.
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as a 2-D Fourier series and therefore one can calculate the coefficients cn,kz
as follows

cn,kz
=

1

2π(zmax − zmin)

1

H
(2)
n (kρρa)

∫ φmax

φmin

∫ zmax

zmin

ψ(ρa, φ, z) e
−jkzz e−jnφ dz dφ (3.24)

In practice these coefficients are evaluated via a 2-D FFT of the measured backscatter

data. Once the coefficients of the modal expansion cn,kz
are calculated, then the fields can

be translated to the planar aperture. Further details on the implementation of the fields

translation are given in [90].

Concerning the position and dimensions of the planar aperture. Since it has to be as

close as possible to the measurement cylinder, the coordinates of the corners of the planar

aperture are chosen as follows:

C1 = (ρa cosφmin, ρa sinφmin, zmin)

C2 = (ρa cosφmax, ρa sinφmax, zmin)

C3 = (ρa cosφmin, ρa sinφmin, zmax)

C4 = (ρa cosφmax, ρa sinφmax, zmax) (3.25)

3.3.2 Sampling criteria and resolution

The number of samples on the planar aperture will be fixed by the electrical dimensions of

the target. Assuming the target is confined within a cube of dimensions Dx×Dy×Dz and

the acquired backscatter data are calibrated with a canonical target placed at the origin

of the coordinates system, the sampling intervals needed to satisfy the Nyquist criterion

are:

∆f ≤ c

2
√
D2
x +D2

y +D2
z

(3.26)

∆φ ≤ λmin

2
√
D2
x +D2

y

(3.27)

∆z ≤ ρa λmin
2Dz

(3.28)

where λmin denotes the wavelength at the maximum working frequency. As expected, the

required sampling rates increase with increasing electrical dimensions of the object.

Once the backscattered fields are translated to the planar aperture respecting the

sampling criteria in (3.15)–(3.17), the formation of the 3-D reflectivity image becomes

straightforward. One simply needs to apply the RMA to the translated fields on the
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planar aperture. The resolutions in the resulting 3-D reflectivity image depend on the

frequency bandwidth, the center frequency and the dimensions of the synthetic aperture.

The resulting resolutions are given by:

δx ' c

2B
(3.29)

δy ' λc

4 sin

(
φmax − φmin

2

) (3.30)

δz ' λc ρa
2Lz

=
c ρa

2fcLz
(3.31)

where Lz is the length of the 2-D synthetic aperture in the z-direction, and λc is the

wavelength at the center frequency fc.

In practice, the frequency domain backscatter data are windowed to lower the side-

lobes in the imagery, and as a result, the final resolutions are usually slightly poorer than

those given by (3.29)–(3.31).

3.3.3 Numerical simulations

Figure 3.12 shows a sketch of the geometry used in the first numerical simulation. The

target consists of an ensemble of 27 point scatterers uniformly distributed inside a box of

side 0.8 m. The scatterers form a mesh with a spacing of 40 cm. All scatterers have the

same RCS: 0 dBsm. A Tx/Rx antenna synthesizes a cylindrical aperture of radius 2 m

within the region 20◦ ≤ φ ≤ 40◦ and −1 ≤ z ≤ +1 m. The sampling steps are 1◦ in φ,

Figure 3.12. Measurement set-up used in the numerical simulation with the ensemble of
27 point scatterers using a cylindrical aperture.



32 3. 3-D Near-Field Radar Imaging Using Seismic Migration Techniques

and 4 cm in the z-direction. The frequency ranges from 2 to 6 GHz, sampling a total of

41 points. The target is centered at the origin of the coordinates system. The number of

cylindrical modes used is 201.

The range of validity and accuracy of the translation of 2-D backscattered fields are

assessed in the Appendix B. An example of the fields translation from the cylindrical

to the planar aperture is presented here. The translated fields have been compared with

those that would be measured on the planar aperture (i.e., the exact ones). Figure 3.13

shows the modulus and the phase of the exact and translated fields along three linear

cuts on the planar aperture: a line on the vertical plane z = 0 m; a horizontal line at

the center of the aperture; and a second horizontal line close to the upper edge of the

aperture. It can be observed that the agreement between the translated fields and the

exact ones is excellent. Surprisingly, the accuracy in the phase is higher than that in

the modulus. This result indicates that the distortion introduced in the imagery due to

the field translation will be minimum. As expected, the minor discrepancies in the phase

correspond to points where the modulus is small. Note that the higher errors observed

close to the edges of the aperture will be mitigated after windowing the translated data

on the planar aperture. Finally, it can be seen that the two horizontal cuts are symmetric

with respect to the center, whereas those on the vertical plane z = 0 m are asymmetric.

This is due to the oblique incidence used in the simulation. Similar results have been

obtained in the spherical case, but they are not shown here due to space constraints.

Figure 3.14 shows the 3-D reflectivity image of the ensemble of 27 point scatterers used

in the numerical simulation of the fields translation. The image was reconstructed inside

a cube of side 1.2 m. The image has a total of 61×61×61 voxel. A Kaiser-Bessel (α = 2)

window [87] was applied along the three dimensions of the frequency domain backscatter

data. The displayed dynamic range is 30 dB. As expected, the image shows varying

impulse responses for points in the near and far range due to the near field condition.

Eventhough, all the scatterers are imaged at their actual positions, and the reflectivities

are in agreement with the predicted ones. The data processing was performed on a Sun

workstation with a 64 bit CPU and 128 MByte of RAM. The total processing time was

approximately 4 min. Table 3.2 presents a breakdown of the computation time in order

to gain an insight about the complexity for each processing step. Both the equalization

and the coordinates transformation are optional steps, so they are not considered when

adding up the total computation time. Note that the translation to the planar aperture

entails less than a third of the total elapsed time. The internal memory required in this

simulation was about 11 MByte. The RMA exhibits a dynamic range better than 80 dB

when used with a planar scanning geometry [65]. In practice this means that the actual

dynamic range of the images will be limited by the system noise. A second simulation
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(a) z = 0 m (center)

(b) y = 0.985 m (center)

(c) y = 0.748 m

Figure 3.13. Comparison between the translated fields (red dashed line) and the exact ones
(blue solid line) on the planar aperture. (a) Line at z = 0 m.; (b) Line at y = 0.985 m.;
(c) Line at y = 0.748 m.
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Figure 3.14. Projections of the 3-D SAR image onto the three main planes. Simulation of 27
point scatterers with a cylindrical aperture. Parameters: ρa = 2 m, f = 2–6 GHz, ∆f
= 100 MHz, 20◦ ≤ φ ≤ 40◦, ∆φ = 1◦, Lz = 2 m, ∆za = 4 cm. The displayed dynamic
range is 30 dB.

Table 3.2. Computational performance of the 3-D RMA with fields translation.

Processing Step Time (s)

Frequency-Domain Data Load 0.36
Equalization (Optional) 54.31
Translation to a Planar Aperture 46.63
2-D Along-Track FFT 14.76
Matched Filter and Stolt Interpolation 53.53
3-D Final IFFT 60.09
Coordinates Transformation (Optional) 3.51

Total Elapsed Time 233.19
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(a) (b)

Figure 3.15. Target used to evaluate the dynamic range. (a) Nine points scatterers on the
vertical plane x = 0 m (b) Vertical slice of the reflectivity image at x = 0 m.

to assess the dynamic range achieved with the cylindrical scanning geometry was carried

out. The radius of the aperture was again 2 m. The region occupied by the aperture was

−15 ≤ φ ≤ +15◦ and −1 ≤ z ≤ +1 m. The sampling steps in the φ and z directions

were 1◦ and 2 cm, respectively. The frequency ranged from 2 to 6 GHz, sampling a total

of 41 points. The target used consisted of three parallel planes as the one displayed in

Figure 3.15 (a), uniformly spaced 50 cm in the ground-range direction or x-axis. On

each plane there were 9 point targets with reflectivities ranging from 0 to –80 dBsm.

The number of cylindrical modes used in the fields translation was 251. A four terms

Blackman-Harris window (i.e., with side-lobes below –92 dB) [87] was applied along the

three dimensions of the frequency domain backscatter data. Figure 3.15 (b) shows a

vertical slice corresponding to the central plane. The displayed dynamic range is 100 dB.

In this example, it can be seen that the distortion introduced by the fields translation is

totally negligible.

3.3.4 Experimental results

The experimental results have been obtained using the anechoic chamber of the EMSL [60].

A sketch of the target is depicted in Figure 3.16, and a photograph is also shown in

Figure 3.17. The target consisted of an arrangement of metallic spheres and trihedrals.

The spheres had a diameter of 7.62 cm. There were two pairs of trihedrals reflectors with

side length of 28 cm and 19.5 cm, respectively. The measurement was carried out in the
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frequency range 6–10 GHz. The target positioner was moved along a total distance of

4 m. During the measurement the antennas covered the angular range 35◦ ≤ φ ≤ 55◦.

With these parameters the expected resolutions are 3.75 cm in ground-range, 4.4 cm

in cross-range and 5.4 cm in height, respectively. The frequency domain backscatter

data were acquired for two polarizations: HH and VV. The number of cylindrical modes

used in the fields translation is 1050. The resulting 3-D reflectivity images for the two

polarizations are shown in Figure 3.18. The image was reconstructed inside a box of

dimensions 2 m×2 m×0.8 m, with 201×201×41 voxels. The displayed dynamic range is

60 dB.

The high quality of the reconstructed images confirms the accuracy of the proposed

algorithm with a cylindrical scanning geometry. It is important to observe that all the

spheres are clearly distinguishable on the three main projection planes with resolutions in

agreement with the expected ones. On the other hand, the trihedrals exhibit a composite

response: a high peak centered at the trihedral phase center and the backscatter due to the

diffraction on the front edges. The peak value associated with the phase center is identical

in the two polarizations. Instead, the edges are highly polarization dependent depending

on their orientations. As an example, the HH images show horizontal segments with high

reflectivity for all the trihedrals, whereas the other two edges of the front triangle do not

show up. Moreover, the upper peak of the two large trihedrals is also present in the HH

images. The horizontal edges have disappeared in the VV images, but the other edges

are present now. Note that both edges of the trihedrals can be distinguished in the two
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Figure 3.16. (a) Top view and (b) side view of a scheme of the target used in the experiment.
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Figure 3.17. Photograph of the target used in the experiment.

large trihedrals, but only the external one is evident for the small trihedrals. The images

are also accurate from the quantitative point of view. The retrieved RCS for the spheres

and the trihedrals are in agreement with expected ones at the center frequency [88]. The

spheres show an RCS of about –23 dBsm, and the trihedrals have 6.6 dBsm for the large

ones and 0.3 dBsm for the small ones. The total processing time was only 1 hour. The

part corresponding to the field translation entailed 40 minutes, and the RMA processing

the remaining 20 minutes.
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VV Polarization HH Polarization

Figure 3.18. Iso-surfaces (top) and projections (bottom) of the 3-D SAR image obtained in the
experiment in the HH and VV polarizations. Parameters: ρa = 9.56 m, f = 6–10 GHz,
∆f = 40 MHz, 35◦ ≤ φ ≤ 55◦, ∆φ = 0.5◦, Lz = 4 m, ∆za = 2.5 cm. The displayed
dynamic range is 60 dB.
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3.4 Spherical scanning geometry

The field translation from a spherical to a planar aperture is conceptually identical to that

of the cylindrical case. Further details on the practical implementation are given in [90].

The only differences appear as a consequence of the different coordinates system employed

in the formulation, which now is spherical. As in the cylindrical case, the measured

backscattered fields are assumed to be a solution of the 3-D scalar Helmholtz equation.

3.4.1 Fields translation

The frequency domain backscatter data are assumed to be acquired on the surface of a

sphere with uniform sampling both in the azimuth and elevation angles within the ranges

φmin ≤ φ ≤ φmax and θmin ≤ θ ≤ θmax. The radius of the measurement sphere is ra.

The general solution of the scalar Helmholtz equation can be expanded into a sum of

spherical harmonics as follows [89]

ψ(r, φ, θ) =
N∑
n=0

n∑
m=−n

cm,n e
jmφ

(
m

|m|

)m
P
m
n (cos θ)h

(2)
n (kr), (3.32)

where h
(2)
n (·) is the spherical Hankel function of second kind and integer order n, and

P
m
n (·) denotes the normalized associate Legendre function of first kind which is defined as

P
m
n (cos θ) =

√
2n+ 1

2

(n−m)!

(n+m)!
Pmn (cos θ). (3.33)
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Figure 3.19. Geometry of the original spherical aperture and the final planar aperture.
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P
m
n (·) is an even function of m, i.e.

P
m
n (cos θ) = P

(−m)
n (cos θ), (3.34)

and therefore m is considered to take only positive values. As suggested in [91], a factor

(m/|m|)m is extracted from the coefficients in order to simplify its evaluation.

As in any modal expansion, the summations will be always truncated at |n| ≤ N .

The value of N will be fixed by the radius of the minimum sphere, concentric with the

measurement sphere, that encloses entirely the target [91]. If the radius of the minimum

sphere is rmin, the value of N is given by

N = [k rmin] + n1, (3.35)

where n1 is fixed depending on the accuracy required.

Analytical evaluation of the coefficients cm,n

The technique used to calculate the amplitudes of the spherical harmonics cm,n in (3.32)

is based on that employed in near-field to far-field transformations of fields radiated by

an antenna under test [91, Chapter 4]. Here only some minor modifications have been

introduced in order to apply this technique to the scalar wave equation instead of the

vector one. The method is based on the exploitation of orthogonality properties of both

the exponential functions and the associate Legendre functions.

Under the hypothesis of validity of the “radiating reflectors” model [19], the backscat-

tered fields measured at a single frequency on a sphere of radius r = ra can be expressed

as a summation of spherical harmonics as follows

ψ(ra, φ, θ) =
N∑
n=0

n∑
m=−n

cm,n e
jmφ

(
m

|m|

)m
P
m
n (cos θ)h

(2)
n (kra), (3.36)

where (m/|m|)m = 1 for m = 0.

The harmonics amplitudes cm,n in (3.36) are calculated as follows. Let us rewrite (3.36)

in the form of a Fourier series in φ, i.e.

ψ(ra, φ, θ) =
N∑

m=−N
cm(ra, θ) e

jmφ, (3.37)

where

cm(ra, θ) =
N∑

n=|m|
cm,n

(
m

|m|

)m
P
m
n (cos θ)h

(2)
n (kra). (3.38)
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Then the amplitudes of the Fourier harmonics cm(ra, θ) can be expressed as

cm(ra, θ) =
1

2π

∫ 2π

0
ψ(ra, φ, θ)e

−jmφ dφ. (3.39)

In practice, the coefficients cm(ra, θ) are evaluated by means of an azimuth discrete Fourier

transform of the measured backscattered fields ψ(ra, φ, θ).

Noting that (3.38) can be rewritten is this form

cm(ra, θ) =
N∑

n=|m|
cm,n(ra)

(
m

|m|

)m
P
m
n (cos θ), (3.40)

where

cm,n(ra) = cm,n h
(2)
n (kra). (3.41)

At this stage, one can obtain the coefficients cm,n(ra) by making use of the orthogonality

property of the normalized associate Legendre function [91] as follows

cm,n(ra) =

(
m

|m|

)m ∫ π

0
cm(ra, θ)P

m
n (cos θ) sin θ dθ. (3.42)

The amplitudes of the spherical harmonics are obtained through (3.41), i.e.

cm,n =
cm,n(ra)

h
(2)
n (kra)

. (3.43)

An algorithm for the efficient evaluation of the modal coefficients cm,n is given in

Appendix C. As in the cylindrical case, the computation can be efficiently implemented

via FFT codes. However, the computational cost of this solution is higher than that with

the cylindrical aperture. Once the coefficients of this modal expansion are derived, then

the field can be translated to a planar aperture in the vicinity of the spherical aperture.

Position and dimension of the planar aperture

In relation to the position and dimension of the planar aperture. It is defined as the largest

rectangular aperture within the trapezoid defined by the following four points:

C1 = (ra cosφmin sin θmin, ra sinφmin sin θmin, ra cos θmin)

C2 = (ra cosφmax sin θmin, ra sinφmax sin θmin, ra cos θmin)

C3 = (ra cosφmin sin θmax, ra sinφmin sin θmax, ra cos θmax)

C4 = (ra cosφmax sin θmax, ra sinφmax sin θmax, ra cos θmax) (3.44)
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3.4.2 Sampling criteria and resolution

Assuming the target is confined within a cube of dimensions Dx×Dy×Dz and the acquired

data are calibrated with a canonical target placed at the origin of the coordinates system,

the sampling intervals needed to satisfy the Nyquist criterion can be expressed as follows:

∆f ≤ c

2
√
D2
x +D2

y +D2
z

(3.45)

∆φ ≤ λmin

2
√
D2
x +D2

y

1

sin θmax
(3.46)

∆θ ≤ λmin

2
√
D2
x +D2

y +D2
z

(3.47)

where λmin denote the wavelength at the maximum working frequency.

The resolutions in the resulting 3-D reflectivity image depend on the frequency band-

width, the center frequency and the dimensions of the synthetic aperture in the following

form:

δx ' c

2B sin θmin
(3.48)

δy ' λc

4 sin

(
φmax − φmin

2

)
sin θmin

(3.49)

δz ' λc
2 (cos θmin − cos θmax)

(3.50)

where λc is the wavelength at the center working frequency.

3.4.3 Numerical simulations

The last numerical simulation has been performed using a spherical aperture. The target

is that in Figure 3.14. The Tx/Rx antenna now synthesizes an spherical aperture with

radius 2 m. The angular ranges in azimuth and elevation are 0◦ ≤ φ ≤ 20◦ and 75◦ ≤
θ ≤ 90◦, respectively. The corresponding angular steps are both 1◦. As in the previous

simulation, the frequency ranges from 2 to 6 GHz with a step of 100 MHz. The number

of spherical modes used in the fields translation is 213. The resulting 3-D reflectivity

image is shown in Figure 3.20. The image has a total of 61×61×61 voxels. A Kaiser-

Bessel (α = 2) window [87] has been applied along the three dimensions of the frequency

domain backscatter data. The displayed dynamic range is 30 dB. It can be observed that
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Figure 3.20. Projections of the 3-D SAR image onto the three main planes. Simulation with
27 point scatterers using a spherical aperture. Parameters: ra = 2 m, f = 2–6 GHz, ∆f
= 100 MHz, 0◦ ≤ φ ≤ 45◦, 60◦ ≤ θ ≤ 75◦, ∆φ = ∆θ = 1◦. The displayed dynamic range
is 30 dB.

the quality of the image is remarkable, thus demonstrating the validity of the presented

technique. As predicted, the computational load associated with the translation is higher

than that in the cylindrical case.
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Chapter 4

3-D Near-Field Radar Imaging of
Targets Electrically Large

4.1 Introduction

The practical problem motivating the development of the imaging techniques presented

in this Chapter was the formation of a 3-D near-field SAR image of a 5 m high Fir

tree [67]. This tree was measured in the anechoic chamber of the EMSL using the spherical

scanning geometry [60]. The use of the imaging algorithm presented in Chapter 3 (i.e., the

backpropagation of the backscatter data to a planar aperture followed by the focusing with

the range migration algorithm) was discarded because of the large electrical dimensions

of the tree. As indicated in Section 3.4.1, the number of spherical harmonics to be used

in the fields translation is an increasing function of the electrical dimensions of the target,

i.e.

N ' 4πfmax

c
rmax (4.1)

In this measurement, the radius of the minimum sphere enclosing the entire tree rmax

was 4 m, and the maximum frequency was 5.5 GHz. The resulting minimum number of

spherical harmonics is N ' 922. In practice, the computation of the normalized associate

Legendre function of orders above 200 becomes extremely difficult as the maximum values

reached cannot be treated with double precision (8 byte) floating point numbers [92, 93].

Note that with 922 spherical modes the normalized associate Legendre function can reach

values over 10+1725. This limitation can be circumvented by using long double (16 byte)

numbers instead. However, it has been observed that the calculations with these type

of floating point numbers slow down the execution of the code dramatically. Further,

some functions in the standard libraries of the compiler cannot be called with long double

arguments. Thus, the development of a code implementing the fields translation with such
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a large number of spherical harmonics has been postponed until a practical solution to the

above-mentioned problems is found.

This chapter presents two imaging algorithms which are specially suited for forming

3-D near-field SAR images of targets electrically large. For both algorithms the synthetic

aperture is assumed to have a spherical shape. The use of these imaging algorithms with

cylindrical and planar apertures is not addressed here.

The first imaging algorithm uses a near-field focusing function which accounts for

the wavefront curvature and the propagation losses [58]. The spatial distribution of the

target reflectivity is estimated by means of an azimuth convolution between this near-field

focusing function or space-variant matched filter and the frequency domain backscatter

data, followed by a coherent integration over the frequency band and the synthetic aperture

in elevation. The circular convolution in azimuth is performed by employing FFT codes,

thus reducing drastically the computational cost. Moreover, instead of using a DFT, the

focusing function in the azimuth wavenumber domain is evaluated through an asymptotic

expansion obtained by means of the MSP. This asymptotic expansion is further optimized

by using working matrices with the points of stationary phase and their second order

derivatives.

The second imaging algorithm is basically the 3-D PFA [48, 94] (i.e., an algorithm to be

used under the far-field condition) followed by a geometric rectification of the image. The

resulting geometric distortion due to the short observation distance or near-field condition

is corrected by applying the rectification algorithm. It is important to note that the

rectification algorithm is only effective when the angular span of the synthetic aperture

is limited [49]. This limitation must be kept in mind when using this technique. On

the other hand, the computational cost of this solution is minimum. This algorithm is

specially tailored to be employed as a quick-look SAR processor. High quality imagery

will only be obtained with narrow spans of the two aspect angles.

This Chapter is organized as follows. In Section 4.2, the imaging algorithm with the

space-variant matched filter is presented providing details about its formulation using the

MSP, the processing steps involved, the spatial resolutions achieved, the sampling intervals,

the numerical simulations and the measurements. Section 4.3 introduces the PFA with

the 3-D image rectification. This algorithm is successfully tested both with synthetic and

experimental data.

The focusing of the tree data with the first algorithm is entirely addressed in Chapter 5.

Here, the experimental results obtained in the measurement of the Fir tree have uniquely

been used to test the second algorithm.
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4.2 A 3-D SAR algorithm using a space-variant matched
filter

4.2.1 Formulation of the problem

The imaging geometry is shown in Figure 4.1. A CW signal is radiated from an antenna,

located at a distance Ra from the center of the coordinates system, with a beamwidth

sufficiently large to uniformly irradiate a 3-D target. The reflected signal is received by

a similar adjacent antenna. The object is positioned on a low reflectivity platform which

rotates about the z-axis. The antenna system rotates in the y− z plane forming an angle

θ with the z-axis. Thus, the backscattered fields Es(f, φ, θ) are acquired as a function of

three parameters: the frequency f of the CW signal, the azimuth position of the rotating

platform φ, and the looking angle of the antenna system θ. Considering that the antenna

is located within the near-field region of the object (i.e., it illuminates the object with

a spherical wavefront), and its radiation pattern introduces a negligible distortion, then

the 3-D complex reflectivity image in cylindrical coordinates I(ρ, φ, z) can be written as

follows (see [41] and Chapter 2),

I(ρ, φ, z) =
8

c3

∫
f
f2df

∫
θ
sin θdθ

∫
φ′
Es(f, φ

′, θ) F (ρ, φ− φ′, z; f, θ) dφ′ (4.2)
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Figure 4.1. Imaging geometry with the 3-D target.
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where F (·) is a near-field focusing function (or space-variant matched filter) which can be

expressed as,

F (ρ, φ, z; f, θ) = (
R

Ra
)2 exp [jk(R−Ra)] (4.3)

R =
√
R2
a + ρ2 + z2 − 2Ra [ρ sin θ cosφ+ z cos θ] (4.4)

where R denotes the range to the point with coordinates (ρ, φ, z), Ra is the range to the

center of the coordinates system and zero-phase reference point, and k is the frequency

wavenumber. Here the frequency wavenumber is defined as k = 4πf/c. In (4.2), both

the exact near-field phase history and the free-space propagation losses are accounted for

by the exponential function and the quadratic term in the amplitude, respectively. It is

important to note that the focusing function F (·) is defined only by the measurement

geometry and the working frequency. Thus, if calculated once and stored on memory, F (·)
could be reused with different data sets measured under the same conditions. This is the

case of a fully polarimetric measurement, where four data sets have to be focused using

identical processing parameters. The core of this algorithm resides in the calculation of

the circular convolution in (4.2). A description of the approach followed in the algorithm

implementation is next.

4.2.2 Imaging algorithm

The circular convolution in azimuth in (4.2) can be calculated using FFT codes. In the

simplest form, it requires the use of 1-D DFT and a complex product in the azimuth

wavenumber domain kφ. Instead of using a DFT, the azimuth Fourier transform of the

focusing function F(·) may be evaluated by using the MSP [95]. This approach has the

advantage of giving as a result an analytical expression, the evaluation of which can be

highly optimized by using working matrices containing the points of stationary phase

and their second order derivatives. Furthermore, the number of points in the azimuth

wavenumber domain does not need to be a power of two, thus alleviating the memory

requirements and speeding-up the code.

The azimuth Fourier transform of the focusing function F(·) is given by

F(ρ, kφ, z; f, θ) =

∫ π

−π

(
R(φ)

Ra

)2

exp [j p(φ)] dφ (4.5)

where,

p(φ) = A [R(φ)−Ra]− kφ φ (4.6)

R(φ) =
√
B − C cosφ (4.7)
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and

A = k

B = R2
a + ρ2 + z2 − 2Raz cos θ

C = 2Raρ sin θ (4.8)

Since the integrand in (4.5) has no singular points and is a highly oscillating function, the

integral can be evaluated by means of the MSP provided that A is sufficiently large.

Assuming a sampling rate consistent with the Nyquist criterion, the DFT of the focus-

ing function may be expressed as,

F(ρ, kφ, z; f, θ) =

Nφ/2−1∑
n=−Nφ/2

(
R(n∆φ)

Ra

)2

exp [j p(n∆φ)] ∆φ (4.9)

kφ =

{
−
Nφ
2
,−

Nφ
2

+ 1, . . . ,
Nφ
2
− 1

}
∆φ =

2π

Nφ
, Nφ even

The asymptotic evaluation of this DFT with the method of the stationary phase gives the

following result (see Appendix D for further details),

F(ρ, kφ, z; f, θ) '
√
j 2π

R2
a

{
R2(φ−)√
p′′(φ−)

exp [j p(φ−)] +

R2(φ+)√
p′′(φ+)

exp [j p(φ+)]

}
, if kφ ≤ k̂φ, and (4.10)

F(ρ, kφ, z; f, θ) ' 2π

(
R(φo)

Ra

)2

exp [jp(φo)]

(
2

|p′′′(φo)|

)(1/3)

×

Ai

(
−
[

2

|p′′′(φo)|

](1/3)

p′(φo)

)
, if kφ > k̂φ (4.11)

with

k̂φ = |p′′′(φo)| −
(
|p′′′(φo)|

2

)(1/3)

(4.12)

and wherein Ai(·) denotes the Airy function [92]. In (4.10), the asymptotic evaluation of

the integral in (4.5) is performed by summing the contribution from two stationary phase

points at φ = {φ+, φ−}. In (4.11), the major contribution to the integral in (4.5) comes
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from a small neighborhood near the point φ = φo. In this neighborhood, the second order

derivative p′′(φ) vanishes and

p(φ) ' p(φo) + p′(φo) (φ− φo) + p′′′(φo)
(φ− φo)

3

3!
(4.13)

Substituting p(φ) with this series expansion, the integral in (4.5) can be expressed in terms

of the Airy function, leading to (4.11).

If C � B, i.e. the reflectivity is being estimated at points close to the origin of the

coordinates system, then Equations (4.10) and (4.11) reduce to a much simpler form and

F(·) may be expressed as follows

F(ρ, kφ, z; f, θ) ' 2π Jkφ
(η) exp [−j(kRa + kφ

π

2
)] (4.14)

wherein η = A
√
B/2 and Jkφ

(·) denotes the Bessel function of integer order kφ.

Once F(·) has been calculated for each working frequency f and antenna looking angle

θ, the reflectivity image in cylindrical coordinates is recovered from the measured data in

the azimuth wavenumber domain as

I(ρ, φ, z) =
8

c3
IFFTkφ

∑
f

f2
∑
θ

sin θ FFTφ[Es(f, φ, θ)]× [F ]kφ

 ∆f ∆θ∆φ (4.15)

with [F ]kφ
= F(ρ, kφ, z; f, θ) for kφ = −Nφ

2 ,−
Nφ

2 + 1, . . . , Nφ

2 − 1.

In (4.15), the evaluation of the near-field focusing function in the azimuth wavenumber

domain [F(·)]kφ
is associated with most of the computational burden of the algorithm.

What follows is a description of the computational procedure used in the implementation

of the proposed imaging algorithm.

4.2.3 Computational procedure

The near-field 3-D SAR algorithm presented in Section 4.2.2 may be very demanding

in terms of computer power and memory requirements, especially when the object being

imaged is electrically large. In order to reduce the computational burden, the circular con-

volution in azimuth in (4.2) has been implemented with a complex product in the azimuth

wavenumber domain. The focusing function F(·) is evaluated by means of the asymptotic

expansions in Equations (4.10), (4.11) and (4.14). This is basically the core of this imaging

algorithm, which is the most computer intensive part of the code. The implementation

of the first asymptotic expansion may be reduced to reading and interpolating two look-

up tables or working matrices with the values of p(φ±) and p′′(φ±) as a function of two



4.2 A 3-D SAR algorithm using a space-variant matched filter 51

Azimuth FFT

Windowing

Data Es(f, φ, θ)

φk, θ; ρ,[F(f         z)]

,,p
+/-

p
+/-

Azimuth Inverse FFT

ρ, φ, z)I(
Reflectivity Image

f θ

Frequency-Domain

Bilinear Interpolation

Focusing Function

Tables 
Load Look-up

Figure 4.2. Flowchart of the near-field 3-D SAR algorithm.

parameters: α and β. Given these two look-up tables with Nα × Nβ uniformly located

samples, the interpolated values may be calculated by using a bilinear interpolation [92].

The second and third asymptotic expansions are of much simpler implementation and can

be directly introduced into the code.

The computational procedure for reconstructing a 3-D reflectivity image on the basis

of (4.2) may be presented in the form of the following steps (see flow chart in Figure 4.2):

Step 1: Window the frequency-domain data with the desired weighting function. In

the case of an inverse SAR measurement with the entire rotation of the object, no

azimuth window is applied.

Step 2: Calculate a 1-D FFT in azimuth for each frequency and antenna looking angle.

As a result, a 3-D array of complex values is obtained.

Step 3: Create the two look-up tables with the values of {p(φ−), p(φ+)} and {p′′(φ−), p′′(φ+)}
as a function of α and β on a rectangular grid with Nα × Nβ points. The useful
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Figure 4.3. Look-up tables: (a) p±(α, β) and (b) p′′±(α, β).

ranges for α and β are given by

0 ≤ β ≤ βmax = max

(ρ, z, θ)

[
2Raρ sin θ

R2
a + ρ2 + z2 − 2Raz cos θ

]
(4.16)

0 ≤ α ≤ αmax =

√
1−

√
1− β2

2
(4.17)

From (4.17), it follows that αmax ≤ β. Thus, a single 2-D float array split

into two triangular sub-arrays can be used to store the pairs {p(φ−), p(φ+)} and

{p′′(φ−), p′′(φ+)}, as shown in Figure 4.3.

Step 4: Use bilinear interpolation [92] to calculate the focusing function in the azimuth

wavenumber domain. Alternatively, if the sampling intervals ∆α and ∆β are small

enough, a nearest neighbor interpolation can be used without significant truncation

errors.

Step 5: Calculate the complex product of the near-field focusing function and the mea-

surement data in the azimuth wavenumber domain.

Step 6: Coherent summation over the antenna looking angle and frequency measured

ranges for all pairs (ρ, z) repeating steps 4 and 5.

Step 7: IFFT in azimuth. As a result, the 3-D reflectivity image in cylindrical coordinates

I(ρ, φ, z) is obtained.

4.2.4 Resolution and sampling criteria

In the resulting 3-D complex reflectivity image, the resolutions in ground-range and cross-

range depend on the frequency bandwidth and the angular extent of the synthetic aperture
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in azimuth, respectively. Thus

δx =
λc

4 sin

(
Wφ

2

)
sin θ

(4.18)

δy =
c

Wf sin θ
(4.19)

where Wφ denotes the angular extent in azimuth, Wf is the frequency bandwidth and λc is

the wavelength at the center working frequency. When the SAR measurement is performed

with the entire rotation of the object, equivalent to synthesizing a circular aperture which

completely surrounds the object, resolutions in cross-range and ground-range coincide

and reach their maximum limit which is approximately λ/5 [11]. The resolution in height

depends on the angular extent in elevation and is given by

δz =
λc

2 (cos θmin − cos θmax)
(4.20)

Assuming the object is confined within a rectangular box of dimensions Dx×Dy×Dz

and the acquired data are calibrated with a canonical target placed at the origin of the

coordinates system, the sampling intervals needed to satisfy the Nyquist criterion can be

expressed as follows:

∆f ≤ c

2
√
D2
x +D2

y +D2
z

(4.21)

∆φ ≤ λmin

2
√
D2
x +D2

y

1

sin θmax
(4.22)

∆θ ≤ λmin

2
√
D2
x +D2

y +D2
z

(4.23)

where λmin denote the wavelength at the maximum working frequencies, respectively. As

expected, the required sampling rates increase with increasing electrical dimensions of the

object.

4.2.5 Experimental results

All results have been obtained on a high performance Sun workstation, equipped with a

64 bit CPU and 128 MByte of RAM. What follows is the description of the measurement

set-ups and the results on simulated and experimental data sets.
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Figure 4.4. Measurement set-up used in the numerical simulation with the 3-D array of 125
point scatterers: (a) top view and (b) side view.

Numerical simulations

The target used in this numerical simulation consisted of a 3-D ensemble of 5 × 5 × 5

point scatterers uniformly distributed within a box of 1 m3, as shown in Figure 4.4. The

range to the center of the coordinates system was Ra= 2 m. The RCS of all the scatterers

was set 0 dBsm. This target was imaged in the frequency range 2 to 6 GHz, sweeping

51 frequency points spaced 80 MHz. A full rotation of the target about the z-axis, with

360 azimuth points and a step of 1 deg, was used. The antenna looking angle θ ranged

from 67.5 to 112.5 deg, with 46 antenna positions spaced 1 deg. A 3-D SAR image

was reconstructed using the presented near-field SAR algorithm. The projections of this

3-D image onto the x − y, x − z and y − z planes are shown in Figure 4.5. The array

dimensions used in this reconstruction isNρ = 85, Nφ = 360 andNz = 121. This requires

approximately 30 MByte of internal storage. The overall processing time is 3 h. 20 min.

The processing time using a DFT code, and not the proposed asymptotic evaluation, for

the azimuth Fourier transform of the focusing function is 12 h 13 min. Figures 4.6-(a1)-

(a5) show five horizontal slices extracted from the 3-D complex reflectivity image. These

slices correspond to the five horizontal planes where the point scatterers are uniformly

distributed. For comparison, reconstructions using both the proposed near-field technique

and a far-field algorithm (i.e., an interpolation followed by a 3-D inverse DFT, as described

in Section 4.3.2) are shown in Figures 4.6 (b1)-(b5). Here, range curvature aberrations

introduced by not using the exact phase history term in the focusing function F (·) are

evident. Figure 4.7 depicts the cross-range, ground-range and height profiles from the 3-D

image generated with the near-field algorithm. As expected, resolutions in cross-range

and ground range are both approximately 1 cm. The height resolution is about 6 cm. A
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Kaiser-Bessel window (a = 2) [87] across the aperture in elevation and across frequency

is used. These resolutions as well as the reflectivity values at the position of the point

scatterers are all in agreement with the predicted ones.

Experimental results

The presented near-field SAR algorithm has been tested experimentally using the anechoic

chamber of the EMSL [60]. Two series of test measurements were performed.

The first measurement set-up consisted of a planar array of 49 metallic spheres forming

an “S” shape, as shown in Figure 4.8 (a). The spheres were laid on top of a low reflectivity

platform of 2.5×2.5 m2. All spheres had a diameter of 7.62 cm. The range to the center of

the coordinates system was Ra= 9.56 m. The backscattered fields in the HH polarization

were acquired in the stepped frequency mode of the HP-8510 VNA within the frequency

range 8 to 12 GHz, sweeping 801 frequency points spaced 5 MHz. A full rotation of the

target about the z-axis, with 1200 azimuth positions and an angular step of 0.3 deg, was

used. This was a pure 2-D SAR measurement, and no aperture synthesis in elevation

was used. Therefore, no spatial resolution in height can be achieved. The antenna looking

angle is kept fixed to 45 deg. Once the frequency data set was calibrated, gated in the time

domain to isolate the response of the target, the number of frequency points used in the

subsequent processing was decimated by a factor of 8, which still was above the Nyquist

sampling rate defined by the target size and measurement geometry. Figure 4.8 (b) shows

the image obtained with the presented near-field SAR algorithm. As expected, resolutions

Figure 4.5. Projections of the 3-D SAR image onto the x− y, x− z and y− z planes obtained
in the numerical simulation with the 3-D array of 125 point scatterers.
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Figure 4.6. Horizontal slices from the 3-D reflectivity image obtained in the numerical simu-
lation using the near-field (a) and far-field (b) algorithms.

in cross-range and ground range are both approximately 5 mm. A Kaiser-Bessel window

(a = 2) across frequency was used. The overall processing time was 1 min. The processing

time using a DFT code, and not the proposed asymptotic evaluation, for the azimuth

Fourier transform of the focusing function was 4 min. For comparison, this image is

shown along with that obtained with a far-field or PFA, see Figure 4.8 (c). Again, the

better focusing capabilities of the presented algorithm are clearly visible. As expected,

aberrations in outer part of the image obtained with the far-field processor are more
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Figure 4.7. Cross-range (a), ground-range (b) and height (c) profiles from the 3-D reflectivity
image obtained in the numerical simulation.

evident.

The target used in the second test measurement was a 3-D arrangement of eight metal-

lic spheres of diameter 7.62 cm, see Figure 4.9 and photograph in Figure 4.10 (a). The

measurement was conducted with the same angular span in azimuth and elevation, with

61 points equally spaced within the angular range from 0 to 45 deg, acquiring the backscat-

tered fields in the HH polarization at 801 frequency points spaced 5 MHz within the fre-

quency range 8 to 12 GHz. Here, the number of frequency points was decimated by a

factor of 20 after the calibration. The range to the center of the coordinates system was

that of the previous measurement, Ra= 9.56 m. The measurement time required in this

experiment was approximately 50 h. Note that there were 3600 antenna positions on the
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Figure 4.8. (a) Schematic of the planar array of metallic spheres; 2-D SAR images obtained
with the near-field (b) and far-field (c) algorithms.
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Figure 4.9. Measurement set-up used in the second experiment with a 3-D array of 8 metallic
spheres: (a) top view and (b) side view.
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Figure 4.10. Photograph (a) and projections onto the x− y, x− z and y− z planes of the 3-D
SAR image (b) with the 8 metallic spheres measured in the EMSL.

2-D synthetic aperture. A 3-D SAR image consisting of Nz = 61 horizontal slices on a

polar raster with Nρ = 101 and Nφ = 480 was reconstructed, as shown in Figure 4.10 (b).

The processing time was 3 h 27 min. The achieved resolutions, as expected, were about

2 cm in the cross-range and height directions, and 4 cm in the ground-range direction.
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4.3 Polar format algorithm and image rectification

4.3.1 Introduction

Near-field SAR imaging of large objects using the polar format algorithm result in images

showing a geometric distortion [3]. The resulting geometric distortion due to the short

observation distance can be corrected by applying a rectification algorithm provided that

the angular spans of the synthetic aperture are limited.

Mensa developed the first rectification algorithm for 2-D SAR images [49, Appendix

A]. This rectification procedure works as follows. First, a 2-D SAR image is formed by

using a standard PFA (i.e., interpolation of the polar formatted data onto a Cartesian

grid followed by a 2-D FFT). For short observation distances the resulting image will

show a geometric distortion. The image is referred to the coordinates system perceived by

the radar (i.e., a set of radial lines and concentric circular arcs disposed about the radar

antenna). The corrected image, free of any geometric distortion, is obtained by applying a

geometric transformation between the coordinates system perceived by the radar and that

of the target. This 2-D rectification algorithm can easily be adapted and used to rectify

3-D SAR images. This Section presents a 3-D SAR image formation technique based on

the use of a 3-D PFA followed by an image rectification. This technique has been tested

with numerical simulations and with anechoic chamber data acquired in the EMSL [60].

4.3.2 Polar format algorithm

Let us consider the measurement geometry shown in Figure 4.1. As considered previ-

ously in Section 4.2.1, the backscattered fields Es(f, φ, θ) are acquired as a function of

three parameters: the frequency f of the CW signal, the azimuth position of the rotating

platform φ and the looking angle of the antenna system θ. As indicated in Chapter 2,

under the far-field approximation the 3-D reflectivity image of the target can be formed

by coherently integrating the backscattered fields within the solid angle of target aspects

synthesized in the measurement, i.e. [3, 15]

I(r) =
1

(2π)3

∫
f

∫
θ

∫
φ
Es(f, φ, θ) exp [j(k · r− k Ra)] dK (4.24)
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wherein

r =
4πf

c
[x x̂ + y ŷ + z ẑ] (4.25)

k =
4πf

c
[cosφ sin θ x̂ + sinφ sin θ ŷ + cos θ ẑ] (4.26)

dK =

(
4π

c

)3

f2 sin θ dφ dθ df (4.27)

One can easily note that the volume integral in (4.24) becomes a Fourier integral after re-

sampling the backscatter data onto a Cartesian grid in the frequency wavenumber space.

After this re-sampling or interpolation the integral simply reduces to following 3-D Fourier

transform

I(r) =
8

c3

∫
fx

∫
fy

∫
fy

Ẽs(fx, fy, fz) exp

[
j 2π(fx x+ fy y + fz z −

2f

c
Ra)

]
dfx dfy dfz

(4.28)

where

Ẽs(fx, fy, fz) = Es(f, φ, θ) f
2 sin θ (4.29)

with

fx =
2f

c
cosφ sin θ (4.30)

fy =
2f

c
sinφ sin θ (4.31)

fz =
2f

c
cos θ (4.32)

The type of re-sampling or interpolation required in (4.29) is well known in the field of

computer tomography [96, 97, 98]. The factor f2 sin θ in (4.29) is a weighting function

applied prior to the Fourier transform which does not play an important role. In practice,

the interpolated frequency domain data will be weighted with a window function in order

to reduce the side-lobes in the reflectivity image [87].

4.3.3 Rectification algorithm

Consider the measurement geometry shown in Figure 4.11, where a target rotates about

the z-axis forming an angle φ with the x-axis (in the inverse SAR mode). The target

is illuminated by an antenna that is located in the y − z plane and rotates about the

x-axis forming an angle θa with the z-axis (in the spotlight mode). When the observation

distance is small compared to the target size (i.e., the antenna is in the near-field of the

target) the wavefront impinging the target becomes spherical. As a result, the surfaces of
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Figure 4.11. Radar and target coordinates system: (a) top view and (b) side view.

constant range, horizontal and vertical cross-range respectively describe a set of mutually

orthogonal radial planes and concentric spheres disposed about the radar antenna [49].

With such a measurement geometry, the range to the point scatterer located at P is

R(φ, θa) =
√

(ρ cosφ)2 + (ρ sinφ+Ra sin θa)2 + (z −Ra cos θa)2 (4.33)

By properly processing the acquired backscatter, the radar can measure the range R and

two Doppler quantities that are proportional to the derivative of R with respect to the

angles φ and θa, respectively. Thus, the set of coordinates perceived by the radar is given

by

Sφ =
∂R

∂φ
=
Ra
R

x sin θa

Sr = R−Ra (4.34)

Sθ =
∂R

∂θa
=
Ra
R

(y cos θa + z sin θa)
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which correspond to the following set of target coordinates (Cartesian coordinates system),

Sx = Sφ

Sy = Sr sin θa + Sθ cos θa (4.35)

Sz = −Sr cos θa + Sθ sin θa

The above identities can be further simplified if a rotation about the x-axis of an angle θa

is applied. The corresponding rotation matrix is as follows: x̃

ỹ

z̃

 =

 1 0 0

0 sin θa − cos θa

0 cos θa sin θa


 x

y

z

 (4.36)

Equation (4.34) in the rotated coordinates system can be rewritten in the following form:

Sφ =
Ra
R

x̃ sin θa

Sr = R−Ra (4.37)

Sθ =
Ra
R

z̃

with

R =
√
x̃2 + (ỹ +Ra)2 + z̃2 (4.38)

The inverse transformation from perceived radar coordinates to the corrected ones is

given by


x

y

z

 =


1 0 0

0 sin θa cos θa

0 − cos θa sin θa




SφR
Ra sin θa√

R2 −
(

SφR
Ra sin θa

)2

−
(
SθR
Ra

)2
−Ra

SθR
Ra

 (4.39)

wherein R = Sr+Ra. Note that if θa = π/2, Equations (4.34) and (4.39) properly reduce to

those in [49, Appendix A]. Moreover, for a large observation distance (i.e., Ra � D, where

D denotes the size of the target), the geometric distortion vanishes and the coordinates

perceived by the radar coincide with those of the target.

The processing steps of the resulting imaging algorithm are shown in the flowchart of

Figure 4.12.
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Figure 4.12. Flow-chart of the imaging algorithm.

4.3.4 Experimental results

Numerical simulations

The target used in this numerical simulation consisted of a 3-D ensemble of 56 point

scatterers uniformly distributed along the edges of a cube of side 2 m3, as shown in

Figure 4.13. The range to the center of the coordinates system was Ra= 5 m. The RCS of

all the scatterers was equal and set to 0 dBsm. This target was imaged in the frequency

2 m

2 m

Φ = 24o

Y

X

5 m

2 m
2 m

Θ = 24o

Z

X

5 m

(a) (b)

Figure 4.13. Sketch of the measurement set-up used in the simulation with the ensemble of
56 point scatterers: (a) top view; (b) side view.
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(a) (b)

Figure 4.14. Iso-surfaces of the 3-D reflectivity images obtained before (a) and after (b) the
geometric rectification.

range from 2 to 6 GHz, sweeping 101 frequency points spaced 40 MHz. The aspect angle in

azimuth φ ranged from −12 to +12 deg, with 49 azimuth points uniformly space 0.48 deg.

The aspect angle in elevation θ ranged from 78 to 102 deg, with the same number of points

and spacing as those in φ. Note that, for this target, the far-field condition is satisfied at

a range distance of about 960 m. This indicates that the geometric distortion introduced

by the short observation distance will be enormous.

A 3-D SAR image was reconstructed using the presented near-field SAR algorithm. The

computation time needed to form the image was less than 4 min on a high-performance

Sun workstation. There is probably no other way to synthesize a 3-D near-field SAR image

in a shorter time. However, it must be kept in mind that the effectiveness of the geometric

rectification degrades notably as the angular spans of the two aspect angles (φ, θ) increase.

In this example, the angular spans were narrow enough for an effective mitigation of the

geometric distortion. Figure 4.14 shows the iso-surfaces of the 3-D reflectivity images

before and after the geometric rectification. The positions of the point scatterers after the

rectification are in perfect agreement with the actual ones. The geometric distortion in

the image has been highly reduced by using the proposed rectification technique.

Measurements

The experiments have been performed with a 3-D SAR measurement of a 5 m high Fir

tree. The full description of the experiment is given in the Chapter 5. A Tx antenna
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was located at a distance Ra = 9.56 m from the focal point of the anechoic chamber. A

receiving antenna, which was 1.5◦ apart, acquired the backscattered fields by the entire

tree. The backscattered fields from the tree Es(f, φ, θ) were collected as a function of

three parameters: the frequency f of the CW synthesizer, the azimuth position of the

rotating platform φ, and the looking angle of the antenna system θ. The frequency ranged

from 1.0 to 5.5 GHz, sampling a total of 401 points. In the measurement, the azimuth

angle φ covered an span of 24◦, sweeping a total of 41 azimuth aspect angles 0.6◦ apart.

The angular span in the antenna looking angle θ was 24◦, covering the range from 28 to

52◦ with 81 points spaced 0.3◦. The far-field condition for the tree is satisfied at a range

distance of about 1833 m. Therefore the image obtained with the PFA will be highly

distorted due to the short observation distance.

Three frequency ranges were selected: 1.0 to 2.8 GHz (low band), 3.7 to 5.5 GHz (high

band), and 1.0 to 5.5 GHz (entire band). A 3-D SAR image in the HH polarization was

formed in these three bands using the proposed imaging algorithm with the geometric

rectification. The computation time for each image, as in the numerical simulation, was

extremely short and below 5 min. Figure 4.15 shows the vertical slices out of the 3-D

SAR images corresponding to the front and side views. The slices with finer resolution

are obviously those using the entire frequency band. As expected, those with the coarser

resolution correspond to the low band. The dynamic range of the images shown is 30 dB.
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Figure 4.15. Slices of the 3-D SAR image of the Fir tree in the HH polarization in three
different frequency bands.
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Chapter 5

3-D Near-Field Radar Imaging of a
Fir Tree

5.1 Introduction

First analyzes of a single Fir tree in the microwave region were performed in 1982 [99]

using a high-resolution, pulsed, coherent radar operating in the scatterometric mode at

10 GHz. In this experiment, the scattering centers and their corresponding polarimetric

signatures were measured. The main scattering sources were associated to the green, outer

branches coated with needles. This work was followed by further investigations on tree

signatures showing that both attenuation and backscattering are highly dependent on the

tree structure (i.e. size, shape and orientation of trunk, branches and needles) and the

selected polarization [100, 101, 102, 103, 104]. This polarization dependence is, in general,

significant due to the strong anisotropic character of trees.

Measurements of a forest canopy under natural conditions are complex. One has to

define the relevant canopy parameters to be measured and deploy the required instru-

mentation associated with outdoor radar measurements. Effects such as varying weather

conditions, the ground tree interaction, presence of RF interfering signals, shadowing intro-

duced by surrounding trees, unknown variations of the local topography and soil conditions

may heavily influence the measurement. As a result, experimental data acquired under

these conditions may not be interpreted properly and consequently lead to wrong conclu-

sions. On the other hand, when running the measurements in an anechoic chamber under

laboratory conditions, all relevant measurement parameters can be fully controlled. The

measurement data can be accurately calibrated. The backscatter from the tree volume

can be isolated by covering with microwave absorber the underlying surfaces, facilitating

the interpretation of the acquired data.
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To date most of the radar measurements on single trees performed under laboratory

conditions have been carried out using non-imaging systems that measure the backscatter

from parts of the tree, without dealing with the backscattering from the entire tree. A

typical set-up used in these measurements is reported in [105]. In the frequency range of

interest for forestry applications (i.e. P, L and C bands), a non-imaging or scatteromet-

ric system has a cross-range resolution limited by the radar’s beamwidth, which means

that the position of the scattering centers within the tree volume cannot be determined

precisely. Nowadays, indoor SAR systems are available and, with the development of

highly efficient imaging algorithms, it is possible to image an entire tree with much finer

cross-range resolutions (in the horizontal and vertical directions). The major scatterers

and their position within the tree volume can be identified by means of this new tech-

nique [32, 36, 67]. This can be used as a new tool to gain a better understanding of the

interactions between the tree and the microwave. In addition to the position and intensity

of the main scattering centers, an indication about the dominant scattering mechanism

can be given by using a recently developed polarimetric classification scheme [106].

This Chapter reports on a tree imaging experiment conducted in the anechoic chamber

of the EMSL [60]. The main objective of this experiment was to map the radar reflectivity

of an entire Fir tree in order to support the understanding of the interaction of electromag-

netic waves with natural targets and provide the base for the validation and verification

of existing models.

This Chapter is organized as follows. First, in Section 5.2, a general description of the

experiment, the measurement technique and main characteristics are presented. The 2-D

and 3-D near-field SAR imaging algorithms used to focus the acquired backscatter data

are described in Section 5.3. The resulting radar images of the tree are presented and

discussed in Section 5.4.

5.2 Measurement set-up

The present experiment consisted of a three 3-D imaging measurement on a 5 m high

Balsam Fir tree (Abies Nordmanniana), which was approximately 21 years old. The radar

measurements were performed in a controlled environment, making use of the anechoic

chamber of the EMSL. In order to have stable measurement conditions, prior to and dur-

ing the measurements the tree was watered regularly. A constant artificial illumination

replicating the sunlight’s spectrum was used to reduce the day-night effect. The tree used

in this experiment presented quasi-horizontal branches bearing typically 2-3 cm needles

showing a brush-like distribution. The branches constituted large horizontal planar sur-
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faces at different levels in height. The top of this tree conforms to a young tree of its

same species. The tree was put in a pot and then mounted on a rotating platform inside

the anechoic chamber, as shown in the photographs in Figure 5.1. The pot under the

tree was covered with microwave absorber, to make sure that the measured backscatter

did not include any contribution from the ground and the corresponding interaction with

the tree. The measurement system is based on a network analyzer and operates in the

stepped-frequency mode. The frequency band used in the measurement ranged from 1 to

5.5 GHz, i.e. covering the L, S and C bands, using a frequency step of 5.625 MHz and

sweeping a total of 401 frequency points. The acquired data in the frequency domain were

empty room subtracted and gated in the time domain in order to isolate the response

of the tree from the residual antennas coupling and eventual spurious reflections in the

chamber. Then a single reference, fully polarimetric calibration [70], using a reference

target placed at the focal point of the chamber, was applied. The calibration accuracy

has proven to be better than 0.5 dB in power and 5◦ in phase at 0 dBsm. The sensitivity

depends on the number of averaged samples at each frequency point and the time gate

span; e.g., with an averaging factor of 128, equivalent to an integration time of 0.025 s and

a time gate span of 10 ns, a system noise floor of –55 dBsm at 2 GHz was measured [107].

The antenna system is polarimetric and consists of two dual polarized horn antennas that,

in the measured frequency range, has a 3 dB beamwidth of about 30◦, which is sufficient

to irradiate the entire tree. The measured cross-pol isolation is better than 30 dB in the

region occupied by the tree.

(a) (b)

Figure 5.1. Photographs of the 5 m high Balsam Fir tree inside the anechoic chamber of the
EMSL: (a) side and (b) front views.
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Figure 5.2. Imaging geometry used in the measurement of the Fir tree: (a) top view and (b)
side view.

In addition to the imaging measurements, and within the frame of a scientific collab-

oration between the George Washington University, the Canadian CCRS and the JRC, a

series of scatterometric measurements were carried out [108]. These measurements were

divided into three groups: monostatic, bistatic and measurements in the forward direction.

The bistatic measurements were made to test the strength of the specular trunk scatter

which is an important factor in double bounce contribution appearing in many forest mod-

els. In addition, some bistatic measurements in the forward direction were also performed.

After finishing the measurements, a tree vectorization was performed by Robert Landry,

from CCRS. This technique is used to setup a database with the position, average orien-

tation and dimensions of all branches and the trunk. These data can afterwards be used

to generate a realistic computer tree model, which is being developed at present. During

the tree vectorization, a series of dielectric permittivity measurements on the tree bark,

sap wood and hard wood portion of the trunk, needles and branches was undertaken using

a coaxial probe. These measurements were performed over a much wider frequency range

compared to that one used in the imaging mode. An HP-8510B VNA based reflection

coefficient measurement with an open-ended coaxial probe was used.

5.3 Reconstruction algorithm

The imaging geometry is shown in Figure 5.2. A CW signal is radiated from an antenna,

located at a distance Ra = 9.56 m from the focal point of the anechoic chamber. A

receiving antenna, which is 1.5◦ apart, acquires the backscattered fields by the entire tree.

The tree is mounted on a low reflectivity platform covered with absorber. This platform
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rotates about the z-axis forming an angle φ with the x-axis. The antennas rotate in the

y − z plane forming an angle θ with the z-axis. Thus, the tree backscatter Es(f, φ, θ) can

be acquired as a function of three parameters: the frequency f of the CW synthesizer, the

azimuth position of the rotating platform φ, and the looking angle of the antenna system

θ. In the measurement, the azimuth angle φ covered an span of 24◦, sweeping a total of

41 azimuth aspect angles 0.6◦ apart. The angular span in the antenna looking angle θ was

24◦, covering the range from 28 to 52◦ with 81 points spaced 0.3◦. These angular steps

in the azimuth and elevation directions have been fixed according to the following upper

bounds,

∆φ ≤ λmin

2 Dh sin θ
(5.1)

∆θ ≤ λmin

2 Dv sin θ
(5.2)

where λmin is the minimum radar wavelength (at the highest frequency). Dh andDv denote

the tree width and height, respectively. As expected, the required angular sampling rates

increase with increasing electrical dimensions of the tree.

The measurement parameters used in the imaging experiment are summarized in Ta-

ble 5.1. Note that with such measurement parameters, apart from a 3-D SAR image, one

can form a number of 2-D SAR images or projections of the 3-D SAR image onto the

horizontal and the vertical planes. What follows is a description of the imaging algorithms

especially developed to form the 2-D and 3-D SAR images of the measured Fir tree. The

influence of the antenna pattern is considered to be negligible and is not taken into account

when forming the images. All radar images are calibrated and display the spatial distri-

bution of RCS in dBsm. In principle, by properly measuring the effective area illuminated

by the radar, the reflectivity values can be converted to the backscattering coefficients σ◦.

However, in the present measurement there are high spillover losses due to the large 3 dB

beamwidth of the horn antennas (approximately 30◦) and therefore this conversion has

not been applied.

It is important to note that the reconstruction algorithms presented here are linear and

Table 5.1. Measurement parameters used in the tree imaging experiment.

Polarizations: HH–HV–VH–VV
Parameter: Min Max Step # Points
Tree azimuth rotation (◦): –12.0 12.0 0.6 41
Antenna looking angle (◦): 28.0 52.0 0.3 81
Frequency (GHz): 1.0 5.5 0.01125 401
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model the target as a set of non-dispersive scatterers arbitrarily distributed. The multiple

interactions between the scattering centers will only be focused if they are present at the

same range bin for all the antenna positions in the synthetic aperture. A typical example

is the interaction between a tree trunk and the ground surface. If this is not the case,

the artifacts associated to the multiple interactions will be blurred by the reconstruction

algorithm. Consequently, the peak amplitude of the artifacts may be significantly reduced

and sometimes they are not even observable. When imaging a target with a high degree of

anisotropy such as a tree, one would expect that the multiple interaction term will show

significant differences depending on the observed polarization. The problem of exploiting

the use of a polarimetric classification scheme which provides a spatial distribution of the

dominant scattering mechanisms (e.g. surface, dipole and dihedral) within the tree volume

has been recently addressed [109]. This technique has been used to separate real scatterers

from artifacts due to the multiple interactions.

5.3.1 Two-dimensional SAR imaging

The projections of the tree volume onto two orthogonal planes, in our case the horizontal

and vertical planes, can be formed by using a 2-D SAR processor that takes into account

the near-field condition. The 2-D SAR image in the horizontal plane is obtained by taking

a single antenna aspect angle in the elevation plane θa, and synthesizing an horizontal

aperture in the azimuth direction. The resulting 2-D radar reflectivity map at z = 0 is

given by [11],

I(x, y, z = 0) =
4

c2
sin θa

∫
f
fdf

∫
φ′
Es(f, φ

′, θ = θa) (
Rxy
Ra

)2 exp [j2k(Rxy −Ra)] dφ
′

(5.3)

where k denotes the frequency wavenumber and Rxy is the range to the point with coor-

dinates (x, y, z = 0),

Rxy =
√
R2
a + x2 + y2 − 2Ra x sin θa (5.4)

As shown for example in [49], the resolutions in the horizontal cross-range x and in ground-

range y can be approximated as

δx ' c

4 fmax sin

(
Wφ

2

)
sin θa

(5.5)

δy ' c

2 Wf sin θa
(5.6)

where Wφ and Wf denote the azimuth and frequency spans, respectively. Fine resolution

in cross-range implies coherent processing through a large Wφ. High resolution in ground-
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range is achieved by increasing the amount of synthesized bandwidth Wf . Note that for

steep incidence angles both resolutions degrade considerably.

Alternatively, a 2-D SAR image in the vertical plane can be formed by choosing an

azimuth aspect angle φ′ and synthesizing a vertical aperture. In this case, the 2-D SAR

reflectivity map at x = 0 is computed as

I(x = 0, y, z) =
4

c2

∫
f
fdf

∫
θ
Es(f, φ = φ′, θ) (

Ryz
Ra

)2 exp [j2k(Ryz −Ra)] dθ (5.7)

where

Ryz =
√
R2
a + y2 + z2 − 2Ra [y sin θ + z cos θ] (5.8)

The resulting resolutions in the ground-range and vertical cross-range directions are

δy ' c

2 (fmax sin θmax − fmin sin θmin)
(5.9)

δz ' c

2 (fmax cos θmin − fmin cos θmax)
(5.10)

wherein θmin and θmax denote the minimum (steepest) and maximum antenna looking

angles, respectively; fmin is the minimum CW frequency measured. Note that in (5.3)

and (5.7), both the exact near-field phase history and the free-space propagation losses

are accounted for by the exponential function and the quadratic term in the amplitude,

respectively. The formation of the two 2-D SAR images in the vertical and horizontal

planes provides a first indication of the position and intensity of the main scattering

centers within the tree volume.

5.3.2 Three-dimensional SAR imaging

Similarly to (5.3) and (5.7), the 3-D complex reflectivity image in cylindrical coordinates

I(ρ, φ, z) can be written as follows [11, 41],

I(ρ, φ, z) =
8

c3

∫
f
f2df

∫
θ
sin θdθ

∫
φ′
Es(f, φ

′, θ) F (ρ, φ− φ′, z; f, θ) dφ′ (5.11)

where F (·) is a near-field focusing function (or space-variant matched filter) which can be

expressed as,

F (ρ, φ, z; f, θ) = (
R

Ra
)2 exp [j2k(R−Ra)] (5.12)

R =
√
R2
a + ρ2 + z2 − 2Ra [ρ sin θ cosφ+ z cos θ] (5.13)
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Here R denotes the range to the point with coordinates (ρ, φ, z). Ra is the range to the

center of the coordinates system and zero-phase reference point. In (5.11), the wavefront

illuminating the tree is spherical due to the short observation distance.

The formation of a 3-D SAR radar image under the near-field condition is computation-

ally very intensive [49]. As an example, with the focusing algorithm as equated in (5.11), a

3-D SAR radar image of the Fir tree with dimensions 5×5×6 m3 and 101×101×61 voxels

requires the computation of approximately 1.25 E+08 azimuth FFTs of 1024-points, which

is about 0.5 Tera-Flop. Moreover, during the image formation, a 3-D float complex array

of about 80 MByte must be stored on the RAM. Using a high performance workstation

(a Sun Ultra-Sparc equipped with one CPU of 64 bits and a DRAM of 128 MByte), the

data focusing takes 4 days. Therefore, there is a clear need to speeding up the code. As

indicated in Section 4.2, a possible alternative is to use the MSP to calculate analytically

the discrete Fourier transform of the near-field focusing function in (5.11) [58]. This new

algorithm is about four times faster than that using the azimuth FFTs.

5.4 Experimental results and discussion

This Section is divided into three parts. First, an analysis of the frequency domain data

acquired in the Fir tree imaging measurement is presented. Then, the obtained 2-D SAR

images of the Fir tree (projected onto the horizontal and vertical planes) are introduced

with a discussion on the interpretation of the results. Finally, an assessment on the 3-D

SAR image of the Fir tree is addressed.

5.4.1 Frequency domain data analysis

The acquired data in the imaging measurement have been analyzed. The measured mean

RCS as a function of the frequency and the antenna looking angle are shown in Fig-

ures 5.3 (a) and 5.3 (b), respectively. In the frequency plot, after averaging over the

measured angular ranges in azimuth and elevation, the backscatter in HH is higher than

that in VV and HV over the entire frequency range. However, as the frequency increases,

the three backscattering coefficients tend to converge to a common value. At high fre-

quencies, it is expected that the electromagnetic interaction between branches and the

absorption losses will become more important and therefore the tree behaves more as a

cluster of lossy dipoles randomly oriented. Consequently, the cross-pol backscatter in-

creases steadily over the entire frequency range. On the other hand, the backscatter in

HH and VV increases in the frequency range from 1 to 3 GHz, and then decrease steadily
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following a “bell-shaped” curve. The differences between HH and VV range from about

4 dB at the lowest frequency, to 1 dB at the highest frequency. By applying a Fourier

transform to the frequency backscatter data, the time domain backscatter shows that there

is no prevalence of the response of the trunk, which is probably due to the fact that the

incidence is oblique and the penetration depth through the tree volume is rather limited.

The angular variation of the backscatter, which has been averaged over the entire fre-

quency and azimuth ranges, shows a gradual general decrease in the three backscattering

coefficients. This trend is more evident in the backscatter in VV and HV, with a common

decrease of about 2 dB over the whole angular range. The differences between HH and

VV increase very slowly with a increasing incidence angle. These results are in agreement

with those indicated in [110].

5.4.2 Two-dimensional SAR images

The presented reconstruction algorithms are scalar and as such have to be sequentially

applied to the frequency domain data in each one of the four polarizations. As a result, a

set of four complex reflectivity images is obtained. The phase in the resulting four images

is preserved. In practice, VH is supposed to be identical to HV due to reciprocity. The 2-D

SAR images, in the HH polarization, formed by synthesizing a one-dimensional aperture

in the horizontal (θ = 40o) and the vertical (φ = 0o) directions are shown in Figures 5.4 (a)

and 5.4 (b), respectively. When forming these images, a Kaiser-Bessel (a = 2) [87] window

has been used both in frequency and azimuth. The measured resolutions in the horizontal

image are approximately 20 cm and 10 cm in the horizontal cross-range and ground range

directions, respectively. The top part of the trunk is distinguishable in the near range (top

part) of the image. The region with the higher reflectivity seems to correspond to one of
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Figure 5.3. Measured mean σ◦ as a function of the (a) frequency and (b) the antenna looking
angle.
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Figure 5.4. 2-D SAR images of the Fir tree projected onto the horizontal (a) and vertical (b)
planes in the HH polarization.

the large horizontal branches in the bottom part of the tree, where the reflectivity reaches

the maximum value of –11.0 dBsm.

The vertical image presents a higher spatial resolution: about 6 cm in both the vertical

cross-range and the ground-range directions. The overall shape is surprisingly close to that

of the optical image. Note that the backscattering behavior of the tree at radar frequencies

is by far more complicated and radically different from that of optics. In this image, the

trunk is slightly tilted towards the far range. This image shows clearly the different large

horizontal planar branches in the near-range (illuminated side). Two openings on the near-

range side, with heights 3.6 and 3.2 m, are clearly visible in the image. The maximum

reflectivity of this image is –13.1 dBsm. The reconstructed reflectivity, as expected, is

much lower in the back side due to the attenuation of the transmitted power through the

tree canopy.

5.4.3 Three-dimensional SAR images

The 3-D SAR image in VV is shown in Figure 5.5 as seen from the radar. The maximum

reflectivity within the tree volume is about –19.5 dBsm. The dynamic range used in this

image is 50 dB. As in the vertical 2-D SAR image, the overall shape of radar image coin-

cides with that of the optical image. The spatial resolution, achieved with the frequency

bandwidth and the synthetic aperture lengths in elevation and azimuth indicated in Ta-

ble 5.1, is in the order of 6 cm in the vertical cross-range and ground-range directions, and

15 cm in the horizontal cross-range direction. A Kaiser-Bessel (a = 2) window has been

applied over the frequency and the two aspect angles (in azimuth and elevation). This
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is enough to produce imagery where the position of the scattering centers can be easily

associated to a small volume within the tree structure. The vertical slices out of the 3-D

images at zero cross-range (side view) and zero ground-range (front view) are shown in

Figure 5.6. The observed differences in polarization are more evident in the top part of

the tree, where almost there are no branches and the trunk is giving the main contribution

to the backscattering. Consequently, the top part of the trunk is more visible in the VV

image. On the other hand, in the middle and bottom part of the tree, the tree architecture

is more complex and the differences in polarization are smaller. The backscattered power

in HV is comparable to those in HH and VV, which indicates that the main scattering

centers are mainly associated with the green, outer branches coated with needles.

 

Figure 5.5. 3-D SAR image of the Fir tree in the VV polarization.
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Figure 5.6. Vertical slices out of the 3-D radar image at zero ground-range (front view) and
zero cross-range (side view) in the HH, HV and VV polarizations.



Chapter 6

3-D Near-Field Subsurface Radar
Imaging

6.1 Introduction

This Chapter addresses the problem of the formation of subsurface radar images [111, 112,

113]. This problem is by far more severe than that of forming the radar images in the free-

space. The medium where the objects are embedded is usually lossy and inhomogeneous.

This together with the presence of the air-ground interface make the task of subsurface

radar imaging highly challenging.

A vast majority of the research efforts in this area are purely experimental and mostly

focused on the detection and mapping of interfaces in the earth employing commercial

versions of ground penetrating radars (GPRs) [114, 115]. In these measurements, the GPR

is in towed continuously over the surface collecting backscatter data. Synthetic aperture

radar processing (referred to as migration by geophysicists) may be used to process an

improved subsurface image. However, difficulties associated with technical limitations of

commercial GPRs (e.g., multiple internal reflections, clutter generated by the air-ground

interface, poor impedance matching at the antenna,. . . ) and a heterogenous velocity

distribution in the subsurface may introduce serious impediments to an efficient use of

SAR processing with GPR data. Some of these difficulties are circumvented by separating

the antennas from the ground and pointing them in the forward direction. With the

antennas looking forward, the measured return from the surface is minimum. However,

the return from the buried object is expected to be about the same as that measured with

the antennas looking down. Consequently, the forward looking geometry is an alternative

to conventional down looking GPR which deserves special attention.

Here, instead of having the radar looking down in close contact with the surface, it is
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suggested to have a stand-off forward looking system. This solution is most appropriate

when looking for dangerous objects such as anti-personnel landmines (APL) and unex-

ploded ordnance (UXO) [29, 30, 116, 117, 118, 119, 120]. The observation distance for

such a system would be in the order of some tens of meters. Candidate platforms where

to operate this system are a heavy vehicle or an airship. The use of an air-borne platform

is discarded as it is more suitable for the survey of mine fields at a large scale (i.e., not for

the detection of every single landmine) [121].

This Chapter presents a novel 3-D near-field subsurface imaging technique. The sub-

surface image is accurately focused taking into account both the refraction and dispersion

of the wavefield. The use of this imaging technique is subject to a number of assumptions.

The dielectric properties of the ground are known (i.e., the complex permittivity as a

function of the frequency). The ground is considered to be non-magnetic and therefore

it is unequivocally characterized by its dielectric permittivity. The air-ground interface is

assumed to be planar. The ground is supposed to be perfectly homogeneous out of the

region occupied by the buried objects.

The numerical validation of the proposed subsurface imaging technique entails the

implementation of highly complex integral-equation solvers taking into account the pres-

ence of the air-ground interface. In the frequency range of interest, this problem can

only be tackled by using a multilevel fast-multipole method of moments code. This code

must rigorously evaluate the dyadic half-space Green’s function, requiring the evaluation

of Sommerfeld integrals [122, 123, 124, 125, 126, 127, 128, 129]. As the development of

such a simulation tool is out of the scope of the present Thesis, no full-wave numerical

simulations are presented. Alternatively, the proposed imaging technique has been tested

experimentally by running various 3-D SAR measurements in the anechoic chamber of the

EMSL [60].

This Chapter is organized as follows. Section 6.2 introduces the formulation of the

proposed subsurface imaging technique. Section 6.3 presents an measurement technique

to characterize electromagnetically a soil sample. Section 6.4 is entirely devoted to the

experimental testing of the imaging technique.

6.2 Formulation

The geometry of measurement is shown in Figure 6.1 (a), where a Tx/Rx antenna located

off the ground illuminates the air-ground interface with a looking angle θi. The mea-

surement system is supposed to function in the stepped-frequency mode. The antenna
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Figure 6.1. (a) Sketch of the 2-D synthetic aperture; (b) Propagation paths associated with
the incident and refracted wavefields with a lossless ground.

platform is assumed to be capable of forming a 2-D synthetic aperture which will provide

spatial resolution in the three dimensions.

In the processing of SAR data, it is usually assumed that the target consists of an

ensemble of point scatterers whose response is independent of the observation angle. For

subsurface sensing under the near-field condition, this assumption is usually not satisfied

due to the presence of the air-ground interface. Consequently, a new class of focusing

technique is required. The details of the implementation of this technique both with a

lossless and lossy ground is next.

6.2.1 Lossless ground

Let us consider a point scatterer buried in a lossless ground at a depth h, its associated

phase history will be defined by the electrical length of the two-way path travelled by an

spherical wave from the antenna to the location of the point scatterer. Figure 6.1 (b)

shows the propagation paths associated with the incident and refracted wavefields from

the antenna to the location of the scatterer where the radar reflectivity is to be esti-

mated. Assuming that these (generally spherical) wavefields are locally planar, one can

estimate the electrical length corresponding to the propagation path through Snell’s law

of refraction [130] as follows

R = R1 +R2 =
√
H2 + (D − ξ)2 +

√
εr
√
h2 + ξ2 (6.1)
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where R1 and R2 are the electrical lengths in the air and in the medium, respectively; εr

is the relative dielectric constant of the lossless medium, H is the height of the antenna,

and ξ denotes the horizontal distance between the antenna and the point scatterer, which

can be obtained by finding the zero of the following function,

F (ξ) = sinθi −
√
εr sinθr

=
D − ξ√

H2 + (D − ξ)2
−
√
εr

ξ√
h2 + ξ2

(6.2)

Once the total electrical length R is determined for each antenna position, the reflectivity

associated with the location of the scatterer can be estimated by convolving the backscatter

data with a space-variant matched filter using that electrical length (i.e., instead of the

two-way range to the point scatterer used in the free space case).

6.2.2 Lossy ground

When the medium is lossy the permittivity becomes complex (εr = ε′−jε′′), see Figure 6.2,

the planes of constant phase and those of constant amplitude do not coincide and the

direction of propagation in the ground is determined by the normal to the constant phase

iθ

Refraction Constant

True Angle of

Amplitude
Planes

Constant
Phase

ε = ε  −   ε’ ’’j

Planes

θ

ψ

t

t

’

Scatterer

H

h

D

ξ

Tx/Rx Antenna

Figure 6.2. Scenario with a lossy medium surrounding a point scatterer.
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planes n̂ψ, which is given by [131],

tanψt =

√
2 tan θ′t√

1 +

√
1 + (2 tan δ

cos2 θ′t
)2

(6.3)

where tan δ is the loss tangent and sin θ′t = sin θi√
ε′

. The total electrical length is now

expressed as

R = R1 + n(θi)R2 =
√
H2 + (D − ξ)2 + n(θi)

√
h2 + ξ2 (6.4)

where n(θi) is the effective refractive index which depends on the incidence angle, and ξ

is obtained by finding the zero of the following function

F (ξ) = sin θi − n(θi) sinψt =
D − ξ√

H2 + (D − ξ)2
− n(θi)

ξ√
h2 + ξ2

(6.5)

with

n(θi) =
√
ε′

√
1 + sin2 θ′t

2
+

√
tan2 δ + (

cos2 θ′t
2

)2 (6.6)

wherein

θ′t = arcsin(
sin θi√
ε′

). (6.7)

As in the lossless case, the total electrical length R given by the solution of Equation (6.5)

is used in the matched filtering or focusing of the backscatter data.

It must be noted that getting an accurate estimate of the total electrical length R is

subject to an priori knowledge of the dielectric properties of the medium surrounding the

target of interest. A procedure for estimating the complex permittivity of a soil sample is

suggested in Section 6.3. Furthermore, the relative position of the antenna referred to the

air-ground interface must be precisely known.

6.2.3 Propagation and transmission losses

From a qualitative viewpoint (i.e., without making use of full-wave integral or differential

equation solvers), the total propagation losses to “reach” the hidden object can be broken

down as follows:

• Propagation losses from the antenna to the air-soil interface. The amplitude factor

associated with this loss is given by

Lfree-space '
1

R1
(6.8)
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• Transmission losses through the air-soil interface, which will depend on the orien-

tation of the electric field with respect to the incidence plane. For an electric field

parallel to the incidence plane

T‖ =
2
√
ε′ − j ε′′ − sin2 θi

(ε′ − j ε′′) cos θi +
√
ε′ − j ε′′ − sin2 θi

(6.9)

where T‖ denotes the Fresnel transmission coefficient [130]. Alternatively, the Fresnel

transmission coefficient for an electric field perpendicular to the incidence plane is

T⊥ =
2 cos θi

cos θi +
√
ε′ − sin2 θi − j ε′′

. (6.10)

• Propagation losses in the soil. The factor associated with this loss will be a function

of scatterer depth h, i.e.

Lsoil = exp [−αeh] (6.11)

wherein αe denotes the attenuation constant in the ground, which is given by

αe =
w

c

√
ε′

√
1

2

[√
1 + tan2 δ − 1

]
. (6.12)

As expected, the losses associated to (6.11) increase dramatically with an increasing

frequency. In practice, if this loss is high there is no chance to get any backscatter

signal from the buried object.

• Reflectivity losses of the object embedded in the ground. This loss factor will basi-

cally depend on the dielectric contrast between the buried object and its surrounding

medium. The shape of the object and the direction of the incident wavefield are also

expected to play an important role.

The resulting (two-way) total loss factor in dB can then be expressed as

Total Loss [dB] ' 40 log
[
Lfree-space Ttrans Lsoil Lrefl

]
(6.13)

where Ttrans, depending on the orientation of the incident electric field with respect to the

incidence plane, can be either T‖ or T⊥. The term Lrefl denotes the factor loss associated

with the reflectivity of the object embedded in the ground.

When the incident electric field is parallel to the incidence plane, the loss factor in

(6.13) can be minimized by choosing an incidence close to Brewster’s angle. That would

guarantee a total transmission of the radiated power into the ground, resulting in a max-

imum return from the buried object.
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6.2.4 Subsurface imaging algorithm

Considering that the antenna is located within the near-field region of the illuminated spot

on the ground, and its radiation pattern introduces a negligible distortion, then the 3-D

complex reflectivity image can be estimated as follows [49],

I(r) '
∫
f
df

∫
θa

dθa

∫
φa

Es(f, φa, θa) F (r, ra, f) dφa (6.14)

where f is the working frequency, θa denotes the antenna viewing angle, φa is the aspect

angle in azimuth, Es(·) are the frequency domain backscatter data, and F (·) is a near-field

focusing function (or space-variant matched filter) which can be expressed as

F (r, ra, f) = exp
[
j
4πf
c (R−Ra)

]
(6.15)

where and c is the speed of light, R denotes the total electrical length between the antenna

and the point with coordinates r given by (6.1) and (6.4), and Ra is the range to the origin

of the coordinates system which, for convenience, is also the zero-phase reference point.

This is a generalized imaging algorithm specially tailored for subsurface sensing.

Practical implementation aspects

It is important to note that the total electrical length R is always an even function of

(φ − φa) (i.e., it is a function of the relative distance between the antenna and the point

with coordinates r). As a result, the azimuth integration in (6.14) becomes a circular

convolution in azimuth. This integration can therefore be efficiently implemented by using

FFT techniques as a complex product in the azimuth wavenumber domain. This solution

reduces the computational cost of the imaging algorithm from O(Nf Nφ Nθ) down to

O(Nf log2Nφ Nθ), where Nf is the number of frequency points measured and, Nφ and

Nθ are, respectively, the number of aspect angles in azimuth and elevation.

Another important implementation aspect to be taken into account is that of finding

the zero of the functions in (6.2) and (6.5). The adopted solution has been to use a simple

Newton-Raphson’s solver [93]. The convergence with a high accuracy was achieved in all

cases in a minimum number of iterations. Further, in Eq. (6.14), the exact near-field phase

history is accounted for by the exponential term of (6.15). On purpose, this term does

not include an amplitude term correcting for the propagation loss given in (6.13) as its

inclusion would reduce significantly the SNR of the resulting images.
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6.3 Soil characterization

The detection capabilities of a surface penetrating radar can be significantly improved

through a precise characterization of the environment. For a non-magnetic medium, the

characterization reduces to the retrieval of the dielectric permittivity ε as a function of the

frequency. Once the dielectric permittivity is estimated, then one can form a subsurface

radar image precisely correcting both for the refraction of the wavefield and the dispersion.

The proposed characterization technique is simple and reasonably accurate. It is assumed

that, in the frequency range of interest, the permittivity shows a linear dependence with

the frequency.

The characterization is performed as follows. The sample of the soil under test is put

in an open box with low reflectivity walls (e.g., made of Rohacell) which has a metal

plate underneath. This sample is first measured with normal incidence. Then a second

measurement of the metal plate alone is carried out. Figure 6.3 shows the measurement

set-up used. The thickness of the sample d varies depending on the losses of the sample

measured. Since the backscatter fields are usually measured within a very wide frequency

range, a precise value for the thickness can be retrieved by using time domain reflectometry.

By combining the measurements with and without the sample on top of the metal

plate, an equivalence with transmission lines can be employed. This equivalence is shown

in Figure 6.4 (a). A photograph of the sample of the sandy soil is shown in Figure 6.4 (b).

By properly normalizing the measured backscatter one can obtain the reflection coefficient

Under
Test

Sample
d

50 cm

Metal Plate

η d

50 cm

Metal Plate

(a) (b)

Figure 6.3. Measurement set-up used in the characterization of the soils: (a) soil sample on
metal plate and (b) metal plate alone.
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Γz=0-

+ z=dΓ

(Metal Plate)
Short

(a) (b)

Figure 6.4. (a) Equivalence with transmission lines; (b) Sample of the sandy soil in the anechoic
chamber.

Γ. The reflection coefficient is directly related to the dielectric permittivity as follows

Γ(f) =
tanh(j

4πf

c

√
ε d)−

√
ε

tanh(j
4πf

c

√
ε d) +

√
ε

(6.16)

which corresponds to the reflection coefficient of a dielectric slab of thickness d under

normal incidence [130].

A global error estimate integrated over the entire frequency band is then defined as

E =

∫
f
| log(

Γms(f)

Γ(f)
)|2 df (6.17)

The proposed procedure to retrieve the complex permittivity is based on an optimization

which minimizes the error estimate given by (6.17).

This characterization technique has been tested on various types of soil. The fre-

quency range used in these measurement ranged from 1.5 to 9.5 GHz. As an example,

Figures 6.5 (a)-(d) show, respectively, the estimated complex permittivity (real and imag-

inary parts) and the corresponding reflection coefficient (in the frequency and time do-

mains) for a sample of a sandy soil of thickness 5 cm with a moisture level of 5%. As

expected with a sample of a sandy soil with low moisture [132], the real part of the com-

plex permittivity is almost independent of the frequency, ranging from 2.5 to 2.7. On

the other hand, the imaginary part is extremely low and below 0.03. The global error

resulting from the optimization in this measurement was 0.29 dB. Figures 6.5 (e)-(h) show

the estimated complex permittivity and the corresponding reflection coefficient (in the fre-

quency and time domains) for the same sample of sandy soil with a moisture level of 10%.

The retrieved real and imaginary parts of the complex permittivity are higher than those
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for the moisture level of 5%, in agreement with the increase of the volumetric moisture.

The global error resulting from the optimization in this measurement was 0.52 dB. In

these two measurements, the reflection coefficient given by the model and that measured

show are in perfect agreement both in the frequency and the time domains. These results

indicate that the model used is appropriate to characterize soil samples by means of a

stepped-frequency radar.

A soil sample consisting of a mixture of about 80% of gravel and 20% of dry sand

was also characterized. The thickness of this sample was 10 cm. Figures 6.6 (a)-(d)

show, respectively, the estimated complex permittivity (real and imaginary parts) and the

corresponding reflection coefficient (in the frequency and time domains) for the mixture

of gravel and sand. It is seen that the real part of the complex permittivity shows no

dependence with the frequency and its value is about 3.4. The integrated error resulting

from the optimization was 0.62 dB.

6.4 Experimental results

The proposed subsurface imaging algorithm has been tested experimentally with a series

of three measurements carried out in the anechoic chamber of the EMSL [60].

In the first measurement, the target used consisted of an ensemble of 8 metallic spheres

of radius 7.62 cm. The spheres were all buried in a cylindrical container of diameter 2 m

and depth 0.5 m. The container was filled up with a sandy soil with a moisture in the order

of 5%. The disposal of the spheres in the container is shown in Figure 6.7. The frequency

range employed in this measurement was 2 to 6 GHz, sampling a total of 401 frequency

points. The synthetic aperture was spherical with a radius of 9.56 m. The angular ranges

of the aspect angles in azimuth and elevation were 0◦ ≤ φ ≤ 45◦ and 22.5◦ ≤ θ ≤ 67.5◦,

respectively. The corresponding angular steps were both 0.75◦. This results in a total of

3721 antenna positions uniformly distributed on the spherical aperture. The measurement

time needed to collect the frequency backscatter data was about three entire days.

A 3-D SAR image within the volume of the cylindrical container was reconstructed

through (6.14). The dielectric permittivity used in the matched filter of (6.14) was that

retrieved from the characterization of the sample of the sandy soil with moisture 5%

presented in Section 6.3. The 3-D image consisted of 10 horizontal slices uniformly spaced

within the depth range −70 ≤ z ≤ −20 cm. On each horizontal slice, the reflectivity was

estimated at points forming a polar raster with Nρ = 51 and Nφ = 180. Figure 6.8 shows

eight horizontal slices out of the resulting 3-D SAR image within the depth range −42 ≤
z ≤ 0 cm. The dynamic range shown in these images is 40 dB. The polarization of the
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Figure 6.5. Characterization results with the sample of sandy soil (moisture level of 5%/10%):
(a/e) real and (b/f) imaginary part of the complex permittivity, measured (red dashed
line) and retrieved (blue solid line) reflection coefficient in the frequency domain (c/g)
and time domain (d/h).
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Figure 6.6. Characterization results with the mixture of gravel and sand: (a) real and (b)
imaginary part of the complex permittivity, measured (red dashed line) and retrieved
(blue solid line) reflection coefficient in the frequency domain (c) and time domain (d).

incident wavefield corresponding to these images was HH (i.e., electric field perpendicular

to the plane of incidence). A Kaiser-Bessel (α = 2) window [87] along the three dimensions

of the frequency domain data set was applied prior to the formation of the image. It is seen

that the eight spheres are reconstructed at their actual positions. This result indicates

that the geometric distortion in the image due to the refraction and dispersion has been

successfully corrected. As expected, the deeper spheres show a slightly lower reflectivity

due to the propagation loss in the sandy soil. The processing time on a Sun workstation,

equipped with a 64 bit processor and 384 MByte of internal memory, was about 4 hours.

In the second measurement, the same cylindrical container was again filled up with a

sandy soil with moisture 5%. Seven mine-like objects were buried at the depth of 15 cm,

as shown in Figure 6.9. The mine-like objects were three inert landmines provided by

the Italian Army, a simulant mine provided by the US Army, a stone, a Coke can, and

a wooden rod. The dimensions of the three Italian landmines, the US simulant, and the

stone were about the same: 10 cm. The length of the wooden rod was 30 cm. The US

simulant was filled with RTV-3110 silicon rubber, which presents a dielectric permittivity
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Figure 6.7. Sketch of the measurement set-up with the eight spheres buried in the sandy soil:
(a) top view and (b) side view.

of about 2.9. The resulting dielectric contrast between this simulant and the sandy soil

is therefore extremely low. The wooden rod is also expected to present a low dielectric

contrast [132].

This measurement was performed within the frequency range 1.5 to 9.5 GHz, sampling

a total of 801 points. Such a wide frequency range is only appropriate when the propagation

losses in the ground are low. A 2-D spherical aperture with an angular spans of 12◦ both

in azimuth and elevation was synthesized, as shown in Figure 6.9. The corresponding

angular ranges were −6◦ ≤ φ ≤ +6◦ and 39◦ ≤ θ ≤ 51◦. The angular steps in azimuth

and elevation were both 0.25◦, resulting in a total of 2401 antenna positions uniformly

distributed on the spherical aperture.

As in the previous measurement, a 3-D SAR image within the volume of the cylin-

drical container was reconstructed through (6.14). The dielectric permittivity used in

the matched filter of (6.14) was that retrieved from the characterization of the sample of

the sandy soil with moisture 5%. The 3-D image consisted of 10 horizontal slices uni-

formly spaced within the depth range −70 ≤ z ≤ −20 cm. On each horizontal slice, the

reflectivity was estimated at points forming a polar raster with Nρ = 51 and Nφ = 180.

Figure 6.8 shows three horizontal slices at depths 5, 15, and 25 cm. The dynamic range

shown in these images is 40 dB. The polarization of the incident wavefield corresponding

to these images was VV (i.e., electric field parallel to the plane of incidence). A Kaiser-
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Figure 6.8. Eight horizontal slices out of the 3-D SAR image of the eight buried spheres within
the depth range −42 ≤ z ≤ 0 cm.
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Figure 6.9. Sketch of the experimental set-up used in the 3-D SAR measurement: (a) top and
(b) side view.

Bessel (α = 2) window [87] along the three dimensions of the frequency domain data set

was applied prior to the formation of the image. The slice at 15 cm depth shows five out

of the seven buried objects imaged at their actual position. This result indicates that both

the characterization of the soil and the image reconstruction can be combined to get high

quality subsurface imagery. Neither the US simulant nor the wooden rod are visible due

to their low dielectric contrast. The projection of the return from the far-range edge of

the container is visible in the three slices because of the limited resolution in the direction

perpendicular to the illumination direction.

In the last measurement the sandy soil in the cylindrical container was watered until

a moisture level of 10% was reached. The collection of the backscatter data took place

well after in order to have an homogenous distribution of the volumetric moisture. The

propagation losses in this measurement are expected to be much higher than those in

the previous case. Therefore it is advisable to reduce accordingly the span and center

frequency of the frequency range. The adopted solution was to double the angular spans

of the spherical aperture and halve the frequency range. This was found to be the optimum

solution to get a resolution in the images comparable with those of the sandy soil with

5% moisture. Thus, the angular spans of the aperture in azimuth and elevation were,
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Figure 6.10. Set of horizontal subsurface slices out of the 3-D SAR image in the VV polarization
(sandy soil with 5% moisture).
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Figure 6.11. Horizontal slices at 15 cm depth in the HH, HV and VV polarizations (sandy soil
with 10% moisture).

respectively, −12◦ ≤ φ ≤ +12◦ and 33◦ ≤ θ ≤ 54◦. The angular steps in azimuth and

elevation were both 0.5◦.

Figure 6.11 shows the reconstructed images at 15 cm depth for the three polarizations.

The dielectric permittivity used in the matched filter of (6.14) was that retrieved from the

characterization of the sample of the sandy soil with moisture 10% presented in Section 6.3.

It is seen that all the objects except the US simulant and the wooden rod were again

successfully imaged at their actual positions. As expected with axis-symmetric objects

(i.e., bodies of revolution), the reconstructed reflectivity is much lower in the HV channel

for all the buried objects apart from one of the APLs and the Coke can. It is seen that the

objects reflectivity is clearly higher in the VV image because of the higher transmission

coefficient when approaching Brewster’s angle. The selection of an incidence angle close

to that angle guarantees an optimum transmission of power into the ground.



Chapter 7

Conclusion

The research conducted in this Thesis dealt with the development of a family of three-

dimensional (3-D) near-field synthetic aperture radar (SAR) imaging algorithms, which

have all been tested by means of numerical simulations and measurements. The main mo-

tivation in developing these algorithms was the formation of high quality radar imagery

at the lowest computational cost. A total of five imaging algorithms were implemented,

each satisfying different requirements in terms of computational cost, quality of the re-

sulting imagery, type of the scanning geometry, and implementation complexity. These

algorithms are:

RMA: The Range Migration Algorithm was introduced in Section 3.2. This algorithm is

an extension of the two-dimensional (2-D) RMA. Its formulation has been justified

by using of the method of stationary phase (MSP). The numerical simulations have

shown the efficiency of the algorithm, which can be simply implemented by using

FFT codes and a one-dimensional (1-D) Lagrange interpolator. An important feature

of the proposed processing scheme is that, by applying a phase correction term,

strip-map SAR measurements can be performed at the spotlight SAR sampling rate

without introducing any degradation in the quality of the resulting imagery. The

quality of the focused images is very high, and in the numerical simulations it has

shown to reach dynamic ranges better than 100 dB. The algorithm has been also

tested experimentally using a ground-based SAR system. These results have shown

the high performance of the algorithm working with an experimental data set.

RMA-FT: A Range Migration Algorithm with Fields Translation from spherical and

cylindrical apertures onto a planar aperture was presented in Sections 3.3 and 3.4.

The use of the 3-D RMA was successfully extended to cylindrical and spherical

scanning geometries by splitting the image formation into two steps. The frequency
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domain backscatter data are first translated to a planar aperture in the vicinity

of the measurement aperture. Then the 3-D range migration algorithm (RMA) is

applied. Results showed that the presented backpropagation technique does not

entail a significant increase of the computational cost. Furthermore, the proposed

field translation does not degrade the quality of the imagery. The dynamic range of

the images was shown to be basically identical to that obtained with the 3-D RMA

without the fields translation.

SVMFIA: A Space-Variant Matched Filter Imaging Algorithm especially tailored for

spherical scanning geometries was introduced in Section 4.2. This is a near-field

imaging technique which accounts precisely for the wavefront curvature and the free

space propagation loss. The core of the algorithm resides in the calculation of a near-

field focusing operator, which is convoluted with the frequency-domain backscatter

data in the azimuth domain. The algorithm makes use of an efficient computational

procedure based on FFT codes and an asymptotic evaluation with the MSP. This

asymptotic evaluation is optimized by using working matrices with the points of

stationary phase and their second order derivatives. Experimental results showed a

remarkable performance in terms of focusing capabilities and spatial stability of its

impulse response.

The practical problem motivating the development of the SVMFIA algorithm was

the formation of a 3-D near-field SAR image of a 5 m high Fir tree. This tree was

measured in the anechoic chamber of the European Microwave Signature Laboratory

(EMSL) using the spherical scanning geometry. The images focused with the SVM-

FIA were used to identify the major backscattering sources within the tree volume:

the trunk in the top part of the tree; the needles and the branches in the middle and

bottom part of the tree (where a significant anisotropic behavior has been observed).

The overall shape of the resulting 3-D radar images of the tree were surprisingly close

to that of the optical images. Eventhough the backscattering behavior of the tree at

radar frequencies is by far more complicated and radically different from that in the

visible range.

PFA-IR: A Polar Format Algorithm with Image Rectification was assessed in Section 4.3.

This technique allows the use of FFT-based focusing algorithms normally used under

the far-field condition. The resulting geometric distortion due to the short obser-

vation distance is successfully corrected by applying a rectification algorithm. A

rectification algorithm especially designed for a near-field 3-D SAR processor was

developed. Results on simulated and experimental data showed that this technique
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is highly efficient and can be easily implemented using FFT codes and a 3-D La-

grange interpolator.

SVMF-SSA: A Space-Variant Matched Filter Subsurface Sensing Algorithm was out-

lined in Chapter 6. This imaging algorithm is especially tailored for 3-D subsurface

radar imaging. A simple and effective characterization technique was used to re-

trieve the dielectric permittivity of the medium surrounding the subsurface objects

was presented. The proposed soil characterization and subsurface imaging tech-

niques were tested experimentally successfully. The measurements were carried out

in an anechoic chamber using a stepped frequency radar which synthesized a spher-

ical aperture. The resulting subsurface images show that the geometric distortion

due to the refraction and dispersion of the wavefields is minimum both with lossless

and lossy grounds.

Table 7.1. Main characteristics of the five near-field imaging algorithms.

Computational Scanning Image Implementation
Algorithm Cost Geometry Quality Complexity

RMA Minimum Planar High Minimum
RMA-FT Medium Cylindrical/Spherical High Medium
SVMFIA Medium to High Spherical High High
PFA-IR Minimum Spherical Medium Minimum
SVMF-SSA Medium to High Cylindrical/Spherical High Medium

The main characteristics of the above-listed five imaging algorithms are summarized

in Table 7.1.

As the overall conclusion, it can be said that a complete set of novel near-field imaging

algorithms has been successfully developed. These algorithms have all been tested by

means of numerical simulations and, most important, radar measurements in an anechoic

chamber.
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Appendix A

Formulation of the 3-D RMA using the
MSP

The derivation of the 2-D Fourier Transform of the focusing function in (3.5) is based on

the MSP. This method provides an analytical solution for the asymptotic expansion of an

integral of the form

N(k) =

∫∫
R

f(x, y) ejkµ(x,y) dx dy (A.1)

where R is a region in the xy plane and µ(x, y) is assumed to be twice-continuously

differentiable in R. Then, the behavior of N(k) for k → ∞ can be determined by means

of the MSP [73].

From now on the formulation is adapted in order to evaluate the following integral

I(kx, kz) =

∫∫
ejkr

√
x2+(y−ya)2+z2

e−jkxx−jkzz dx dz (A.2)

By comparing (A.2) with (A.1), it is seen that f(x, z) = 1, and the phase of the expo-

nential term equals

Φ(x, z) = kµ(x, z) = krR− kxx− kzz (A.3)

R =
√
x2 + (y − ya)2 + z2 (A.4)

The MSP states that the asymptotic expansion of I(kx, kz) results

I(kx, kz) '
j2π√

ΦxxΦzz − Φ2
xz

ejΦ(x0,z0) (A.5)

where Φxx, Φzz and Φxz denote the second partial derivatives of Φ(x, z) evaluated at the

stationary point. The stationary point (x0, z0) is the point where the phase Φ(x, z) takes
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an extreme value, i.e.,

∂Φ

∂x

∣∣∣∣
(x0,z0)

= 0 (A.6)

∂Φ

∂z

∣∣∣∣
(x0,z0)

= 0 (A.7)

and it is assumed that

ΦxxΦzz − Φ2
xz 6= 0 Φzz 6= 0 (A.8)

The first derivatives of the phase function are:

Φx(x, z) =
∂Φ

∂x
= −kx +

krx

R
(A.9)

Φz(x, z) =
∂Φ

∂z
= −kz +

krz

R
(A.10)

There is only one point were both first derivatives are simultaneously zero:

x0 =
kx(y − ya)√
k2
r − k2

x − k2
z

(A.11)

z0 =
kz(y − ya)√
k2
r − k2

x − k2
z

(A.12)

The second partial derivatives are:

Φxx(x, z) =
∂2Φ

∂x2
=
kr
[
z2 + (y − ya)

2
]

R3
(A.13)

Φzz(x, z) =
∂2Φ

∂z2
=
kr
[
x2 + (y − ya)

2
]

R3
(A.14)

Φxz(x, z) =
∂2Φ

∂x∂z
= −krxz

R3
(A.15)

which evaluated at the stationary point yield,

Φxx(x0, z0) =
(k2
x − k2

r)
√
k2
r − k2

x − k2
z

k2
r (y − ya)

(A.16)

Φzz(x0, z0) =
(k2
z − k2

r)
√
k2
r − k2

x − k2
z

k2
r (y − ya)

(A.17)

Φxz(x0, z0) =
kxkz

√
k2
r − k2

x − k2
z

k2
r (y − ya)

(A.18)

Moreover, the phase at the stationary point is

Φ(x0, z0) =
√
k2
r − k2

x − k2
z (ya − y) (A.19)
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Finally, substituting (A.16)-(A.19) into (A.5) for evaluating (A.2), and calling ky =√
k2
r − k2

x − k2
z , the 2-D FT results in the expression

I(kx, kz) '
j2π(y − ya)kr

k2
y

ejky(ya−y) (A.20)

When applying (A.20) to the actual RMA implementation, the factor (y − ya) is not

used because y is not defined in the ω − k domain. This omission does not produce

any relevant effect on the final image quality. Anyway, as stated in Sect. 3.2.3, the final

result is usually equalized along the slant-range direction, thus erasing the influence of

this omission.
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Appendix B

Accuracy of the translation of 2-D
backscattered fields

Let’s consider an ensemble of M identical line scatterers, parallel to the z-axis, randomly

distributed inside a cylinder of radius ρmin, as shown in Figure B.1. For the sake of

simplicity, all line scatterers are assumed to show the same reflectivity and that is equal

to one.

Provided the interaction between the line scatterers can be neglected, the backscattered

fields on the surface of a cylinder with radius ρ (with ρ ≥ a) take the form

Es(ρ, φ) =
M∑
i=1

(
j

4
H

(2)
0 (

kr
2

√
ρ2 + ρ2

i − 2ρρi cos(φ− φi))

)2

(B.1)

with kr = 4πf/c, where kr denotes the frequency wavenumber, f is the working frequency,

c is the speed of light, H
(2)
0 (·) is the zeroth order Hankel function of second kind, and

(ρi, φi) are the cylindrical coordinates of the line scatterer ith. The fields given by (B.1)

will be considered as the reference in the calculation of the error introduced in the fields

translation.

At this point one makes use of the model of the “radiating reflectors”. If the line

scatterers are assumed to radiate simultaneously a wavefield which propagates at a velocity

which is one half of the actual value, then the backscattered fields can be approximated

as a solution of the 2-D Helmholtz equation. Thus, the backscattered fields on the surface

of the cylinder of radius ρ can alternatively be expressed as

Ês(ρ, φ) =
+∞∑

n=−∞
an H

(2)
n (krρ) e

jnφ (B.2)
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In practice the summation in (B.2) will be always truncated at the limit |n| ≤ N . The

value of N depends on the radius of the minimum cylinder that encloses entirely the

ensemble of line scatterers ρmin as follows

N ' [krρmin] + n1, (B.3)

where the square brackets denote the integer part of the number in between, and n1 is an

integer which depends on the accuracy required.

An estimate for the error introduced by the translation of 2-D backscattered fields has

been obtained as follows. First, the exact backscattered fields given by (B.1) on the surface

of a cylinder of radius ρ are calculated at a number of azimuth angles Nφ high enough

to satisfy the Nyquist criterion (i.e., such that Nφ ≥ 2N). These fields are then used to

obtain the amplitudes of the cylindrical modes an in (B.2). Note that these amplitudes

can be readily calculated by means of a DFT as follows

an =
DFT[Es(ρ, φi)]

H
(2)
n (kr ρ)

(B.4)

with n = −N, . . . , 0, . . . , N , and i = 0, . . . , Nφ − 1.

Once the amplitudes of the cylindrical modes are known, the fields can be backpropa-

gated to the surface of a concentric cylinder of radius ρ′, with ρ, ρ′ ≥ ρmin. The translated

fields are given by

Ês(ρ
′, φ) =

√
ρ′

ρ

+N∑
n=−N

an H
(2)
n (krρ

′) ejnφ (B.5)

The amplitude factor
√
ρ′/ρ is introduced to correct for the additional one-way propaga-

tion path not taken into account in the model.

The error introduced by the proposed field translation technique can be simply obtained

as the difference between the exact backscattered fields, calculated by means of (B.1), and

those given by (B.5). The translation error is defined as follows

Error(f, ρ, ρ′) [%] = 100×

Nφ−1∑
i=0

|Es(ρ′, φi)− Ês(ρ
′, φi)|2

Nφ−1∑
i=0

|Es(ρ′, φi)|2
(B.6)

As an example, Figure (B.2) shows the fields translation error for an ensemble of

M = 9 line scatterers enclosed in a cylinder of radius ρmin = 1 m at the frequencies of 2,
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Figure B.1. Ensemble of M line scatterers.

6, 10, and 14 GHz. The considered radius of the measurement cylinders are ρ =5, 10 and

15 m. The corresponding radius where the fields have been translated range from 0.8ρ

to 1.2ρ (i.e., the fields are translated both in the forward and backward direction). As

expected, the translation error increases with a increasing distance from the measurement

cylinder ρ. It is important to note that the magnitude of the error seems to be almost

independent of the frequency. Further, the translation error in the backward direction is

higher than that in the forward direction. As an example, with a measurement cylinder

the radius used in the experiment, the error within the range of ρ′ from 8 to 12 m is well

below 1.5%, which is in practice negligible.
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Figure B.2. Estimated errors with 9 line scatterers at 2, 6, 10 and 14 GHz for measurement
cylinders of radius 5 m (a), 10 m (b) and 15 m (c).



Appendix C

Evaluation of the coefficients cm,n

The analytical expressions for the evaluation of the amplitudes of the spherical harmonics

cm,n in (3.32) were given in Section 3.4.1. From a computational viewpoint, the evaluation

of the coefficients cm,n reduces to the calculation of the two integrals: the integral in φ of

(3.39) and that in θ of (3.42):

cm(ra, θ) =
1

2π

∫ 2π

0
ψ(ra, φ, θ)e

−jmφ dφ (C.1)

cm,n(ra) =

(
m

|m|

)m ∫ π

0
cm(ra, θ)P

m
n (cos θ) sin θ dθ. (C.2)

Let us assume that the backscattered fields are measured on the surface of radius

r = ra at points forming a grid uniformly sampled in φ and θ, and the number of spherical

harmonics used in the modal expansion of (3.32) is N . Thus, the resulting angular steps

must satisfy the following inequalities:

∆φ ≤ 2π

2N + 1
(C.3)

∆θ ≤ 2π

2N + 1
. (C.4)

In its discrete form of (C.1), the evaluation of the integral becomes straightforward by

means of a DFT, i.e.

cm(ra, θl) = DFT [ψ(ra, φi, θl)] , (C.5)

where i = 0, 1, . . . , 2N and l = 0, 1, . . . , 2N denote the indexes associated with the angles

φ and θ, respectively. In practice the measured angular range in φ will be smaller than 2π.

Consequently, the backscattered fields outside this window will have to be padded with

zeroes prior to the computation of the DFT.
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The discrete evaluation of the integral in θ in (C.2) is a bit trickier. Now the integral

cannot be simply evaluated by means of a single DFT. Alternatively, the Fourier expansion

property of the normalized associate Legendre functions is used to evaluate the discrete

integral using DFT codes [91]. Thus, the normalized associate Legendre functions can be

expanded into a Fourier series as follows

P
m
n (cos θ) = jm

n∑
p=−n

dm,p e
jpθ = j−m

n∑
p=−n

dm,p e
−jpθ. (C.6)

The coefficients dm,p vanish for (p+ n) odd, and they satisfy the recurrence relation:

(n+ p+ 2)(n− p− 1) dm,p+2 − 2(n2 − p2 + n− 2m2) dm,p + . . .

(n+ p− 1)(n− p+ 2) dm,p−2 = 0, (C.7)

with the initial values being:

dm,n =
1

22n

(2n)!

n!

√
2n+ 1

2

√
1

(n+m)!(n−m)!
(C.8)

dm,n−2 =
n− 2m2

2n− 1
dm,n. (C.9)

For m = 0, the recurrence in (C.7) takes the form

(n+ p)(n− p+ 1) d0,p − (n+ p− 1)(n− p+ 2) d0,p−2 = 0. (C.10)

At this point, there is an important aspect to consider: the domain of the angle θ

must be within the range (0, π), as opposed to the range (0, 2π) in φ. The dependence

on θ of the backscattered fields is extended to the range (0, 2π) as follows. Noting that

(m/|m|)mPmn (cos θ) is periodic in θ with period 2π, and that its parity about θ = π is the

same as m (odd if m is odd, and even if m is even), the θ dependence is extended in the

following way

ĉm(ra, θ) =

cm(ra, θ), 0 ≤ θ ≤ π

(−1)m cm(ra, 2π − θ), π < θ < 2π
(C.11)

The coefficients ĉm(ra, θ) are then expanded into a finite Fourier series as follows

ĉm(ra, θ) =
N∑

l=−N
bm,l e

jlθ. (C.12)
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By substituting (C.6) and (C.12) in (C.2), the coefficients cm,n(ra) take the form:

cm,n(ra) =

∫ π

θ=0

N∑
l=−N

bm,l e
jlθ j−m

n∑
p=−n

dm,p e
−jpθ sin θ dθ (C.13)

= j−m
N∑

l=−N
bm,l

n∑
p=−n

dm,p

∫ π

θ=0
ej(l−p)θ sin θ dθ. (C.14)

The integral in (C.14) can be denoted as G(l − p), and has an analytical solution

G(l − p) =


±j π2 , (l − p) = ±1

0, |l − p| = 3, 5, 7, . . .

2
1− (l − p)2

, |l − p| = 0, 2, 4, . . .

(C.15)

The resulting expression for the coefficients cm,n(ra) becomes

cm,n(ra) = j−m
N∑

l=−N
bm,l

n∑
p=−n

dm,p G(l − p), (C.16)

where the only unknowns on the right-hand side are now the Fourier coefficients bm,l,

which can be simply evaluated through a DFT.

A further analysis of the elements in (C.16) yields an additional simplification. From

their definition, it can be observed that

bm,l = (−1)mbm,−l (C.17)

dm,p = (−1)mdm,−p, (C.18)

and therefore,

bm,l dm,p = bm,−l dm,−p. (C.19)

Since

G(l − p) = −G(p− l), (l − p) = ±1, (C.20)

the terms with (l−p) = ±1 cancel out, and the final expression for the coefficients cm,n(ra)

becomes

cm,n(ra) = j−m
n∑

p=−n
dm,p

N∑
l=−N

∏
(l − p)bm,l, (C.21)

where ∏
(l − p) =

0, (l − p) odd

2
1− (l − p)2

, (l − p) even
(C.22)
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ψ(ra,θ,φ)

FFT along φ

Π(l-p)

Cm(ra,θ)

FFT along θ

b l,m

For each m

h  (Kra)n
(2)

FFT

FFT along l

IFFT along l

Km(p)

Summation along p

j

d m,p

For each n

-m

C m,n
ψ(y,z)

y -> φ -> exp[ jmφ ]
For each y

n
(2)

Summation along m

For each z

C m,n

Summation along n

z -> θ -> P  (cosθ)n
m

z ->  r -> h  (kr)

(a) (b)

Figure C.1. (a) Flow chart of the computation of the coefficients from the backscatter data
measured on a spherical aperture; (b) Flow chart of the computation of the backscattered
fields from the coefficients cm,n.

and
∏

(l − p) =
∏

(p− l).

The l-summation in (C.21) resembles, for each value of p, a convolution between two

sequences. Hence, it can be evaluated efficiently by means of DFTs. If the result is named

Km(p), the final expression of the coefficients is

cm,n(ra) = j−m
n∑

p=−n
dm,pKm(p). (C.23)

The procedure to evaluate the amplitudes of the spherical harmonics is summarized in

the flow chart in Figure C.1 (a). The rectangles with dashed lines indicate a loop. Note

that the coefficients are explicitly available at the end of this process. This was not the case
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in the translation from the cylindrical to the planar apertures because they were reused

for each n immediately after their calculation. The subsequent evaluation of backscatter

fields once the spherical harmonics amplitudes are known is illustrated in Figure C.1 (b).
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Appendix D

Solution of the Fourier integral in
Eq. (4.5) using the MSP

Solution of the Fourier integral in (4.5) using the MSP [95] takes the form

F(ρ, kφ, z; f, θ) '
√
j 2π

R2
a

{
R2(φ−)√
p′′(φ−)

exp [j p(φ−)] +
R2(φ+)√
p′′(φ+)

exp [j p(φ+)]

}
(D.1)

where φ− and φ− are two stationary phase points determined by the equations,

p′(φ−) =
∂p(φ)

∂φ

∣∣∣∣
φ−

= A
C sinφ−

2
√
B − C cosφ−

− kφ = 0 (D.2)

p′(φ+) =
∂p(φ)

∂φ

∣∣∣∣
φ+

= A
C sinφ+

2
√
B − C cosφ+

− kφ = 0 (D.3)

which, after some algebraical manipulations, result in

φ± = arccos

2 α2 ±
√
β2 − 4 α2(1− α2)

β

 (D.4)

p(φ±) = γ

[√
1− [2 α2 ±

√
β2 − 4 α2(1− α2)]− α φ±

]
− 2kRa (D.5)

p′′(φ±) = ±γ

√
β2 − 4 α2(1− α2)

2

√
1− [2 α2 ±

√
β2 − 4 α2(1− α2)]

(D.6)

R(φ±) =
γ

A

√
1− [2 α2 ±

√
β2 − 4 α2(1− α2)] (D.7)
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with

α =
kφ
γ

, β =
C

B
, and γ = A

√
B (D.8)

The approximation in (D.1) is satisfactory if the function p′′(·) does not vanish at the

stationary phase points. From (D.2) and (D.3), it can be shown that the two stationary

phase points converge to a single point as kφ increases, which is given by

φo = arccos

[
1−

√
1− β2

β

]
(D.9)

As in any asymptotic expansion, it is difficult to give precise conditions for the validity

of (D.1). However, the following gives some indication of the range of kφ where the error

is small compared to F(·),

0 ≤ kφ ≤ k̂φ = |p′′′(φo)| −
(
|p′′′(φo)|

2

)(1/3)

(D.10)

If kφ > k̂φ, then the major contribution to the integral (4.5) comes from a small neigh-

borhood near the point φ = φo. In this neighborhood, p′′(φ) vanishes and the following

higher order series expansion

p(φ) ' p(φo) + p′(φo) (φ− φo) + p′′′(φo)
(φ− φo)

3

3!
(D.11)

must be used in the asymptotic evaluation of (4.5), leading to

F(ρ, kφ, z; f, θ) ' 2π

(
R(φo)

Ra

)2

exp [jp(φo)]

(
2

|p′′′(φo)|

)(1/3)

× Ai

(
−
[

2

|p′′′(φo)|

](1/3)

p′(φo)

)
(D.12)

wherein Ai(·) denotes the Airy function [92], and

p(φo) = γ
[(

1− β2
)(1/4) − α φo

]
− 2kRa (D.13)

p′(φo) = γ

−α+

√
1−

√
1− β2

2

 (D.14)

p′′′(φo) = −γ

√
1−

√
1− β2

2
(D.15)

φo = arccos

[
1−

√
1− β2

β

]
(D.16)

R(φo) =
γ

A
(1− β2)(1/4) (D.17)
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provided that

k̂φ < kφ ≤
Nφ
2

(D.18)
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List of Publications
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vol. 10, pp. 1527–1542, November 1996.
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13. J. Fortuny and J. M. López-Sánchez, “Extension of the 3-D range migration algo-

rithm to cylindrical and spherical scanning geometries,” IEEE Trans. on Antennas

and Propagation, vol. 49, pp. 1434–1444, October 2001.

14. J. Fortuny, “A novel three-dimensional near-field subsurface radar imaging tech-

nique,” IEEE Trans. on Geoscience and Remote Sensing. Submitted for publication

in January 2001.



Bibliography

[1] W. M. Brown, “Synthetic aperture radar,” IEEE Trans. on Aerospace and Electronic

Systems, vol. 3, pp. 217–229, March 1967.

[2] C. A. Wiley, “Pulsed Doppler radar methods and apparatus.” US Patent 3,196,436

filed in 1954.

[3] J. L. Walker, “Range-Doppler imaging of rotating objects,” IEEE Trans. on

Aerospace and Electronic Systems, vol. 16, pp. 23–52, January 1980.

[4] N. N. Bojarski, “K-space formulation of the electromagnetic scattering problems,”

Tech. Rep. AFAL-TR-71-75, US Air Force Avionic Lab, 1971.

[5] D. L. Mensa, G. Heidbreder, and G. Wade, “Aperture synthesis by object rotation

in coherent imaging,” IEEE Trans. on Nuclear Science, vol. 27, pp. 989–998, April

1980.

[6] D. R. Wehner, M. J. Prickett, R. G. Rock, and C. C. Chen, “Stepped frequency

radar target imagery, theoretical concept and preliminary results,” Tech. Rep. 490,

Naval Ocean Systems Center, San Diego (CA), November 1979.

[7] C. C. Chen and H. C. Andrews, “Multifrequency imaging of radar turntable data,”

IEEE Trans. on Aerospace and Electronic Systems, vol. 16, pp. 15–22, January 1980.

[8] D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, “De-

velopments in radar imaging,” IEEE Trans. on Aerospace and Electronic Systems,

vol. 20, pp. 363–400, October 1984.

[9] N. H. Farhat, C. L. Werner, and T. H. Chu, “Prospects for three-dimensional pro-

jective and tomographic imaging radar networks,” Radio Science, vol. 19, pp. 1347–

1355, September 1984.



122 Bibliography

[10] C. L. Werner, Three Dimensional Imaging of Coherent and Incoherent Sources Uti-

lizing Wavevector Diversity. PhD thesis, University of Pennsylvania, Pennsylvania

(PA), 1985.

[11] D. L. Mensa, S. Halevy, and G. Wade, “Coherent Doppler tomography for microwave

imaging,” Proceedings of the IEEE, vol. 71, pp. 254–261, February 1983.

[12] D. L. Mensa, “Wideband radar cross section diagnostic measurements,” IEEE Trans.

on Instrumentation and Measurement, vol. 33, pp. 206–214, September 1984.

[13] D. C. Munson, Jr. and R. L. Visentin, “A tomographic formulation of spotlight-

mode synthetic aperture radar,” Proceedings of the IEEE, vol. 71, pp. 917–925,

August 1983.

[14] C. V. Jakowatz and P. A. Thompson, “A new look at spotlight mode synthetic aper-

ture radar as tomography: Imaging 3-D targets,” IEEE Trans. on Image Processing,

vol. 4, pp. 699–703, May 1995.

[15] C. V. Jakowatz, Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Ap-

proach. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1996.

[16] W. Lawton, “A new polar Fourier transform for computer-aided tomography and

spotlight synthetic aperture radar,” IEEE Trans. on Acoustics, Speech, and Signal

Processing, vol. 36, pp. 931–933, June 1988.

[17] D. C. Munson, Jr. and R. L. Visentin, “A signal processing view of strip-mapping

synthetic aperture radar,” IEEE Trans. on Acoustics, Speech, and Signal Processing,

vol. 37, pp. 2131–2147, December 1989.

[18] F. Rocca, “Synthetic aperture radar: A new application for wave equation tech-

niques,” Tech. Rep. SEP-56, Stanford University, 1987.

[19] C. Cafforio, C. Prati, and E. Rocca, “SAR data focusing using seismic migration

techniques,” IEEE Trans. on Aerospace and Electronic Systems, vol. 27, pp. 194–207,

April 1991.

[20] C. Prati, A. Monti Guarnieri, and F. Rocca, “Spot mode SAR focusing with the

ω−k technique,” in Proc. of the IEEE International Geoscience and Remote Sensing

Symposium (IGARSS), Helsinki, IEEE, pp. 631–634, 1991.

[21] R. Stolt, “Migration by Fourier transform techniques,” Geophysics, no. 43, pp. 49–

76, 1978.



Bibliography 123

[22] R. Bamler, “A comparison of range-Doppler and wavenumber domain SAR focusing

algorithms,” IEEE Trans. on Geoscience and Remote Sensing, vol. 30, pp. 706–713,

July 1992.

[23] H. Choi and D. C. Munson, Jr., “On the optimality and exactness of the

wavenumber-domain SAR data processing,” in Proc. of the IEEE International Con-

ference on Image Processing, Austin (TX), IEEE, pp. 456–460, November 1994.

[24] J. A. Lee and D. C. Munson, Jr., “Effect of a non-planar wavefront in spotlight-mode

synthetic aperture radar,” in Proc. of the IEEE International Conference on Image

Processing, Austin (TX), IEEE, pp. 481–485, November 1994.

[25] A. Reigber and A. Moreira, “First demonstration of airborne SAR tomography us-

ing multibaseline L-band data,” IEEE Trans. on Geoscience and Remote Sensing,

vol. 38, pp. 2142–2152, September 2000.

[26] S. E. Assad, I. Lakkis, and J. Saillard, “Holographic SAR image formation by co-

herent summation of impulse response derivatives,” IEEE Trans. on Antennas and

Propagation, vol. 41, pp. 620–624, May 1993.

[27] C. U. S. Larsson, R. Erickson, and O. Lundén, “3-D processing and imaging of near

field ISAR data in an arbitrary measurement geometry,” in Proc. of the AMTA

Seventeenth Meeting and Symposium, Williamsburg (VA), Antenna Measurements

and Techniques Association, pp. 106–110, November 1995.

[28] J. Bredow, K. Xie, R. Porco, and M. Shah, “An experimental study on the use of

multistatic imaging for investigating wave-object interaction,” Journal of Electro-

magnetic Waves and Applications, vol. 7, pp. 811–831, June 1993.

[29] L. Carin, R. Kapoor, and C. E. Baum, “Polarimetric SAR imaging of buried land-

mines,” IEEE Trans. on Geoscience and Remote Sensing, vol. 36, pp. 1985–1988,

November 1998.

[30] L. Carin, N. Geng, M. McClure, J. Sichina, and L. Nguyen, “Ultra-wideband

synthetic-aperture radar for mine-field detection,” IEEE Antennas and Propagation

Magazine, vol. 41, pp. 18–33, January 1999.

[31] N. C. Currie, Radar Reflectivity Measurement: Techniques and Applications. Nor-

wood (MA), USA: Artech House, 1989.



124 Bibliography

[32] H. Kim, J. T. Johnson, and B. A. Baertlein, “High resolution Ka-band images of

a small tree: Measurements and models,” IEEE Trans. on Geoscience and Remote

Sensing, vol. 38, pp. 899–910, March 2000.

[33] R. L. Harris, B. E. Freburger, M. E. Lewis, and C. F. Zappala, “Three-dimensional

radar cross section imaging,” in Proc. of the AMTA Sixteenth Meeting and Sym-

posium, Long Beach (CA), Antenna Measurements and Techniques Association,

pp. 443–448, October 1994.

[34] B. Scheers, Ultra-Wideband Ground Penetrating Radar, with Applicattion to the De-

tection of Anti Personnel Landmines. PhD thesis, Royal Military Academy, Brussels,

Belgium, March 2001.

[35] A. Broquetas, L. Jofre, and A. Cardama, “A near field spherical wave inverse syn-

thetic aperture radar technique,” in Proc. of the IEEE Antennas and Propagation

Society International Symposium, Chicago (IL), IEEE, vol. 2, pp. 114–117, July

1992.

[36] S. C. M. Brown and J. C. Bennett, “High-resolution microwave polarimetric imaging

of small trees,” IEEE Trans. on Geoscience and Remote Sensing, vol. 37, pp. 48–53,

January 1999.

[37] C. Fischer, J. Fortuny, and W. Wiesbeck, “3-D imaging for near-range ground pen-

etrating radar based on w − k migration,” in Proc. of the 3rd European Conference

on Synthetic Aperture Radar (EUSAR), Munich, VGE, pp. 841–844, May 2000.

[38] C. Fischer and W. Wiesbeck, “Laboratory verification for a forward-looking multi-

receiver mine-detection GPR,” in Proc. of the IEEE International Geoscience and

Remote Sensing Symposium (IGARSS), Honolulu (HI), IEEE, vol. IV, pp. 1643–

1645, July 2000.

[39] D. G. Falconer, “Extrapolation of near-field RCS measurements to the far zone,”

IEEE Trans. on Antennas and Propagation, vol. 36, pp. 822–829, June 1988.

[40] J. W. Odendaal and J. Joubert, “Radar cross section measurements using near-field

radar imaging,” IEEE Trans. on Antennas and Propagation, vol. 45, pp. 948–954,

December 1996.

[41] A. Broquetas, J. Palau, L. Jofre, and A. Cardama, “Spherical wave near-field imaging

and radar cross-section measurement,” IEEE Trans. on Antennas and Propagation,

vol. 46, pp. 730–735, May 1998.



Bibliography 125

[42] A. Boag, Y. Bresler, and E. Michielssen, “A multilevel domain decomposition al-

gorithm for fast O(N2 logN) reprojection of tomographic images,” IEEE Trans. on

Image Processing, vol. 9, pp. 1573–1582, September 2000.

[43] A. Boag, “A fast multilevel domain decomposition algorithm for radar imaging,”

IEEE Trans. on Antennas and Propagation, vol. 49, pp. 666–671, April 2001.

[44] K. J. Langenberg, “Introduction to the special issue on inverse problems,” Wave

Motion, no. 11, pp. 99–112, 1989.

[45] K. J. Langenberg, P. Fellinger, R. Marklein, P. Zanger, K. Mayer, and T. Kreutter,

Evaluation of Materials and Structures by Quantitative Ultrasonics, ch. 5, pp. 317–

398. Vienna, Austria: Springer-Verlag, Ed. J. D. Achenbach, 1993.

[46] K. J. Langenberg, M. Brandfaß, P. Fellinger, T. Gurke, and T. Kreutter, Radar

Target Imaging, ch. 3, pp. 113–151. Berlin, Germany: Springer-Verlag, Eds. H.
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