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Abstract. We investigate the formal specification of thereasoning process of
knowledge-based systems in this paper. We analyze the corresponding parts of
the KADS specification languages KARL and (ML)2 and deduce some general
requirements. The essence of these languages is that they integrate a declarative
specification of inferences with control information. The languages differ in the
way they achieve this integration and each of them has shortcomings. We propose
a unifying semantical framework that integrates the core of the different solutions
and overcomes their problems. We define a semantics and axiomatization with
the Modal Change Logic (MCL). The main contribution of the paper isnot to
introduce yet another specification language. Instead we aim at four goals: (1)
defining a framework for describing the dynamic reasoning behavior of
knowledge-based systems which integrates existing approaches; (2) defining a
semantics for the specification of the dynamic reasoning behavior of a
knowledge-based system within thestates as algebras setting that overcomes
several shortcomings and ad-hoc solutions of existing approaches; and (3)
providing an axiomatization that enables the development of mechanized proof
support. (4) Through conceptual and semantical clarity, we investigate the
relationships to similar work in software engineering and database engineering
opening possibilities for further cross-fertilization of these fields.

1 Introduction

The model of expertise as developed in the KADS-I [Schreiber et al., 1993] and
CommonKADS projects [Schreiber et al., 1994] has become a widely used framework for
developing and describing knowledge-based systems (KBSs). Such a model of expertise can
be used to describe the reasoning process and the knowledge required by this process in an
implementation-independent manner. During the last years a couple of formal or executable
specification languages have been developed for describing KBSs. Most of them are based on
the KADS model of expertise or define their conceptual model as a modification of this
model. A survey of these languages can be found in [Treur & Wetter, 1993], [Fensel & van
Harmelen, 1994], [Fensel, 1995c]. Supplementing conceptual modelling techniques like the
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KADS model by formal specification languages has three well known advantages:

• Formal specification languages can be used to resolve ambiguity and missing details of
specifications stated in natural language.

• Executable specification languages enable the evaluation of the specification by
prototyping (i.e. testing).

• Proof calculi of the languages can be used to check relevant properties of a specification.

Common to all formal specification approaches for KBSs is that a formal semantics has to
cover three aspects: the specification of static aspects of a KBS, the specification of the
dynamics of a KBS (i.e., its reasoning), and the combination of both, i.e. its overall semantics.
For our study we restrict our attention to the second and third parts, because we think that the
main improvements are necessary in the dynamic part. This part also introduces the main
distinction from many specification languages of software engineering which aim only at a
pure functional description of a software system (cf. [Fensel, 1995c]). In general, most
problems tackled with KBSs are inherently complex and intractable ([Bylander, 1991],
[Bylander et al., 1991], [Nebel, 1996], [Fensel & Straatman, 1996]). Besides a precise
functional specification (i.e., the definitions of the goals that should be achieved by the KBS)
it is therefore necessary to specify the reasoning process and its use of knowledge which
enable reasonable problem-solving for the expected cases. An important part of the
knowledge that must be specified is therefore knowledge about the way to achieve a solution
and not just declarative knowledge about what a solution should be.

In this paper, we will discuss a semantic framework for specifying the dynamic reasoning
process of a KBS. We start with an analysis of the existing approaches to come up with a
framework that integrates these approaches. In fact, we take an analysis of the two KADS-
languages KARL [Fensel, Angele & Studer] and (ML)2 [van Harmelen & Balder, 1992] as
our point of departure. The language (ML)2 describes the reasoning behavior by combining
first-order logic, meta-logic and quantified dynamic logic [Harel, 1984]. The language KARL
was developed as part of the MIKE project [Angele et al., 1993] and provides a variant of
Horn clause logic and a restricted version of dynamic logic for this purpose. We have chosen
KARL and (ML)2 for our exercise as both languages rely on dynamic logic to represent the
dynamics of the reasoning process. As the technical core of the semantics of KBSSF [Spee &
in 't Veld, 1994] is close to that of KARL, most of the results of the paper can also be applied
to it. The other specification languages for KBSs use different means for specifying the
dynamics of a KBS: Petri nets (MoMo [Voss & Voss, 1993]), process algebra (TFL [Pierret-
Golbreich & Talon, 1996]), or temporal logic with linear time (DESIRE [Treur, 1994]). We
will discuss some of them in the comparison section.

A serious shortcoming of all of the specification languages for KBSs appears when taking a
closer look at the third advantage of formal specification languages: Proof calculi can be used
to formally prove properties of specifications. Up to now, none of these languages provides
such a support. We make a step in this direction by providing an axiomatization for our
approach.

We achieve this by reusing work done in software engineering. Our starting point in software
engineering is the wide-spectrum specification language COLD, which can be used to specify
static and dynamic aspects of a system. COLD, Common Object-oriented Language for
Design, was developed at Philips Research Eindhoven in several ESPRIT-projects. The main
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ideas for the language originated from Hans Jonkers. The formal definition of COLD-K and
its semantics was given in 1987 in [Feijs et al., 1987]. The semantics is based on the many-
sorted partial infinitary logic MPLω, see [Koymans & Renardel de Lavalette, 1989]. The
textbook [Feijs & Jonkers, 1992] gives a good introduction to COLD-K, the kernel language
of COLD. For the concept of state, COLD and the specification formalism Evolving
Algebras1 [Gurevich, 1994] use what we could call thestates as algebras approach. In this
approach, a state is modelled by a (many-sorted) algebra. State transitions are performed by
procedures, and consist of the modification of functions and predicates and the creation of
new objects. To reason about these kinds of formalisms a variant of Dynamic Logic [Harel,
1984] was studied. This resulted in the Modal logic of Creation and Modification (MLCM)
[Groenboom & Renardel de Lavalette, 1994], a multi-modal logic for reasoning about state
modifications. In this paper, we discuss MCL (Modal Change Logic), which generalizes
MLCM. Basically, we introduce new elementary state transition types in MLCM which cover
the grainsize of state transitions in knowledge-based reasoning. A predecessor of MCL is
MLPM (Modal Logic of Predicate Modification) [Fensel & Groenboom, 1996], which
introduces some of these new state transition into a subset of MLCM. However, MCL
generalizes these transition types and integrates them in the general framework of MLCM. As
a consequence, we get an approach that integrates existing proposals, that overcomes several
of their shortcomings and ad-hoc solutions, that provides an axiomatization and enables the
development of mechanized proof support. Finally we get a scalable approach that covers
existing approaches of knowledge engineering and other areas of system specification,
opening possibilities for further cross-fertilization of these fields.

The structure of this paper is as follows. In Section 2, we introduce the knowledge
specification languages KARL and (ML)2 focusing on their dynamics. We use the experience
with these languages to derive requirements for an appropriate semantic framework for the
specifications of the dynamics of the reasoning of KBSs. We discuss the logic MCL in
Section 3. We provide syntax, semantics and an axiomatization. In Section 4, we use MCL to
formalize the inference and control constructs of the KADS languages MLPM, (ML)2 and
KARL; the Evolving Algebras approach [Gurevich, 1994] of software engineering and the
languages PDDL [Spruit et al., 1995] and DDL [Spruit et al., 1993] for specifying database
updates. Finally, in Section 5 we provide a comparison with work that uses different solutions
and we outline directions for future research in Section 6.

2 Specification Languages for Knowledge-based Systems

This section introduces the formal languages that form the basis of the paper. We sketch the
KADS model of expertise and the two languages KARL and (ML)2.

2.1 The Model of Expertise

The KADS languages KARL and (ML)2 use variants of the KADS model of expertise as their
conceptual framework for specifying a KBS. We will use a simple diagnostic task as an
example to illustrate this model (see Figure 1). The task of the KBS consists of finding the

1. Now called Abstract State Machines (ASMs).
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diagnosis with the highest preference for a given set of symptoms.

The task layer introduces the goal that should be achieved by the system and it decomposes
the overall task into subtasks and defines control over them. It combines a functional
specification with the specification of the dynamic reasoning process that realizes the
functionality. The inference layer specifies the inference process that realizes the subtasks of
the task layer. In our example it consists of two inference actions:

• generate, which creates possible hypotheses based on the given findings and the causal
relationships at the domain layer; and

• select, which assigns a preference to hypotheses and selecting the diagnosis with the
highest preference.

The knowledge rolefinding provides input to the inference actiongenerate, the knowledge
role hypothesis delivers the results of the reasoning ofgenerate to select, and the knowledge
role diagnosis provides the results ofselect as output.2 The two knowledge rolescausality
andpreference provide knowledge necessary for the inference process. It is mapped from the
domain layer, which provides causal knowledge which can be used to relate findings to
diagnoses and knowledge which can be used to assign preferences to possible diagnoses. A
simple control flow at the task layer is defined by first executinggenerate and applyingselect
to its output.

The model of expertise separates domain knowledge and control knowledge. The domain
layer contains the static knowledge from the application domain and its terminology. The
inference layer and the body of the task layer describe the dynamics of the system. The
inference layer defines the elementary inference steps, the relations between them, and the
role of the domain knowledge for the reasoning process. In our example, the causal
relationship is used by thegenerate inference step and the knowledge about probabilities is
used by theselect step. The description at the task layer provides the definition of control
over the execution of the inference steps.3 This distinction between the domain-specific
knowledge at the domain layer and the domain-independent description of the reasoning
process at the inference and task layers enables thereuse of domain knowledge for different
task and reasoning strategies and the reuse of reasoning strategies (calledproblem-solving
methods [Schreiber et al., 1994]) in different domains.

If formal specification languages are not used, the semantics of the elementary elements of a
model of expertise have to be defined by using natural language. KARL and (ML)2 have been
developed to formalize some of these elements. As a consequence of our focus on dynamics
we abstract from some aspects of the languages. In the case of KARL we abstract from all
syntactical extensions of Horn logic by semantical data modelling primitives, and in the case
of (ML)2 we abstract from the object-meta relationship between the domain and the inference
layers. These abstractions help to focus on the relevant aspects and simplify the formal parts
of this paper.

2.2 (ML)2

The sub-language of (ML)2 [van Harmelen & Balder, 1992] used to model a domain layer is

2. Following the naming convention for types and sorts we givesingular names to knowledge roles independent of whether
they contain one or several elements.
3. The inference layer defines the data flow between inferences but not the order in which they are executed.
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order-sorted first-order logic extended by modularization.Instances are modelled by
constants, and sorts can be used to modelconcepts. Sorts and therefore concepts can be
arranged in anis-a hierarchy. Relationships between instances of concepts are modelled by
predicates of the according sorts.Attributes of instances of concepts are modelled by
functions. Arbitrary first-order theories can be used to further specify the defined
relationships. The specification of a domain layer can be divided into several modules. Such a
module or theory defines a signature (i.e., sorts, constants, functions, and predicates) and
consists of axioms (i.e., logical formulae). These modules, i.e. sub-theories, can be combined
by a union operator.

Each inference action (calledprimitive inferenceaction in (ML)2) is modelled by a predicate
and a theory which further specifies this predicate. In our running example, the inference
actionsgenerate andselect are modelled by two predicates:

piagenerate(finding(X), causality(finding(X),hypothesis(Y)), hypothesis(Y))

piaselect(hypothesis(X), preference(Z), diagnosis(Y))

The descriptions of the inference actionsgenerate andselect are given in Figure 2.

It remains to define the different knowledge roles.Causality andpreference provide domain
knowledge andfinding the case data for the inference layer. The inference layer is modelled
as ameta-language of the domain layer in (ML)2. This meta-relation enables the inference-

symptom disease

caused-by probability
[0,1]

finding generate hypothesis select

preferencecausality

diagnosis

Domain Layer

Inference Layer

hypothesis := generate(finding, causality);
diagnosis := select(hypothesis, preference)

Task Layer

Goal: Find the diagnosis which explains the reported findings
and which has the highest preference.

Body:

Fig. 1. A model of expertise for a simplified diagnostic task.

Legend:

knowledge
role

inference
action

knowledge and

data flow

Legend:
concept relation
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layer to specify properties of relations over domain-layer expressions (predicates and

Fig. 2. Inference actionsgenerate andselect in (ML)2.

theory generate

input roles finding, causality;

output roles hypothesis;

signature

sorts finding-value, finding-name, causality-name, hypothesis-value, hypothesis-name;

variablesX : finding-value, Y: hypothesis-value;

functions

finding : finding-value→ finding-name,

causality: finding-name * hypothesis-name→ causality-name,

hypothesis: hypothesis-value→ hypothesis-name;

predicatespiagenerate: finding-name * causality-name * hypothesis-name;

axioms

piagenerate(finding(X), causality(finding(X),hypothesis(Y)),hypothesis(Y)) ←

inputfinding(finding(X)) ∧ inputcausality(causality(finding(X),hypothesis(Y)))

endtheory

theory select
input roles hypothesis, preference;
output roles diagnosis;
signature

sorts
hypothesis-value, hypothesis-name,
diagnosis-value, diagnosis-name,
 preference-pairs, preference-pair-set-value, preference-pair-set-name;

variablesX : hypothesis-value, Y: diagnosis-value, Z: preference-pairs;
functions

hypothesis: hypothesis-value→ hypothesis-name,

preference: preference-pair-set-value→ preference-pair-set-name,

diagnosis: diagnosis-value→ diagnosis-name,

pref : hypothesis-name * hypothesis-name→ preference-pairs;
predicates

piaselect: hypothesis-name * preference-pair-set-name * diagnosis-name;

axioms
piaselect(hypothesis(X), preference(Z),diagnosis(X)) ←

inputhypothesis(hypothesis(X)) ∧
inputpreference(preference(Z)) ∧
¬(∃Y : inputhypothesis(hypothesis(Y)) ∧ pref(hypothesis(Y),hypothesis(X)) ∈ Z)

endtheory
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functions). The expressions of object- and meta-language are connected by a naming relation
and the truth values of formulae are connected by reflection rules. The input predicates
inputfinding, inputcausality, and inputpreference used in the logical theories of the inference
actions piagenerate and piaselect are defined by reflection rules that connect truth in object- and

meta-logic. As we abstract from this aspect of (ML)2 we will not go into any detail of this
topic (cf. [van Harmelen & Balder, 1992]). The knowledge rolehypothesis,however, does
not provide domain knowledge for the inference actions. It collects the output of the inference
action generate and provides it as an input to the inference actionselect. This dynamic
character ofhypothesis makes it necessary to define the input predicate inputhypothesis at the
task layer. The knowledge rolediagnosis is used as an output role only and therefore requires
no input predicate definition at all.

Quantified dynamic logic is used to specify dynamic control at the task layer. Thepia-
predicates, together with the test operator (of the formpianame?), are the elementary program
statements. A history variable  is defined for each inference action that stores the

input-output pairs for every execution step.

Four types of task-layer operations are available for each inference actionpianame: checking
whether an instantiation exists (has-solution-pianame), checking whether an instantiation has
already been computed (old-solution-pianame), checking whether more instantiations exist
(more-solution-pianame), and actually computing and storing a new instantiation (give-
solution-pianame):

has-solution-pianame(I,O) =def pianame(I,O)
old-solution-pianame(I,O) =def ((I,O) ∈ )
more-solution-pianame(I,O) =def (has-solution-pianame(I,O) ∧ ¬old-solution-pianame(I,O))

The most important program isgive-solution-pianame which gives one possible solution:

give-solution-pianame (I,O) =def (more-solution-pianame(I,O)?;  := <(I,O) | >

The key idea is to non-deterministically choose a value binding of a logical variable by the
test operator and store this value in a state variable. Note thatold-solution-pianame and hence

 is an administration for the non-deterministic execution ofgive-solution-pianame

which is necessary to ensure the derivation of new instantiations of the predicate.

These primitive programs and predicates can be combined using sequential composition,
non-deterministic iteration and non-deterministic choice.

For our example, we have to define the input predicate inputhypothesis and the control flow
between the inference actions. The knowledge rolehypothesis collects the output of the
inference actiongenerate and provides it as input to the inference actionselect. The following

Vpianame

Vpianame

Vpianame
Vpianame

Vpianame

Fig. 3. A task layer in (ML)2.

while more-solution-piagenerate(finding(X),causality(finding(X),hypothesis(Y)),hypothesis(Y))
do give-solution-piagenerate(finding(X),causality(finding(X),hypothesis(Y)),hypothesis(Y))
enddo
give-solution-piaselect(hypothesis(X),preference(Z),diagnosis(X))



8

definition of the input predicate is the way in which (ML)2 can be used to define data flow
between inferences.

inputhypothesis(X) =def ∃ I1,I2 with (I1,I2,X) ∈

The task layer of our example is given in Figure 3.

Dynamic Logic [Harel, 1984] usesKripke structures to define a semantics for programs. A
structure has the formS = (D,F,P) consisting of adomain D, an interpretationF of the
function symbols and an interpretationP of the predicate symbols. Astate over S is afunction
s interpreting variables as elements ofD. The interpretation of functions and predicates is
fixed for all states. LetW denote the set of all states. Programsp are interpreted by binary
relations between states. Formulasϕ are interpreted by the collection of states for which they
are true. For example,

I(p;q) = I(p) I(q) = {(s0,s2) | s0,s2 ∈ W ∧ ∃ s1∈ W with (s0,s1) ∈ I(p) ∧ (s1,s2) ∈ I(q)}

I(ϕ?) = {(s,s) | s ∈ W ∧ ϕ is true ins}

I(Y := X) = {(s0,s1) | s0,s1 ∈ W ∧ s1(Y) = s0(X) ∧ ∀ Z (Z ≠ Y → s0(Z) = s1(Z))}

The most important program in (ML)2 is give-solution-piai which gives one possible solution.

The essence of this elementary state transition in (ML)2 is to apply the test operator? to the
predicatepianame which defines an inference action.pianame(I,O)? has as successor state a
state that interprets (i.e., substitutes) the variablesI,O in a way that fulfilspianame(I,O). In the
successor state, this variable substitution is stored in the history variable of the inference
action. Slightly simplified, we have the following pattern:

I(P(X)?;Y := X)
= {(s0,s1) | s0 ∈ I(P(X)) ∧ (s0,s1) ∈ I(Y := X)}
= {(s0,s1) | P(X) is true ins0 ∧ s1(Y) = s0(X) ∧ ∀ Z (Z ≠ Y→ s0(Z) = s1(Z))}

2.3 KARL

The language KARL ([Fensel, 1995b], [Fensel, Angele & Studer]) provides a formal and
executable specification language for the KADS model of expertise by combining two types
of logic: Logical-KARL (L-KARL) and Procedural-KARL (P-KARL). L-KARL, a variant of
Frame Logic [Kifer et al., 1995], is provided to specify domain and inference layers. It
combines first-order logic with semantic data modelling primitives (see [Brodie, 1984] for an
introduction to semantic data models). A restricted version of dynamic logic is provided by P-
KARL to specify a task layer. Executability is achieved by restricting Frame logic to Horn
logic with stratified negation [Przymusinski, 1988] and by restricting dynamic logic to
regular and deterministic programs. Again, we will sketch the domain layer and discuss the
inference and task layers in KARL and sum up with a discussion of the semantics of
dynamics.

L-KARL is used to describe the domain layer. It provides predicates, classes, class
taxonomies, single- and set-valued attributes with domain and range restrictions, as well as
multiple attribute inheritance for modelling terminological domain knowledge.

L-KARL is also used for specifying inference actions and knowledge roles at the inference
layer. KARL distinguishes three types of knowledge roles.Views define an upward

Vpiagenerate
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translation from the domain layer to the inference layer (giving read-access). These roles are
only accessible as input roles by inference actions.Terminators define a downward
translation from the inference layer to the domain layer (giving write-access). These roles are
only accessible as output roles by inference actions.Stores provide the input or output of
inference actions. Therefore, they can be used as input and output roles by inference actions.
Whereas views and terminators are used to link a domain layer with a generic inference layer,
stores are used to model the data flow dependencies between inference actions. The
definitions of the inference actions, stores, views, and terminators in our example are given in
Figure 4.

P-KARL provides procedural control constructs for the task-layer. The primitive programs
correspond tocalling an inference action. Atomic formulae indicate whether knowledge roles
contain elements of a given class. Such primitive programs and atomic formulae can be
arranged into sequences, loops, and alternatives. Programs may be combined to form
subtasks like procedures in programming languages. The task layer of our example looks like
this:

hypothesis := generate(finding);
diagnosis := select(hypothesis)

Each inference action defines a function symbol used in assignments. Each store and
terminator is modelled by a (program) variable. Views do not have a counterpart at the task
layer because they do not have a dynamic interpretation (i.e., their interpretation is the same
in each state). The value assignments of the variables that model stores and terminators are
used to represent the current state of the reasoning process.

The logical language L-KARL has a minimal Herbrand model semantics [Lloyd, 1987].
Because we allow stratified negation in rules bodies we use a specific minimal model, i.e., the
perfect Herbrand model, as the semantics of a set of clauses, cf.[Przymusinski, 1988].
Therefore, L-KARL does not use classical negation but a variant of the closed-world
assumption that is common in approaches to logic programming and deductive databases.

P-KARL is a variant of dynamic logic usingKripke structures as semantics. A signature in
dynamic logic consists of a set of function symbols and predicate symbols. An interpretation
provides a domain or universeD, some functionsF = {fA1, fA2,...} over the domain used to
interpret the function symbols, and some relationsP = {PA

1, PA
2,...} over the domain used to

interpret the predicate symbols. The set of inference actionspianameappears as a function
symbol in the signature and each storestorenameappears as a predicate symbol∅(storename)
in the signature.

The integration of the modal semantics of the task layer and the Herbrand models of L-KARL
is as follows: the models of L-KARL are used to define an interpretation for a P-KARL
language, i.e., the perfect Herbrand model of the set of clauses which define an inference
actionpianameis used to interpret a function symbolpianame occurring in assignments in P-
KARL. Each store and each terminator is modelled by a (program) variable. The current state
is represented by an assignments of these variables. Notice, that a set of ground facts is
assigned to each program variable. Slightly simplified, a transition is defined as:

I(output-role(X) := pianame(input-role)) =
{( s0,s1) | s1(output-role) = perfect-Herbrand-model(PIAname∪ so(input-role))}
wherePIAname is the set of Horn clauses describingpianame.
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VIEW Causality
DEFINITIONS
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END;

UPWARD MAPPING
...

END;

VIEW Preference
DEFINITIONS

hypothesis
preference high

low

STOREhypothesis
DEFINITIONS

hypothesis

INFERENCE ACTION generate
INFERENCE ACTION select

PREMISESfinding, causality;
CONCLUSIONS hypothesis;
RULES

x ∈ hypothesis←
 y ∈ finding∧
causality(cause:x,effect:y).

PREMISEShypothesis, preference;
CONCLUSIONS diagnosis;
RULES

x ∈ not-max-hypothesis←
 x ∈ hypothesis∧
y ∈ hypothesis∧
preference(low:x,high:y).

x ∈ diagnosis←

¬ x ∈ not-max-hypothesis.

DOWNWARD MAPPING
...

END;

TERMINATOR diagnosis
DEFINITIONS

diagnosis

x ∈ hypothesis∧
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domainD is defined by the Herbrand base of the L-KARL language.

2.4 Design Rationales for MCL

In the following, we discuss our design rationales and their relations to the existing
approaches. We discuss the following aspects for characterizing a reasoning process: (1) The
state of a reasoning process, (2) thehistory of a reasoning process, (3) theelementary state
transitions, (4) the connection of states and statetransitions, and (5) composed state
transitions.

2.4.1 The State of the Reasoning Process

Three choices arise in regard to the representation of a state of a reasoning process. First,
whether its characterization is necessary at all, second whether its characterization is
syntactic or semantic, and third whether its characterization should be local or global.

Is There a Notion of States. Abstract data types were developed in software engineering for
the functional specification of software artifacts [Wirsing, 1990]. They should not make any
commitments to the algorithmic process that realises the functionality. They define the
functionality as a relation between input and output but have neither syntactically nor
semantically the notion of a state. However, other approaches in software engineering, like
VDM [Jones, 1990], Z [Spivey, 1992], and evolving algebras [Börger, 1995], use the notion
of states for specifications. In Artificial Intelligence, problem solving is viewed as a search
process through a state space. The problems tackled either do not have a complete functional
specification or the functional specification defines a computationally hard problem that
additionally requires the specification of a heuristic procedure that partly solves it. Therefore,
approaches like ATMS [de Kleer, 1986] and situation calculus [McCarthy & Hayes, 1969]
use states to specify the dynamics of a reasoning process.

Is This Notion Syntactic or Semantic. The situation calculus reifies the notion of state
within first-order logic through the use of a special class of terms. Simplified, a predicatep(x)
is enriched by an argument that denotes states, i.e.p(x,state), and the truth values ofp(x,state)
can therefore be distinguished from the truth values ofp(x,succ(state)). States aresyntactical
elements of the language in situation calculus. Conversely, dynamic logic provides a
semantical notion of states. A state is characterized through a value assignment of all free
variables. There is no syntactical notion that refers to a state. Therefore its semantics has to
extend first-order models to a set of worlds that are used to interpret states.

Syntactical reification of states in the situation calculus is achieved by assigning names (i.e.,
terms that denote states) to them. This brings about the effect that two states that are identical
except for having different names are regarded as different. In semantic-based approaches
like dynamic logic, two states that have the same variable assignments to all variables cannot
be distinguished, i.e., they are treated as equal. Syntactical versions like situation calculus
require complex equality axioms to achieve the same.

Is the Characterization of States Local or Global.The global representation of states is
quite natural for a monolithic sequential problem solver with a procedural control. Procedural
control assumes one unique state at each moment of the entire reasoning process. Local
representation of states is used for distributed problem-solving agents that cooperate during
problem solving without a central control. Here, each component has an internal state. These
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internal states need not be uniquely related to internal local states of other components. Such
approaches can be found in the areas of complex informations systems, distributed AI, and
multi-agent systems (see [Jungclaus, 1993], [Weiß, 1995], [Brazier et al., 1995]).

Resume: (ML)2 and KARL make the following choices according to our criteria: Both
approaches are state-based, both approaches use the semantical notion of states in accordance
with dynamic logic, and both approaches have one global state of the reasoning process.
MCL makes precisely the same design decisions. However, it differs in the way a state is
represented. As mentioned above, a state is represented in dynamic logic by value
assignments of all open variables. MCL uses a richer structure to represent a state in
accordance to thestates-as-algebras setting of MLCM. In this setting, an algebra (i.e., a rich
data structure) instead of a flat list of variables is used to present a state. A state is
characterized by an interpretation of all predicates and functions. One advantage of this is that
it allows us to overcome a non-intuitive aspect of dynamic logic where the same variables are
used in a logical and in a dynamic (i.e., state-based) sense (see Section 2.4.4).

In Section 5 we will also discuss approaches in knowledge engineering that made different
design decisions: TFL [Pierret-Golbreich & Talon, 1996], which does not use the notion of
states at all, and DESIRE [van Langevelde et al.,1993], which uses a local representation of
states to express composed and distributed problem solving.

2.4.2 The History of the Reasoning Process

Two states are equal in a state-based approach if they do not differ in any property. In a
history-based approach they are different if they were achieved through differentpaths of the
reasoning process, i.e. the history of the reasoning process is part of the state description. The
history of the reasoning process is necessary for software that models real-world processes,
like in robotics and work-flow management systems, or in strategical reasoning about
different choices. When modelling the movement of a robot it is not only necessary to end up
in a proper terminal state. There are also important constraints on intermediate states and their
proper sequence. The situation is similar in work-flow management systems, where
decentralised processes need to be synchronised properly. Finally, in strategic reasoning we
reason about different paths of the reasoning process. For example, when a system runs into a
dead end in its reasoning process it needs the information about the path that lead to this dead
end in order to choose more appropriate reasoning possibilities. Examples for history-based
approaches are situation calculus, which reifies history information syntactically using term
structures, Transaction logic [Bonner & Kifer, 1993], which provides a path semantics to
express history, and DESIRE [Treur, 1994], which uses temporal models as the semantics of
reasoning paths.

TheKADS model of expertise represents the control of the reasoning process of a KBS at the
task layer. A simple procedural control language is provided for this purpose (cf. [Schreiber
et al., 1994]). The restriction to simple control also implies that we will not aim at specifying
the history of the reasoning process with MCL. Like KARL, MCL has no notion of history.
This restricts our abilities for an elegant representation ofstrategic reasoning including the
reasoning about earlier states of the problem-solving process, but this goal is beyond the
scope of our approach. This type of knowledge was allocated at a different layer (thestrategic
layer) in earlier versions of the KADS model of expertise.

The decisions in (ML)2 to characterize a state by the set of thelocal histories of all inference
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actions and thesyntacticintegration ofhistories via lists that implement state traces in the
state-oriented semantical framework of dynamic logic are rather non-standard and are not
integrated into MCL.4

2.4.3 Elementary State Transitions

Inference actions are modelled as relations in (ML)2 (see Section 2.2) and as functions in
KARL (see Section 2.3). In (ML)2, each inference action defines a relation that is used to
interpret a predicate symbol used in a test operation in dynamic logic. In KARL, each
inference action defines a function which is used to interpret a function symbol used in an
assignment in dynamic logic. (ML)2 changes a state by selecting precisely one new
instantiation of a predicate (i.e. for the given state the predicate is true for one ground variable
assignment and false for all others). KARL changes a state by determining all instantiations
of a predicate to be true that follow from the logical theory of an inference actions and its
input. Both types of inferences appear in formalized KADS models. We see this in our
running example. The inference actiongenerate should generate all possible hypotheses and
the inference actionselect should select one of them as a diagnosis. It is possible to express
one inference type by the other type but it results in an artificial modelling. A loop of updates
at the task layer in (ML)2 is required to simulate an update in KARL. KARL needs a random-
selection predicate in the definition of an inference action to simulate an update in (ML)2 that
non-deterministically selects one instantiation of a predicate. As a consequence, MCL
provides both types of state transitions.

We call both update typesbulk updates as they change the complete extension of a predicate
in one step. Each ground literal of a predicate symbol is reevaluated by such a state transition.
MLCM provided onlypoint-wise modification of constants, functions, and predicates. The
extension to MCL is precisely concerned with introducing elementary state transitions of a
higher grainsize that can directly express such bulk-updates.

2.4.4 Connecting State Transitions with States

(ML)2 uses the history variables in the definition of the input predicates and the test operator
? of dynamic logic that transform a formula into a state transition to combine the value
assignments of logical and program variables. collects the results of an inference action
and can provide them to another inference action via the definition of an corresponding input
predicate. This solution relies on the identification of logical and dynamic (state-dependent)
variables in dynamic logic. Take as an example the following formula from dynamic logic;
the evaluation of the existential quantification more or less “undoes“ the states modification
of the program within the modal operator.

[x := 3] (∃ x (x = 2))

A further problem is that (ML)2 requires modelling constructs that are not mentioned in the
conceptual modelling context of the KADS model of expertise likehas-solution-pia, old-
solution-pia, more-solution-pian, give-solution-pia, as well as history variables  and
complex input predicate definitions for each inference action to connect the specification
static specifications with dynamic state change.

4. The history information for inference actions stored in the history variables is used in (ML)2 to prevent inference

actions from always deriving the same output and is not used for strategic reasoning (compare Sections 2.2 and 4).

Vpiai

Vpia

Vpia
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KARL uses a somewhat non-standard approach to achieve the combination of the functional
specification of state transitions and states. The minimal model semantics of the set of clauses
that define a state transitions is used as an interpretation of the corresponding function symbol
in the dynamic logic.

An important motivation of our exercise is to find a better solution for this integration. We
want to separate logical variables used in the definition of elementary transitions and program
variables which express the dynamic state of the reasoning process without externalizing the
definition of a state transition as an interpretation of function symbols. In part we will follow
the intuition of KARL, where logical variables used to characterize inference actions and
program variables used to memorize a state are distinguished. Part of a state characterization
are the literals that hold. However, this is not achieved by assigning a set of true literals to a
program variable but by directly using an algebra to express a state. State changes are
expressed by changes of this algebra. We will use thestates as algebras approach for this
purpose. As a consequence, we do not even need program variables in our framework.

2.4.5 Composed State Transitions

The task layer of a KADS model of expertise definessequence, alternative, and loops of
inference actions. A specification language has to provide these means to form composed
transitions.

2.4.6 Resume

A language for specifying the reasoning process of KBSs, based on the KADS model of
expertise must provide the following:

• It must be possible to express the global state of the reasoning process.
• It is not required to represent the history of the reasoning process.
• It must be possible to only characterize complex sub-steps functionally without making

commitments to their algorithmic realization.
• The description of state transitions must be easily and intuitively related to state changes.
• Finally, it must be possible to express algorithmic control over the execution of sub-steps.

In the following we present our solution for these goals.

3 Modal Change Logic (MCL)

MCL is a new version of MLCM (Modal logic of Creation and Modification, see
[Groenboom & Renardel de Lavalette, 1994], [Groenboom, 1997]). MLCM was developed
for reasoning about dynamic aspects of the specification language COLD (see [Feijs &
Jonkers, 1992]); MCL is a generalization where local (i.e.point-wise) modification of
functions and predicates is generalized to global modification (also called bulk update) and a
choice quantifier is added. This generalization was necessary to express complex state
transitions that are defined by an inference actions in the KADS model of expertise.

First, we put MCL in the perspective of multimodal dynamic logics. Modal logic is an
extension of (propositional or predicate) logic with the unary sentential operator , whereA



15

traditionally has the informal meaningit is necessary that A. An early reference is [Lewis &
Langford, 1932]. In [Kripke, 1959], Kripke developed thepossible-worlds semantics,
according to which the formulaA is true in some worldw iff A holds in all worlds that are
accessible fromw via the relationR. There are many modal logics, each corresponding with a
particular class of accessibility relations: e.g., the logic axiomatized byA → A corresponds
with reflexive relations (satisfying∀x (xRx), and A → A with transitive relations, where
∀x,y,z (xRy∧ yRz→ xRz).

Multimodal logics are logics with more than one modal operator. Examples are temporal
logics (with two modalities, one for the future, one for the past), multi-agent epistemic logic
(one modality for the knowledge of each of the agents), and dynamic logic. In the latter,
modalities are associated with programs, with the intended meaningafter the execution of the
program. The first formulation is by Pratt (in [Pratt, 1976]) using an idea of his student R.C.
Moore. They investigated Floyd-Hoare logic, which features the expressionA{ α} B with the
intended meaningif A, then after doingα B holds. In dynamic logic, this becomesA → [α]B.
Surveys of dynamic logic are [Goldblatt, 1992] and [Harel, 1984].

Dynamic logic is often presented with the variable assignmentsx:=t as its atomic programs.
In MCL however, the atomic programs aref:=λx.t, p:=λx.A (changing the interpretation of a
function and a predicate, respectively) andNEW (which creates a new object and makesnew
refer to it). The first two types of programs generalize the program statementsf(s) := t, p(s)
:↔ A for point-wise function and predicate modification, which were introduced in MLCM
(see [Groenboom & Renardel de Lavalette, 1994]), inspired by the definition of the
specification language COLD (see [Feijs et al., 1987], [Feijs & Jonkers, 1992]). Point-wise
function modification was already dealt with in [Pratt, 1976] (where it was called array
assignment) and it is also a vital ingredient of Evolving Algebras (see [Gurevich, 1994]).

For the composition of programs, most dynamic logics (including MCL) contain the
constructs of sequential composition (;), non-deterministic choice (∪), iteration (*) and test
(A?, whereA is some formula). Some usual program statements can be defined using these
constructs:

if A then α elseβ = (A?;α) ∪ (¬A?;β)

while A do α = (A?;α)*;¬A?

Moreover, MCL contains the choice quantifier∪x. When applied to some programα, the
meaning of the resulting program is: doα for some non-deterministically chosen value ofx.

In the following we introduce the syntax, semantics, and axiomatization of MCL.

3.1 Syntax of MCL

SignaturesΣ are collections of (function or predicate) symbolsσ, with arity #σ ∈ N.
Predicate symbols are denoted byp,q,r,..., function symbols byf,g,h,..., and nullary function
symbols (usually called constants) bya,b,c,.... VAR is a countably infinite set of variable
symbols, denoted byx,y,z,.... The syntax of MCL, consisting of the syntactical categories
TERM (terms),PROG (programs) andFORM (formulae), is defined by:

TERM t ::= x | ↑ | new | f(t1,..., t#f)
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PROG α ::= NEW | f := λx1,...,x#f.t | p := λx1,...,x#p.A |
A? |α;α | α ∪ α | α* | ∪ x.α

FORM A ::= (t = t) | p(t1,..., t#p) | A ∧ A | ¬A | ∀xA | [α]A

For the sake of simplicity, we assume here and later that functionsf and predicatesp are
unary.

, , ∨, →, ↔, ∃x, 〈α〉, are defined as usual. We also define weak equality and a definedness
predicate:

t↓ = (t = t)

s t = ((s ↓ ∨ t ↓) → s = t)

Substitution of a term for all free occurrences of a variable in a term, formula or program
(denoted (t/x)A etc.; so, e.g., ((f(y)/x)p(g(x,y)) = p(g(f(y),y))) is defined as usual (renaming
bound variables in order to prevent variable clashes). However, we have to be careful because
it may possible to substitute a term at an occurrence in the scope of a program that changes
one or more signature elements of that term (e.g. (c/x)([c:=f(c)](g(x)=x)). A substitution
where this doesnot occur is calledsafe.

3.2 Semantics of MCL

MCL is interpreted in modelsM = 〈U,V, ,W 〉, whereU is thebasic universe, V = {vn | n ∈
N} is thestore of objects that can be created,  is the undefined object, andW is a collection
of worlds. We assume that (U∪{ }) ∩V={v0} and define:

Vn =def {vm | m ≤ n}, as an initial segment of the state.

UM =def U ∪ V ∪ { }, as the full universe ofM.

Everyw ∈ W is of the formw = 〈nw,Iw 〉, with nw being the number of store elements andIw
an interpretation of the signature elements in thelocal universe

Uw =  = U∪ ∪ { }.

We shall writeσw for Iw(σ). Thus every world is a model of the first-order fragment of MCL.
Extensions and updates of a worldw = 〈n,I〉 are defined as follows (F ∈ (Uw → Uw), P ⊆ Uw):

• w+ is the extended world〈n+1,I+〉 whereI+ satisfiesI+(σ)(vn+1) = I(σ)( ), I+(σ)(u) =
I(σ)(u) for all u ∈ Uw;

• w[f F] is the updated world〈n,I'〉, satisfyingI'(f) = F, I'(σ) = I(σ) if σ ≠ f;
• w[p P] is the updated world〈n,I'〉, satisfyingI'(p) = P, I'(σ) = I(σ) if σ ≠ p.

We postulate thatW is closed under extensions and updates. Observe that anyW can
always be extended to meet this requirement.

ASS = VAR → UM is the collection of assignments. Point-wise modificationa[x u] (where
x ∈ VAR, u ∈ UM) of a ∈ ASS is defined as usual. An assignmenta can be restricted in a
world w to aw : VAR → UM as follows:

aw(x) = a(x) if a(x) ∈ Uw

= if a(x) ∉ Uw

~

Unw
Vnw

→
→

→
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t w,a, the interpretation of termt in worldw with assignmenta, is defined by:

x w,a = aw(x)

↑ w,a =

new w,a =

ft w,a = fw( t w,a)

w,a A (the interpretation of formulaA in world w with assignmenta) and Rα,a (the
accessibility relation of programα w.r.t. assignmenta) are defined simultaneously:

w,a  (s = t) =def s w,a = t w,a ≠

w,a pt =def pw( t w,a) = true

w,a ¬A =def not (w,a A)

w,a A∧ B =def w,a Aand w,a B

w,a ∀xA =def forall u ∈ (Uw \ { }) ( w,a[x u] A)

w,a  [α]A =def forall w' ∈ W (wRα,aw' ⇒ w',a A)

One new element is added to the universe:
RNEW,a =def {( w,w+) | w ∈ W}

Modification of the values of a function:
Rf:=λ x.t,a =def {( w,w[f λu ∈ Uw. t w,a[x u]]) | w ∈ W}

Modification of the truth values of a predicate:
Rp:=λx.A,a =def {( w,w[p  {u ∈ Uw | w,a[x  u]  A }]) | w ∈ W}

A program is executed for one value
R∪x.α,a =def {( w,w') | existsu ∈ Uw, wRα,a[x u]w'}

The following four transition relations are standard relations of dynamic logic

RA?,a =def {( w,w) | w,a A}

Rα;β,a =def Rα,a Rβ,a

Rα∪β,a =def Rα,a ∪ Rβ,a

Rα*,a =def R*α,a (i.e., the transitive closure of Rα,a)

3.3 Axiomatization of MCL

The axioms are:

Taut All tautologies of propositional logic

Eq x y → y x
x y → fx fy ∧ (px ↔ py) ∧ (x z↔ y z)

Undef ¬(↑↓)

vnw

=

=

=

= =

= = =

= → =

= =

→ →

→ → =

→

=

~ ~
~ ~ ~ ~
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Inst (∀xA ∧ x↓) → A

Atom [π]¬A ↔ ¬[π]A (π atomic)

C1 x = y ↔ [NEW](x = y ≠ new)

C2 px ↔ [NEW] px

C3 [NEW] (new↓ ∧ fx ≠ new ∧ f(new)  f(↑) ∧ (p(new) ↔ p(↑)))

FM1 A ↔ [f:=λx.t] A for all f ∉ sig(A)

FM2 [f:=λx.t] fx = y ↔ t = y (y not free int)

FM3 ∀y [f:=λx.t]A ↔ [f:=λx.t](∀y A) (x ≡ y or y not free int)

PM1 B ↔ [p:=λx.A]B for all p ∉ sig(B)

PM2 [p:=λx.A]px ↔ A

PM3 ∀y [p:=λx.A]B ↔[p:=λx.A](∀y B) (x ≡ y or y not free inA)

?AX [A?]B ↔ (A → B)

;AX [α;β]A ↔ [α][β]A

∪AX1 [α∪β]A ↔ ([α]A ∧ [β]A)

*AX [α*] A ↔ (A ∧ [α][α*] A)

∪AX2 [∪x.α]A ↔ ∀x[α]A (x not free inA)

Γ A (A is derivable fromΓ; Γ may be omitted when empty) is defined inductively by

AX  A if A is a safe substitution instance of an axiom

MP A, A → B B

INF {[ αn]A | n ∈ N}  [ α*] A

W if Γ A thenΓ,∆ A

CUT if Γ A for all A ∈ ∆ andΓ,∆ B thenΓ B

DED if Γ, A B thenΓ A → B

UG if Γ, x↓ A andx does not occur free inΓ, thenΓ ∀xA

NEC if Γ A then [α]Γ  [α]A

Soundness is proved straightforwardly, although some lemmata involving substitution and
the frame property are needed. We claim that completeness also holds: a proof (a nontrivial
variant of the Henkin construction, see [Henkin, 1949]) will appear elsewhere.

4 Using MCL to Formalize Other Approaches

In the following, we discuss first how MCL can be used to formalize the reasoning behavior
of KBSs in a KADS-oriented style. We do this by showing for a number of KADS-oriented
languages how their state transitions can be expressed with the operators of MCL. Second, we

~



19

illustrate the generality and power of our approach by relating it with other areas of research.
We discuss how MCL can be used to formalize evolving algebras and database update
languages.

4.1 Formalizing KADS languages

In this subsection we will discuss the formalization of MLPM, (ML)2, and KARL with MCL.

4.1.1 MLPM

The Modal Logic of Predicate Modification (MLPM) was introduced by [Fensel &
Groenboom, 1996] for formalizing KADS languages like KARL and (ML)2. MLCM was
taken as a departure point for this exercise. For reasons of simplicity, only the predicate
modification operator of MLCM was taken. This predicate operator had to be generalized to
two types of bulk-updates because KADS inference action may modify a complete extension
of a singleton predicate whereas MLCM only offered a point-wise update. The two new
operators were:

• p:= λ.xA, that corresponds to theλ-operator of MCL restricted to unary predicates,
• p:= ε.xA, defining (non-deterministically)p true for exactly onex satisfyingA.

Theε operator of MLPM can be expressed by the choice quantifier of MCL:

p:= ε.xA ≡ ∪x.(A?; p := λy.(x = y))

(y fresh); as a consequence, it has the following semantics:

Rp:= x.εA,a = {(w,w[p  {u}]) | w ∈ W, u ∈ Uw, w,a[x u] A}

and the axioms are:

SP1 〈p :=εx.A〉 px ↔ A

SP2 [p :=εx.A] ∃!x px

SP3 (∃x A→ B)↔ [p :=εx.A] B p ∉ sig(B)

SP4 ∀y [p :=εx.A]B ↔ [p :=εx.A](∀y B) y not free inA

The generalization of MLCM and MLPM which we achieved with MCL provides the
advantage that it reintegrates the generalizations of MLPM into the general setting of MLCM.
Therefore the introduction of new elements and (global) function updates can also be
expressed. In consequence, we get a unified approach that covers many existing approaches
from knowledge engineering and other research areas as shown below.

4.1.2 (ML)2

The choice quantifier (∪ x.α) with

α ≡ ((x/y)pianame(x,...)?; output-rolename := λy.(x = z))

of MCL captures the core of the state transitions in (ML)2. The singleton predicate modelling
the output role is true for one ground instantiation (modulo equality) and false for all others.
This can be used to model non-deterministic selection. We have decided not to hardwire the
mechanismgive-solution-pia of (ML)2 directly in MCL because there are some problems

→ → =
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related to this construct as it can behave in a non-intuitive manner. For example, a
deterministic inference action likemultiplication fails if it gets the same input values a second
time.

4.1.3 KARL

The λ-operator of MCL applied to a predicate can be used to model the bulk-update of
KARL. The call of an inference action in KARL, for example, the inference actiongenerate

hypothesis := generate(finding)
with

∀x,y(finding(x) ∧ causality(x,y) → hypothesis(y))
as logical theory defining the inference.

can be expressed in MCL as

hypothesis :↔λy.(∃x(finding(x) ∧ causality(x,y))).

In the above statement the value of the output role is erased. If we would like toextend the
extension of a role, we can formulate this as:

role :↔ λy.(p(y) ∨ role(y))

KARL requires us to artificially introduce two inference actions (one select and one copy
step) and an additional placeholder when facts of an input role should be deleted. The KARL
statement

placeholder := select(input); input := copy(placeholder)

is formulated in MCL as:

input :↔ λx.(input(x) ∧ select(x))

However, a significant difference remains between MCL at the one hand and KARL at the
other hand. KARL uses minimal and perfect Herbrand model semantics [Lloyd, 1987],
[Przymusinski, 1988] to evaluate a set of clauses. Based on this reasoning with the closed-
world assumption, negative literals and (in the case of stratification) positive literals of higher
strata can be derived from a set of clauses in KARL which are not a logical consequence in
the standard model-theoretical framework of first-order logic upon which MCL is based.

Minimal-model semantics of a logical program can be expressed in MCL along the lines of
the operational semantics of fixpoint computation. When a fixpoint is reached after a finite
number of iterations (which is assumed in KARL, see [Fensel, Angele & Studer]), this can be
expressed in MCL as a finite number of applications of a program operator. For the unary
case this goes as follows: LetH be a logical program, the formulaA the disjunction of all
clauses inH, p a unary predicate symbol ofH, and λp.λx.A a new predicate operator
associated with H. Thenp equals the fixpoint after termination of the following programαH

with:

(p := λx. ); (p := λx.A)*

i.e. we have

fix(H)x ↔ <αH>px

In order to deal with non-unary predicate operators, MCL has to be extended by a kind of
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parallel construct. We illustrate this with a binary predicate operator given byλp.λx.A,
λq.λy.B. The required programαH then becomes

(p := λx. , q := λy. ); (p := λx.A, q := λy.B)*

The parallel construct is denoted by a comma (,). The idea is that it can be applied on two
programs which do not modify the same signature element(s) (cf. [Groenboom, 1997]).

4.2 Using MCL to Formalize Evolving Algebras

The two basic concepts ofevolving algebras [Gurevich, 1994] arestates andstate transitions.
As in COLD, astate is modelled by one static algebra. Letϒ be a signature, i.e. a finite
collection of function names with given arity (the 0-ary function names model constants). A
static algebra of a signatureϒ is a nonempty setS together with interpretations onS of
functions names inϒ. Such a static algebra defines one possible world (i.e., possible state).
Transitions between states can be expressed byfunction updates of the formf(t1,...,tr) := t.
These updates can be qualified by guards which express preconditions for their application.
The point-wise modification corresponds to the grainsize of the transition in MLCM.
Evolving algebras also provide means to specify parallel algorithms that can be used to
express our type of bulk-updates (i.e. thechoose and therange constructs, cf. [Gurevich,
1994]). The formalization of evolving algebras in MCL (see table 1) is inspired on the work
presented in Figure [Groenboom & Renardel de Lavalette, 1995].

An evolving algebra program is a set of rulesαι. The execution of such a program (called a
run in [Gurevich, 1994]) is defined as the infinite execution of nondeterministically chosen
rulesαι. We can encode this in MCL as:

EA = (∪x.αx)*

Although the presented formalization captures the core of evolving algebras, some
expressions in evolving algebras are not covered. MCL is an untyped logic, therefore we
cannot model the different universes of evolving algebra directly. This requires however only
a syntactic extension of MCL in order to mimic evolving algebras more directly. More
involved is the modelling of the concurrent assignment of evolving algebras. In [Groenboom
& Renardel de Lavalette, 1995] and [Groenboom, 1997] defines the parallel execution

Table 1. The elementary state transitions of evolving algebras

Evolving Algebras characterization MCL

f(s):=t setsf at s to t f:=λx.(if x=s thent elsefx fi)

if A thenr execution ofr guarded byA A?;r

choosex in V do r executer for a valuex from V ∪x.r

importx in V do r modify universeV with new
objectx and performr

NEW;∪x(x=new)?;r

rangex in V do
f(x):=t

let x range over the objects inV
and perform update off

f:=λx.t
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operator of evolving algebras “,“ is defined in terms of the simultaneous composition
operator . Currently, this operation in not supported by MCL.

Two main differences exist between evolving algebras and our approach. First, evolving
algebras do not aim at a formal specification with formal syntax, semantics, and automated
proof support. Instead, they provide a semiformal mathematical notation for definitions and
proofs in a textbook-like style (cf. [Börger, 1995]). Second, our approach provides procedural
vocabulary to express control over the execution of transitions. Evolving algebras do not
provide a vocabulary to specify such composed state transitions. The way control is specified
in evolving algebras is close to the spirit of production rule systems. To put it in simple
words, evolving algebras provide a set of local transitions rules and a rule interpreter built
into the semantics of evolving algebras that selects the next firing rules to be applied.

4.3 Using MCL to Formalize Database Update Languages

The declarative specification of the static aspects of databases is well-established field.
Ongoing work deals with the problem of defining clean and declarative characterizations of
updates of databases. PDDL [Spruit et al., 1995] and DDL [Spruit et al., 1993] use different
variants of dynamic logic for providing a logical characterization of the dynamics of
databases. In the following, we will show how MCL can be used to express the state
transitions introduced by these languages.

4.3.1 PDDL

Propositional dynamic database logic(PDDL) defines a variant of propositional dynamic
logic by restricting elementary state transitions (i.e., elementary programs) to two pre-defined
types. The (point-wise) update of the truth value of one proposition and the bulk update of the
truth values of a set of propositions according to the minimal Herbrand model of a set of
propositional Horn clauses. A state is described by the truth values of all propositions, and
complex transitions can be built using the normal means of dynamic logic. PDDL is close in
spirit to KARL when we abstract from all conceptual details and the fact that PDDL uses
propositional dynamic logic only. Like KARL, PDDL uses a minimal Herbrand model of a
set of clauses to define elementary updates and the operational fragment of KARL (see
[Angele, 1993], [Fensel, Angele & Studer]) is restricted to finite Herbrand models (aside
from some built-in types) and therefore has similar expressive power. Table 2 provides the
transition types of PDDL and their counterpart in MCL.

Table 2. The elementary state transitions of PDDL

PDDL characterization MCL

Ip sets the propositionp to true p:=

Dp sets the propositionp to false p:= ,

IHp setsp to true and computes the minimal model ofH ∪ {p} p:= ; αH

DH
p setsp to false and computes the minimal model ofH ∪ {¬p} p:= ; αH
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4.3.2 DDL

Dynamic database Logic (DDL) [Spruit et al., 1993] extends the ideas of PDDL to the first-
order case. Again two main types of predefined updates (i.e., elementary programs) are
provided:

• Updating the truth values of all ground literals over a predicate symbol according to the
truth values of the corresponding variable assignments of a first-order formula and

• the non-deterministic selection of one of the variable assignments that makes a formula
true.

Aside from some details, both types of updates are similar to theλ- andε-operator of MLPM.
Complex transitions can be constructed using the normal means of dynamic logic. As in
MLPM, a state is described by an interpretation of the predicate symbols. [Spruit et al., 1993]
define DDL without function symbols and provide a complete axiomatization under the
domain closure and unique naming assumptions (thus the expressive power of the language is
restricted to the propositional case). Table 3 provides the transition types of PDDL and their
counterpart in MCL.

5 Related Work

The specification language TFL [Pierret-Golbreich & Talon, 1996] applies abstract data types
to specify the functionality and the reasoning process of a KBS. Abstract data types are
applied to specify domain and inference knowledge using loose semantics. Procedural control
is specified by so-called process modules which incorporate the control expressions as
operations into the framework of abstract data types. Test, sequence, choice, and iteration are
specified as operations and axioms are used to further specify these operators (see Figure 5)
as inprocess algebra [Baeten & Weijland, 1990]. The main difference to our approach is that
TFL neither provides a syntactical nor a semantical notion of thestate of the reasoning
process and does not provide a predefined set of elementary state transitions. Therefore, TFL
has the frame problem as the situation calculus [McCarthy & Hayes, 1969]. For each
elementary action the specifier must specify what it changes and what it keeps unchanged. In

Table 3. The elementary state transitions of DDL

DDL characterization MCL

&xIpt where A insertspt for all termst that satisfyA p:=λy.(py ∨ ∃x(A ∧ y = t))

&xDpt where A deletespt for all termst that satisfyA p:=λy.(py ∧ ¬∃x(A ∧ y = t))

&xUpt→t´ where A replacept by pt  ́for all t´ for whichA
is true

p:=λy.(
(py ∧ ¬∃x(A ∧ y = t)) ∨
∃x(pt ∧ A ∧ y = t´))

ft := t´ changesf for the argumentt to t´ f:=λx.if x=t´ thent elsefx fi

+x α where A executeα for one assignment forx
whereA is true

∪x.(A?;α)
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state-based approaches like dynamic logic and MCL this is already provided by the semantics
and axiomatization of elementary state transitions. That is, the semantics of an elementary
transition likep :↔λx.A ensures that the other predicates remain unchanged.

The language DESIRE [van Langevelde et al.,1993] uses the notion of meta-layered
compositional architecture to specify a KBS. A KBS is decomposed into several interacting
components. Each component contains a piece of knowledge at its object-layer and its own
control defined at its internal meta-layer. The interaction between components is represented
by transactions and the control flow between these modules is defined by a set of control
rules. The reasoning modules of DESIRE can be roughly identified with inference actions in
(ML)2 and KARL, but DESIRE provides much more sophisticated means to control the
reasoning process of an inference action. An important distinction between DESIRE and the
languages (ML)2 and KARL is that DESIRE uses its object/meta-level distinctionto specify
and to reason about flexible control of object-level inferences whereas languages such as
(ML)2 and KARL define control of inferences by means of a procedural language. From a
semantic point of view one difference between DESIRE (see [Treur, 1994]) and (ML)2,
KARL, and MCL lies in the fact that the former uses temporal logic with linear time for
specifying the reasoning process whereas the latter use dynamic logic. In dynamic logic, the
semantics of the overall program is a binary relation between its input and output sets
(Mi,Mo). Two different paths for computing the same input-output tuple are not distinguished.
In DESIRE, the entire reasoning trace that leads to the derived output is used as the
semantics. DESIRE uses a sequence of modelsMi,M1,...,Mn,Mo to define the semantics of a
specification. It therefore allows the expression of strategic reasoning about the history of the
derivation process.

Transaction Logic [Bonner & Kifer, 1993] was developed to define a declarative semantics
for state changes in logic programming and database updates. It also uses sequences of
models as a semantics for database queries and updates. In a recent version [Bonner & Kifer,
1995] introduce two types of oracles. Oracles that inform about the truth values of a state and
oracles that execute elementary state transitions. Transaction logic is used to construct
composed transitions. The usual constructs of dynamic logic for specifying procedural
control over the execution of transitions can be simulated in Transaction logic. In addition,
constraints can be used to restrict possible derivation paths. Such a semantics that includes
the derivation path by a sequence of models is also necessary when one wants to specify
dynamic integrity constraints on the reasoning process which not only restrict relations
between input and outputs but also define restrictions for the reasoning process itself.

 ∪ : process× process→ process
 δ : process
 ; : process× process→ process
* : process→ process

(p ∪ q) ∪ r = p ∪ (q ∪ r)
p ∪ q = q ∪ p
p ∪ p = p
p ∪ δ = p
(p ∪ q); r = (p;r ) ∪ (q;r )
r; (p ∪ q) = (r;p ) ∪ (r;q )

Fig. 5 Algebraic specification of the choice operator in TFL.



25

The semantics of states and elementary state transitions remain outside the scope of
Transaction logics. It is assumed to be provided by external oracles that can be seen as
parameters of a specification in Transaction logic. For us, that would imply that the logical
definition of the inference actions that define the elementary updates would remain outside
the scope of the language that specifies control, as the case in KARL. Therefore, it covers
only a part of our problem because we want tointegrate the logical definition of inference
actions as elementary transitions into a language expressing control over their execution. In
contrast to Transaction logic, we integrate predefined elementary updates into the semantics
and axiomatization of our approach. Still, Transaction logic is a very interesting point of
reference when we extend our approach to a semantics based on model paths to express
strategical reasoning.

6 Conclusions and Future Work

We analyzed existing approaches for specifying the reasoning process of KBSs. We derived
general requirements for appropriate specification formalisms. The logic MCL which we
presented generalizes the gist of solutions that were chosen by languages like KARL and
(ML)2 and provides an adequate mathematical framework for their uniform formalization. In
a nutshell: our approach uses algebras to represent states of the reasoning process, bulk-
updates that change algebras to express state transitions, and procedural constructs to define
control over the execution of transitions. MCL defines a formal semantics and an axiomatic
semantics for specification languages for KBSs. This formalization has several advantages
compared to existing approaches in knowledge engineering:

• Different types of state transitions as provided by KARL and (ML)2 are integrated. The
datalog-like strategy of KARL that returns all answer substitutions and the Prolog-like
strategy of (ML)2 that returns one answer substitution are captured by two predefined
state transitions operators.

• Problems like the nonintuitive interaction of logical and state-dependent variables and
the use of interpreted logics are bypassed

• The formalization work on KBSs becomes comparable with related approaches in
software engineering and database engineering. MCL can be used to formalize many of
the existing approaches of other fields like evolving algebras and database update
languages like PDDL and DDL.

• The axiomatization of MCL takes a step in the direction of automated proofs of
reasoning processes of KBSs.

[Fensel et al., 1996] provide a case study using MLPM and extend it through the specification
of goals (i.e., declarative specification of the desired functionality of a knowledge-based
system). Proofs are provided that ensure that a specified reasoning strategy actually achieve
the goals as required by a task definition. The Karlsruhe Interactive Verifier (KIV) [Reif,
1995] is applied to support semi-automatic proof support. KIV is based on dynamic logic and
can be used to verify imperative programs against specifications in first-order logic. It
represents the state of a reasoning process by value assignments of dynamic variables
whereas MLPM and MCL apply the states as algebras approach. [Schönegge, 1995] provides
an extension of KIV for a subset of evolving algebras (i.e., sequential and deterministic) that
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makes a step in overcoming this difference. A state is represented by the actual values of the
functions of the signature. The main problem in immediately applying KIV to MCL
specifications is that KIV is based on a point-wise modification of functions whereas MCL
provides bulk-updates that modify a complete predicate in one step. This problem will
disappear when KIV is extended to verify Evolving Algebras of parallel algorithms as this
extension also requires bulk-updates.
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