Many-Sorted Logic in a Learning Theorem Prover

Thomas Kolbe! Sabine Glesner?

! FB Informatik, TH Darmstadt, Alexanderstr. 10, 64283 Darmstadt, Germany
2 Fakultit fiir Informatik, Universitit Karlsruhe,
Vincenz-Priefinitz-Strafie 3, 76128 Karlsruhe, Germany
kolbe@informatik.th-darmstadt.de glesner@ipd.info.uni-karlsruhe.de

Abstract. In a learning theorem prover, formulas can be verified by
reusing proofs of previously verified conjectures. Reuse proceeds by trans-
forming a successful proof into a valid schematic formula which can be
instantiated subsequently. In this paper, we show how this reuse approach
is extended to many-sorted logic: We first present the logical foundations
for reasoning w.r.t. different sortings. Then their operational realization
is given by developing a many-sorted proof analysis calculus for extract-
ing the sort constraints imposed by a proof. For guaranteeing the validity
of subsequent instantiations, we extend the second-order matching calculi
for retrieving and adapting schematic formulas such that the computed
sort constraints are satisfied. Finally we demonstrate the relevance of our
extensions with several examples of many-sorted reuse.

1 Introduction

The improvement of theorem provers by machine learning techniques has re-
cently been realized successfully in a number of applications, cf. e.g. [2, 3, 10].
The PLAGIATOR-system [9] is a learning theorem prover based on the reuse of
previously computed proofs by the method of Kolbe & Walther [7, 8]: From an
abstract point of view, a given proof is transformed into a valid formula, which
is generalized and instantiated subsequently by certain (second-order) substitu-
tions while preserving its validity. More precisely, a given proof AX F ¢ of a
conjecture ¢ from some axioms A X is analyzed and generalized, yielding a valid
formula C — & containing function variables instead of function symbols. Now
for each new conjecture ¢ where some (second-order) matcher 7 is found such
that 7(®) = 9, the original proof can be reused obtaining a set 7(C) of proof
obligations for 4, i.e. 7(C) — 1 is valid and the reuse succeeds if 7(C) is verified.

However, problems arise if this reuse approach for unsorted logic is extended
to many-sorted logic, where objects of different basic data structures like num-
bers, lists, trees etc. can be distinguished syntactically by specifying their sort, cf.
e.g. [4]. A many-sorted logic is an unsorted logic parameterized by a sorting, i.e.
a mapping which provides the sort information for variables and function sym-
bols. This is commonly used in automated reasoning since more efficient calculi
can be built which exploit the given sort information (here we do not consider
more general order-sorted logics with hierarchical sort relations, cf. [11]).

As terms and formulas are interpreted w.r.t. the sorting of variables and
function symbols occurring in them, also the validity of formulas depends on the

specified sorting: Consider e.g. the formula ¢ := (V& =a) — b; = by where
a, by, by are constants and « is a variable. In unsorted logic or in a many-sorted
logic where a,b;,by; and z have the same sort, ¢ is valid, while in a many-
sorted logic where e.g. a,x have the sort A and by, b, have the different sort B,
¢ is not valid. Hence a successful proof of ¢ w.r.t. the first sorting cannot be
reused without considering the sort information, because otherwise an obviously
incorrect “proof” of ¢ w.r.t. the second sorting would be obtained. A simple
remedy for this problem would be to admit only those substitutions for reuse
where the sorting is exactly retained, but this approach is far too restrictive.
For obtaining a more general criterion concerning admissible substitutions,
we must be able to abstract from the fixed sorting used in the proof of some
conjecture p: We extract the sort constraints a proof imposes on the symbols
occurring in it, e.g. the constraint that the (range) sort of by, b, must be identical
to the sort of « in our example above. In this way we obtain the general statement
that ¢ is valid w.r.t. each sorting satisfying the sort constraints, and therefore
the given proof of ¢ can be reused for verifying some conjecture 3 which is
specified w.r.t. some different sorting only if the sort constraints are satisfied.’
In Section 2 we introduce some formal concepts and show that the validity
of formulas w.r.t. sortings or sort constraints is retained when applying sorted
(second-order) substitutions. Section 3 shows how a successful proof is analyzed
yielding a set of sort constraints whose satisfaction guarantees the validity of
instantiations. We further extend the notion of proof shells [8], which represent
reusable proofs, by a component obtained by generalizing the sort constraints.
In Section 4 we deal with the goal-directed instantiation of proof shells for new
conjectures respecting the sort constraints and give examples for many-sorted
reuse. We summarize in Section 5 and comment on implementational issues.

2 Many-Sorted Logic

We introduce the syntax and semantics of many-sorted logic as we use it through-
out this paper. In contrast to common formalizations [4] which assign a priori
sorts to (variable and function) symbols, we introduce sortings as special syn-
tactic objects for assigning sorts to symbols. This allows us to reason about
formulas w.r.t. different sortings without changing the formulas themselves.

2.1 Syntax of Many-Sorted Logic

The many-sorted language is built from the set X of first-order variables and the
set @ = J,, O, of function symbols which is the union of all function symbols
of arity n € IN. The set 7 (0, X) of terms and the set F(O,X) of formulas are
built as usual, where only equations ¢; = t, with #1,t, € 7(0,X) are used as
predicates. For representing second-order substitutions, we introduce a second

! The usual relativization (using unary predicate symbols for each sort) to transform
many-sorted into unsorted formulas is not helpful for our application, since we have
to reason about the validity of some (unchanged) formula w.r.t. different sortings.

set W = {w; | i € IN} of parameter variables. Here w; € W,, = {wy,...,w,}
denotes the ith argument position of an n-ary function, i.e. a functional term
t € 7(0,W,) built from function symbols and parameter variables corresponds
to the A-term Awn, ..., w,.t from the A-calculus. To obtain a many-sorted logic,
we introduce sortings for assigning sorts to variables and function symbols:

Definition 1 (sorts, sort variables, sortings). Let S be a set of sort symbols
and let Sg x = So USx be the set of sort variables, where Sy = {S(z) | z € X'}
and So = |J,, Se,, with Se, = {S(f,i) | f € ©,,0 < i < n}. A sorting § is a

function 6 : Se,x — S from sort variables to sort symbols.

Compared to the usual notion of an S-ranked alphabet [4], sort variables provide
an indirection when assigning sorts: For a fixed sorting § therefore §(S(f,0))
denotes the range sort of a function symbol f and 6(S(f,)),1 <4 < n, denote
the domain sorts of f. This formalization is better suited for dealing with sort
constraints subsequently but makes no difference when defining well-sortedness:

The set of all (6-)sorted terms of sort s consists of variables « € A where
8(S(z)) = s and terms f(t1,...,t,) where f € O,, 6(S(f,0)) = s, and ¢; is a
8-sorted term of sort 6(S(f,7)), for 1 < ¢ < n. Similarly é-sorted formulas are
built from é-sorted equations t; = t5 where t;, ¢t are 6-sorted terms of the same
sort. Since all sort information is supplied by the sorting §, we do not need any
sort information in formulas, i.e. we use (unsorted looking) quantifiers like Va
instead of denoting the sort of a quantified variable by Vz : s for 6(S(z)) = s.

In general, a substitution ¢ is a partial function { : X UO — T(@, X UW)
whose finite domain is denoted by dom({) C X U ©. A substitution ¢ : X —
T(©,X) is called a first-order substitution. An injective first-order substitution
v : X — X is a variable renaming. A second-order substitution 7 is a substitution
w0 — T(0,W) such that n(f) € T(O,W,) for each f € O, Ndom(x). We
neither admit non-parameter variables from X occurring in 7(f) (“7 is closed”)
nor variables from X UW occurring in dom(w) (“m is pure”).

First-order substitutions are applied to terms as usual. Variable renamings
can also be applied to formulas, replacing variables in the scope of quantifiers. A
second-order substitution 7 is applied to terms by m(z) = and 7(f(t1,...,t,)) =
o(m(f)) for the first-order substitution o = {wy/7(t1),...,w1/7(t1)} on parame-
ter variables. Applying 7 to a formula ¢ is done by preserving the structure of
¢ and replacing the terms contained in ¢ as described. The restrictions “closed”
and “pure” for second-order substitutions prevent variables from being caught
within the scope of quantifiers and preserve the closeness of formulas in appli-
cations. E.g. applying the non-closed substitution {b/z} to the closed formula
(Vz f(z) = b) — f(a) = b yields the non-closed formula (Vz f(z) = z) — f(a) = .

As usual, a first-order substitution o is é-sorted if o(z) is a é-sorted term
of sort 6(S(x)) for each € dom(o). A second-order substitution 7 is §-sorted
if for each f € ©, Ndom(n), the term n(f) is d¢-sorted of sort §(S(f,0)) for
the modified sorting 67 := {S(w1) — 6(S(f,1)),...,S(wn) — 6(S(f,n))} 0 é.
It is easy to show (by structural induction) that the 6-sortedness of terms and
formulas is retained when applying a first-order substitution o, variable renaming
7, or second-order substitution 7 which is é-sorted, cf. [5].

2.2 Semantics of Many-Sorted Logic

The semantics of a é-sorted logic is given as usual [4]: A §-sorted algebra M =
(U,I) is a pair of a universe U = | J, U,, where U, # 0 is the universe of sort
s € 8, and an interpretation I, mapping each function symbol f € @ to a
function fr on U of the appropriate arity and respecting 6(S(f,7)),0 < i < n.
A b-sorted variable assignment V : X — U maps variables to elements of the
universe of the appropriate sort. A formula ¢ is called é-satisfiable if an algebra
M exists such that (M,V) |£s ¢ for each variable assignment V, where 5
denotes the meaning w.r.t. fixed M and V. A formula ¢ is é-valid, written =5 ¢,
if M =5 ¢ for each é-sorted algebra M.

If a $-sorted variable renaming v is applied to a é-valid, closed formula ¢,
then v(¢) is also 6-valid because the application of v results in a bound renaming
of quantified variables which is known to be validity preserving. More interesting
is the application of a second-order substitution 7 to a é-valid formula, which is
validity-preserving due to the properties of 7 being pure and closed, cf. [5]:

Theorem 2 (4-validity under second-order substitutions). Let 6 be a sort-
ing and let ¢ be a §-sorted, closed formula. If ¢ is 6-valid, then w() is also b-valid

for each 6-sorted second-order substitution w.

For reasoning about the validity of a formula w.r.t. different sortings, how-
ever, we now replace the absolute sorting from Theorem 2 by a relative sorting,
for which only the satisfaction of some sort constraints is required:

Definition 3 (sort constraints, collision sets, satisfy, col-valid). A (sort)
collision set col C 5(297)(is a set of pairs of sort variables (S1,S2) € S(za’X,
called sort constraints. A sorting § satisfies a collision set col iff it satisfies each
contained sort constraint (S, S2) € col by 6(S1) = §(S2). A formula ¢ is called
col-valid iff ¢ is 6-valid for each sorting 6 where col is satisfied and ¢ is é-sorted.

E.g. the sort constraint (S(f,0),S(x)) represents that the range sort of the
function symbol f must be identical to the sort of the variable z, cf. Definition
1, but without committing this sort to a specific s € S. Hence due to Theorem 2,
“@ is col-valid” is a stronger statement w.r.t. instantiations than “¢ is §-valid”:

Corollary 4 (col-validity under second-order substitutions). Let col be a
collision set and ¢ a closed col-valid formula. If the sorting 6 satisfies col and ¢
is §-sorted, then w(¢) is §-valid for each §-sorted second-order substitution .

Note that the é-validity of a formula ¢ is independent of the part of § con-
cerning (sort variables for) symbols not occurring in ¢. Hence when considering
the é-validity of ¢ we may modify § for those new symbols.

Example5 (col-validity vs. é-validity). Let é be a sorting where the con-
stants a1, as,as,as and the variables x,y have sort A, the constants b,b;, by and
the variable u have sort B, and the constant ¢ and the variable v have sort C.
Consider the following formulas and assume that ¢ is known to be 6-valid.

¢ =Veaex=az) AN(Vyy=ay) - a; =a
¢ = (VYuu=b)A(Vvv=c)— by =b,.

Now we cannot apply Theorem 2 for showing the §-validity of ¢', because the
second-order substitution = := {as/b, as/c, ai/b1, as/bs} and the variable
renaming v := {x/u, y/v} with n(y(¢)) = ¢' are both not §-sorted. However,
if we even know ¢ to be col-valid for the collision set col := {(S(z),S(a1,0))},
we can apply Corollary 4 for the modified sorting ' where a;,as, a3,z have sort
B and a4,y have sort C, because &' satisfies col, and ¢ as well as © and v are
&'-sorted. Thus the §'-validity and in turn the é-validity of ¢' is implied.

Example 5 illustrates that the notion of col-validity allows to abstract from
the specific sorting concerning the originally proven formula ¢. Thus our results
on the validity of formulas under variable renamings and second-order substitu-
tions which respect a given (absolute or relative) sorting serve as logical basis of
extending our reuse procedure to many-sorted logic. However, we must find a way
for showing the col-validity of formulas for a collision set col to be determined.

3 Preparing Proofs for Reuse

For making a proof in many-sorted logic reusable, our goal according to Corol-
lary 4 is to extract the sort collisions col the proof imposes on the symbols
occurring in it, i.e. to transform the proof into a col-valid formula ¢. As demon-
strated in Example 5, reasoning about instantiations is simplified if two disjoint
languages are used for specifying the original formula and the one obtained by
instantiations, where (first- and second-order) substitutions connect both levels.

Therefore we assume the set X' of variables from Section 2 to be divided
into two disjoint subsets X =: V U U, and the same holds for function symbols
0, = X,UN,, n € N. Then F(X,V) denotes the set of formulas built from
VY and ¥ :=J, X, which is used for expressing specific formulas, and F(2,)
built from ¢ and the set 2 :=J,, 2, of function variables is used for expressing
schematic formulas.? The set of parameter variables)V remains unchanged. We
often use (partial) sortings 6; : Sy, — & and 62 : Spyy — S, where § := 61 0 6,
denotes the (total) sorting with §(S) := 6:(9) for S € S5,y and §(9) := 62(S)
for S € Sp . We let V(¢) denote the variables from V occurring in ¢ etc.

Now we proceed as follows: We first extend the proof analysis calculus from
[7] by a component for collecting sort constraints, such that a col-valid specific
formula ¢ € F(X,V) is obtained from a proof. Then ¢ and col are generalized by
mapping them to a schematic Col-valid formula @ € F(2,U) with Col C S?z,u
which is stored in a proof shell, a data structure for representing reusable proofs
[8]. Thus new, valid, specific formulas ¢' = 7n(y(®)) € F(X,V) can be obtained

by re-instantiating proof shells with substitutions respecting Col.

3.1 Many-Sorted Proof Analysis

In this subsection only formulas F(X,V) and sortings é : Sy y — S are used.
We let z* denote a tuple of variables, ¢|, denotes the subterm of ¢ at position
o0, and @[o « t] denotes subterm replacement at position o.

2 We do not perform second-order reasoning by quantifying function variables etc.

In [7] a proof is modeled as a derivation in a simple proof calculus - 4 x , where
deriving ¢ F4x TRUE entails that the (conditional) equation ¢ is provable from
the (equational) axioms AX using equational reasoning, i.e. an axiom Va*l =r €
AX can be used for deriving ¢[o « o(r)] from ¢ if ¢|, = o(l) for some (first-
order) substitution o and some position o in ¢. In [7], Fax is extended to a
proof analysis calculus % y by collecting the applied axioms in an accumulator
component A, i.e. deriving (¢, 0} -2y (TRUE, A) entails that also ¢ -4 TRUE
can be derived and therefore = A — ¢ holds for 4 C AX (we use a set of
formulas A also as a single formula: the conjunction of the elements of 4).?

Since (equational) reasoning in many-sorted logic is done like in unsorted
logic provided that all objects in the derivation are well-sorted, we can use the
unsorted analysis calculus also for many-sorted proofs w.r.t. a fixed sorting é [5]:

Lemma6 (proof analysis with fixed sorting). Let § be a sorting, let AX
be a set of axioms, let ¢ be a 6-sorted formula, and let A C AX be §-sorted.
If (¢, 0) F% x (TRUE, A) is derived in the unsorted proof analysis calculus and
each substitution o used in this derivation is §-sorted, then =5 A — .

Lemma 6 demands that (rather obviously) the input ¢ and the output 4 of a
derivation (¢, 0) % x (TRUE, A) must be §-sorted for guaranteeing =5 A — ¢.
Resuming Example 5, we show that the additional requirement concerning the
6-sortedness of applied substitutions is indeed necessary:

Example 7 (proof analysis and sorts). The conjecture ¢ := a; =ay can
be verified from the axioms AX = {Vx x = a3, Yy y = a4} in the simple proof
analysis calculus obtaining the accumulator A = {V& & = a3}, i.e. the formula
¢ := A — o is valid w.r.t. the sorting 6 from Example 5:

a; = as apply axiom V& & = a3 to a; with o1 = {x/a1}
as = as apply axiom VY x = a3 to ay with oy = {z/as}
ag = a3 built-in reflexivity of = yields TRUE

But regarding this proof for verifying the same formula ¢ w.r.t. a new sorting &'
where ag,z have the sort A and a;,as have a different sort B would be invalid
since ¢ is well-sorted but does not hold w.r.t. §'. The substitutions o, and o
used in the proof are only well-sorted w.r.t. the original but not the new sorting.

The example reveals the need for inspecting a specific proof and extracting
the sort constraints the proof imposes on the symbols occurring in it. We repre-
sent this information concerning the well-sortedness of applied substitutions by
certain collision sets, cf. Definition 3, which depend on the replaced term I:

Definition 8 (collision set for substitutions). For a (first-order) substitu-
tion ¢ and a term [, the collision set col(o,1) C SEV),V for ¢ w.r.t. l is defined by
col(o,1) :== {(S(1),tls(c(1)))}if L € V and col(o,1) :=0ifl ¢ V.

Here the function #ls : 7(X,V) — Sx,y yields a designator for the top level sort
of a term, where t/s(z) := S(z) for € V and tls(f(...)) := S(f,0) for f € ¥.

% The refined analysis calculus from [7] additionally distinguishes different occurrences
of function symbols (thus increasing the reusability of proofs), and the extension to
many-sorted logic is done in the same way as described here.

Now % x is extended to a many-sorted proof analysis calculus F5 5 by col-
lecting the collision set for used substitutions in an additional component, i.e.
derivations have the form (¢, @, 0) F3°y (TRUE, A, col) with col C 52271,. Here
for each application ¢lo — o(r)] of an axiom Vz*! = » € AX using a substitution
o with ¢|, = o(l), the sort constraints col(o,) are added to the col-component.
The following theorem proven in [5] states that these collected sort constraints
are enough to guarantee the well-sortedness of applied substitutions (note that
col-validity of some formula ¢ requires ¢ ounly to be §-valid for sortings § where
¢ is 6-sorted (and col is satisfied), cf. Definition 3):

Theorem 9 (many-sorted proof analysis). Let AX be a set of avioms, let ¢
be a formula, let A C AX be an accumulator, and let col be a collision set such
that (v, 0, 0) F3°x (TRUE, A, col) is a derivation in the many-sorted proof
analysis calculus. Then the formula A — ¢ is col-valid.

Theorem 9 shows how the calculus F5y can be used for simultaneously
proving a conjecture ¢ from given axioms AX and analyzing the constructed
proof w.r.t. applied axioms and necessary sort constraints: If ¢ and AX are
specified w.r.t. a fixed sorting &g, then AX |=5, ¢ is verified if a derivation
{p, 0, B) F3¢x (TRUE, A, col) in the many-sorted proof analysis calculus can
be established where all applied substitutions are §p-sorted. But additionally
— by analyzing the proof — the more general statement =5 A — ¢ is verified
where § may be any sorting such that A — ¢ is well-sorted and col is satisfied.
For instance the reuse attempt described in Example 7 is prohibited as the sort
constraints {(S(z), S(a1,0)), (S(x), S(az,0))} which are collected for the substi-

tutions used in the proof are not satisfied by the new sorting &'.

3.2 Constructing Proof Shells

The improved analysis technique avoids invalid proof reuses when considering
conjectures specified for new sortings. For achieving the separation into specific
and schematic formulas mentioned in the beginning of this section, we let gen-
eralizations map between the signatures 3 and 2 resp. the variable sets V and
U (schematic objects are denoted by capital symbols):

Definition 10 (generalization). A generalization po 3 is a substitution built
from a second-order substitution p: ¥ — T (§2, W), replacing function symbols
f € X, by functional terms p(f) = F(ws,...,w,) for function variables F € £2,,
and a variable renaming 3:V — U.

A generalization p o 8 can also be applied to sort collision sets by defining
w(S(f,1)) = S(F,i) for p(f) = F(wi,...,wy,) and B(S(x)) = S(B(x)). Eg.
{as/F, a1/G, as/H} o {a/u} generalizes the specific symbols from Example 7.

We characterize proof shells [8] as a data structure for representing the es-
sentials of a proof (¢, 0, 0) F3%x (TRUE, A, col) in the schematic language
F(2,U), extended by a component for (generalized) sort constraints:

* Theorem 9 also holds for more general calculi containing unification rules etc. as e.g.
used in the PLAGIATOR-system [9] for treating arbitrary formulas, cf. Section 5.

Definition 11 (proof shells). A proof shell PS = ($, C, Col) is built from a
closed second-order formula ¢ € F(§2,U) (also called schematic conjecture), a
set of closed second-order formulas C C F(£2,U) (also called schematic catch),
and a collision set Col C S%},u such that C — & is Col-valid.

A proof shell captures the “idea” of a successful proof, viz. that the schematic
catch C entails the schematic conjecture @ for all sortings satisfying Col. E.g.
PS=(G=H, {Vvuu=F}, {(S(u),S(G,0)), (S(u),S(H,0))}) is a proof shell
constructed from many-sorted analysis of the proof of ¢ from Example 7, using
the generalization from above.

Theorem 12 (construction of proof shells). For a derivation (¢, 0, 0) Foy
(TRUE, A, col) in the many-sorted proof analysis calculus, PS := (®, C, Col) :=
((B(9)), u(B(A)), n(B(col))) is a proof shell, where po B is a generalization
with Y(AU{¢}) C dom(p) and V(AU {¢}) C dom(5).

Proof. Follows easily from Theorem 9 by showing that the Col-validity of C — &
is implied by the col-validity of A — ¢: For each sorting é2 : Sp s — S such that
C — & is b-sorted and Col is by-satisfied, we define a corresponding sorting
61 : 8xy — 8 w.rt. po B by stipulating 61(S(f,1)) := 82(S(F, 1)) for u(f) =
F(w,...,w,) and 6,(S(z)) := 82(S(u)) for B(z) = u. Then Corollary 4 is
applicable for col, A — ¢, 61 0 65, and p, yielding the é5-validity of C — &. 0O

So far we have formalized how proof shells are constructed by analyzing and
generalizing successfully computed proofs. Now we show how proof shells are
re-instantiated for obtaining proofs of new conjectures.

4 Reusing Proofs

In the remainder of this paper we assume that the new conjectures ¥ to be
proven are Oi-sorted w.r.t. a fixed sorting é; : Sy y — S for the language de-
fined by ¥ UV. When considering proof reuse, §; must be extended by a sorting
02 : Spu — S for the proof shell PS, such that a total sorting é = 6; 0 6 is ob-
tained for checking the well-sortedness of substitutions and the sort constraints.
To commit these language restrictions, we let “mapper” denote a second-order
substitution 2 — 7(X,W), “renaming” denotes a variable renaming U — V,
and “conjecture” denotes a closed é;-sorted first-order formula. The goal-directed
computation of admissible mappers 7 and renamings ~y for instantiating a proof
shell w.r.t. given 6; and 1 (guaranteeing the existence of a suited sorting é,)
is based on an algorithm for sorted second-order matching which is presented
first. Finally we give examples of many-sorted reuse revealing the gains of our
treatment of sorts, as naive approaches would restrict the reusability of proofs.

4.1 Many-Sorted Second-Order Term-Matching

An unsorted second-order matching problem p < ¢ for a patternp € T(X U2, VU
U) and a target t € T(X,V) is solved by computing a mapper 7 : 2 — T (X, W)
with 7(p) =t (we perform “pure” second-order matching as first-order variables

in the pattern are not instantiated). The standard algorithm from [6] uses the
operations decomposition, projection, and imitation for solving a (generally si-
multaneous) second-order matching problem R := [p; < t1,...,pn < t,]. Since
several operations may be applicable, branching leads to multiple solutions, and
we let II := match(R) denote the set IT of mappers computed by this calculus.

For extending match w.r.t. sorts, we provide a flexible way to express the
well-sortedness of objects by defining the well-sortedness of arbitrary collision
sets Q C Szzun,vuu’ cf. Definition 3, w.r.t. a fixed sorting é; : Sgy — S°

Definition 13 (6;-sorted collision sets). A collision set Q@ C S35y of
sort constraints is 6;-sorted iff S; ~¢g So for S1,82 € Sy implies 6;(S1) =
61(S2), where ~g C Sé‘un,vuu is the equivalence relation induced by Q.

Hence a collision set) is 6;-sorted iff there is some sorting 6, : Sp 4 — S such
that 61 o 8, satisfies Q. For instance both collision sets @ := {(S(F,1),S(k))}
and @, := {(S(len,1), S(F,0)), (S(F,1),S(m)} are 6;-sorted if k resp. m is a
variable of §;-sort list resp. nat and len computes the length of a list, but their
union @3 := Q1 U Q2 is not §;-sorted because S(k) ~¢, S(m) but §(S(k)) =
list # nat = §,(S(m)). Now the well-sortedness (w.r.t. delta,) of terms, formulas,
and substitutions can be expressed by certain collision sets, viz. contexts:

Definition 14 (context of terms). The contezt con(p) of a term p € T(X U
2,V UU) is the collision set inductively defined by (cf. Definition 8 for tls)

con(z) := 0, ifzeyYul
con(f(p1,...,pn)) == U; {(S(f,19), tls(pi))} Ucon(p;), if f € X, U 12,.

The context of a term represents all sort constraints which are implicitly given by
the term’s structure, i.e. con(p) is 6;-sorted iff there is some sorting 6> : Sy — S
such that p is (61 0 é2)-sorted. For terms p1,. .., p, we have | J; con(p;) 6;-sorted
iff all p; are (61 083)-sorted w.r.t. some same sorting é2. E.g. the terms p; := F(k)
and ps := len(F(m)) are not (61 o §2)-sorted w.r.t. any sorting 2 because the
union @3 of the above collision sets @1 = con(p1), Q2 = con(p2) obtained as con-
texts is not 6;-sorted. Similarly contexts are defined for formulas and substitu-
tions, e.g. con(w) = {(S(F,0), S(len,0)), (S(len,1),S(G,0)), (S(G,1),S8(F,2))}
for # = {F/len(G(w2))}, where the parameter variable wg points to S(F,2).

We extend match to an algorithm sorted_match(R, Q) yielding the matchers
7 of R for which Q U con(r) is 6;-sorted for an initially given collision set @, cf.
[5]: During the matching process, @ is updated to Q' by adding the contexts of
the stepwise constructed substitutions, where the actual branch is aborted if Q'
is not &;-sorted and otherwise the branch is continued with @ := Q'. Thus parts
of the search space are cut by early detecting violations of sort constraints.

® The algorithm from [6] already assumes that a fixed sort (called “(elementary) type”)
is given for all symbols, and the matching operations are extended there by conditions
checking these sorts. Our sort constraints rather correspond to polymorphic types in
the typed A-calculus, e.g. the sort constraint (S(F,1),S(F,0)) for F € {23 resembles
the typing Fuxg — o where «, 3 are type variables (which can be instantiated by
types). We did not follow the way of extending [6] to polymorphic types as our
notion of sort constraints allows more compact representations and efficient tests.

4.2 Retrieval and Adaptation of Proof Shells

We formulate our approach to many-sorted reuse using the notion of 4;-sorted
collision sets. Instantiating a proof shell (¢, C, Col) is split into two phases,
resulting in a partially or totally instantiated catch, respectively: For retrieval
the schematic conjecture @ is matched with a new conjecture v, and during
adaptation the axioms AX for ¢ are used for instantiating the remaining symbols
from the schematic catch C' such that provable formulas are obtained.

Theorem 15 (reusing proofs by retrieval and adaptation). If, for a con-
jecture ¥ and a proof shell PS = (&, C, Col), there are a mapper © and a re-
naming v such that 7(y(®)) = ¢ and Q, := ColUcon(CU{P})Ucon(r)Ucon(y)
is 61-sorted, then we say PS applies for ¢ (via woy) and we call C,, := w(y(C))
the partially instantiated catch. If there further are a mapper p and a renaming
n such that Cy := p(n(Cp)) C F(X,V) and Q: := Qp U con(p) U con(n) is é1-
sorted, then the totally instantiated catch C; is §;-sorted and |55, Cy — ¢, and
we say 1 is reduced to C; (by PS viamoyopon).

Proof. Let w, v and p, n be given as required. Then there is a sorting 6, :
Spu — Ssuchthat C — &, 7’ := wop, and ' := yon are §-sorted and § satisfies
Col, for the sorting 6 := 81 0 3. Therefore 5 7' (7'(C)) — 7' (7' (P)) is implied
by Corollary 4 and Definition 11. Since 7(v(®)) = + implies @'(v'(®)) = ¢ and
further #’'(y'(C)) = C; C F(X,V) holds, we have even =5, C; — 9. O

To treat a formula-pair (®,+) with the algorithm sorted_match for terms,
(R,) := decompose(P,v) denotes the preprocessing step of structurally com-
paring ¢ and ¢ (up to quantified variables and terms in equations). E.g. R :=
[F(u) < a(z), G(v) < b, H(u,v) < f(y), D <] and v := {u/z, v/y} re-
sults from decomposing VuVv F(u) = G(v) A H(u,v) = D and VaVy a(z) = b A
f(y) = c. Hence v is a renaming if decompose succeeds, i.e. PS = (®, C, Col)
applies for ¢ via 7 o v for each (if any) © € sorted_match(y(R),Q), if the col-
lision set @ := Col U con(C U {®}) U con(y) is §;-sorted, cf. Theorem 15. Here
con(C) C Q ensures the sort constraints imposed by the schematic catch C to
be checked already during retrieval, i.e. some “mappers” with «(v(®)) = ¢ are
excluded early because there is no 6;-sorted total instantiation of C.

The obtained partially instantiated catch Cp := w(y(C)) may still contain
function variables, stemming from function symbols which appear in the orig-
inal proof but not in the original conjecture. These free function variables are
instantiated during the adaptation phase: An efficient procedure solve_catch in-
corporates the underlying axioms for 1) by heuristically combining a second-order
matching algorithm with the technique of symbolic evaluation, cf. [8]. This im-
mediately transfers to many-sorted reuse, where the obtained §;-sorted collision
set (Jp, serves as input for calls of sorted_match when further processing Cp.

Hence the presented reuse method reduces the provability of a new conjecture
to the provability of a set of speculated conjectures, i.e. for a given underlying
set of axioms AX, we have verified AX |=5, ¢ if we can show AX |5, C;. Since
the remaining proof obligations C; can again be proved by reuse, recursion is
recommendable for the reuse procedure, cf. [8] for controlling termination.

4.3 Examples of Many-Sorted Reuse

We consider some examples from the viewpoint of many-sorted reuse, i.e. we
analyze how our techniques for extracting, generalizing and instantiating sort
constraints enable proof reuses which were excluded by naive approaches. In
some examples we exploit that the applicability of proof shells is increased if one
requirement of Theorem 15 is relaxed by demanding only w(y(®)) = v, where
2 allows several equivalence preserving transformations. Transformations like
swapping equations or reordering subformulas can be built into the calculus for
matching formulas, cf. [1] for recent improvements. Our examples stem from the
domain of theorem proving by mathematical induction, cf. Table 1: The proof
shell computed from the given proof of the step formula for ¢ (in the first row)
is reused for proving the step formulas for the remaining statements ¢, @5, etc.5
The last column shows how the soundness of the many-sorted reuse in the
respective row is guaranteed. Here (a) denotes that in the proof by reuse for
each symbol exactly the same sorts as in the original proof are used, and (b)
denotes that in the proof by reuse only one overall sort is used, i.e. in these cases
the soundness of the many-sorted reuse is obvious and our extensions are not
necessary. But in the remaining cases (¢) only our construction of sort constraints
guarantees the validity of instantiations, because e.g. different function symbols
in the original proof with the same (range and domain) sorts are mapped to
different function symbols in the proof by reuse with different sorts, however
respecting the computed sort constraints. This situation is repeated for other
source proofs, i.e. our techniques count for a significant increase of reusability.

o kI =Y (k<>])

No. Conjectures proved by reuse Sorting
P1 IHEXT]! = [[(k<>1) (a)
o2 Bltli] = [k<>1] (a)
©3 mxi+nxi = (m+n)xi (b)
P4 m+(n+i) = (m+n)+i (v)
vs k<> = |1<>k (e)
©e |k <>mn:empty| = suce(| k) (c)
o7 |[k<>mn:ul| = succ(| k<> 1)) (e)
©s incr(m, k) <> incr(m,l) = incr(m,k <> 1) (e)
©s ntheut(m, ntheut(n,k)) = ntheut(m + n, k) (c)
Y10 reverse(reverse(k)) = k (e)
Y11 | reverse(k) | = | k (e)
P12 reverse(k <> n :: empty) = n :: reverse(k) (c)
p13 | or(member(m, k), member(m,l)) = member(m,k <> 1) (e)

Table 1. Conjectures proved by reusing the proof of o

5 The following functions operate on lists: E sums up all elements, <> denotes con-
catenation, H multiplies all elements, | . | yields the length, :: adds an element, incr
increments each element, nthcut cuts elements from the back end, reverse reverses
the order of elements, and member tests for occurrence of elements.

5 Conclusion

We have shown that a learning theorem prover specified for unsorted logic cannot
be used for many-sorted logic without further extensions. Learning of proofs is
based on their reuse, i.e. from a logical perspective a given proof is transformed
into a walid formula which can be generalized and instantiated subsequently
by certain substitutions while preserving its validity. For many-sorted reuse we
have shown that it is necessary to also learn the sort information contained in a
formula and its proof to ensure the soundness of instantiations. This allows us to
abstract from a specific sorting and reason about the validity of (instantiated)
formulas w.r.t. different sortings for the contained symbols.

It turned out that the learning theorem prover can be extended to many-
sorted logic with moderate effort as the overall architecture of the reuse pro-
cedure remains unchanged. The described extensions for many-sorted logic are
implemented in the PLAGIATOR-system [9], the prototype of a learning theorem
prover which formerly performed unsorted reuse. The examples given here reveal
that using the developed approach to many-sorted reuse increases the reusability
of proofs compared to a naive treatment of sorts. An extension to order-sorted
logic [11] by interpreting sort constraints as subsort-relations seems possible.

Acknowledgments: We would like to thank Jurgen Giesl and Wolf Zimmer-
mann for many helpful discussions and comments on earlier drafts of this paper.

References

1. R. Curien, Z. Qian, and H. Shi. Efficient Second-Order Matching. In Proceed-
ings of the 7th International Conference on Rewriting Techniques and Applications
(RTA-96), pages 317 — 331, New Brunswick, NJ, USA, 1996. Springer LNCS 1103.

2. J. Denzinger and S. Schulz. Learning Domain Knowledge to Improve Theorem
Proving. In Proceedings CADE-13, pages 62 — 76. Springer LNAT 1104, 1996.

3. M. Fuchs. Experiments in the Heuristic Use of Past Proof Experience. In Proceed-
ings CADE-13, pages 523 — 537. Springer LNAI 1104, 1996.

4. J. H. Gallier. Logic for Computer Science. John Wiley & Sons, 1987.

5. S. Glesner. Many-Sorted Logic in a Learning Prover. Diploma Thesis (in German),
TH Darmstadt, 1996.

6. G. Huet and B. Lang. Proving and Applying Program Transformations Expressed
with Second-Order Patterns. Acta Informatica, 11:31-55, 1978.

7. T. Kolbe and C. Walther. Reusing Proofs. In A. Cohn, editor, Proceedings of the
11th European Conference on Artificial Intelligence (ECAI-94), Amsterdam, The
Netherlands, pages 80-84. John Wiley & Sons, Ltd., 1994.

8. T. Kolbe and C. Walther. Termination of Theorem Proving by Reuse. In Proceed-
ings CADE-13, pages 106 — 120. Springer LNAT 1104, 1996.

9. T. Kolbe and J. Brauburger. PLAGIATOR — A Learning Prover. In Proceedings
CADE-14. Springer LNAI 1249, 1997.

10. E. Melis and J. Whittle. Internal Analogy in Theorem Proving. In Proceedings
CADE-13, pages 92 — 105. Springer LNAT 1104, 1996.

11. M. Schmidt-Schaufl. Computational Aspects of an Order-Sorted Logic with Term
Declarations. Springer LNAT 395, 1989.

