
Integrating Processes in Temporal Logic?

Thomas Fuch�

Institut f�ur Logik, Komplexit�at und Deduktionssysteme
Universit�at Karlsruhe, 76128 Karlsruhe, Germany

email: fuchss@ira.uka.de Tel.: ++49 721 608 4245 Fax.: ++49 721 608 4211

August 1997

Abstract. In this paper we propose a technique to integrate process
models in classical structures for quanti�ed temporal (modal) logic. The
idea is that in a temporal logic processes are ordinary syntactical objects
with a speci�c semantical representation. Thus the structural informa-
tion of processes can be captured and exploited to guide proofs. As an
instance of this technique we present a quanti�ed metric linear temporal
logic of processes. We describe syntax and semantic of this logic espe-
cially with a focus on the process part. Finally we sketch a calculus, give
some examples and discuss our experiences in doing proofs.
Keywords: temporal logic, modal logic, program logic, semantics, spe-
ci�cation, veri�cation, real-time.

1 Introduction

The growing complexity of todays soft- and hardware systems enforces more and

more improved methodological support during the phases of development and

maintenance.

The unambiguity of formal description languages based on �xed semantics

ensures highly precise descriptions of requirements and design decisions. Further-

more formal speci�cations are the basis for any program veri�cation. So formal

methods can improve the protection against development errors. Consequently

formal methods are especially useful in areas where soft- or hardware errors can

lead to various damages caused by system failures. One such area is the �eld

of steering and controlling technical systems, where time-critical and reactive

systems are used.

The work we present is intended to build the basis for a semantic of a real-

time speci�cation language. This speci�cation language should cover the entire

development process reaching from the description of requirements and design

decisions down to algorithms (executable speci�cations). The idea is to provide

a framework for temporal logics of processes to adequately describe aspects of

systems dealing with data structures, reactive and time-critical behavior, envi-

ronmental in
uences, and their interaction.

? This research was sponsored by the DFG Graduiertenkolleg GRK 209/2-96.

The approach is to integrate process models in classical models for quanti-

�ed temporal (modal) logics, together with process symbols as representatives

at the syntactical level. We argue as follows: If temporal logic is used for speci-

fying real-time systems, and a unique frame for speci�cation and veri�cation is

desired, then an embedding of processes in the set of temporal logic formulas is

necessary. By the explicit syntactical representation of processes the structural

information located in the programs is caught, and made explicit on the syn-

tactical level. Thus the information is preserved for guiding proofs of process

properties. In various case studies (e.g. [6]) done with the KIV system, such

a technique (compare [8]) has been successfully applied for sequential software

systems.

In the following we present our approach to a combination of processes and

temporal expressions.

Section 2 deals with the representation of processes. Instead of a state-based

process description we prefer on the semantical level an observational based

description by introducing a separate kind of semantical object, the \process

behavior set". So the representation of a process is only one part of the model and

not the entire model. Thus the model can be enhanced to describe further aspects

of the system, e.g. data structures. Section 3 explains the kind of structures

resulting from such a view of processes. In section 4 we consider as an instance

of this scheme a linear temporal logic of processes. We describe syntax and

semantics and discuss di�erent modal operators. Section 5 presents a calculus

for this logic based on signed formulas. In section 6 we give some examples

illustrating our approach. Section 7 concludes with prospects for ongoing and

future work.

2 Process Modeling

Processes or better time-critical and reactive systems are well studied objects

in theoretical computer science. In the last years several di�erent methods and

technologies were developed to describe and analyze such systems. Important

methods and models are for example petri nets [14], event structures [15], or

process algebra approaches like CSS [11], CSP [9], and ACP [3]. A good sur-

vey about di�erent models of concurrency can be found for example in [16]. In

general the di�erent models can be divided according to the point of view in

interleaving/non-interleaving models, models with linear-time/branching-time,

or models with an explicit/implicit representation of states. Figure 1 shows three

di�erent models which describe the same process. The left hand side shows a

state-transition system, which is a graph where each node represents a state of

the process mostly characterized by variable assignments. Each edge is a transi-

tion normally labeled by an event, which is the cause for the transitions. In the

middle we see a synchronization tree, an unfold transition system. Each node

can still be regarded as a state but it represents the whole history of the process.

So a synchronization tree is a model which abstracts from states in the sense

of variable assignments. Nevertheless it is possible to take internal events of the

2

�

a

b

a

a

b �

�

�

a

a
a

b

b

b

�
�, (a), (b), (a; a),
(b; b), (a; a; b)

�

Fig. 1. A transition system, a synchronization tree, and a trace structure

system into consideration. Both transition systems and synchronization trees are

used e.g. in CCS to establish the operational semantics.

The next step of abstraction leads to models without states e.g. Hoare traces

[9] or Mazurkiewicz traces [10]. Such a model represents a system as a set of

sequences of \observable" events. The right hand side of �gure 1 shows a Hoare

trace, a pre�x closed set of all possible process runs.

With the above techniques it is possible to model reactive systems. However

it is often necessary to take the time behavior into consideration. For a technical

system it can be crucial that a set point command takes place in a �xed time

interval.

A �rst step to obtain a solution for this task | adequate modeling of time

aspects | is to enlarge the above models with real-time aspects. So we get

timed transition systems (e.g. see [1]) or timed observation sequences (see [2]).

Another way is to use a real-time logic (e.g. [4]). Often both are combined: the

state-transition systems, synchronization trees or trace models with or without

time constraints replace the classical Kripke frames as the semantical models.

Such a combination is often known as a heterogeneous technique (compare [2]).

It normally leads to more or less unreadable formulas without internal structure

| eventually some abbreviations are used for better input. This is acceptable

as long as we can stay on fully automatic tools for the analysis. But what hap-

pens if we want to regard further aspects of the system to be modeled like data

structures or dependences of the process which we will not handle as arbitrary

observable events. E.g., imagine a system that works properly only if the tem-

perature of the environment is not too hot or too cold. Is this temperature an

observable of the system to be modeled? Instead of an ad hoc solution it seems

more promising to integrate process models in classical models of quanti�ed

temporal (modal) logics as extensions for process symbols. This has several ad-

vantages. Firstly, we get an homogeneous instead of an heterogeneous framework

3

for the description and analysis of real-time systems. Secondly, since a process

representation is only one part in the model there is enough space to enhance

such a model to describe data structures or environmental behavior. The latter

can be done by de�ning rigid or non-rigid functions. Thirdly, the extension of a

process symbol can di�er from world to world. So the intension itself is non-rigid.

This gives the opportunity to separate di�erent process behavior according to

environmental in
uences which are not immediately observable process features.

Since the state structure is given by the Kripke frame as a set of possible

worlds together with an accessibility relation it is necessary to choose a model

without states for the description of a single process. We have decided to take

a structure comparable with Hoare traces or timed observational sequences, the

\process behavior sets". In contrary to both, a process behavior set is neither

pre�x closed nor contains only �nite traces. Even the information belonging to

the time period of a trace is given only implicitly. The integration of this obser-

vation based process model in models of quanti�ed temporal logic is achieved by

two steps. In the �rst step, a single process run is de�ned, the observation trace.

In the second step di�erent observation traces are collected to build a process

behavior set, which can be attached to a single possible world.

Observation traces are deterministic. So it is possible to regard them as func-

tions from totally ordered sets to sets of observations. Since a complex process

usually has more than one observable feature the observation itself can be re-

garded as set of \basic" observations made at the same time, where each basic

observation is a a value of an observable feature. This leads to the following

de�nition where the index set I is the set of observable features, while D is the

set of values which can be observed.

De�nition1 Observation Trace. Let I be an index set, D = (Di)i2I a family

of non-empty subsets ofD, and (T;�) a totally ordered set. Then an observation

trace � over D in T is a total function of type T ! I ! D where �(t)(i) 2 Di

for each t 2 T and i 2 I.

Unless the structure of an observation trace is linear it is not necessary to re-

strict ourselves to linear temporal logic. A process does not in
uence the time

structure, but the time structure can in
uence a process. For the following, a two

sorted algebra (T;M ;�t;�m; d;+) where (T;�t) is a grounded partially ordered

set, (M;�m) a totally ordered set with l.u.b.1m 2 M and g.l.b. 0m 2M , d a

total function of type T �T !M , and + a total function of type M �M !M

satisfying the following laws for all a; b; c 2M and r; s; t 2 T :

(a + b) + c = a+ (b+ c) a+ b = b+ a

a+ 0m = a a+1m =1m

a+ b = 0m) b = 0m a+ b = a) (b = 0m _ a =1m)

a �m b) 9c a+ c = b 0m �m d(r; s) �m 1m ^ d(r; s) 6=1m

d(r; s) = d(s; r) r �t s �t t) d(r; t) = d(r; s) + d(s; t)

r �t s ^ r 6= s) d(r; s) 6= 0m r = s) d(r; s) = 0m

is used to represent a metric time structure. In such a structure (T;�t) represents

the Kripke frame| T the possible worlds and �t the accessibility relation, while

4

d takes the time between two moments and so de�nes the metric. To associate

a single observation trace � to a world t 2 T the following should be true. If T 0

is the domain of � then (T 0;�t) is a subchain of (T;�t) with g.l.b. t 2 T 0 such

that for each a; b 2 T 0 and c 2 T holds a �t c �t b) c 2 T 0. Observation traces

which ful�ll the above conditions are for the remainder called suitable for the

time structure at t.

Now it is easy, to get a suitable process behavior set for a time structure

TS = (T;M ;�t;�m; d;+) at a possible world t 2 T . We only have to collect

di�erent suitable observation traces for TS at t which have the same range

(I ! D).

De�nition2 Process Behavior Set. Let I be an index set, D = (Di)i2I a

family of non-empty subsets of D, TS = (T;M ;�t;�m; d;+) a metric time

structure, and t 2 T . Then a process behavior set P over D for TS at t is a

subset of n
�
� is a suitable observation trace over D

for the time structure TS at t.

o

The set of all process behavior sets over D for TS at t is denoted by PTS
I;D

(t),

while PTS
I;D

denotes
S
t2T

PTS
I;D

(t).

A process behavior set is a structured object overlaying the set of possible worlds,

but not one to one. We do not require that for a path in the metric time structure

there is exactly one possible run (observation trace) in a process behavior set.

There can also be no process run for some path or more then one for another

path. If a time structure TS is used as a Kripke frame in temporal logic, a

process behavior set for TS at t can be used as an extension of a process symbol

in the world t. So, the representation of a process is only a part of the model

and not the model itself.

3 A Linear Temporal Logic of Processes

As an instance of the above scheme we present a quanti�ed metric linear temporal

logic containing processes and conjunctions of processes explicitly as syntactical

structures. For now we concentrate on observable features (the index set I).

Instead of an unstructured set we assume that the observable features of a process

can be separated in input parameters, output parameters, input channels, and

output channels, since we are not interested in internal events like local variable

bindings etc. The values of an observable channel represent the data exchange

of the process. To avoid partiality we use a special value ? distinguished from

all others to denote that no communication takes place. Each observable input

parameter carries a value that initially in
uences the process, constant during

the run. Since an output parameter is only relevant if the process is �nite we will

also observe ? until the process terminates. Then we observe a value di�erent

to ?. To get a unique frame we have to assign to each observable feature a sort

to determine the carrier set to which the values belong. So each process gets a

unique type, a tuple containing four Cartesian products. One of the carrier set

5

for the input values followed by one for the receiving channels. Then a product of

carrier sets for the channels over which the process sends data, and �nally one for

output values. Beside process symbols each signature contains predicate symbols

and function symbols both divided in arbitrary symbols and rigid symbols the

latter for the description of data structure, while non-rigid symbols are normally

used to describe environmental behavior. Now we �x the signature. Each process

signature � = (S; F; P; P id; f?g) contains:

{ S, a �nite set of Sorts

{ F , a �nite set of function symbols, the disjoint union of sets Fs;s and F r
s;s

(s 2 S�, s 2 S) for s = (s1; : : : ; sn) (n 2 N) is Fs;s a set of n-ary function

symbols and F r
s;s a set of n-ary rigid function symbols.

{ P , a �nite set of predicate symbols, the disjoint union of sets Ps and P r
s

(s 2 S�) for s = (s1; : : : ; sn) (n 2 N) is Ps a set of n-ary predicate symbols

and P r
s
a set of n-ary rigid predicate symbols.

{ Pid, a �nite set of process symbols, the disjoint union of sets Pidsi:sr :ss:so

(sk = (sk1 ; : : : ; s
k
nk
) 2 S�, nk 2 N, k 2 fi; r; s; og) of process symbols. By

(si : sr : ss : so) the di�erent types are denoted.2

{ ?, an extra symbol denoting that no communication takes place.

For any signature we assume systems X = (X)s2S , XP = (XP)s2S , and

XC = (XC)s2S of countable, pairwise disjoint sets Xs of logical variables, XPs
of program variables, and XCs of channel variables for each sort s 2 S. For

the logical variables we will use objectual domains while for the program and

channel variables we will stay on conceptual domains. So we get a separation

in rigid and non-rigid variables, too. After we have �xed the basic elements of

the linear temporal logic of processes we conclude with the de�nition of PQ-

models, structures which are based on classical Q-models for quanti�ed model

logic. A detailed introduction to quanti�ed modal logic can be found e.g. in [7].

There, a Q-model, is described as follows. A Q-model (W;R;D;Q; a) contains

a set W of possible worlds, a binary relation R on W , a non-empty set D of

possible objects, some item Q which determines the domain of quanti�cation,

and an assignment function a, which interprets the function and predicate sym-

bols by assigning them the corresponding kind of intension with respect to W

and D. Starting with this general point of view, we give a detailed description

of our modal structures. Since we have process symbols and di�erent kinds of

variables in addition, we call our structures P (rocess)Q-models. A PQ�-model

F = ((N;N[f1g;�;�1; d;+1);D; f?Fg;QX;QXP ;QXC ; a) for a given sig-

nature � consists of:

(N;N[f1g;�;�1; d;+1)

A metric time structure where the natural numbers (N) are the possible worlds

with \less-equal" (�) as accessibility relation. For the metric we uses N enlarged

by it's l.u.b.1. By �1 we denote � [f(n;1)jn 2 N[f1gg, by d the di�erence

2 The superscripts i, r, s, and o denote the di�erent tuples for input, received values,
sent values, and output.

6

between two natural numbers, and by +1 the extension of the \addition" by

f((n;1);1)jn 2 Ng and f((1; n);1)jn 2 Ng.

D = (Ds)s2S and f?Fg

A family of countable non-empty carrier sets Ds for the di�erent sorts s 2 S.

Together with a set f?Fg disjoint to each Ds containing the special object ?F
the extension for ?.

QX = (QXs
)s2S ; QXP = (QXPs)s2S ; and QXC = (QXCs

)s2S

Three di�erent families of sets QXs
= Ds, QXPs = ff jf : N ! Dsg, and

QXCs
= ff jf : N ! N [f?Fgg, the domains of quanti�cation for logical,

program, and channel variables. Thereby we have a quanti�cation equal to the

modal logics Q3 and QC (see e.g. [7]). And �nally

a

the assignment function which interprets the function, predicate, and process

symbols by assigning them the corresponding kind of intension. For

functions, a is a total function, which assigns to each n-ary function symbol

f 2F(s1;:::;sn);s[F
r
(s1;:::;sn);s

a total function a(f) : N! (Ds1�� � ��Dsn)! Ds.

If f is rigid then a(f) is constant.

predicates, a is a total function, which assigns to each n-ary predicate symbol

p 2 P(s1;:::;sn)[P
r

(s1;:::;sn)
a total function a(p) : N! P (Ds1�� � ��Dsn) from

N into the power set of Ds1 � � � � �Dsn . If p is rigid then a(p) is constant.

processes, a is a total function, which assigns to each process symbol q 2

Pidsi:sr :ss:so (sk = (sk1 ; : : : ; s
k
nk
) 2 S�, nk 2 N, k 2 fi; r; s; og) a total func-

tion a(q) : N! PTS
I;D0 where a(q)(n) 2 PTS

I;D0(n) with:3

TS = (N;N[f1g;�;�1; d;+1) (the time structure)

I =
U
k2fi;r;s;og

U
m2f1;:::;nkg

skm (the observable features) (�)

D0

skm
=

�
Dskm

if k = i

Dskm
[f?Fg else

(the observable values)

ful�lling the additional laws for all observation traces � 2 a(q)(n) and n 2 N:

According to our requirement that input values are constant is

�(t)(sim) = �(t0)(sim) for all t; t0 in the domain of � and m 2 f1; : : : ; nig

For all t in the domain of � that are less then the g.l.b. of the domain of �

if it exists is
�(t)(som) = ?F for all m 2 f1; : : : ; nog)

If the g.l.b. (let it denote by �) of the domain of � is for itself in the domain

of � then the trace is �nite and

�(�)(som) 2 Dsom
for all m 2 f1; : : : ; nog)

3 By] we denote the disjoint union. So we can assign to each component of the type
a unique observable feature.

7

And �nally, for the special symbol ? is a(?)(n) = ?F for all n 2 N. Together

with a variable assignment v an intension a can be extended on terms in the

usual way.4 A variable assignment v for a PQ-model F for a given signature �

is a total function which assigns to each variable x 2 Xs (s 2 S) a total function

v(x) : N ! Ds, where v(x)(t) = v(x)(t0) for all t; t0 2 N, to each program

variable xp 2 XPs (s 2 S) a total function v(xp) : N! Ds, and to each channel

variable xc 2 XCs (s 2 S) a total function v(xc) : N ! Ds [?F . The set of

all variable assignments associated to F is denoted by V al(�;F ; X;XP;XC). A

substitution vbx with an object b from the corresponding domain of quanti�cation

is de�ned by the following law: For all s 2 S, n 2 N, and x 2 Xs [XPs [XCs

vbx(y)(n) :=

8>><
>>:

b if y = x, x 2 Xs; and b 2 QXs

b(n) if y = x, x 2 XPs; and b 2 QXP s

b(n) if y = x, x 2 XCs; and b 2 QXCs

v(y)(n) else

We remind: The model of a process in a world t 2 N is a set of observation

traces (possible runs) starting in that world. Since each trace � has a certain

length L(�) the l.u.b. of fd(t; t0)jt; t0 is in the domain of �g, the view of a trace

is in particular associated with an interval of time starting in that world. So,

moments are not the only view of time. We have to consider intervals of time

as contextual information for the accessibility relation (�). So the accessibility

relation will look more like an accessibility relation of an interval based temporal

logic like [12] or [4]. Since our extensions are naturally assigned to worlds and not

to intervals we will not change our logic to an interval temporal logic although

there are several features in common.

4 A Language for Specifying Real-Time Systems

In this section we give an overview of well-formed formulas and how they are

interpreted in a PQ-model. This provides the basis for a de�nition of a speci�-

cation language for real-time systems.

In the section above we have mentioned sorts, function symbols, predicate

symbols (rigid or not), process symbols , and the symbol?, together with logical,

program, and channel variables as primitives of temporal signatures. On these

primitives we build up two kinds of terms:

data terms: consisting of function symbols, logical variables, and program vari-

ables in a sort respecting manner.

channel terms: consisting of channel variables and the symbol ?. A channel

term does not appear in any other term.

Since we have restricted the use of special communication symbols and channel

terms in the construction of terms, it is possible to stay on total functions as

4 A detailed explanation of terms and why we can stay on total functions as intension
on function symbols is given in the next section.

8

intension | nowhere appears ?F during the evaluation of a data term. Further-

more we assume for each signature � that it contains at least two sorts time

and boolean together with special function and predicate symbols. Both time

and boolean have a �xed semantical domain in each PQ-model. For Dtime we

use N[f1g and the special function and predicate symbol 0t denotes the g.l.b.

of N[f1g,1t the l.u.b., �1 the predecessor, +1 the successor, and < denotes

less. Since our logic is linear we can use terms of the sort time for both worlds

and measures. For Dboolean we use ftrue; falseg and the two null-ary function

symbols t and f to denote true and false respectively. We will call terms with

standard extensions in Dtime as terms of sort time, and terms with standard

extensions in Dboolean as terms of sort boolean respectively.

Now we consider the construction of formulas, starting with two di�erent

primitives. Firstly, atomic formulas containing predicates over data terms,

and equations of arbitrary terms as usual. Secondly, command formulas con-

structed from process symbols, data terms, and channel variables, the least set

containing:

{ elementary commands,

q(u : c : d : u0)

a process symbol q together with four sequences of terms respecting the type

of q. Two sequences of data terms u to represent the input values and u0

for the output values, and two sequences of channel terms c for receiving

(in-channels) and d for sending (out-channels).

{ sequential commands, parallel commands, and conditionals,

(�; �) , (�jj�) , and (if b � �)

composed commands where � and � are arbitrary commands while b is a

term of sort boolean.

Other commands like send or receive which are often used as elementary com-

mands should be de�ned by the user. So they can be speci�ed in a problem

speci�c manner. From these primitives | atomic and command formulas | the

formulas of the linear temporal logic of processes were built up by adding the

logical operators : (not) and ! (implication), as well as 9, the concept of ex-

istential quanti�cation for each kind of variables, and di�erent restricted modal

operators to deal with real-time aspects. We use

A , AR

to denote the existence of a moment in time. For intervals in time we use

G , GR , GR , and GR
0

R

respectively. In both cases the subscript restricts the moment in time, while the

superscript �xes the interval and so the additional contextual information for the

9

accessibility relation. A restriction R or R0 is always a fragment of an atomic

formula which has a wild card (?) for a term of sort time.

? = t

or

p(u1; : : : ; ui�1; ? ; ui+1; : : : ; un)

The idea is that we restrict the possible worlds and intervals to those which equals

to the extension of t in the case of the equation or to those which are related to

the extensions of the given terms uk (k 2 f1; : : : ; ng n fig) by the extensions of

the n-ary predicate symbol p. While for the equation it is necessary that t is a

term of sort time, a term uk in the predicate formula only depends on the type

of the predicate. We only have to require that the position of the wild card is

normally occupied by a term of sort time. If the position for the wild card is

obvious it can be omitted. So we can write for a predicate that is used in an

in�x notation e.g. �

A�t or At�

to denote all moments that are less or greater then t respectively. We denote for

a given signature � the set of all linear process formulas by LPF (�).

We conclude this section with the de�nition of validity of a formula ' 2

LPF (�) in a given PQ-model F for �. According to the discussion above we

have to regard moments in time w as well as intervals ` for the contextual

information. By v we denote the variable assignment. We write

F`
v;w j= '

to denote that ' is valid under the variable assignment v in the world w w.r.t the

interval `. For formulas where modal operators don't appear at the outermost

position intervals aren't important. We can de�ne

F`
v;w j= true , F`

v;w j= (u1 = u2) i�. u
Fv;w

1
= u

Fv;w

2
, F`

v;w j= :' i�. F`
v;w 6j= '

and so on.5 For command formulas or formula where modal operators appear at

the outermost position the validity also depends on the contextual information

given by the length (`) of the interval.

F`
v;w j= Ap(u1;:::;?;:::;un)' i�. there exists a k 2 N where k � ` such that

F`�k

v;(w+k)
j= ' and (u

Fv;w

1
; : : : ; k; : : : ; u

Fv;w

n) 2 a(p)(w)

F`
v;w j= G

p2(r1;:::;?;:::;rm)

p1(u1;:::;?;:::;un)
' i�. there exists a k 2 N and a l 2 N [f1g where

k + l � ` such that F l
v;(w+k)

j= ' and (u
Fv;w

1
; : : : ; k; : : : ; u

Fv;w

n) 2 a(p1)(w) and

(r
Fv;w

1
; : : : ; k; : : : ; r

Fv;w

m) 2 a(p2)(w)

Now we will take a deeper look at commands.

5 By u
Fv;w

1
we denote the extension of the term u1 in the world w.

10

F`
v;w j= q((: : : ; ui; : : :) : (: : : ; cn; : : :) : (: : : ; dm; : : :) : (: : : ; u

0

k; : : :)) i�. there ex-

ists a trace � 2 a(q)(w) with length L(�) = ` and for each w0 2 N\ [w;w+ `]

it holds that �(w)(sij) = u
Fv;w

i , �(w0)(srn) = c
Fv;w0

n , �(w0)(ssm) = d
Fv;w0

m , and

�(w + `)(som) = u0
Fv;w+`

k
if w + ` <1.

We remember (see page 7) that the extension of a process symbol is a set of

observational traces. So we had to verify that the terms in the argument posi-

tions match with one such possible trace. The �rst part of the argument, are the

input terms which initially in
uence the process. These terms should match in

the �rst world (w), while the terms for the communication (only channel vari-

ables or the symbol ?) in the second and third part of the argument should

match during the whole run (w0). Finally the output terms, the last part of the

argument should only match if the observation trace is �nite. In all these cases

the corresponding value to a term is determined by it's sort and it's position in

the argument vector, according to the equation (�) on page 7.

F`
v;w j= (�; �) i�. there exists a l 2 N l � `, such that F l

v;w j= � and F`�l

v;w+l
j= �

or ` = 1 and F`
v;w j= �. Furthermore we need some variable conditions. Any

program variable (xp) which appears in � or � but not in the output part of any

elementary command in � or � will stay unchanged i.e. a(yp)(w
0) = a(yp)(w)

for all w0 2 [w;w + `] [N. This is necessary to propagate input and output

parameters over chains of commands, since program variables aren't rigid. We

have similar conditions for the single subprocesses. The overall aim is that vari-

ables which are used in a subprocess but not in
uenced don't change during this

subprocess.6 We also have restrictions for channel variables which model com-

munication. A channel variable which appears only in one subprocess (� or �) as

a sending channel equals ? in the other.7 For channel variables which appear in

the receiving part no constraints are needed. In this process model the channel

is dominated by the sending process. Synchronization in the sense of a minimal

wait doesn't take place.

Since terms are used and not only variables we have the opportunity to write

shorter formulas using matching facilities:

9x proc1(: : : : : : : : : : : : f(x)); proc2(x : : : : : : : : : : : :)

proc1 will determine some x which �ts through f(x) in an observation trace of

proc1's extension. Then these x are propagated to the second process proc2.

F`
v;w j= (�jj�) i�. there exists l1; l2 � `, such that F l1

v;w j= � and F l2
v;w j= � and

` 2 fl1g[fl2g. As above there are restrictions on program and channel variables.

Variables which appear in the earlier �nished process don't change their values

during the period where the subprocess but not the whole parallel process is

�nished. In the case of channel variables used for sending we make the same

6 This is comparable with a closed world assumption or a kind of frame axiom.
7 The channel variable appears in the sending part of an elementary command in this
subprocess

11

restriction but we require that their value equals ?.

F`
v;w j= (if b � �) i�. Firstly, bFv;w = true and F`

v;w j= �. In this case we require

that all variables which are used in (if b � �) but not in
uenced by � don't

change during the time interval [w;w+`][N. Similarlywe require for all channels

to which only � can write that they equal ?. Or secondly, if bFv;w = false and

F`
v;w j= � we use the same restrictions as above by switching between � and �.

Now we declare a formula ' 2 LPF (�) to be valid in F at a moment w

respecting the interval ` (denoted by F`
w j= ') i�. F`

v;w j= ' for each variable

assignment v. Then a formula ' 2 LPF (�) is valid in F (denoted by F j= ')

i�. ' is valid in the initial world 0 and in the initial interval1 (F1
0
j= '). And

�nally a formula ' 2 LPF (�) is valid (j= ') i�. F j= ' holds for each F .

5 Towards a Calculus

In the sections above we have introduced a temporal (modal) logic with an

explicit process concept. Now we will sketch a calculus for doing proofs based on

signed formulas. Modal calculi with signed formulas can be found for example

in [5]. The idea is that by the signing we make interval borders explicit. Since

our logic is quanti�ed, and there a terms of various sorts especially time with

an �xed interpretation, we can use the latter to sign our formulas, instead of

using a new class of symbols. So we get the advantage that we can use the same

mechanism for proving constraints and arbitrary formulas.

De�nition3 signed formulas. The set SPF (�) of all signed process formulas

of a signature � is the smallest set containing: (t : t0 : '), :�, �! , and 9x �

for all formulas ' 2 LPF (�), rigid terms t and t0 of sort time, signed formulas

� and , and logical, or program, or channel variables x.

The idea is, that the terms t and t0 denote lower and upper bounds of the current

interval, in which the formula should be evaluated. So, in an easy way one de�nes

validity of a signed formula in a PQ-model F under a variable assignment v:

If a(t)(0) 2 N, a(t0)(0) 2 N[f1g, and a(t)(0) � a(t0)(0) then8

Fv j= (t : t0 : ') i�. F
a(t

0
)(0)�a(t)(0)

v;a(t)(0)
j= '

else
Fv 6j= (t : t0 : ')

For composed signed formulas this de�nition can be extended in the usual way.

The connection between formulas and signed formulas is then established by

the following theorem.

Theorem4 explicit intervals. Let ' 2 LPF (�) then:9

F j= ' i�. F j= (0t :1t : ')

8 In this case we have a proper interval.
9 Both 0t and 1t are rigid null-ary function symbols of sort time with the standard
extensions 0 and 1.

12

This opens up the possibility to develop a calculus on the basis of signed formulas.

Since only an interactive proof system seems to be desirable, because of the

expressiveness and therefore incompleteness of our logic, we have decided to

develop a sequent calculus.10 To give an insight into the calculus we present a

small collection of rules.

�; (t :t0 :')) � �) (t :t0 :true); �

�) (t :t0 ::');�

�) (t :t0 :'1);� �; (t :t0 :'2)) �

�; (t :t0 :'1 ! '2)) �

�) �
�
x;� �) (0t :1t :9x0 Cx0 = �);�

�) 9x �;�

�; (t; t� :�); (t :t� :�);var-conds) �

�; (t :t0 :�jj�)) �

The rule dealing with negation includes (t : t0 : true) for guaranteeing a proper

interval. Only in this case the formulas (t : t0 : :') and :(t : t0 : ') are

equivalent. For the presented implication rule a proper interval is not necessary,

since the implication is on the left hand side of the sequent. In the rule dealing

with existential quanti�cation x and x0 are logical variables (x0 new). So we have

to guarantee that the term � is rigid. In the rule with the parallel operator var-

conds stands for a set of formulas guaranteeing the variable conditions mentioned

in the semantic de�nition of the section before. To get a sound calculus we have

proved the following lemma for the whole set of rules.

Lemma5 local soundness. Let R =
prem1 � � � premn

concl
be a rule of then for all

F holds: If F j= premi (1 � i � n) then F j= concl.

We will conclude this section with the soundness theorem of the calculus.

Theorem6 soundness. 2 For all closed formulas ' 2 LPF (�) holds:

If ` (0t :1t : ') then j= '

Proof: Application of lemma 5 and theorem 4.

6 Examples

The following examples are intended to illustrate the capabilities of logic and

calculus. The �rst example deals with expressiveness and shows that term gen-

erated structures can be described.

Example 1 expressiveness. Let us assume a signature containing sorts L and E

together with a null-ary function symbol nil of type ()!L and a binary function

symbol cons of type (E,L)!L.11 Furthermore let l and x be logical variables and

xp be a program variable all of sort L, and e a logical variable of sort E. Then

by

8l 9xp (A xp = l) ^ xp = nil ^C (9x 9e x = xp ^A=0t+1 xp = cons(e; x))

10 By conceptual domains we have expressive power of second-order arithmetic.
11 The sorts time and boolean are always given implicitly.

13

we have speci�ed L as the sort of all \lists" over E. For each list l exists a concept

for a program variable (non-rigid) sometimes equal to l, which is equal to nil in

the initial world and growing up from world to world by appending one element

until it is equal to l. So each list can be denoted by cons(e; cons(: : :)) or nil.12

The second example demonstrates the possibility to deal with real-time aspects.

We describe a sending process send where the time of transmitting a data ele-

ment x over a channel c depends on the data element itself.

Example 2 time and data. Let us assume a signature containing a sort S and a

process symbol send of type (S::S:), and a function symbol f of type S! time

then by
8t; x; c H=t (send(x :: c :)! t = f(x))

the duration of send is f(x) time steps.

Finally we present a more elaborated example dealing with sending and receiving

of lists.

Example 3 parallel communication. For this example the following signature is

assumed containing sorts, functions, and process symbols.

sorts: list, data record, data ;

functions: nil : () ! list; /* the empty list */

cons : (data,list) ! list;

rec : (boolean, data)! data record; /* a container */

d : () ! data; /* some data */

processes: sl : (list :: data record :); /* sends a list */

sd : (data :: data record :); /* sends a single data */

se : (:: data record :); /* signals the end of a list*/

rl : (: data record :: list); /* receives a list */

rd : (: data record :: data); /* receives a single data */

re : (: data record ::); /* receives the end signal */

logical variables: x : data; l, l1 : list; t : time;

channel variables: c : data record;

Firstly we describe the sending part.

8c H(sl(nil :: c :)! se(:: c :))

8x; l; c H(sl(cons(x; l) :: c :)! (sd(x :: c :); sl(l :: c :)))

8x; c; t H=t(sd(x :: c :)! (t <1^ (C<tc = ?) ^ (A=tc = rec(t; x))))

8c; t H=t(se(:: c :)! (t <1^ (Cc = ?)^ (A=tc = rec(f; d))))

The process sl which sends a list depends on two primitive processes. The �rst

is se which signals the end of the transmission by sending a data record con-

taining the boolean symbol f, and the second is sd which sends a single data x

encapsulated together with the boolean symbol t in the data record rec(t; x).

12 The �rst order axioms which guarantee that the generation principal is indeed freely
are omitted.

14

Both se and sd are doing nothing during a �nite period of time t, until they send

their information and terminate. In an analogous way we describe the process

of receiving rl by primitives re and rd.

8c H(rl(: c :: nil)! re(: c ::))

8x; l; c H(rl(: c :: cons(x; l))! rd(: c :: x); rl(: c :: l))

8x; c; t H=t(rd(: c :: x)! ((C<tc = ?) ^ (t <1!A=tc = rec(t; x))))

8c; t H=t(re(:: c :)! ((C<tc = ?)^ ^(t <1! (A=tc = rec(f; d)))))

With the assumption that list is generated by cons and nil and that the con-

tainer data record is freely generated by rec it is possible to prove by induction

that for all pairs of lists l and l1, and for all channels (c) a \parallel execution"

of the processes sl and rl implies that the values of l and l1 are the same. This

means the process rl has received the list l which was sent by sl.

8l; l1; c H((sl(l :: c :)jjrl(: c :: l1))! l = l1)

We have proved the last example with machine support, by a prototypical im-

plementation of the calculus in the Groovy proof assistant (for a look and feel,

see [13]), based on a hyper graph method developed by Roland Prei�.

The main idea of the proof is structural induction over lists. So we prove that

if nil is sent nil will be received. For this we use a lemma that denotes \if end

is signaled no data can be received". For the induction step we have to consider

the transmission of a single data. For this we prove that sending is �nite and

the duration equals the receiving, and both the received and the sent data are

the same. This is done by further lemmas which guarantee that the end signal

can't be received if a single data item is sent, and that the receiving process

doesn't wait in�nitely. So the calculus allows us to do proofs in a natural way.

Although we only have a prototypical implementation where each rule is applied

interactively, the proof was done in some hours after �xing the intermediate

lemmas, and so was the proof idea.

7 Conclusions and Future Research

We have discussed a method for a direct process embedding in structures for

quanti�ed temporal logic based on speci�c semantical objects, called process

behavior sets, which are used as extensions for process symbols. So we have

established a basis for proof methods to take advantage of the structural infor-

mation located in process descriptions.

Currently we are evaluating these concepts on larger examples. So we want

to detect more elaborated rules that respect the available structural (syntacti-

cal) information of the speci�ed processes. The endeavor is to develop a proof

method based on something like symbolic execution and induction (compare

[8]), a technique which has been successfully applied in the area of sequential

systems. We are also working on the evaluation of the embedding technique in

other temporal structures (e.g. branching time) and other observable features.

By the latter we want to get more realistic process concepts.

15

Furthermore we are working on a sub-language to describe \executable" spec-

i�cations and re�nement steps. The objective is to get a speci�cation technique

and language which covers the entire development process.

Acknowledgment

I am indebted to W. Menzel for valuable comments and W. Ahrendt, E. Haber-

malz, R. Prei�, and A. Sch�onegge for discussions on the topic of the paper.

References

1. R. Alur and D. Dill. Automata for modeling real-time systems. In M. Paterson,
editor, Proc ICALP 90: Automata, Languages and Programming, volume 443 of
Lecture Notes in Computer Science. Springer-Verlag, 1990.

2. R. Alur and Th.A. Henzinger. Logics and models of real time: A survey. In
J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors, Proc.
Rex Workshop Real-Time: Theory in Practice, volume 600 of Lecture Notes in

Computer Science. Springer-Verlag, 1991.
3. J.A. Bergstra and J.W. Klop. The algebra of recursively de�ned processes and

the algebra of regular processes. In A. Ponse, C. Verhoef, and S.F.M. Vlijmen,
editors, Algebra of Communicating Processes, pages 1{25. Utrecht 1994, Workshop
in Computing, Springer-Verlag, 1995.

4. Z. Chaochen. Duration calculi: An overview. In D. Bj�rner, M. Broy, and I.V.
Potossin, editors, Formal Methods in Programming and their Application, volume
735 of Lecture Notes in Computer Science. Springer-Verlag, 1993.

5. M. Fitting. Proof methods for modal and intuitionistic logics. D. Reidel publishing
company, Dordrecht Boston Lancaster, 1983.

6. Th. Fuch�, W. Reif, G. Schellhorn, and K. Stenzel. Three selected case studies in
veri�cation. In M. Broy and S. J�ahnichen, editors, KORSO: Methods, Languages,

and Tools for the Construction of Correct Software { Final Report, volume 1009
of Lecture Notes in Computer Science. Springer-Verlag, 1995.

7. J.W. Garson. Quanti�cation in modal logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, volume II, chapter 5, pages 249{307. D.
Reidel publishing company, 1984.

8. M. Heisel, W. Reif, and W. Stephan. Program veri�cation by symbolic execution
and induction. In K. Morik, editor, Proc. 11th German Workshop on Arti�cial

Intelligence, number 152 in Informatik Fachberichte. Springer-Verlag, 1987.
9. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International,

1985.
10. A. Mazurkiewicz. Basic notions of trace theory. In J.W. de Bakker, W.P.

de Roever, and G. Rozenberg, editors, Linear Time, Branching Time and Par-

tial Order in Logics and Models for Concurrency, volume 354 of Lecture Notes in
Arti�cial Intelligence. Springer, June 1988.

11. R. Milner. Calculus of communicating systems, volume 92 of Lecture Notes in

Computer Science. Springer-Verlag, 1980.
12. B. Moszkowski. A temporal logic for multilevel reasoning about hardware. IEEE

computer, pages 10{19, February 1985.

16

13. R. Prei�. Groovy: a Graphical Proof and Visualization System | home page.
URL: http://i11www.ira.uka.de/�groovy/.

14. W. Reisig. Petri nets: an introduction. Springer-Verlag, 1985.
15. G. Winskel. An introduction to event structures. In J.W. de Bakker, W.P.

de Roever, and G. Rozenberg, editors, Linear Time, Branching Time and Par-

tial Order in Logics and Models for Concurrency, volume 354 of Lecture Notes in
Arti�cial Intelligence, pages 364{397. Springer-Verlag, June 1988.

16. G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. Gab-
bay, and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 4
Semantic Modelling, chapter 1, pages 1{148. D. Reidel publishing company, 1995.

17

