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Abstract

We study an extension of the Hindley�Milner system
with explicit type scheme annotations and type decla�
rations� The system can express polymorphic function
arguments� user�de�ned data types with abstract com�
ponents� and structure types with polymorphic �elds�
More generally� all programs of the polymorphic lambda
calculus can be encoded by a translation between typ�
ing derivations� We show that type reconstruction in
this system can be reduced to the decidable problem of
�rst�order uni�cation under a mixed pre�x�

� Introduction

Two of the most important cornerstones of type theory
for programming languages are the Hindley�Milner sys�
tem and the second�order polymorphic ��calculus� This
paper tries to explore some of the design space between
them�
The Hindley�Milner system �Mil�	
 extends the

simply�typed ��calculus with polymorphic let�bound
identi�ers� It thus adds considerable expressive power
yet retains the property that no type annotations in
programs are needed� since most general types can be
inferred �DM	�
� This property has made the Hind�
ley�Milner system very appealing as a basis of type sys�
tems for programming languages�
By contrast� the second�order polymorphic ��

calculus F� �Gir��� Rey�
 allows polymorphic types
everywhere� but requires explicit annotations of both
argument types and type instantiations� The general
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problem of typechecking without type annotations is
undecidable �Wel�
 but there have been several ap�
proaches towards type reconstruction where some type
information is given� These generally fall into two cat�
egories� Curry�style reconstruction �lls in polymorphic
abstractions and applications together with type anno�
tations� This style of reconstruction is complicated by
the lack of principal types in F�� The proposed schemes
all have rather complex inference rules with cumber�
some conversions between declared and inferred types
�McC	� OG	�
� By contrast� Church�style reconstruc�
tion requires the position of type abstractions and ap�
plications to be indicated in the original source� This
style of reconstruction �also called partial type recon�
struction �Boe	�
� was shown to be reducible to higher�
order uni�cation �Pfe		
� Even though Church�style re�
construction is thus undecidable in general this result
opens up the possibility for semi�decision procedures
that work well in practice� On the other hand� the po�
sition of a polymorphic application has to be indicated
explicitly in the source� which leads to a rather unfamil�
iar coding style� at least for programmers used to the
Hindley�Milner system�
Recently there have been several approaches towards

extending the Hindley�Milner system with some form
of embedded quanti�ers without going all the way to
the polymorphic ��calculus� For instance� Launch�
bury and Peyton Jones have presented an elegant
type system for syntactic control of interference �LPar

that uses second�order universal quanti�cation� Perry
�Per��
 and L�aufer and Odersky �LO�
 have studied
existential quanti�cation in algebraic datatypes� which
yields a Hindley�Milner style version of Mitchell and
Plotkin�s abstract types �MP		
� This style of existen�
tial quanti�cation has been implemented in compilers
for Hope �Per��
� Haskell �Aug�
 and CAML �MP��
�
R�emy �R�em�
 has extended L�aufer and Odersky�s sys�
tem with universal quanti�cation in datatypes� so that
objects with polymorphic methods can be expressed�
Jones �Jon��
 has investigated record types with poly�
morphic elements as a way to capture essential aspects
of module systems� A proposal along these lines has
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been accepted for inclusion in Haskell ����
It seems that a combination of all of the above sys�

tems� while feasible� would be rather unwieldy� Fortu�
nately� it turns out that it is good enough to consider as
a generalization a far simpler type system that captures
the extensions� commonalities and expresses their dif�
ferences via encodings� The extensions all have in com�
mon that some form of explicit type information is re�
quired� For instance� L�aufer and Odersky�s and R�emy�s
systems restrict existential quanti�cation to the com�
ponents of explicitly declared datatypes� while Jones
restricts universal quanti�cation to �elds of explicitly
declared record types�
Here we study a type system that allows �but does

not require� explicit type scheme annotations for func�
tion arguments� The idea is that a formal function pa�
rameter is polymorphic only if annotated with a type
scheme� otherwise the parameter is monomorphic� i�e�
it has a type� not a type scheme� As an important spe�
cial case we admit a rudimentary form of user�de�ned
data type declaration that introduces a value construc�
tor with a single� possibly polymorphic argument� Fi�
nally� we also allow type scheme annotations for expres�
sions�
Note that this is roughly the kind of type annota�

tions that most programming languages o�er or require�
The crucial extension of this paper is that annotations
and declarations can refer to polymorphic type schemes
instead of just types� The rami�cations of this simple
idea are quite substantial�

� We can express polymorphic function arguments
by annotating the argument with a type scheme�

� We can express data types and record types by
their usual Church encodings in a type�correct
way�

� By slightly modifying these Church encodings� we
can also express existentially or universally quan�
ti�ed component types of records and data types�
thereby subsuming the type systems of Perry�
L�aufer and Odersky� R�emy� and Jones� The en�
codings give us principal type properties and type
inference algorithms for these systems �for free��

� Unlike the situation in the simply typed ��calculus
�Mor�	
 or ML �Mil�	
� it is no longer possible to
reduce type inference to a simple Herbrand uni��
cation problem� We need to consider instead the
problem of �nding a most general substitution that
makes one type scheme an instance of another� We
show here that this problem is reducible to the
problem of �rst�order uni�cation under a mixed
pre�x �Mil��
� which is decidable� Decidability
holds because we still admit only types and not
type schemes in the range of substitutions � oth�
erwise the problem would be equivalent to semi�
uni�cation� which is undecidable �KTU	�
�

� Unlike the situation in F�� we still maintain a
strati�cation between types and type schemes� A
universally quanti�ed variable can be instantiated
only to types� never to type schemes� We get back
the full power of F� in an indirect way� by allowing
type schemes as components of explicitly declared
data types� We show that we can encode all of F�

by providing type declarations for all polymorphic
types in a given F� program� This shows that our
typing discipline provides essentially the same ca�
pabilities as F�� even though the encoding in F�

does not support a formal comparison of expres�
sive power in the sense of Felleisen �Fel��
 since it
fails to be compositional�

Our typing discipline is a conservative extension of
the Hindley�Milner system� Every typable program in
that system continues to be typable� This holds also
if type annotations in the style of ML or Haskell are
added to Hindley�Milner� We were able to show prin�
cipal type properties and soundness and completeness
of type inference fully analogous to the ones stated by
Damas and Milner �DM	�
� Since the engineering issues
of ML�like programming languages and type checkers
are by now well understood� we believe that this makes
our system promising as a practical kernel language on
which type�systematic extensions of ML or Haskell can
be based�
The rest of this paper is organized as follows� Sec�

tion � presents our type system� Section � shows how
previous polymorphic extensions of ML can be embed�
ded in it� Section  discusses an encoding of the poly�
morphic ��calculus� Section � states the most gen�
eral instantiation problem and presents an algorithm to
solve it� Section � presents a type inference algorithm�
Section � concludes�

� The Type System

Figure � presents the abstract syntax of our kernel lan�
guage� Exp��� As in the Hindley�Milner system� we
distinguish between types� which cannot contain quan�
ti�cation over type variables� and type schemes� which
can� Compared to Milner�s language Exp there are two
extensions that can be considered independently� but
that are most useful in combination� One extension
considers type annotations for formal arguments and
expressions� the other considers type declarations�

Type Scheme Annotations

Type scheme annotations can be applied to formal argu�
ments in ��abstractions �x���e and to expressions e���
Annotations with types are common in programming
languages that build on the Hindley�Milner system� For
instance�
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Variables x� y� z

Type Constructors T

Expressions e � x j �x�e j e e� j let x � e in e� Exp terms

j �x���e j e � � annotated terms

j T type injection

j T�� type projection

j newtype T �� � � � �n � � in e type declaration

Type variables �� �� �

Types � � � j �� � �� j T �� � � � �n
Type schemes � � � j �� � �� j ����

Figure �� Abstract syntax�

��� � � � �
� ��� � �� � �� � ���
� �� � �� � ��� � ���

���

�� ��
� ��	�
� � ��

� ���� � ��
� � � ��

� � � �����
�� �� ftv���� �� ��

Figure �� Instance rules for type schemes�

�Taut�
�� x � � � x � �

�� T � � � T � �

� � T � � � T �

� � T�� � T � � �
�Proj�

�Gen�
� � e � �

� � e � ����
�� �� ftv����

� � e � � � � � ��

� � e � ��
�Sub�

�Lambda�
�x�x� � � e � �

�x � �x�e � � � �

� � e � � � �� � � e� � �

� � e e� � ��
�Apply�

�TypedLambda�
�x�x�� � e � ��

�x � �x���e � � � ��
� � e � �

� � �e � �� � �
�Typed�

�Let�
�x � e � � �x�x�� � e� � ��

�x � let x � e in e� � ��
�T � T ����� � T � � e � ��

�T � newtype T � � � in e � ��
�Newtype�

Figure �� Typing rules�
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map � �f� a � b� �xs� �a�� case xs of ���

declares the argument types of function map in terms of
two type variables a and b� By generalizing over these
type variables we then obtain the usual polymorphic
type scheme for map�

map� �a��b��a � b� � �a� � �b��

What is new here is the ability to annotate with type
schemes instead of types� For instance� it is now possi�
ble to write

f �g� �c��c� � Int� � g �	hello	� 
 g �����

As a consequence� a type scheme may now form part
of a larger type scheme� For instance� f�s most general
type scheme would be

��c��c� � Int� � Int�

We therefore have to give up Hindley�Milner�s restric�
tion that quanti�ers may occur only at the outermost
level of a type scheme and have to admit type schemes
such as �� � ���
An immediate consequence is that we have to re�ne

the �generic instance� relation �DM	�
 if we want to get
principal types for the system with annotations� Con�
sider the function �x�Int�� �� Two derivable type schemes
for this function are

�a�Int � �a� and Int � �a��a��

None of these type schemes is a generic instance of the
other� Furthermore� there is no third type scheme that
has both of these type schemes as generic instances�
But using the relation ��� de�ned in Figure �� we get
Int � �a��a� as the more general of both type schemes�
The relation ��� implements a form of subtyping for
type schemes� Rule �� �� together with subsumption
is equivalent to the quanti�er elimination rule of the
Hindley�Milner system� Rule �� �� allows us to re�
quantify a type scheme� Functions over type schemes
are handled by the standard contravariance rule ����
As usual� we identify type schemes that are instances
of each other�
The relation ��� is a subrelation of Mitchell�s con�

tainment relation �Mit��
 and hence is validated by all
type inference models� For type schemes that have
quanti�ers only at the outermost level� ��� is the in�
verse of the �generic instance� relation given by Damas
and Milner �DM	�
� We changed the direction of ���
sign to stay in line with Mitchell�s containment relation
which corresponds to the semantic intuition of subtyp�
ing as subsetting�
��� has the following useful properties�

Proposition ��� Let � and �� be type schemes and let

 be a substitution� If � � � �� then � 
� � 
���

Proposition ��� ��� is transitive�

Proof Sketch� Assume that �� � �� and �� � ��� We
show �� � �� by an induction on the sum of the depths
of the proof trees for �� � �� and �� � ��� Proposi�
tion ��� is used for the case where the last rule in the
proof of �� � �� is an application of rule �� ��� �

The typing rules� given in Figure �� largely follow the
Hindley�Milner system� The two main di�erences are
both motivated by the possible occurrence of quanti�
�ers at all levels in a type scheme� First� it is necessary
to consider type schemes instead of types in the con�
clusion of each typing rule� since type schemes cannot
always be reconstructed using generalization at the out�
ermost level� Second� Hindley�Milner�s elimination rule
for outermost quanti�ers is replaced by a more general
subsumption rule� which takes into account the instance
relation ��� on type schemes�
Type annotations alone are su cient for expressing

polymorphic function arguments� But one shortcoming
of this system remains� the resulting second�order poly�
morphic functions cannot be arguments of polymorphic
functions themselves� since this would require an in�
stantiation of a type variable to a type scheme� For
instance� the following code would not be type�correct�

map f �length� const ���

The problem is that the type variable a in map�s type
cannot be instantiated to the type scheme �c��c��Int�
We circumvent this problem by providing a way to
�package� a type scheme in an explicitly declared data
type�

Type Declarations

A type declaration newtype T �� � � � �n � � in e cor�
responds to a simple form of an algebraic data type
declaration with a single unary constructor� Each type
T �� � � � �n thus introduced is di�erent from ��i	�i
��
The type constructor T may be used anywhere� includ�
ing in the type scheme �� We require that every type
constructor is declared at most once in a program �this
is not enforced by the typing rules�� We often use the
shorthand � or � for vectors of type variables or types�
A similar declaration in Haskell would be

data T a� ��� an � T elemtype�

We generalize Haskell in that elemtype may be an arbi�
trary type scheme instead of a type�
The Haskell syntax above makes explicit our con�

vention that T doubles up as an injection function that
maps values of the component type to values of type
T � � For every new type constructor T there is also a
projection function T��� which is an inverse of the in�
jection T � By contrast� projection in Haskell is implicit
in the meaning of case expressions� Instead of Haskell�s

case t of T x � e





we would write

let x � T�� t in e�

With the help of type declarations we can now code our
problematic example as follows�

newtype ListFun � �c��c� � Int

in let f g � let g� � ListFun�� g

in g� �	hello	� 
 g� ����

in map f �ListFun length� ListFun �const ����

But much more is possible� For once� newtype declara�
tions are su cient to express data types with general
products and sums by their usual Church encodings�
combined with explicit injection and projection opera�
tions� For instance� the type of pairs with a constructor
mkpair and selectors fst and snd would be coded as fol�
lows�

newtype Pair a b � �c� �a � b � c� � c

in let mkpair x y � Pair �k�k x y

in let fst p � Pair�� p �x��y�x

in let snd p � Pair�� p �x��y�y

in ���

Note that the Pair type expands into a type scheme� not
a type� Therefore� we could not apply the same tech�
nique in languages like ML or Haskell� which admit only
types on the right hand sides of data type declarations�
A second example encodes the list type� using the

List type constructor recursively�

newtype List a � �b�b � �a � List a � b� � b

in let nil � List �n��c�n

in let cons x xs � List �n��c�c x xs

in ���

A case expression like

case xs of f nil � e� j cons y ys � e� g

would then be coded as

List�� xs e� �y��ys�e��

Of course� in an actual programming language we
would assume that product and sum types are de�nable
directly� without the need for Church encodings� The
existence of the encodings ensures in this case that the
additional language constructs require no essential addi�
tions to the type system � after all� we could typecheck
by encoding �rst and then using our kernel language� In
the next section� we apply this program to some poly�
morphic extensions of the Hindley�Milner system�

� Extensions

In this section� we show how some previous exten�
sions of Hindley�Milner with embedded quanti�ers can
be expressed in our system� In particular� we deal
with L�aufer and Odersky�s version of abstract types
�LO�
 and with Jones� version of polymorphic struc�
tures �Jon��
� A system equivalent in expressiveness
to R�emy�s �R�em�
 can then be obtained by combining
both extensions�

Abstract Types

We consider a set of global data type declarations

data D � � k��� j � � � j kn�n ���

Here D is a data type constructor� and k�� � � � � kn are
value constructors� Conceptually� a data type construc�
tor is a special instance of a type constructor T � whereas
value constructors k form a separate alphabet� As in
�LO�
 we adopt the convention that any type variables
in one of the �i that do not appear in � are existen�
tially quanti�ed� By contrast� in ML or Haskell such
type variables would be disallowed�

Example ��� The following declares a type of lists
with heterogeneous elements� Each element consists of
some value and a function that maps this value to an in�
teger key� The type of the value may vary from element
to element�

data KeyList � KNil

j KCons ��a� a � Int�� KeyList�

A function that �nds the maximal key can then be writ�
ten as follows�

maxkey xs � case xs of

f KNil � minint

j KCons ��y� f�� ys� � f y �max� maxkey ys g

Slightly modifying our treatment of lists in the last sec�
tion� this program is translated into Exp�� as follows�

newtype KeyList �

�b�b� ��a���a� a�Int�� KeyList� � b� � b

in let KNil � KeyList

�n��c� �a���a� a�Int�� KeyList� � b� n

in let KCons x xs � KeyList

�n��c� �a���a� a�Int�� KeyList� � b� c �x� xs�

in let maxkey xs �

KeyList��xs

minint

���y� f�� ys��f y �max� maxkey ys

Note that the implied existential quanti�er for the type
variable a in the de�nition of KeyList turns into a second
rank universal quanti�er in KeyList�s translation�
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For the general case we augment our kernel language
Exp�� with value constructors and case expressions�

e ��� � � �

j k

j case e of fk�x� � e� j � � � j knxn � eng

Let Exp��!� be the term�language thus de�ned� Given
a data type declaration ���� let �i � ftv��i�n� for i �
�� � � � � n� Then the following typing rules are equivalent
to the treatment in �LO�
�

�AbsI� � � ki � �����i��i � D � �i � �� � � � � n�

�AbsE�

� � e � D � ��

� � ki � ��i�� �i � D � ��

� � �xi�ei � ��i�� �i � �

ftv��� 	 �i � 


�i � �� � � � � n�

� � case e of fk�x� � e� j � � � j knxn � eng � �

Let �� be the relation that results from adding these
rules to those in Figure �� We now give an encoding ���
of Exp��!� in Exp�� that preserves typeability� For
the constructors and case expressions that correspond
to a data type declaration ���� we de�ne�

k�i � "ki �i � �� � � � � n�

where each "ki is a new variable�

case e of fk�x� � e� j � � � j knxn � eng�

� D�� e� ��x��e
�
�� � � � ��xn�e

�
n��

We extend ��� homomorphically to all other expres�
sions� Finally� we add for every data type declaration
of form ��� the global declarations below� where � is a
fresh type variable�

newtype D � � ���������� � ��� � � ��
���n��n � ��� �

in let "ki � �x�D ��y�������� � �� � � � �

�yn���n��n � ��yix�

�i � �� � � � � n�

Then we have�

Proposition ��� For all typotheses �� terms e and
type schemes � in Exp��!��

� �� e � � � � � e� � ��

Proof� An easy comparison of typing derivations� �

Polymorphic Structures

An analogous treatment lets us encode structures with
polymorphic �elds in Exp��� Consider a set of global
structure declarations

struct S � � fl�� ��� � � � � ln� �ng ���

Here� S is a type constructor� and l�� � � � � ln are �eld
labels� To keep the treatment simple� we assume that
every label l occurs in at most one structure type dec�
laration� hence structures do not have scopes of their
own� A more #exible scheme� in which a label could be
part of several structures� would be obtained by adding
overloading to our type system �Jon��� OWW��
� In
symmetry with our treatment of data types� we now
adopt the convention that any type variables in one of
the �i that do not appear in � are universally quanti�ed�

Example ��� We de�ne a type for set objects that con�
tain as a �eld a polymorphic map function�

struct Set a � f elem � a � Bool�

union � Set a � Set a�

map � �a � b� � Set b g

Note that the type variable b in map�s signature does
not appear on the left�hand side of the de�nition� and
hence is considered to be universally quanti�ed� This
structure declaration could be expressed in Exp�� as
follows�

newtype Set a � �c��b���a � Bool� �
�Set a � Set a� �
��a � b� � Set b� � c�

� c�

More generally� let the term language Exp��!� be
obtained by adding structure expressions and selector
functions to Exp���

e ��� � � � j fl� � e�� � � � � ln � eng j $l

Given a structure type declaration ���� we add the
following typing rules� where �i � ftv��i�n� �i �
�� � � � � n��

�PolyI� � � $li � ���S �� ��i��i �i � �� � � � � n�

�PolyE�

� � ei � ��i��
�
i �i � �� � � � � n�

� � $li � S � �� � ��i�� �i �i � �� � � � � n�

� � fl� � e�� � � � � ln � eng � S � ��

Let �� be the relation that results from adding these
rules to those in Figure �� To encode Exp��!� in Exp���
de�ne for every data type of form ����

�$li�
� � "li

where each "li is a new variable�

fl� � e�� � � � � ln � eng�

� S ��k�k e�� � � � e�n�

Extend ��� homomorphically to all other expressions
and add for every declaration ��� the global declarations

newtype S � � ������ � � ���n���� � � � �� �n � ��� �

in let "li � �x�S�� x ��y�� � � � �yn�yi�

�



Then the following proposition is shown by a compari�
son of typing derivations�

Proposition ��� For all typotheses �� terms e and
type schemes � in Exp��!��

� �� e � � � � � e� � ��

Discussion� One shortcoming of the presented en�
codings is that the component types of data types and
structures can have only one layer of quanti�ers� The
encodings share this property with the original propos�
als of L�aufer and Odersky and Jones� but not with
R�emy�s system� A more powerful type system would
admit arbitrary type schemes for the components� This
would present no problems for data types� hence R�emy�s
system could be expressed by a straightforward combi�
nation of our encodings for data types and structures�
But an analogous generalization would not work for
structure types� since there the result of a selection
is captured in a type variable� and therefore needs to
have a type without quanti�ers� �Of course� it is pos�
sible to re�quantify at the outermost level after the se�
lection�� Data types su�er a di�erent shortcoming �
albeit for a similar reason � in that each branch in a
case�expression needs to have a type without quanti�
�ers�
It is possible to lift both restrictions by considering

product and sum types in the kernel language� with �
ranging over

� ��� � j � � � j � � � j � ! � j ����

Alternatively� one can also work around the restrictions
by inventing intermediate data and structure types for
each level of quanti�cation�

� Encoding F�

In this section we present a translation of the second
order polymorphic ��calculus F� into our typing disci�
pline� F� is given by the typing rules below�

�Taut�
�� x � � �F x � �

��I�
�� x � � �F M � ��

� �F �x���M � � � ��

��E�
� �F M � �� � � � �F N � ��

� �F M N � �

��I�
� �F M � �

� �F %��M � ����
�� �� ftv����

��E�
� �F M � ����

� �F M ���
 � ���	�
�

The crucial idea of the translation of F� into our typing
discipline is that a polymorphic F� type ���� is mapped
to a data type T� �� � � � �n where the type construc�
tor T� is indexed by an n�ary type abstraction � and
��� ��� � � � � �n� is the ��lifting of ��s translation�

De�nition� The ��lifting of a type � consists of an n�
ary type abstraction � and types ��� � � � � �n such that
� �� � � � �n � � and ��� � � � � �n are maximal subterms
of � that do not contain �� We write in this case

lift� � � ��� ��� � � � � �n��

We arrange such that for every translated type �������

there is in the translation a global type declaration

newtype T� �� � � � �n � ����� � �� � � � �n�

where lift� �� � ��� � � ���
For simplicity� we avoid variable renamings by as�

suming that all type variables in the F� source are mu�
tually distinct� The encoding of F� types is then given
by�

�� � �

��� � ���
� � ��� � ���

������� � T� �� � � � �n
where lift� �� � ��� ��� � � � � �n��

This encoding is stable under substitutions� as is shown
in the following lemma�

Lemma ��� For all F� types ��� ��� type variables ��

����	�
���
� � ����	�
�

�
� �

Proof� By induction on the structure of ��� The case
�� � ������ relies on the observation that if

lift� � � ��� ��� � � � � �n�

then
lift� 
� � ��� 
��� � � � � 
�n��

for any substitution 
 that does not involve �� �

We extend ��� pointwise to type environments� de�n�
ing

fxi � �ig
� � fxi � �

�
i g�

We now come to the encoding of F� terms� Since this
encoding depends on both a term and its type� which in
turn depends on a type environment� we formulate ���
as a mapping from F��s typing rules for type judgments
� �F M � � to a di�erent set of typing rules for
type judgments �� �� M� � ��� We will then show
in a second step that each �� rule is valid as a �
derivation in an augmented environment�

�



Rules �Taut�� ��I� and ��E� are mapped by ���
to identical rules with �� instead of �F � For the
remaining two rules� we de�ne�

��I�� �

lift� �� � ��� ��� � � � � �n�

� �� ftv����

�� �� N � ��

�� �� T� ��x����N� � T� �� � � � �n

��E�� �

lift� �� � ��� ��� � � � � �n�

�� �� N � T� �� � � � �n

�� �� T��
� N h��i � ������	�
��

In rule ��E�� the type argument ��
 is translated to a
representative h�i� which is a term with type ��� The
mapping hi from F� types to representatives is de�ned
below�

h�i � x�
h�� � ��i � �x���� �h��i
h����i � T� ��x����h�i�

where lift� �� � ��� � � ��

De�nition� Given a type scheme �� let

&� � fx� � � j � � ftv���g�

Analogously for an F� term M � let

&M � fx� � � j � � ftv�M�g�

Finally� for an F� derivation D with conclusion � �
M � �� let SD be the set of all polymorphic types of
form ���� occurring in the environment or type part of
a typing judgment in D� Then the type environment
&D is given by

&D � &M � f T� � ��������� � ��� T� �

j ������� � SD�lift� � � ��� � � ��g�

Informally� &D contains a binding x� � � for every
free variable � in �� and it contains for every poly�
morphic type in the derivation D a corresponding type
constructor T�� &D can be produced by a Exp�� con�
text which consists of a series of type declarations of
the form

newtype T� �� � � � �n � ����� � �� � � � �n�

followed by a series of ��abstractions of the form �x� �
��

Lemma ��� &� � h�i � ���

Proof� Directly from the de�nition of hi� �

The following proposition is shown by a straightfor�
ward induction on �F derivations�

Proposition ��� Let D be a typing derivation in F�

with conclusion � �F M � �� Then there exists a
unique term M� and a �� �Proof with structure D�

which concludes with

���&M �� M� � ���

It remains to be shown that each D� derivation can be
completed to a valid Exp�� derivation� To show this�
we need a standard property of Exp��� namely that
type derivations are invariant under weakenings and ad�
ditions of hypotheses� This is stated in the following
lemma� which is shown by a straightforward induction
on typing derivations�

Lemma ��� If x �� fv�e� then �� x � �� � e � � i�
� � e � ��

Theorem ��� If � �F M � � by an F� derivation D
then ���&D � M� � ���

Proof� By an induction on the structure of D� If the
last step in the proof is an application of a �Taut� rule�
the result follows immediately� If it is one of ��I� or
��E�� the result follows by a simple inductive step� As�
sume now that the proof consists of a derivation D� of
� �F M � �� followed by an application of rule

��I�
� �F M � �

� �F %��M � ����
�� �� ftv�����

By the induction hypothesis� ���&D� �F M� � ���
Let &� � &D�nfx� � �g� Assume �rst that � � ftv�M��
Then &D� contains a binding x� � �� By rule �Lambda��

���&� � �x� � ��M
� � �� ��� ���

On the other hand� if � �� ftv�M�� ��� follows from the
induction hypothesis� rule �Lambda�� and Lemma ��
Then by rule �Gen�� since � is free in ���&��

���&� � �x� � ��M
� � ����� ��� ��

Furthermore� &D contains both &
� and the binding

T� � ��������� � ��� T� �� ���

It follows by rules �Taut�� �Sub� that

���&D � T� � ������ � � �� T� � � ���

It also follows from �� and Lemma � that

���&D � �x� � ��M
� � ����� ��� ���

Since �� � � � by assumption� the case then follows
from ���� ��� and an application of �App��
Assume �nally that the proof D consists of a deriva�

tion D� of � �F M � �� followed by an application of
rule

��E�
� �F M � ����

� �F M ���
 � ���	�
�
�

	



By the induction hypothesis� ���&D� � M� � ��������
where ������� � T� � � for some type constructor T�
such that � � � �� and D contains the binding

T� � ��������� � ��� T� �� �	�

Then by �Taut�� �Proj� and �Sub��

���&D� � T��
� � T� � � ������ ���� ���

By rule �App��

���&D� � T��
� M� � ������ ���� ����

Then by rule �Sub��

���&D� � T��
� M� � ����� � ������	�
��� ����

Since &D � &D� it follows with Lemma � that

���&D � T��
� M� � ����� � ������	�
��� ����

Furthermore� since &D � &� � Lemma �� with
Lemma � implies that

���&D � h��i � ������ ����

Then by ����� ���� and rule �App��

���&D � T��
� M� h��i � ������	�
��� ���

Finally with Lemma ���

���&D � T��
� M� h��i � ����	�
���� ����

which proves the case� �

Example ��	 Consider the successor function on
Church�numerals

"n � %���f � �� ���x � ��fn x�

which is given by�

succ � ������� ��� �� ���
����� � ��� � � �

succ � �m � ������ ��� �� ��

%���f � � � ���x � ��

m��
 f �f x��

The liftings of succ�s argument and result type schemes
with respect to their quanti�ed type variables are�

lift� ������ ��� �� � � ��� ��� �� �

lift� ����� � ��� � � � � �� � ��� � � ��

We thus need the following global type declarations�

newtype S � ����� ��� ��� �� �

newtype T � ���� � �� � ��� � � ��

Translating the successor function results in

succ� � �m�S�T ��x� � ���f � � � ��

�x���S�� m x� f �f x���

Although S and T are identical and a single type dec�
laration would be su cient� the translation does not
provide this simpli�cation�

It might seem that the F� translation makes our
previous encodings of abstract types and polymorphic
structures super#uous� since these can clearly be ex�
pressed in F�� However� unlike these previous en�
codings� which had only local transformation rules for
terms� the translation of F� depends on the full typing
derivation of an F� program� It is therefore not clear
how to use the translation for validating typing rules for
abstract types and polymorphic structures in Exp��� as
we did in the last section�

� Finding Most General

Instantiators

In this section we study the problem of �nding substitu�
tions that make one type scheme an instance of another�

Preliminaries� Substitutions and Uni	

ers� A �type variable� substitution is an idempotent
mapping from type variables to types that maps all but
a �nite number of type variables to themselves� Let
dom�
� � f� j 
� �� �g� Substitutions are extended ho�
momorphically to mappings on types and type schemes�
When applying a substitution 
 to a type scheme ��
we assume that the bound variables in � are disjoint
from dom�
�� This can always be achieved by renaming
bound variables in ��
Let � be the identity substitution and let ��	�
 be

the mapping �idempotent or not� that replaces � by � �
Composition of substitutions � and 
 is written 
 � ��
Let V be a set of type variables� Then 
jV is the substi�
tution that equals 
 on all type variables in V and that
is the identity on all other type variables� Conversely�

nV is the substitution that equals 
 except on V � where
it is the identity�
Let U be a �nite set of type variables� Usually we

use U for the universe of type variables that are of in�

terest in the situation at hand� We de�ne 
� �
�
U 
� if

�� � 
��jU � 
�jU � We write 
� �U 
� if ���
� �
�
U 
��

Note that this makes the �more general� substitution
the smaller element in the pre�order �U � This choice�
which reverses the usual convention in treatments of
uni�cation �e�g� �LMM	�
�� was made to stay in line
with the semantic notion of type instance�
We make �U a partial order by identifying substitu�

tions that are equal up to variable renaming� or equiv�
alently� by de�ning � �U 
 i� � �U 
 and 
 �U �� It
follows from �LMM	�
�Theorem �
 that �U is a com�
plete lower semi�lattice where least upper bounds� if
they exist� correspond to uni�cations and greatest lower
bounds correspond to anti�uni�cations�

The Instantiation Algorithm� We address
here the following problem�

�



���I ��	�
 �I � � �

�T�	�
 �I � � T� �� �� ftv�� �� �T�	�
 �I T� � � �� �� ftv�� ��


 �I �� � �� � �� � �� ��� �� new � �� ftv���� ���

�
 � ��� � �� 	�
�nf�����g �I � � �� � ��


 �I �� � �� � �� � �� ��� �� new � �� ftv���� ���

�
 � ��� � �� 	�
nf�i���g� �
I �� � �� � �

���I

� �I ��� � �� 
� �I �� � ��� 
 � 
� t 
�


 �I �� � �� � ��� � ���

�T �I

i �I �i � � �i �i � �� � � � � n� 
 � 
� t � � � t 
n


 �I T ��� � � � � �n � T � ��� � � � � �
�
n

�� ��I

 �I ��	�
� �  � new


nf�g �I ���� � 

�� ��I

 �I � � �T�� � � � �n	�
�� T new f�� � � � �ng � ftv���������


 �I � � �����

Figure � Algorithm MGI�

�Instantiating Substitution�� Given type
schemes � and ��� �nd the most general sub�
stitution 
 � MGI�� � ��� such that

� � 
��� provided 
 exists� return failure
otherwise�

This problem can be reduced to the uni�cation un�
der a mixed pre�x problem �Mil��
� Uni�cation under
a mixed pre�x involves �nding a substitution U that
solves a system of equations

Q��� � � � Qm�m�s� � t� � � � � � sn � tn

where the Qi are ���quanti�ers and si and ti are simply�
typed ��terms� We shall be concerned here only with
the simpler problem where si and ti are �rst�order
terms� i�e� types� The domain of the substitution U
are the existentially quanti�ed variables in the pre�x
Q��� � � � Qm�m� Let �i be one such variable� Then
U�i can refer to any variable �j with j � i� but not to
any variable bound further to the right than �i�
The reduction of the instantiation problem to a uni�

�cation under a mixed pre�x problem proceeds in three
steps�

Step ��� Decompose the instantiation problem to a
system of equations with quanti�er pre�xes by applying

the mapping ��� de�ned below�

����� � �� � ����� � �� if � �� ftv��
�� � ������� � ����� � ���� if � �� ftv���
��� � �� � ��� � ����

� � ���� � ���
� � ��� � ����

�

��� � �� � ��� � ���� ���� � �� � �� �
��� � ���

� � ��� � ���
�

where ��� �� new�

�� � ��� � ����
� � ���� ���� � �� � �� �

���� � ���
� � ��� � ����

�

where ��� �� new�

�� � � ��� � � � � �

The meta�variable  in the �rst clause of this mapping is
assumed to range over type schemes without quanti�ers
at the outermost�level�

 ��� � j � � ���

Step �� Bring the resulting system into pre�x form by
applying the equations

E � �Q��E �� � Q���E � E ��
�Q��E� � E � � Q���E � E ��

left�to�right as often as necessary�
Step �� Let E��� � ��� be the system resulting from

Step �� Then a uni�cation under a mixed pre�x problem

��



E�� � ��� is obtained by existentially quantifying all
free variables in E��

E�� � ��� � �ftv�E���E�

Proposition ��� � 
� � 
�� i� 
 is a solution to the
problem E�� � ����

A more direct approach� which combines the trans�
formation to a uni�cation under a mixed pre�x and the
solution of this problem in a single algorithm� is shown
in Figure � Algorithm� MGI is expressed as an infer�
ence system whose clauses are of the form


 �I � � ���

Each derivation step takes as inputs two type schemes
� and ��� It yields as output a substitution 
� We will
show that 
 is the most general substitution such that
� 
� � 
�� holds�
The most interesting rule of the algorithm is �� ��I �

This rule has to enforce the side�condition �� �� ftv����
in the corresponding instance rule� �� ��� It does this
by replacing � with a Skolem function T that has
as arguments all other type variables in � and ������
This way� any substitution which would violate the
side�condition by instantiating some type variable to
� would lead to failure of an ���I rule in MGI due to a
circular variable dependence �an �occurs check���
We now state soundness and completeness of algo�

rithm MGI� The proofs for this and the following the�
orems proceed by standard inductions on derivations�
Proofs are omitted here� they will be given in a forth�
coming technical report �OL��
�

Lemma ��� �Substitution� If � � � �� then � 
� �

���

Theorem ��� Let �� �� be type schemes� let 
 be a
substitution and let U be a �nite set of type variables�


Soundness� If 
 �I � � �� then dom�
� � ftv��� ���
and � 
� � 
���


Completeness� If � 
� � 
�� then there is a sub�
stitution � �U 
 such that � �I � � ���

For type reconstruction we need a slightly di�erent
version of this algorithm that restricts the returned sub�
stitution to be the identity on some given variable set
V � This algorithm is again given in logical form� For
simplicity� we reuse the �I symbol� writing

V� 
 �I � � ���

The modi�ed algorithm is obtained from MGI by
skolemizing V � using the rule below�

T�� � � � � Tn new � � �Ti	�i
i��� ���� n 
 �I �� � ���

f��� � � � � �ng � ��� � 
 �I � � ��

Corollary ��� Let �� �� be type schemes� let U and V
be �nite sets of type variables� and let 
 be a substitu�
tion�


Soundness� If V � 
 �I � � �� then dom�
� �
ftv��� ���nV and � 
� � 
���


Completeness� If � 
� � 
�� and 
jV � � then
there is a substitution � �U 
 such that V � � �I

� � ���

Proof� Direct from Theorem ��� and the de�nition of
modi�ed MGI� �

� Type Reconstruction

Figure � explains the type reconstruction algorithm�
Following �R�em	�
� it is expressed as an inference sys�
tem� with clauses of the form

V� 
� �W e � � and V� 
� �G e � ��

Each derivation step takes as input a type variable set
V � a typothesis � and an expression e� It yields as out�
put a substitution 
 and a type scheme �� Informally�
whenever a clause V� 
� �G e � � is derivable� then 
 is
the identity on V and 
� � e � � holds� Furthermore�
whenever V� 
� �W e � � is derivable� then � is the
most general type scheme such that 
� � e � � holds�
This will be made precise in the theorems below�
The purpose of the set of variables V is to prevent

the computed substitution from touching type variables
that occur free in annotations� For instance� given the
function declaration

map � �f� a � b� �xs� �a�� case xs of ���

the body of map would be typechecked under assump�
tions f� a � b� xs� �a�� It is not OK to instantiate these
variables when typechecking the body of map� Such an
instantiation is prevented by including a and b in V �
The type reconstruction algorithm uses the auxil�

iary clause �E � � ��� which states that �� is obtained
from � by instantiating generic type variables� The only
derivation rule for this clause is ��Elim�W � All �W

clauses have a derivation that ends in a �Taut�W and
�Gen�W rule� All other rules in Figure � have a �G

conclusion� Informally� this forces a complete general�
ization of the result type scheme after each derivation
step�
The most complex rules in the reconstruction algo�

rithm have to do with function application� Two rules
are needed� depending on whether type reconstruction
for the function part of the application yields a function
type or a type variable� In the �rst case� the rule com�
putes a substitution instance of the result type scheme
of the function� In the second case� a fresh type vari�
able is created to hold the function result type� which
corresponds to what is done in Hindley�Milner type re�
construction�

��



��Elim�W �E ���� � ��	�
� � new

�Taut�W V � � ��� x � �� �W x � �

V � � ��� T � �� �W T � �

�Gen�W
V � 
� �G e � �

V � 
 jftv� � �W e � �ftv���nftv�
����

�Lambda�W
V � 
��x�x��� �W e � � � new

V � 
�x �G �x�e � 
�� �

V � ftv��� � 
��x�x��� �W e � ��

V � 
�x �G �x���e � � � ��

�Apply�W
V � 
�� �W e � � �E � � �� � ��

V � 
�� �W e� � �� V � 
� �I �� � �� 
 � 
� t 
� t 
�

V � 
� �G e e� � 
��

V � 
�� �W e � � �E � � � � new

V � 
�� �W e� � �� V � 
� �I � � �� � � 
 � 
� t 
� t 
�

V � 
� �G e e� � 
�

�Typed�W
V � ftv��� � 
�� �W e � �� V � ftv��� � 
� �I �� � � 
 � 
� t 
�

V � 
� �G �e � �� � �

�Let�W
V � 
��x �W e � � V � 
���x�x��� �W e� � �� 
 � 
� t 
�

V � 
�x �G let x � e in e� � 
��

�Proj�W
T � � � � �E � � �� � T �

V � �� �G T�� � T � � ��

�Newtype�W
��� � ���� � T � V � ftv����� � 
��T � T ����� �W e � ��

V � 
�T �G newtype T � � � in e � ��

Figure �� Type reconstruction algorithm�
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Lemma 	�� �Substitution� If � � e � � then 
� �
e � 
��

Theorem 	�� Let � be a typothesis� let e be an expres�
sion� let � be a type scheme� Let V � ftv��� 	 ftv�e�
and U be �nite sets of type variables and let 
 be a
substitution�


Soundness� If V� 
� �W e � � then dom�
� �
ftv���n�V � ftv�e� �� and 
� � e � ��


Completeness� If 
� � e � � and 
jV �ftv�e� � �

then there is a substitution � ���

U 
 and a type
scheme �� such that V� �� �W e � �� and ���� � ��

Corollary 	�� �Principal Types� Let � be a closed ty�
pothesis� If � � e � � then there is a type scheme
�� � � such that 
��� �W e � �� and � � e � ���

� Conclusion

We have presented a type system that generalizes sev�
eral recent second�order polymorphic extensions of the
Hindley�Milner system� The presented type system
stays �rmly in the tradition of Hindley�Milner in that
all Hindley�Milner programs continue to be typable
with the same types� and the essential theorems carry
over�
To keep the present treatment simple we have kept

the type system fairly small� When applied in a pro�
gramming language� several extensions would be possi�
ble and maybe even desirable� We have already dis�
cussed polymorphic sum and product type schemes�
As another possible extension� it is straightforward to
add polymorphic recursion �Myc	
� which is known
to be undecidable in the absence of type declarations
�Hen��� KTU��
�
Starting with Hope �BMS	�
� many programming

languages have supported polymorphic recursion when
explicit declarations are given for polymorphically re�
cursive functions� Nevertheless� we are not aware of
a formal analysis of type reconstruction for these lan�
guages� Our system can be extended to polymorphic
recursion by adding the typing rule below�

�Letrec�
�x� x�� � e � � �x� x�� � e� � ��

� � letrec x�� � e in e� � ��

The corresponding clause for the type reconstruction
algorithm is�

�Letrec�W

V � ftv��� � 
���x� x��� �W e � ���

V � ftv��� � 
� �I ��� � �

V � ftv��� � 
���x� x��� �W e� � ��


 � 
� t 
� t 
�

V � 
� � letrec x�� � e in e� � ��

An extension of the soundness and completeness proofs
for type reconstruction is straightforward�
As a more ambitious extension one could combine

our system with subtyping� This is particularly intrigu�
ing since we already have a subsumption rule� albeit for
type schemes� not for types� Moreover� the instance re�
lationship on function type schemes uses the contravari�
ance rule that is standard in subtyping systems� What
is still missing is a de�nition of subtyping for types�
An extension along these lines should yield a system in
which parametric polymorphism is regarded as a spe�
cial form of subtyping� which would lead to a closer
integration of the two typing disciplines�
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