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Abstract� Reaching agreement in the presence of Byzantine �arbitrary�
faults is a fundamental problem in distributed systems� It has been shown
that message authentication is a useful tool in designing protocols with
high fault tolerance� but it imposes the additional problem of key distri

bution�
In the past� agreement protocols using message authentication required
complete agreement on all public keys� Because this pre
agreement has to
rely on techniques outside the system �e�g�� trusted servers which never
fail�� it is useful to consider lower levels of key distribution which need
as few assumptions as possible�
In this paper� we identify several levels of key distribution and describe
their properties with regard to the achievable fault tolerance in two agree

ment problems�

Keywords� Byzantine agreement� crusader agreement� authentication� distrib�
uted systems� fault tolerance

� Introduction

The problem of distributed agreement arises when a set of nodes in a distributed
system need to have a consistent view of a message sent by one of them� despite
the presence of arbitrarily faulty nodes� Several kinds of agreement have been
de�ned in the past� The most stringent kind of agreement is Byzantine agreement
�BA� as de�ned in �LSP	
�� It requires that the following three conditions be
met�

�B
� All correct nodes agree on the same value�
�B
� If the sender is correct� all correct nodes agree on the value of the sender�
�B�� Each correct node eventually decides on a value�

One variant of this agreement is crusader agreement �CA�� introduced in �Dol	
��
Here� it is not necessary that all nodes agree on the same value if the sender is
faulty� It is required� though� that those nodes which do not agree know that the
sender is faulty�
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�C
� All correct nodes that do not explicitly know that the sender is faulty agree
on the same value�

�C
� If the sender is correct� all correct nodes agree on the value of the sender�
�C�� Each correct node eventually decides on a value or knows that the sender

is faulty�

Protocols for distributed agreement are generally divided into two classes� au�
thenticated protocols and non�authenticated protocols� In authenticated proto�
cols� all messages are signed digitally in a way that the signatures cannot be
forged and a signed message can be unambiguously assigned to its signer� This
mechanism allows a node to prove to others that it has received a certain message
from a certain node� Authenticated protocols can tolerate an arbitrary number
of faulty nodes� In non�authenticated protocols� no messages are signed� For BA
and CA� these protocols require more than two thirds of the participating nodes
to be correct ��LSP	
� Dol	
���

While authenticated protocols o�er the best fault tolerance� it is not at all
trivial to distribute the public keys of all participants of an agreement protocol
consistently amongst each other� Typically� key distribution requires a single
trusted entity� or a group of entities which is completely reliable as a whole
��Gon����� Since these assumptions restrict the usual assumptions about the
participant�s behaviour� they should be kept as weak as possible� Hence� it is
useful to have a look at possible scenarios with di�erent kinds of key distribution
and di�erent common knowledge about these distributions�

� Model of Computation

In this section we describe the model of computation used throughout this paper�
Our world consists of a fully interconnected network with n nodes �processors��
t of which may be faulty� In order to avoid special cases� we assume that n � �
and n � t�
� For n � � there are trivial solutions� and for n � t�
 agreement
always holds by de�nition�

The nodes operate at a known minimal speed� and messages are transmitted
reliably in bounded time� Furthermore� a receiver of a message can identify
its immediate sender� Communication takes place in successive rounds� In each
round a node may send messages to other nodes and receives all messages sent
to it in the current round� The actions a node takes in the next round depend
solely on the messages it has received so far� We make no assumptions about
the type of failures that occur� If a node is faulty� it may behave in an arbitrary
manner� This type of behaviour is usually referred to as Byzantine fault�

In addition� we assume the existence of an unforgeable signature scheme�
Examples for signature schemes which are unforgeable with a su�ciently high
probability �given today�s state of the art� are DSA and RSA �Nat�
� RSA�	��
In these schemes� a prospective signer has a pair of keys� namely a private key
and a public key� The private key is used for signing� while the public key can
be used to verify a signature made with the private key�



The assumption of a signature scheme alone is not very strong �see sec�
tion ��
�� It is often necessary to make assumptions about the distribution of
the public keys� The strongest assumption is that of complete authentication� It
comprises the following four properties�

�A
� If a correct node assigns a signed message to a correct node P � then P has
signed the message�

�A
� A message signed by a correct node P is assigned to P by all correct nodes�
�A�� If a message is assigned to a �possibly faulty� node P by a correct node�

then all correct nodes assign it to P �
�A�� All correct nodes can sign messages�

In terms of private�public keys� properties �A
� and �A
� state that there is
agreement on the public keys of the correct nodes� and the correct nodes keep
their secret keys secret� Property �A�� extends the agreement to the public keys
of the faulty nodes� Owing to the Byzantine failures� it cannot be assumed that
the faulty nodes keep their secret keys secret� Fault models which assume that
faulty nodes do not give their secrets away �or sign messages on behalf of others�
are used in �GLR��� EM����

� Levels of Authentication

Solutions for agreement problems usually assume either no authentication or
complete authentication� These assumptions are only two extreme points in a
spectrum of possible scenarios� In this section� we will identify several di�erent
levels of authentication� give situations in which they arise� and present their
properties with regard to the achievable fault tolerance�

��� No Authentication

In this situation� no means of key distribution and no signature scheme is avail�
able or wanted� e�g�� due to lack of processor speed� lack of private local storage
or insu�cient trust into existing methods� Here applies the long�known require�
ment n � �t ��PSL	�� LSP	
�� which makes agreement between three nodes
impossible if one may fail�

��� Local ��Byzantine	
 Authentication

This type of agreement can be reached when no means of agreement on the keys
is provided and each node distributes its public key by itself� using a signature
scheme� With a challenge�response key distribution protocol� properties �A
� and
�A
� can be enforced if �A�� holds and a signature scheme exists ��Bor����� That
is� a faulty node can distribute di�erent public keys to di�erent nodes� but it can
not claim a public key of a correct node for itself� This makes local authentication
strictly stronger than no authentication� A faulty node can not forge messages
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Fig� �� Proof of Theorem �

sent by correct nodes without invalidating the signature� Furthermore� a message
signed by a correct node cannot be misattributed to a faulty node�

Although no complete agreement on the public keys of the faulty nodes can be
guaranteed� this level of authentication has been shown to be useful for Failure
Discovery� a sub�problem of Byzantine agreement ��HH��� Bor����� Using local
authentication� Byzantine agreement with few messages in the failure�free runs
is possible�

Unfortunately� in this setting the impossibility of Byzantine agreement for
n � �t cannot be overcome� as stated in the following theorem�

Theorem�� It is not possible to reach Byzantine agreement if one third of the
nodes is faulty and only local authentication is assumed�

Proof� This proof is a variation of the proof in �LSP	
�� Let n � �t� Then it is
possible to partition the nodes into three nonempty sets A� B� and C� such that
each set contains at most t elements� The members of these sets will be denoted
ai� bi� and ci� respectively� The sender will always be a��

We consider the most general protocol with an arbitrary number of rounds�
If a correct node receives a message in round r� it signs this message and sends
it to all nodes in round r � 
� Thus� the maximum possible information �ow
is achieved� We do not specify how the information is used to reach the �nal
decision� We will only observe whether or not a node receives di�erent messages
in di�erent runs of a protocol� If the messages are the same� the node has to
draw the same conclusions in the respective runs�

We will consider three possible scenarios ��� ��� and ��� In ��� the nodes in
B are faulty� and a� sends �� In ��� the nodes in C are faulty� and a� sends 
�
In ��� the nodes in A are faulty� and a� sends send � to C and 
 to B�

Hence� in ��� the nodes in C have to decide for �� and in ��� the nodes in B
have to decide for 
� We will show that in ��� the nodes in B receive the same
messages as in ��� while the nodes in C receive the same messages as in ��� So�
in ��� the nodes in B and C have to decide for di�erent values� which contradicts
�B
�� An example with tree nodes will be given below�

We will use the following notation for the messages� �a�BCB means that the
value � was �rst signed by a�� then by a node in B� followed by a node in C�
and then again by a node in B� Small letters denote actual signatures� while
capitals represent the signature of some member of the respective set� For nodes
in A there will be two sets of signatures� They will be denoted AB �aiB� and AC

�aiC�� respectively�



The three scenarios will be constructed in a way that the signatures on all
messages seen by correct nodes in B and C are of the following form�

� The �rst signature is a�B if the value is 
� and a�C if the value is ��
� AB is followed by B or AB �
� AC is followed by C or AC �
� B and C are followed by AB � AC � B� or C�

Signatures AB and AC cannot be recognized by correct nodes in C and B�
respectively� The behaviour of the nodes in the three scenarios is as follows�

Scenario �� �B faulty
� All nodes distribute consistent keys in the key distri�
bution protocol� The nodes in A sign all messages with AC � In the �rst
round of the agreement protocol� a� signs the value � and sends it to all
nodes� In the following rounds� the nodes in A and C sign all messages
correctly and send them to all nodes�
The nodes in B treat all messages from B and C correctly� When a node
bi receives a message from A� it replaces those signatures AC � which are
consecutively at the end� with AB � The signatures AB are chosen arbitrar�
ily by the nodes in B and cannot be recognized by nodes in A or C� If
all signatures on the message are from nodes in A� the value is set to 

before substituting the signatures� Finally� bi signs the message correctly
and sends it to all nodes� If� for example� bi receives �a�Cc�a�Ca�C � it will
echo the message as �a�Cc�a�Ba�Bbi � while a message �a�C becomes 
a�Bbi �

Scenario �� �C faulty
� All nodes distribute consistent keys in the key distri�
bution protocol� The nodes in A sign all messages with AB � In the �rst
round of the agreement protocol� a� signs the value 
 and sends it to all
nodes� In the following rounds� the nodes in A and B sign all messages
correctly and send them to all nodes�
The nodes in C treat all messages from B and C correctly� When a node
ci receives a message from A� it replaces those signatures AB � which are
consecutively at the end� with AC � The signaturesAC are chosen arbitrarily
by the nodes in C and cannot be recognized by nodes in A or B� If all
signatures on the message are from nodes in A� the value is set to � before
substituting the signatures� Finally� ci signs the message correctly and
sends it to all nodes� If� for example� ci receives 
a�Bb�a�Ba�B � it will echo
the message as 
a�Bb�a�Ca�Cci � while a message 
a�B becomes �a�Cci �

Scenario �� �A faulty
� In the key distribution protocol� the nodes in B and
C distribute consistent keys� The nodes in A send di�erent keys AB and
AC to the nodes in B and C�
In the �rst round of the agreement protocol� a� sends 
a�B to B and �a�C
to C� In the following rounds� the nodes in B and C sign all messages
correctly and send them to all nodes� The nodes in A also sign all messages
and send them to all nodes� Before sending a message to B� though� they
replace those signatures AC which are consecutively at the end� with AB �
If there are only signatures by nodes in A� the value is set to 
� Likewise� in
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Fig� �� Impossibility of Byzantine agreement with local authentication

messages to C� signatures AB are replaced by AC � and the value is set to
�� This is possible since the nodes in A may cooperate� If� for example� ai
receives 
a�Bb�a�Ba�B � it will forward this message to C as 
a�Bb�a�Ca�CaiC �

It can easily be seen that for each message received by a node in B in scenario ���
there is an indistinguishable message in scenario ��� and vice versa� The same
holds for the nodes of C in scenarios �� and ��� Since a node bi has to decide for

 in ��� and a node ci has to decide for � in ��� they decide for di�erent values
in ��� This violates �B
�� This reasoning is depicted in Fig� 
� �

Example �� The idea of the proof will be demonstrated at the most simple ex�
ample� There are three nodes a� b� and c� One of them may be faulty� and the
sender is a� Scenarios �� and �� are depicted in Fig� 
� Messages to and from a
in the second round are omitted� as well as self�addressed messages� The boxes
at each node show the respective views of the public keys� and faulty nodes are
shadowed�

If c is correct� it will receive �aC in the �rst round of �� and ��� In the second
round� it will receive �aCaC � �aCc� and 
aBb� where aB is not recognizable to c�
From these messages� c can deduce that one of the following cases must hold�


� a is correct and has sent �� The unrecognizable signature has been produced
by b� In this case� c has to decide for ��


� b is correct� but a has sent di�erent values to b and c� Furthermore� a has
sent di�erent public keys to b and c� Then� c has to decide for the same
value as b�

In order to ful�ll �B
�� c has to decide for �� If a is faulty� b sees messages



Protocol for Crusader Agreement

�� The sender signs its value and sends it to all others�
�� If a node recognizes the signature� it transmits the received value and

signature to all others� Otherwise� it decides for a faulty sender�
�� If a node has not decided in the second step� it looks at the values signed

by the sender it has seen so far� If there is exactly one distinct value� it
decides for that value� Otherwise� it decides for a faulty sender�

Fig� �� Crusader agreement for crusader authentication

consistent with �� and decides for 
� which violates �B
�� If b and c always
decide for some default value� one of them violates �B
� in �� or ���

The proof for the achievable fault tolerance for crusader agreement is sim�
ilar to the proof given above� Hence� to reach crusader agreement under local
authentication� more than two thirds of correct nodes are necessary�

��� Sound� but Incomplete Authentication

For this kind of authentication we assume that no two correct nodes have di�er�
ent public keys of a third node� However� a node may not know the public keys
of all other nodes� In this setting� two cases can be distinguished� In the �rst
case� there is no agreement on who knows which keys� while in the second case�
this agreement is assumed�

Crusader Authentication Here� we assume that only the public keys of the
faulty nodes are distributed incompletely� but it is not known who actually knows
whose public key�

This requires a more benign behaviour of the faulty nodes during the key
distribution process� A faulty node may still choose not to send its public key
to some other nodes� but it does not distribute di�erent keys� Apart from that�
it may behave arbitrarily� Instead of �A��� �A��� holds in this context�

�A��� All correct nodes which assign a certain message to a node assign it to
the same node�

We will refer to this level of authentication as crusader authentication� since
the public keys of the nodes are agreed upon like values sent by crusader agree�
ment� If a correct node A has a key of B� it is the correct one� Otherwise� A
knows that B is faulty�

In such a setting� crusader agreement is possible for any number of faulty
nodes� It can be reached in only two rounds �see Fig� ���

Theorem�� The protocol in Fig� � reaches crusader agreement for any n � t�

if crusader authentication holds�



Proof� �C
� is trivially ful�lled for those nodes which decide that the sender is
faulty� Now assume that two correct nodes decide for di�erent values� Then both
must have received their values with the sender�s signature in the �rst round�
Furthermore� they must not have received a di�erent signed value in the second
round� But that is impossible� since both must have sent their values to all others
in the second round�

�C
� is ful�lled� because a correct sender signs its value in the �rst round and
sends it to all nodes� Since the sender is correct� all nodes assign the message
correctly and send it to all others in the second round� There exists exactly one
value signed by the sender� so all correct nodes will decide for that value� �C��
is ful�lled by the limited number of rounds� �

Byzantine agreement can be reached with n � 
t�
� The protocol in Fig� �
has this fault tolerance� It is a variation of the Exponential Information Gath�
ering �EIG� protocol which was introduced by Bar�Noy et al� �BDDS	��� based
on the protocol in �LSP	
�� In this protocol� the sender starts by sending its
value to all other nodes� In the following t rounds� each node signs and forwards
messages received in the previous round to the other nodes�

During protocol execution� each node maintains an EIG tree which contains
the received information in a structured manner� Such a tree has t�
 levels� one
level per communication round� The root has n� 
 children� and in each of the
following levels� the vertices have one child less than those of the previous level�
Hence� on level r� each vertex has n � r children �we consider the root level as
level 
�� A part of such a tree for n � � is shown in Fig� ��

The vertices have labels which are assigned in the following manner� The
root is labeled with the sender�s name� In the following levels� the children of
a vertex are labeled with the names of the nodes not yet on the path from the
root� We identify a vertex in the tree by the the sequence of labels from the root
to the respective vertex� Note that in no such sequence a node�s name appears
twice� A vertex labeled with the name of a correct �faulty� node will be called a
correct �faulty� vertex� From the construction� a vertex on level r has at most t
faulty children and at least n� r � t correct children�

In the �rst round of the protocol� each node stores the value received from
the sender in the root of its EIG tree� In the following rounds� each correct node
broadcasts the contents of the level of its tree most recently �lled in� and �lls
the next level with messages it receives� If a node X receives a message from Y
claiming that it has stored v in vertex ABCDE� X stores v in vertex ABCDEY
of its EIG tree� Hence� a value v in vertex ABCDEY is interpreted as �Y said
E said � � � B said A said v�� If a node failed to send a value� a default value is
stored�

Due to the structure of the tree� not all received messages are stored� Those
messages in which a node reports about a message which was once sent by itself
are ignored� In Fig� �� labels and stored values are separated by a colon� The
faulty vertices are shadowed�

When a node has completed its tree �after round t�
�� it uses the collected
data to decide for the outcome of the protocol� This is done by resolving each



Protocol for Byzantine Agreement

�� The nodes �ll their EIG trees for t�� rounds� They only consider mes

sages which carry the recognizable signature of the immediate sender�

�� A leaf is resolved to its value with the last signature removed�
�� For a non
leaf on level r � t�� with label X� two cases are distinguished


� The signature of X is known
 Consider the set of resolved children
which are signed correctly� If it has at least t� r�� members� take
the �relative� majority value� The vertex is then resolved to that
value without the last signature� If the set has fewer members� the
vertex is resolved to a default value�

� Signature of the X is unknown
 Take a set of maximum size of
resolved children which carry the same signature� If it contains at
least t � r � � elements� take the relative majority� The vertex is
then resolved to that value� with the last signature removed� If no
such set exists� the vertex is resolved to a default value�

�� The result of the protocol is the resolved value of the root�

Fig� �� Byzantine agreement for crusader authentication

vertex to a certain value� depending on the resolved values of its children� The
exact rules are given in steps 
 and � of the protocol� A vertex which is resolved
to the same value by all correct nodes will be called common� The following
example will demonstrate the rules for resolving�

Example �� Let n � � and t � � �see Fig� ��� Let us further assume that the �ve
children of a vertex at level r � 
 are resolved to the following values� default�
default� 
ab� 
ab� � 
ab� � A reducing node who knows the signature of b notices that
only one of these values has been signed correctly� Since 
 � t� r�
 � 
� it will
choose the default value�

A node which does not know the signature of b uses values 
ab� and 
ab� for its
decision� since they constitute the largest set of values with the same signature�
and the set has two elements�� The majority value is 
ab� � and the vertex will be
resolved to 
a� Since two correct nodes can reduce this vertex to di�erent values�
it is not common�

The following two lemmas will be used to prove the correctness of the pro�
tocol�

Lemma�� Assuming crusader authentication and n � 
t � 
� the following
holds	 A correct vertex is resolved to its stored value� with the last signature
removed�

� We assume implicitly that it is possible to decide whether two signatures were made
with the same private key� This can be achieved when each signature is required to
come with the respective public key�
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Proof� The proof is by induction on the levels of the tree� from the leaves to the
root� For a leaf� the lemma is trivially correct� Now suppose that for all vertices
above level r the lemma is true� Then it is also true for a correct vertex on level
r� because it has at least t� r � 
 correct children �due to n � 
t� 
��

From the induction hypothesis� all of them will be resolved to their stored
values� Since the vertex on level r is correct� its stored value is the same as the
resolved values of the children� Furthermore� the signatures on the values are
correct� Hence� the vertex will be resolved as stated in the lemma� �

Lemma
� Assuming crusader authentication and n � 
t � 
� the following
holds	 A faulty vertex which has only faulty ascendants� is common�

Proof� The proof is again by induction on the levels from the leaves to the root�
On the last level �t�
�� the lemma is true� because there is no such vertex� Now
suppose that for all vertices above level r the lemma is true� We will now show
that the lemma is true for the vertices on level r�

Consider a faulty vertex on level r which has only faulty ascendants� With
the induction hypothesis and Lemma �� all children of this vertex are common�
Then all correct nodes resolve that vertex to the same value� because they will
base their decision on the same set of values� This can be shown as follows� A
set of t� r�
 elements can not contain only values from faulty vertices� since a
faulty vertex with faulty ascendants in level r has at most t� r faulty children�
But if there is one value from a correct vertex in the set� then all values carry
the correct signature� since a correct node will only forward values with correct
signatures� �

Theorem�� Assuming crusader authentication and n � 
t � 
� the following
holds	 The algorithm in Fig� 
 reaches Byzantine agreement�

Proof� If the sender is correct� the root of the tree will be resolved to the value
received in the �rst round by all correct nodes� due to Lemma �� Hence� all
correct nodes agree on the correct value�

� An ascendant is a vertex on the direct path to the root�



If the sender is faulty� the root is common due to Lemma �� Hence� all correct
nodes agree on the same value� �

The next theorem shows that the fault tolerance of n � 
t � 
 cannot be
improved�

Theorem�� Byzantine agreement cannot be reached for n � 
t� if only crusader
authentication holds�

Proof� Suppose that n � 
t holds� Then the nodes can be partitioned in four
nonempty sets A� B� C� andD� such that no set contains more than t�
 members�
Now consider four scenarios� where in each scenario the members of two sets
behave faulty� The sender is always a��

In all four scenarios� the nodes in C will play the role of those who do not
know the public keys of nodes in A� If A is correct� they will only pretend not
to know the keys� If A if faulty� they will actually not know the keys�

Scenario �� �C and D faulty
� All public keys are known to all nodes� In
the �rst round� a� sends �a� to all� and the nodes in A and B forward all
messages correctly�
The nodes in C behave correctly� except that they pretend not to know the
public keys of the nodes in A� The nodes in D behave towards the nodes
in C as follows� They pretend to receive from nodes in A messages of the
form mA����A� � where A� is recognizable to D� Furthermore� they forward
messages 
A���A to C as �A����A�D� Apart from this� they behave correctly�

Scenario �� �B and C faulty
� All public keys are known to all nodes� In
the �rst round� a� sends 
a� to all� and the nodes in A and D forward all
messages correctly�
The nodes in C behave correctly� except that they pretend not to know the
public keys of the nodes in A� The nodes in B behave towards the nodes
in C as follows� They pretend to receive from nodes in A messages of the
form mA����A� � where A� is recognizable to B� Furthermore� they forward
messages �A���A to C as 
A����A�B � Apart from this� they behave correctly�

Scenario �� �A and B faulty
� All public keys except those from nodes in A
are known to all nodes� The keys of A are known to all except the nodes
in C�
During the agreement protocol� the nodes behave exactly as in ���

Scenario �� �A and D faulty
� All public keys except those from nodes in A
are known to all nodes� The keys of A are known to all except the nodes
in C�
During the agreement protocol� the nodes behave exactly as in ���

The nodes in the respective sets have the following views �see Fig� ���

� The nodes in B cannot distinguish �� from ��� Hence� they decide in both
scenarios for ��

� The nodes in C cannot distinguish �� and ��� Since the nodes in B decide
for � in ��� the nodes in C have to decide for � in �� and ���
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Fig� 	� Proof of Theorem �

� The nodes in D cannot distinguish �� and ��� Hence� they decide in both
scenarios for 
�

With this reasoning� the nodes in C and D decide for di�erent values in ���
which contradicts �B
�� �

Partial Authentication In this setting it is common knowledge whose public
keys are distributed completely� For simplicity� we will only regard the case in
which a node�s public key is either known to all nodes or to none� This situation
arises when the keys are distributed by a globally trusted server which does not
know all keys� or when some of the nodes are not able to sign messages� There is
no relationship between the state of a node �faulty�correct� and the distribution
of its public key� Here� �A�� holds� but �A�� becomes

�A���� Only a known set of s nodes can sign messages�

We will call this level of authentication partial authentication� A node whose
public key is known is called signer� We can distinguish whether or not the
sender is a signer�

Sender is no signer If n � s � 
t� 
� the sender sends its value to the signers
in the �rst round� Then the signers distribute this value via an authenticated
protocol with all other non�signing nodes as bystanders� The �nal result is the
majority of the results of these protocols�

Such a protocol� where some node do not send any messages �and hence do
not sign�� is described in �DS	�� �Theorem ��� In this protocol� the non�signing
nodes have to draw their conclusions from the messages they receive from the
signers� The protocol runs for t�
 rounds� For our purposes� the protocols could
also be run for only t rounds�

A sketch of the proof is as follows� If the sender is faulty� there are at most
t � 
 faulty signers left� and all correct nodes will agree on the values of the s
sub�protocols� Hence� all correct nodes will eventually agree on the same value�

If the sender is correct� all correct signers will send the same values in their
respective sub�protocols� These protocols have the property that the nodes reach
agreement on the values of the correct nodes� even if the number of rounds is
not greater than the number of faulty nodes� Hence� a majority of the results of
the sub�protocols will be the correct value�



For s � 
t� no better fault tolerance than in the unsigned case can be
achieved� This is shown in the following theorem�

Theorem�� If the sender of a protocol does not sign its messages and s � 
t
holds� then Byzantine agreement cannot be reached with n � �t� assuming partial
authentication�

Proof� Suppose n � �t and s � 
t� Then it is possible to partition the nodes into
three nonempty sets A� B� and C� such that A contains exactly the non�signers
and no set contains more than t elements� The sender is a�� Now consider three
scenarios ��� ��� and ���

Scenario �� �B faulty
� a� sends � in the �rst round� When a node bi receives
a message from A without any signatures �i�e�� the message passed only
nodes in A�� it forwards 
bi to all nodes� All other messages are correctly
signed and forwarded�

Scenario �� �C faulty
� a� sends 
 in the �rst round� When a node ci receives
a message from A without any signatures �i�e�� the message passed only
nodes in A�� it forwards �ci to all nodes� All other messages are correctly
signed and forwarded�

Scenario �� �A faulty
� In the �rst round� a� sends � to C and 
 to B� In the
remainder of the protocol� a node ai forwards a signed message unchanged
to all nodes� Unsigned messages are passed to B as 
 and to C as ��

In ��� the nodes in C have to decide for �� since the sender is correct� For
the same reason� the nodes in B have to decide for 
 in ��� Scenario �� has been
constructed in a way that it is indistinguishable from �� by C and from �� by
B� Hence� the nodes in B and C decide for di�erent values in ��� contradicting
�B
�� �

With a similar argument� it can be shown that the same restrictions apply
for crusader agreement�

Sender is signer For n � s � 
t� 
� the protocol from �DS	�� mentioned above
could be used� With the �less e�cient� EIG�protocol in Fig� �� one signer can be
omitted� such that Byzantine agreement is possible for n � s � 
t�

Theorem�� Assuming partial authentication� the following holds	 If the sender
signs and n � s � 
t holds� the protocol in Fig� � reaches Byzantine agreement�

Proof� We distinguish whether the sender is correct or faulty�
Sender correct	 There is exactly one value signed by the sender� Since there

are at least t� 
 correct nodes� at least t of which are signers� at least one leaf
is reduced to the sender�s value signed by t correct nodes� This value will be
considered recursively in the process of resolving� Hence� there is exactly one
value for the result of the protocol� which is the value signed by the sender�



Protocol for Byzantine Agreement

�� The nodes �ll their EIG trees for t� � rounds�
�� A leaf is resolved to its value� If the last sender was a signer� the signature

is removed�
�� For a vertex on level r � t�� with label X� two cases are distinguished


� X is signer
 Take the majority of the vertice�s resolved children
which carry X�s signature�

� X is no signer
 Take the majority of the vertice�s resolved children�
�� The result of the protocol is the resolved value of the root�

Fig� 
� Byzantine agreement with partial authentication and a signing sender

Sender faulty	 Here� we show that all vertices in the second level are common�
The vertices which correspond to correct signers are common with the same
argumentation as in the case of a correct sender�

The vertices which correspond to correct non�signers are common� because
they have at least t correct and signed children �as opposed to at most t�
 faulty
children�� Since these vertices are common �same argumentation as above�� there
is always a majority of correctly resolved children�

Finally� there are the faulty vertices �signed or not�� Their correct children
are common� as can be shown as above� For their faulty children to be common�
it is �by recursion� necessary that all faulty vertices at level t�
 with only faulty
ascendants be common� This is the case� since there are no such vertices�

Hence� all correct nodes take the same set of values as a basis for the �nal
decision� This leads to a common value� �

For n � s � 
t� any protocol for complete authentication can be used� Hence�
Byzantine agreement is possible for any n � s � 
t� For � � s � 
t�
� n � �t�

�or n � s� is necessary�

Theorem�� Under the assumption of partial authentication the following holds	
If the sender signs its messages and � � s � 
t � 
 holds� then Byzantine
agreement is only possible if n � �t� 
 or n � s�

Proof �Sketch�� Byzantine agreement is always possible with n � s ��LSP	
���
Now suppose n � s � 
t� 
 and n � �t� 
 holds� From Theorem � follows that
it is generally impossible to reach Byzantine agreement on the messages sent
by the non�signers� Hence� the non�signers may as well send no messages at all�
Now let the faulty signers� except the sender� be in A� the correct signers in B�
and the non�signers in C�

If the sender is faulty� A can behave towards C as if the sender sends �
��
while B receives �and sends� messages consistent with the sender saying �
��
The nodes in C cannot distinguish whether A or C is faulty� although they have
to agree with the correct nodes� �



Crusader agreement is possible for any number of faulty nodes� It can easily
be veri�ed that the protocol of Fig� � reaches crusader agreement under the
assumption of partial authentication and a signing sender�

��
 Complete Authentication

In this setting it is assumed that all nodes agree on the public keys of all nodes�
If n � �t� this agreement may be reached using a trusted entity at the time of
set�up �e�g�� a trusted person traveling from site to site� or dynamically by using
a trusted server� It is worth noting that if a trusted server would exist during
execution of the protocols� it could also help solving Byzantine agreement very
easily� With complete authentication� n � t is possible� This case is dealt with
to a great extent in the original papers ��PSL	�� LSP	
��� and in �DS	���

If n � �t�
� one should install complete authentication by agreement on the
public keys at the very beginning� Once this level of authentication is reached� an
arbitrary number of nodes may become faulty without disturbing agreement� In
addition� with complete authentication� very simple and message�e�cient pro�
tocols become possible�

� Summary

In this paper� we have focused on protocols for Byzantine agreement and crusader
agreement in the presence of incomplete and incorrect authentication� We have
identi�ed several possible scenarios which yield di�erent degrees of maximum
fault tolerance�

BA CA

No auth� �t� � �LSP��� �t� � �Dol���

Byz� auth� �t� � �t� �

Crus� auth� �t� � t

Partial auth�� �t� � if s � �t� � �t� � if s � �t� �
Sender doesn�t sign �t� � else �t� � else

Partial auth�� �t if s � �t t

Sender signs �t� � if s � �t � s � n

Complete auth� t �LSP��� t

Table �� Minimal n for di�erent levels of authentication and types of agreement

Table 
 gives an overview of the results� It shows minimum values for n
�number of nodes� with regard to t �maximum number of faulty nodes�� In the
results for partial authentication� s denotes the number of signing nodes�

In the past� only the two extreme levels �no authentication� and �complete
authentication� have been investigated� As can be seen� there is a trade�o� be�
tween the level of authentication and the possible fault tolerance� The stronger



the authentication� the higher the possible fault tolerance� Furthermore� we have
shown that there are environments where the two agreement problems under
consideration do not have the same fault tolerance�
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