
Many�Sorted Logic in a Learning Theorem Prover

Thomas Kolbe� Sabine Glesner�
� FB Informatik� TH Darmstadt� Alexanderstr� ��� ���	
 Darmstadt� Germany

� Fakult�at f�ur Informatik� Universit�at Karlsruhe�
Vincenz�Prie
nitz�Stra
e 
� ����	 Karlsruhe� Germany

kolbe�informatik�th�darmstadt�de glesner�ipd�info�uni�karlsruhe�de

Abstract� In a learning theorem prover� formulas can be veri�ed by
reusing proofs of previously veri�ed conjectures�Reuse proceeds by trans�
forming a successful proof into a valid schematic formula which can be
instantiated subsequently� In this paper� we show how this reuse approach
is extended to many�sorted logic� We �rst present the logical foundations
for reasoning w�r�t� di�erent sortings� Then their operational realization
is given by developing a many�sorted proof analysis calculus for extract�
ing the sort constraints imposed by a proof� For guaranteeing the validity
of subsequent instantiations�we extend the second�ordermatching calculi
for retrieving and adapting schematic formulas such that the computed
sort constraints are satis�ed� Finally we demonstrate the relevance of our
extensions with several examples of many�sorted reuse�

� Introduction

The improvement of theorem provers by machine learning techniques has re�
cently been realized successfully in a number of applications� cf� e�g� ��� �� �	
�
The Plagiator�system ��
 is a learning theorem prover based on the reuse of
previously computed proofs by the method of Kolbe � Walther ��� 

� From an
abstract point of view� a given proof is transformed into a valid formula� which
is generalized and instantiated subsequently by certain �second�order� substitu�
tions while preserving its validity� More precisely� a given proof AX � � of a
conjecture � from some axioms AX is analyzed and generalized� yielding a valid
formula C � � containing function variables instead of function symbols� Now
for each new conjecture � where some �second�order� matcher � is found such
that ���� � �� the original proof can be reused obtaining a set ��C� of proof
obligations for �� i�e� ��C�� � is valid and the reuse succeeds if ��C� is veri�ed�

However� problems arise if this reuse approach for unsorted logic is extended
to many�sorted logic� where objects of di�erent basic data structures like num�
bers� lists� trees etc� can be distinguished syntactically by specifying their sort� cf�
e�g� ��
� A many�sorted logic is an unsorted logic parameterized by a sorting� i�e�
a mapping which provides the sort information for variables and function sym�
bols� This is commonly used in automated reasoning since more e�cient calculi
can be built which exploit the given sort information �here we do not consider
more general order�sorted logics with hierarchical sort relations� cf� ���
��

As terms and formulas are interpreted w�r�t� the sorting of variables and
function symbols occurring in them� also the validity of formulas depends on the



speci�ed sorting� Consider e�g� the formula � �� ��x x � a�� b� � b� where
a� b�� b� are constants and x is a variable� In unsorted logic or in a many�sorted
logic where a� b�� b� and x have the same sort� � is valid� while in a many�
sorted logic where e�g� a� x have the sort A and b�� b� have the di�erent sort B�
� is not valid� Hence a successful proof of � w�r�t� the �rst sorting cannot be
reused without considering the sort information� because otherwise an obviously
incorrect �proof� of � w�r�t� the second sorting would be obtained� A simple
remedy for this problem would be to admit only those substitutions for reuse
where the sorting is exactly retained� but this approach is far too restrictive�

For obtaining a more general criterion concerning admissible substitutions�
we must be able to abstract from the �xed sorting used in the proof of some
conjecture �� We extract the sort constraints a proof imposes on the symbols
occurring in it� e�g� the constraint that the �range� sort of b�� b� must be identical
to the sort of x in our example above� In this way we obtain the general statement
that � is valid w�r�t� each sorting satisfying the sort constraints� and therefore
the given proof of � can be reused for verifying some conjecture � which is
speci�ed w�r�t� some di�erent sorting only if the sort constraints are satis�ed��

In Section � we introduce some formal concepts and show that the validity
of formulas w�r�t� sortings or sort constraints is retained when applying sorted
�second�order� substitutions� Section � shows how a successful proof is analyzed
yielding a set of sort constraints whose satisfaction guarantees the validity of
instantiations� We further extend the notion of proof shells �

� which represent
reusable proofs� by a component obtained by generalizing the sort constraints�
In Section � we deal with the goal�directed instantiation of proof shells for new
conjectures respecting the sort constraints and give examples for many�sorted
reuse� We summarize in Section � and comment on implementational issues�

� Many�Sorted Logic

We introduce the syntax and semantics of many�sorted logic as we use it through�
out this paper� In contrast to common formalizations ��
 which assign a priori
sorts to �variable and function� symbols� we introduce sortings as special syn�
tactic objects for assigning sorts to symbols� This allows us to reason about
formulas w�r�t� di�erent sortings without changing the formulas themselves�

��� Syntax of Many�Sorted Logic

The many�sorted language is built from the set X of �rst�order variables and the
set � �

S
n�n of function symbols which is the union of all function symbols

of arity n � IN� The set T ���X � of terms and the set F���X � of formulas are
built as usual� where only equations t� � t� with t�� t� � T ���X � are used as
predicates� For representing second�order substitutions� we introduce a second

� The usual relativization �using unary predicate symbols for each sort� to transform
many�sorted into unsorted formulas is not helpful for our application� since we have
to reason about the validity of some �unchanged� formula w�r�t� di�erent sortings�



set W � fwi j i � INg of parameter variables� Here wi � Wn � fw�� � � � � wng
denotes the ith argument position of an n�ary function� i�e� a functional term
t � T ���Wn� built from function symbols and parameter variables corresponds
to the 	�term 	w�� � � � � wn�t from the 	�calculus� To obtain a many�sorted logic�
we introduce sortings for assigning sorts to variables and function symbols�

De�nition � �sorts� sort variables� sortings	� Let S be a set of sort symbols
and let S��X � S� �SX be the set of sort variables� where SX � fS�x� j x � Xg
and S� �

S
n S�n with S�n � fS�f� i� j f � �n� 	 � i � ng� A sorting 
 is a

function 
 � S��X � S from sort variables to sort symbols�

Compared to the usual notion of an S�ranked alphabet ��
� sort variables provide
an indirection when assigning sorts� For a �xed sorting 
 therefore 
�S�f� 	��
denotes the range sort of a function symbol f and 
�S�f� i��� � � i � n� denote
the domain sorts of f � This formalization is better suited for dealing with sort
constraints subsequently but makes no di�erence when de�ning well�sortedness�

The set of all �
��sorted terms of sort s consists of variables x � X where

�S�x�� � s and terms f�t�� � � � � tn� where f � �n� 
�S�f� 	�� � s� and ti is a

�sorted term of sort 
�S�f� i��� for � � i � n� Similarly 
�sorted formulas are
built from 
�sorted equations t� � t� where t�� t� are 
�sorted terms of the same
sort� Since all sort information is supplied by the sorting 
� we do not need any
sort information in formulas� i�e� we use �unsorted looking� quanti�ers like �x
instead of denoting the sort of a quanti�ed variable by �x � s for 
�S�x�� � s�

In general� a substitution � is a partial function � � X � � � T ���X �W�
whose �nite domain is denoted by dom��� � X � �� A substitution � � X �
T ���X � is called a �rst�order substitution� An injective �rst�order substitution

 � X � X is a variable renaming� A second�order substitution � is a substitution
� � � � T ���W� such that ��f� � T ���Wn� for each f � �n 	 dom���� We
neither admit non�parameter variables from X occurring in ��f� ��� is closed��
nor variables from X �W occurring in dom��� ��� is pure���

First�order substitutions are applied to terms as usual� Variable renamings
can also be applied to formulas� replacing variables in the scope of quanti�ers� A
second�order substitution � is applied to terms by ��x� � x and ��f�t�� ���� tn�� �
����f�� for the �rst�order substitution � � fw����t��� ���� w����t��g on parame�
ter variables� Applying � to a formula � is done by preserving the structure of
� and replacing the terms contained in � as described� The restrictions �closed�
and �pure� for second�order substitutions prevent variables from being caught
within the scope of quanti�ers and preserve the closeness of formulas in appli�
cations� E�g� applying the non�closed substitution fb�xg to the closed formula
��x f�x� � b�� f�a� � b yields the non�closed formula ��x f�x� � x�� f�a� � x�

As usual� a �rst�order substitution � is 
�sorted if ��x� is a 
�sorted term
of sort 
�S�x�� for each x � dom���� A second�order substitution � is 
�sorted
if for each f � �n 	 dom���� the term ��f� is 
f �sorted of sort 
�S�f� 	�� for
the modi�ed sorting 
f �� fS�w�� 
� 
�S�f� ���� � � � � S�wn� 
� 
�S�f� n��g � 
�
It is easy to show �by structural induction� that the 
�sortedness of terms and
formulas is retained when applying a �rst�order substitution �� variable renaming

� or second�order substitution � which is 
�sorted� cf� ��
�



��� Semantics of Many�Sorted Logic

The semantics of a 
�sorted logic is given as usual ��
� A 
�sorted algebra M �
�U� I� is a pair of a universe U �

S
s Us� where Us �� 
 is the universe of sort

s � S� and an interpretation I� mapping each function symbol f � � to a
function fI on U of the appropriate arity and respecting 
�S�f� i��� 	 � i � n�
A 
�sorted variable assignment V � X � U maps variables to elements of the
universe of the appropriate sort� A formula � is called 
�satis�able if an algebra
M exists such that �M�V � j�� � for each variable assignment V � where j��

denotes the meaning w�r�t� �xedM and V � A formula � is 
�valid� written j�� ��
if M j�� � for each 
�sorted algebra M �

If a 
�sorted variable renaming 
 is applied to a 
�valid� closed formula ��
then 
��� is also 
�valid because the application of 
 results in a bound renaming
of quanti�ed variables which is known to be validity preserving� More interesting
is the application of a second�order substitution � to a 
�valid formula� which is
validity�preserving due to the properties of � being pure and closed� cf� ��
�

Theorem� �
�validity under second�order substitutions	� Let 
 be a sort�
ing and let � be a 
�sorted� closed formula� If � is 
�valid� then ���� is also 
�valid
for each 
�sorted second�order substitution ��

For reasoning about the validity of a formula w�r�t� di�erent sortings� how�
ever� we now replace the absolute sorting from Theorem � by a relative sorting�
for which only the satisfaction of some sort constraints is required�

De�nition 
 �sort constraints� collision sets� satisfy� col�valid	� A �sort	
collision set col � S�

��X is a set of pairs of sort variables �S�� S�� � S�

��X �
called sort constraints� A sorting 
 satis�es a collision set col i� it satis�es each
contained sort constraint �S�� S�� � col by 
�S�� � 
�S��� A formula � is called
col�valid i� � is 
�valid for each sorting 
 where col is satis�ed and � is 
�sorted�

E�g� the sort constraint �S�f� 	�� S�x�� represents that the range sort of the
function symbol f must be identical to the sort of the variable x� cf� De�nition
�� but without committing this sort to a speci�c s � S� Hence due to Theorem ��
�� is col�valid� is a stronger statement w�r�t� instantiations than �� is 
�valid��

Corollary � �col�validity under second�order substitutions	� Let col be a
collision set and � a closed col�valid formula� If the sorting 
 satis�es col and �
is 
�sorted� then ���� is 
�valid for each 
�sorted second�order substitution ��

Note that the 
�validity of a formula � is independent of the part of 
 con�
cerning �sort variables for� symbols not occurring in �� Hence when considering
the 
�validity of � we may modify 
 for those new symbols�

Example � �col�validity vs� 
�validity	� Let 
 be a sorting where the con�

stants a�� a�� a�� a� and the variables x� y have sort A� the constants b� b�� b� and

the variable u have sort B� and the constant c and the variable v have sort C�

Consider the following formulas and assume that � is known to be 
�valid�

� �� ��x x � a�� � ��y y � a��� a� � a�

�� �� ��u u � b� � ��v v � c�� b� � b��



Now we cannot apply Theorem � for showing the 
�validity of ��� because the

second�order substitution � �� fa��b� a��c� a��b�� a��b�g and the variable

renaming 
 �� fx�u� y�vg with ��
���� � �� are both not 
�sorted� However�
if we even know � to be col�valid for the collision set col �� f�S�x�� S�a�� 	��g�
we can apply Corollary � for the modi�ed sorting 
� where a�� a�� a�� x have sort

B and a�� y have sort C� because 
� satis�es col� and � as well as � and 
 are


��sorted� Thus the 
��validity and in turn the 
�validity of �� is implied�

Example � illustrates that the notion of col�validity allows to abstract from
the speci�c sorting concerning the originally proven formula �� Thus our results
on the validity of formulas under variable renamings and second�order substitu�
tions which respect a given �absolute or relative� sorting serve as logical basis of
extending our reuse procedure to many�sorted logic� However� we must �nd a way
for showing the col�validity of formulas for a collision set col to be determined�

� Preparing Proofs for Reuse

For making a proof in many�sorted logic reusable� our goal according to Corol�
lary � is to extract the sort collisions col the proof imposes on the symbols
occurring in it� i�e� to transform the proof into a col�valid formula �� As demon�
strated in Example �� reasoning about instantiations is simpli�ed if two disjoint
languages are used for specifying the original formula and the one obtained by
instantiations� where ��rst� and second�order� substitutions connect both levels�

Therefore we assume the set X of variables from Section � to be divided
into two disjoint subsets X �� V � U � and the same holds for function symbols
�n �� �n � �n� n � IN� Then F���V� denotes the set of formulas built from
V and � ��

S
n �n which is used for expressing speci�c formulas� and F���U�

built from U and the set � ��
S
n �n of function variables is used for expressing

schematic formulas�� The set of parameter variables W remains unchanged� We
often use �partial� sortings 
� � S��V � S and 
� � S��U � S� where 
 �� 
� � 
�
denotes the �total� sorting with 
�S� �� 
��S� for S � S��V and 
�S� �� 
��S�
for S � S��U � We let V��� denote the variables from V occurring in � etc�

Now we proceed as follows� We �rst extend the proof analysis calculus from
��
 by a component for collecting sort constraints� such that a col�valid speci�c
formula � � F���V� is obtained from a proof� Then � and col are generalized by
mapping them to a schematic Col�valid formula � � F���U� with Col � S�

��U

which is stored in a proof shell� a data structure for representing reusable proofs
�

� Thus new� valid� speci�c formulas �� � ��
���� � F���V� can be obtained
by re�instantiating proof shells with substitutions respecting Col�


�� Many�Sorted Proof Analysis

In this subsection only formulas F���V� and sortings 
 � S��V � S are used�
We let x� denote a tuple of variables� �jo denotes the subterm of � at position
o� and ��o� t
 denotes subterm replacement at position o�

� We do not perform second�order reasoning by quantifying function variables etc�



In ��
 a proof is modeled as a derivation in a simple proof calculus �AX � where
deriving � �AX true entails that the �conditional� equation � is provable from
the �equational� axioms AX using equational reasoning� i�e� an axiom �x�l � r �
AX can be used for deriving ��o� ��r�
 from � if �jo � ��l� for some ��rst�
order� substitution � and some position o in �� In ��
� �AX is extended to a
proof analysis calculus �aAX by collecting the applied axioms in an accumulator
component A� i�e� deriving h�� 
i �aAX htrue� Ai entails that also � �A true

can be derived and therefore j� A� � holds for A � AX �we use a set of
formulas A also as a single formula� the conjunction of the elements of A���

Since �equational� reasoning in many�sorted logic is done like in unsorted
logic provided that all objects in the derivation are well�sorted� we can use the
unsorted analysis calculus also for many�sorted proofs w�r�t� a �xed sorting 
 ��
�

Lemma
 �proof analysis with �xed sorting	� Let 
 be a sorting� let AX
be a set of axioms� let � be a 
�sorted formula� and let A � AX be 
�sorted�
If h�� 
i �a

AX
htrue� Ai is derived in the unsorted proof analysis calculus and

each substitution � used in this derivation is 
�sorted� then j�� A� ��

Lemma � demands that �rather obviously� the input � and the output A of a
derivation h�� 
i �a

AX
htrue� Ai must be 
�sorted for guaranteeing j�� A� ��

Resuming Example �� we show that the additional requirement concerning the

�sortedness of applied substitutions is indeed necessary�

Example � �proof analysis and sorts	� The conjecture � �� a� � a� can

be veri�ed from the axioms AX � f�x x � a�� �y y � a�g in the simple proof

analysis calculus obtaining the accumulator A � f�x x � a�g� i�e� the formula

� �� A� � is valid w�r�t� the sorting 
 from Example �	

a� � a� apply axiom �x x � a� to a� with �� � fx�a�g
a� � a� apply axiom �x x � a� to a� with �� � fx�a�g
a� � a� built�in re
exivity of � yields true

But regarding this proof for verifying the same formula � w�r�t� a new sorting 
�

where a�� x have the sort A and a�� a� have a di�erent sort B would be invalid

since � is well�sorted but does not hold w�r�t� 
�� The substitutions �� and ��
used in the proof are only well�sorted w�r�t� the original but not the new sorting�

The example reveals the need for inspecting a speci�c proof and extracting
the sort constraints the proof imposes on the symbols occurring in it� We repre�
sent this information concerning the well�sortedness of applied substitutions by
certain collision sets� cf� De�nition �� which depend on the replaced term l�

De�nition � �collision set for substitutions	� For a ��rst�order� substitu�
tion � and a term l� the collision set col��� l� � S�

��V for � w�r�t� l is de�ned by
col��� l� �� f�S�l�� tls���l���g if l � V and col��� l� �� 
 if l �� V�
Here the function tls � T ���V�� S��V yields a designator for the top level sort
of a term� where tls�x� �� S�x� for x � V and tls�f�� � ��� �� S�f� 	� for f � ��

� The re�ned analysis calculus from ��� additionally distinguishes di�erent occurrences
of function symbols �thus increasing the reusability of proofs�� and the extension to
many�sorted logic is done in the same way as described here�



Now �aAX is extended to a many�sorted proof analysis calculus �ac
AX

by col�
lecting the collision set for used substitutions in an additional component� i�e�
derivations have the form h�� 
� 
i �acAX htrue� A� coli with col � S�

��V � Here
for each application ��o� ��r�
 of an axiom �x�l � r � AX using a substitution
� with �jo � ��l�� the sort constraints col��� l� are added to the col�component�
The following theorem proven in ��
 states that these collected sort constraints
are enough to guarantee the well�sortedness of applied substitutions �note that
col�validity of some formula � requires � only to be 
�valid for sortings 
 where
� is 
�sorted �and col is satis�ed�� cf� De�nition ���

Theorem� �many�sorted proof analysis	� Let AX be a set of axioms� let �
be a formula� let A � AX be an accumulator� and let col be a collision set such
that h�� 
� 
i �ac

AX
htrue� A� coli is a derivation in the many�sorted proof

analysis calculus� Then the formula A� � is col�valid�

Theorem � shows how the calculus �acAX can be used for simultaneously
proving a conjecture � from given axioms AX and analyzing the constructed
proof w�r�t� applied axioms and necessary sort constraints� If � and AX are
speci�ed w�r�t� a �xed sorting 
�� then AX j��� � is veri�ed if a derivation
h�� 
� 
i �ac

AX
htrue� A� coli in the many�sorted proof analysis calculus can

be established where all applied substitutions are 
��sorted� But additionally
� by analyzing the proof � the more general statement j�� A� � is veri�ed
where 
 may be any sorting such that A� � is well�sorted and col is satis�ed��

For instance the reuse attempt described in Example � is prohibited as the sort
constraints f�S�x�� S�a�� 	��� �S�x�� S�a�� 	��g which are collected for the substi�
tutions used in the proof are not satis�ed by the new sorting 
��


�� Constructing Proof Shells

The improved analysis technique avoids invalid proof reuses when considering
conjectures speci�ed for new sortings� For achieving the separation into speci�c
and schematic formulas mentioned in the beginning of this section� we let gen�
eralizations map between the signatures � and � resp� the variable sets V and
U �schematic objects are denoted by capital symbols��

De�nition �� �generalization	� A generalization � � � is a substitution built
from a second�order substitution � � � � T ���W�� replacing function symbols
f � �n by functional terms ��f� � F �w�� � � � � wn� for function variables F � �n�
and a variable renaming � � V � U �

A generalization � � � can also be applied to sort collision sets by de�ning
��S�f� i�� � S�F� i� for ��f� � F �w�� � � � � wn� and ��S�x�� � S���x��� E�g�
fa��F� a��G� a��Hg � fx�ug generalizes the speci�c symbols from Example ��

We characterize proof shells �

 as a data structure for representing the es�
sentials of a proof h�� 
� 
i �acAX htrue� A� coli in the schematic language
F���U�� extended by a component for �generalized� sort constraints�

� Theorem � also holds for more general calculi containing uni�cation rules etc� as e�g�
used in the Plagiator�system ��� for treating arbitrary formulas� cf� Section ��



De�nition �� �proof shells	� A proof shell PS � h�� C� Coli is built from a
closed second�order formula � � F���U� �also called schematic conjecture�� a
set of closed second�order formulas C � F���U� �also called schematic catch��
and a collision set Col � S�

��U such that C � � is Col�valid�

A proof shell captures the �idea� of a successful proof� viz� that the schematic
catch C entails the schematic conjecture � for all sortings satisfying Col� E�g�
PS � hG � H� f�u u � Fg� f�S�u�� S�G� 	��� �S�u�� S�H� 	��gi is a proof shell
constructed from many�sorted analysis of the proof of � from Example �� using
the generalization from above�

Theorem�� �construction of proof shells	� For a derivation h�� 
� 
i �ac
AX

htrue� A� coli in the many�sorted proof analysis calculus� PS �� h�� C� Coli ��
h�������� ����A��� ����col��i is a proof shell� where � � � is a generalization
with ��A � f�g� � dom��� and V�A � f�g� � dom����

Proof� Follows easily from Theorem � by showing that the Col�validity of C � �
is implied by the col�validity of A� �� For each sorting 
� � S��U � S such that
C � � is 
��sorted and Col is 
��satis�ed� we de�ne a corresponding sorting

� � S��V � S w�r�t� � � � by stipulating 
��S�f� i�� �� 
��S�F� i�� for ��f� �
F �w�� � � � � wn� and 
��S�x�� �� 
��S�u�� for ��x� � u� Then Corollary � is
applicable for col� A� �� 
� � 
�� and �� yielding the 
��validity of C � �� �

So far we have formalized how proof shells are constructed by analyzing and
generalizing successfully computed proofs� Now we show how proof shells are
re�instantiated for obtaining proofs of new conjectures�

� Reusing Proofs

In the remainder of this paper we assume that the new conjectures � to be
proven are 
��sorted w�r�t� a �xed sorting 
� � S��V � S for the language de�
�ned by � �V� When considering proof reuse� 
� must be extended by a sorting

� � S��U � S for the proof shell PS� such that a total sorting 
 � 
� � 
� is ob�
tained for checking the well�sortedness of substitutions and the sort constraints�
To commit these language restrictions� we let �mapper� denote a second�order
substitution � � T ���W�� �renaming� denotes a variable renaming U � V�
and �conjecture� denotes a closed 
��sorted �rst�order formula� The goal�directed
computation of admissible mappers � and renamings 
 for instantiating a proof
shell w�r�t� given 
� and � �guaranteeing the existence of a suited sorting 
��
is based on an algorithm for sorted second�order matching which is presented
�rst� Finally we give examples of many�sorted reuse revealing the gains of our
treatment of sorts� as naive approaches would restrict the reusability of proofs�

��� Many�Sorted Second�Order Term�Matching

An unsorted second�order matching problem p � t for a pattern p � T �����V�
U� and a target t � T ���V� is solved by computing a mapper � � � � T ���W�
with ��p� � t �we perform �pure� second�order matching as �rst�order variables



in the pattern are not instantiated�� The standard algorithm from ��
 uses the
operations decomposition� projection� and imitation for solving a �generally si�
multaneous� second�order matching problem R �� �p� � t�� � � � � pn � tn
� Since
several operations may be applicable� branching leads to multiple solutions� and
we let � �� match�R� denote the set � of mappers computed by this calculus�

For extending match w�r�t� sorts� we provide a �exible way to express the
well�sortedness of objects by de�ning the well�sortedness of arbitrary collision
sets Q � S�

����V�U � cf� De�nition �� w�r�t� a �xed sorting 
� � S��V � S��

De�nition �
 �
��sorted collision sets	� A collision set Q � S�

����V�U of
sort constraints is 
��sorted i� S� �Q S� for S�� S� � S��V implies 
��S�� �

��S��� where �Q� S�

����V�U is the equivalence relation induced by Q�

Hence a collision set Q is 
��sorted i� there is some sorting 
� � S��U � S such
that 
� � 
� satis�es Q� For instance both collision sets Q� �� f�S�F� ��� S�k��g
and Q� �� f�S�len� ��� S�F� 	��� �S�F� ��� S�m�g are 
��sorted if k resp� m is a
variable of 
��sort list resp� nat and len computes the length of a list� but their
union Q� �� Q� � Q� is not 
��sorted because S�k� �Q�

S�m� but 
��S�k�� �
list �� nat � 
��S�m��� Now the well�sortedness �w�r�t� delta�� of terms� formulas�
and substitutions can be expressed by certain collision sets� viz� contexts�

De�nition �� �context of terms	� The context con�p� of a term p � T �� �
��V � U� is the collision set inductively de�ned by �cf� De�nition 
 for tls�

con�z� �� 
� if z � V � U
con�f�p�� � � � � pn�� ��

S
i f�S�f� i�� tls�pi��g � con�pi�� if f � �n ��n�

The context of a term represents all sort constraints which are implicitly given by
the term�s structure� i�e� con�p� is 
��sorted i� there is some sorting 
� � S��U � S
such that p is �
� � 
���sorted� For terms p�� � � � � pn we have

S
i con�pi� 
��sorted

i� all pi are �
��
���sorted w�r�t� some same sorting 
�� E�g� the terms p� �� F �k�
and p� �� len�F �m�� are not �
� � 
���sorted w�r�t� any sorting 
� because the
union Q� of the above collision sets Q� � con�p��� Q� � con�p�� obtained as con�
texts is not 
��sorted� Similarly contexts are de�ned for formulas and substitu�
tions� e�g� con��� � f�S�F� 	�� S�len� 	��� �S�len� ��� S�G� 	��� �S�G� ��� S�F� ���g
for � � fF�len�G�w���g� where the parameter variable w� points to S�F� ���

We extendmatch to an algorithm sorted match�R�Q� yielding the matchers
� of R for which Q � con��� is 
��sorted for an initially given collision set Q� cf�
��
� During the matching process� Q is updated to Q� by adding the contexts of
the stepwise constructed substitutions� where the actual branch is aborted if Q�

is not 
��sorted and otherwise the branch is continued with Q �� Q�� Thus parts
of the search space are cut by early detecting violations of sort constraints�

� The algorithm from ��� already assumes that a �xed sort �called ��elementary� type��
is given for all symbols� and the matching operationsare extended there by conditions
checking these sorts� Our sort constraints rather correspond to polymorphic types in
the typed ��calculus� e�g� the sort constraint �S�F���� S�F� ��� for F � �� resembles
the typing F���� � where �� � are type variables �which can be instantiated by
types�� We did not follow the way of extending ��� to polymorphic types as our
notion of sort constraints allows more compact representations and e�cient tests�



��� Retrieval and Adaptation of Proof Shells

We formulate our approach to many�sorted reuse using the notion of 
��sorted
collision sets� Instantiating a proof shell h�� C� Coli is split into two phases�
resulting in a partially or totally instantiated catch� respectively� For retrieval
the schematic conjecture � is matched with a new conjecture �� and during
adaptation the axioms AX for � are used for instantiating the remaining symbols
from the schematic catch C such that provable formulas are obtained�

Theorem�� �reusing proofs by retrieval and adaptation	� If� for a con�
jecture � and a proof shell PS � h�� C� Coli� there are a mapper � and a re�
naming 
 such that ��
���� � � and Qp �� Col�con�C�f�g��con����con�
�
is 
��sorted� then we say PS applies for � �via � � 
	 and we call Cp �� ��
�C��
the partially instantiated catch� If there further are a mapper � and a renaming
� such that Ct �� ����Cp�� � F���V� and Qt �� Qp � con��� � con��� is 
��
sorted� then the totally instantiated catch Ct is 
��sorted and j��� Ct � �� and
we say � is reduced to Ct �by PS via � � 
 � � � �	�

Proof� Let �� 
 and �� � be given as required� Then there is a sorting 
� �
S��U � S such that C � �� �� �� ���� and 
� �� 
�� are 
�sorted and 
 satis�es
Col� for the sorting 
 �� 
� � 
�� Therefore j�� �

��
��C��� ���
����� is implied
by Corollary � and De�nition ��� Since ��
���� � � implies ���
����� � � and
further ���
��C�� � Ct � F���V� holds� we have even j��� Ct � �� �

To treat a formula�pair h���i with the algorithm sorted match for terms�
hR� 
i �� decompose����� denotes the preprocessing step of structurally com�
paring � and � �up to quanti�ed variables and terms in equations�� E�g� R ��
�F �u� � a�x�� G�v� � b� H�u� v� � f�y�� D � c
 and 
 �� fu�x� v�yg re�
sults from decomposing �u�v F �u� � G�v� �H�u� v� � D and �x�y a�x� � b �
f�y� � c� Hence 
 is a renaming if decompose succeeds� i�e� PS � h�� C� Coli
applies for � via � � 
 for each �if any� � � sorted match�
�R�� Q�� if the col�
lision set Q �� Col � con�C � f�g� � con�
� is 
��sorted� cf� Theorem ��� Here
con�C� � Q ensures the sort constraints imposed by the schematic catch C to
be checked already during retrieval� i�e� some �mappers� with ��
���� � � are
excluded early because there is no 
��sorted total instantiation of C�

The obtained partially instantiated catch Cp �� ��
�C�� may still contain
function variables� stemming from function symbols which appear in the orig�
inal proof but not in the original conjecture� These free function variables are
instantiated during the adaptation phase� An e�cient procedure solve catch in�
corporates the underlying axioms for � by heuristically combining a second�order
matching algorithm with the technique of symbolic evaluation� cf� �

� This im�
mediately transfers to many�sorted reuse� where the obtained 
��sorted collision
set Qp serves as input for calls of sorted match when further processing Cp�

Hence the presented reuse method reduces the provability of a new conjecture
to the provability of a set of speculated conjectures� i�e� for a given underlying
set of axioms AX � we have veri�ed AX j��� � if we can show AX j��� Ct� Since
the remaining proof obligations Ct can again be proved by reuse� recursion is
recommendable for the reuse procedure� cf� �

 for controlling termination�



��
 Examples of Many�Sorted Reuse

We consider some examples from the viewpoint of many�sorted reuse� i�e� we
analyze how our techniques for extracting� generalizing and instantiating sort
constraints enable proof reuses which were excluded by naive approaches� In
some examples we exploit that the applicability of proof shells is increased if one
requirement of Theorem �� is relaxed by demanding only ��
���� �� �� where
�� allows several equivalence preserving transformations� Transformations like
swapping equations or reordering subformulas can be built into the calculus for
matching formulas� cf� ��
 for recent improvements� Our examples stem from the
domain of theorem proving by mathematical induction� cf� Table �� The proof
shell computed from the given proof of the step formula for �� �in the �rst row�
is reused for proving the step formulas for the remaining statements ��� ��� etc�

�

The last column shows how the soundness of the many�sorted reuse in the
respective row is guaranteed� Here �a� denotes that in the proof by reuse for
each symbol exactly the same sorts as in the original proof are used� and �b�
denotes that in the proof by reuse only one overall sort is used� i�e� in these cases
the soundness of the many�sorted reuse is obvious and our extensions are not
necessary� But in the remaining cases �c� only our construction of sort constraints
guarantees the validity of instantiations� because e�g� di�erent function symbols
in the original proof with the same �range and domain� sorts are mapped to
di�erent function symbols in the proof by reuse with di�erent sorts� however
respecting the computed sort constraints� This situation is repeated for other
source proofs� i�e� our techniques count for a signi�cant increase of reusability�

��

P
k �
P

l �
P

�k �� l�

No	 Conjectures proved by reuse Sorting

��

Q
k �
Q

l �
Q
�k �� l� �a�

�� j k j � j l j � j k �� l j �a�

�� m� i� n� i � �m� n�� i �b�
�� m� �n� i� � �m� n� � i �b�

�� j k �� l j � j l �� k j �c�
�� j k �� n �� empty j � succ�j k j� �c�
�� j k �� n �� l j � succ�j k �� l j� �c�
�	 incr�m� k� �� incr�m� l� � incr�m� k �� l� �c�
�
 nthcut�m�nthcut�n� k�� � nthcut�m� n� k� �c�
��� reverse�reverse�k�� � k �c�
��� j reverse�k� j � j k j �c�
��� reverse�k �� n �� empty� � n �� reverse�k� �c�
��� or�member�m� k��member�m� l�� � member�m� k �� l� �c�

Table �� Conjectures proved by reusing the proof of ��

� The following functions operate on lists�
P

sums up all elements� �� denotes con�
catenation�

Q
multiplies all elements� j 	 j yields the length� �� adds an element� incr

increments each element� nthcut cuts elements from the back end� reverse reverses
the order of elements� and member tests for occurrence of elements�



� Conclusion

We have shown that a learning theorem prover speci�ed for unsorted logic cannot
be used for many�sorted logic without further extensions� Learning of proofs is
based on their reuse� i�e� from a logical perspective a given proof is transformed
into a valid formula which can be generalized and instantiated subsequently
by certain substitutions while preserving its validity� For many�sorted reuse we
have shown that it is necessary to also learn the sort information contained in a
formula and its proof to ensure the soundness of instantiations� This allows us to
abstract from a speci�c sorting and reason about the validity of �instantiated�
formulas w�r�t� di�erent sortings for the contained symbols�

It turned out that the learning theorem prover can be extended to many�
sorted logic with moderate e�ort as the overall architecture of the reuse pro�
cedure remains unchanged� The described extensions for many�sorted logic are
implemented in the Plagiator�system ��
� the prototype of a learning theorem
prover which formerly performed unsorted reuse� The examples given here reveal
that using the developed approach to many�sorted reuse increases the reusability
of proofs compared to a naive treatment of sorts� An extension to order�sorted
logic ���
 by interpreting sort constraints as subsort�relations seems possible�

Acknowledgments� We would like to thank J�urgen Giesl and Wolf Zimmer�
mann for many helpful discussions and comments on earlier drafts of this paper�

References

�� R� Curien� Z� Qian� and H� Shi� E�cient Second�Order Matching� In Proceed�
ings of the �th International Conference on Rewriting Techniques and Applications
�RTA����� pages 
�� � 

�� New Brunswick� NJ� USA� ����� Springer LNCS ���
�

�� J� Denzinger and S� Schulz� Learning Domain Knowledge to Improve Theorem
Proving� In Proceedings CADE�	
� pages �� � ��� Springer LNAI ����� �����


� M� Fuchs� Experiments in the Heuristic Use of Past Proof Experience� In Proceed�
ings CADE�	
� pages ��
 � �
�� Springer LNAI ����� �����

�� J� H� Gallier� Logic for Computer Science� John Wiley � Sons� ��	��
�� S� Glesner� Many�Sorted Logic in a LearningProver� Diploma Thesis �in German��

TH Darmstadt� �����
�� G� Huet and B� Lang� Proving and Applying Program Transformations Expressed

with Second�Order Patterns� Acta Informatica� ���
����� ���	�
�� T� Kolbe and C� Walther� Reusing Proofs� In A� Cohn� editor� Proceedings of the

		th European Conference on Arti�cial Intelligence �ECAI����� Amsterdam� The
Netherlands� pages 	��	�� John Wiley � Sons� Ltd�� �����

	� T� Kolbe and C� Walther� Termination of Theorem Proving by Reuse� In Proceed�
ings CADE�	
� pages ��� � ���� Springer LNAI ����� �����

�� T� Kolbe and J� Brauburger� Plagiator � A Learning Prover� In Proceedings
CADE�	�� Springer LNAI ����� �����

��� E� Melis and J� Whittle� Internal Analogy in Theorem Proving� In Proceedings
CADE�	
� pages �� � ���� Springer LNAI ����� �����

��� M� Schmidt�Schau
� Computational Aspects of an Order�Sorted Logic with Term
Declarations� Springer LNAI 
��� ��	��


