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Abstract. Reaching agreement in the presence of Byzantine (arbitrary)
faults is a fundamental problem in distributed systems. It has been shown
that message authentication is a useful tool in designing protocols with
high fault tolerance, but it imposes the additional problem of key distri-
bution.

In the past, agreement protocols using message authentication required
complete agreement on all public keys. Because this pre-agreement has to
rely on techniques outside the system (e.g., trusted servers which never
fail), it is useful to consider lower levels of key distribution which need
as few assumptions as possible.

In this paper, we identify several levels of key distribution and describe
their properties with regard to the achievable fault tolerance in two agree-
ment problems.
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1 Introduction

The problem of distributed agreement arises when a set of nodes in a distributed
system need to have a consistent view of a message sent by one of them, despite
the presence of arbitrarily faulty nodes. Several kinds of agreement have been
defined in the past. The most stringent kind of agreement is Byzantine agreement
(BA) as defined in [LSP82]. It requires that the following three conditions be
met:

(B1) All correct nodes agree on the same value.
(B2) If the sender is correct, all correct nodes agree on the value of the sender.
(B3) Each correct node eventually decides on a value.

One variant of this agreement is crusader agreement (CA), introduced in [Dol82).
Here, it is not necessary that all nodes agree on the same value if the sender is
faulty. It is required, though, that those nodes which do not agree know that the
sender is faulty:
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(C1) All correct nodes that do not explicitly know that the sender is faulty agree
on the same value.

(C2) If the sender is correct, all correct nodes agree on the value of the sender.

(C3) Each correct node eventually decides on a value or knows that the sender
is faulty.

Protocols for distributed agreement are generally divided into two classes: au-
thenticated protocols and non-authenticated protocols. In authenticated proto-
cols, all messages are signed digitally in a way that the signatures cannot be
forged and a signed message can be unambiguously assigned to its signer. This
mechanism allows a node to prove to others that it has received a certain message
from a certain node. Authenticated protocols can tolerate an arbitrary number
of faulty nodes. In non-authenticated protocols, no messages are signed. For BA
and CA, these protocols require more than two thirds of the participating nodes
to be correct ([LSP82, Dol82]).

While authenticated protocols offer the best fault tolerance, it is not at all
trivial to distribute the public keys of all participants of an agreement protocol
consistently amongst each other. Typically, key distribution requires a single
trusted entity, or a group of entities which is completely reliable as a whole
([Gon93]). Since these assumptions restrict the usual assumptions about the
participant’s behaviour, they should be kept as weak as possible. Hence, it is
useful to have a look at possible scenarios with different kinds of key distribution
and different common knowledge about these distributions.

2 Model of Computation

In this section we describe the model of computation used throughout this paper.
Our world consists of a fully interconnected network with n nodes (processors),
t of which may be faulty. In order to avoid special cases, we assume that n > 3
and n >t + 1. For n < 3 there are trivial solutions, and for n < t + 1 agreement
always holds by definition.

The nodes operate at a known minimal speed, and messages are transmitted
reliably in bounded time. Furthermore, a receiver of a message can identify
its immediate sender. Communication takes place in successive rounds. In each
round a node may send messages to other nodes and receives all messages sent
to it in the current round. The actions a node takes in the next round depend
solely on the messages it has received so far. We make no assumptions about
the type of failures that occur. If a node is faulty, it may behave in an arbitrary
manner. This type of behaviour is usually referred to as Byzantine fault.

In addition, we assume the existence of an unforgeable signature scheme.
Examples for signature schemes which are unforgeable with a sufficiently high
probability (given today’s state of the art) are DSA and RSA [Nat92, RSAT7S].
In these schemes, a prospective signer has a pair of keys, namely a private key
and a public key. The private key is used for signing, while the public key can
be used to verify a signature made with the private key.



The assumption of a signature scheme alone is not very strong (see sec-
tion 3.2). It is often necessary to make assumptions about the distribution of
the public keys. The strongest assumption is that of complete authentication. It
comprises the following four properties:

(A1) If a correct node assigns a signed message to a correct node P, then P has
signed the message.

(A2) A message signed by a correct node P is assigned to P by all correct nodes.

(A3) If a message is assigned to a (possibly faulty) node P by a correct node,
then all correct nodes assign it to P.

(A4) All correct nodes can sign messages.

In terms of private/public keys, properties (A1) and (A2) state that there is
agreement on the public keys of the correct nodes, and the correct nodes keep
their secret keys secret. Property (A3) extends the agreement to the public keys
of the faulty nodes. Owing to the Byzantine failures, it cannot be assumed that
the faulty nodes keep their secret keys secret. Fault models which assume that
faulty nodes do not give their secrets away (or sign messages on behalf of others)
are used in [GLR95, EM96].

3 Levels of Authentication

Solutions for agreement problems usually assume either no authentication or
complete authentication. These assumptions are only two extreme points in a
spectrum of possible scenarios. In this section, we will identify several different
levels of authentication, give situations in which they arise, and present their
properties with regard to the achievable fault tolerance.

3.1 No Authentication

In this situation, no means of key distribution and no signature scheme is avail-
able or wanted, e.g., due to lack of processor speed, lack of private local storage
or insufficient trust into existing methods. Here applies the long-known require-
ment n > 3t ([PSL80, LSP82]) which makes agreement between three nodes
impossible if one may fail.

3.2 Local (“Byzantine”) Authentication

This type of agreement can be reached when no means of agreement on the keys
is provided and each node distributes its public key by itself, using a signature
scheme. With a challenge-response key distribution protocol, properties (A1) and
(A2) can be enforced if (A4) holds and a signature scheme exists ([Bor95]). That
is, a faulty node can distribute different public keys to different nodes, but it can
not claim a public key of a correct node for itself. This makes local authentication
strictly stronger than no authentication: A faulty node can not forge messages
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Fig. 1. Proof of Theorem 1

sent by correct nodes without invalidating the signature. Furthermore, a message
signed by a correct node cannot be misattributed to a faulty node.

Although no complete agreement on the public keys of the faulty nodes can be
guaranteed, this level of authentication has been shown to be useful for Failure
Discovery, a sub-problem of Byzantine agreement ([HH93, Bor95]). Using local
authentication, Byzantine agreement with few messages in the failure-free runs
is possible.

Unfortunately, in this setting the impossibility of Byzantine agreement for
n < 3t cannot be overcome, as stated in the following theorem.

Theorem 1. It is not possible to reach Byzantine agreement if one third of the
nodes is faulty and only local authentication is assumed.

Proof. This proof is a variation of the proof in [LSP82]: Let n < 3t. Then it is
possible to partition the nodes into three nonempty sets A, B, and C, such that
each set contains at most ¢ elements. The members of these sets will be denoted
a;, b;, and ¢;, respectively. The sender will always be a;.

We consider the most general protocol with an arbitrary number of rounds:
If a correct node receives a message in round r, it signs this message and sends
it to all nodes in round r + 1. Thus, the maximum possible information flow
is achieved. We do not specify how the information is used to reach the final
decision. We will only observe whether or not a node receives different messages
in different runs of a protocol. If the messages are the same, the node has to
draw the same conclusions in the respective runs.

We will consider three possible scenarios oy, o2, and o3. In o1, the nodes in
B are faulty, and a; sends 0. In o5, the nodes in C' are faulty, and a; sends 1.
In o3, the nodes in A are faulty, and a; sends send 0 to C and 1 to B.

Hence, in o7, the nodes in C have to decide for 0, and in o3, the nodes in B
have to decide for 1. We will show that in o3, the nodes in B receive the same
messages as in o2, while the nodes in C' receive the same messages as in ;. So,
in o3, the nodes in B and C have to decide for different values, which contradicts
(B1). An example with tree nodes will be given below.

We will use the following notation for the messages: 0, pcp means that the
value 0 was first signed by a1, then by a node in B, followed by a node in C,
and then again by a node in B. Small letters denote actual signatures, while
capitals represent the signature of some member of the respective set. For nodes
in A there will be two sets of signatures. They will be denoted Ap (a;g) and Ac
(a;c), respectively.



The three scenarios will be constructed in a way that the signatures on all
messages seen by correct nodes in B and C' are of the following form:

— The first signature is a1 p if the value is 1, and a;¢ if the value is 0.
— Ap is followed by B or Ap.

— Ag is followed by C or Ac.

— B and C are followed by Ap, A¢, B, or C.

Signatures Ap and Ac cannot be recognized by correct nodes in C' and B,
respectively. The behaviour of the nodes in the three scenarios is as follows:

Scenario o; (B faulty): All nodes distribute consistent keys in the key distri-
bution protocol. The nodes in A sign all messages with Ac. In the first
round of the agreement protocol, a; signs the value 0 and sends it to all
nodes. In the following rounds, the nodes in A and C sign all messages
correctly and send them to all nodes.

The nodes in B treat all messages from B and C' correctly. When a node
b; receives a message from A, it replaces those signatures Ac, which are
consecutively at the end, with Ap. The signatures Ap are chosen arbitrar-
ily by the nodes in B and cannot be recognized by nodes in A or C. If
all signatures on the message are from nodes in A, the value is set to 1
before substituting the signatures. Finally, b; signs the message correctly
and sends it to all nodes. If, for example, b; receives Og, ¢ cpascaze s it Will
echo the message as Oq, o cpaapasnb;» While a message Oq,, becomes 1,, ;-

Scenario oy (C faulty): All nodes distribute consistent keys in the key distri-

bution protocol. The nodes in A sign all messages with Ap. In the first
round of the agreement protocol, a; signs the value 1 and sends it to all
nodes. In the following rounds, the nodes in A and B sign all messages
correctly and send them to all nodes.
The nodes in C treat all messages from B and C' correctly. When a node
¢; receives a message from A, it replaces those signatures Ap, which are
consecutively at the end, with A¢. The signatures A¢ are chosen arbitrarily
by the nodes in C' and cannot be recognized by nodes in A or B. If all
signatures on the message are from nodes in A, the value is set to 0 before
substituting the signatures. Finally, ¢; signs the message correctly and
sends it to all nodes. If, for example, ¢; receives 1o, pboaspasys, it Will echo
the message as 14, pbsa40as0c:, While a message 1,,, becomes Og, ¢, -

Scenario o3 (A faulty): In the key distribution protocol, the nodes in B and
C' distribute consistent keys. The nodes in A send different keys Ap and
Ac to the nodes in B and C'.

In the first round of the agreement protocol, a; sends 1,,, to B and O,
to C. In the following rounds, the nodes in B and C sign all messages
correctly and send them to all nodes. The nodes in A also sign all messages
and send them to all nodes. Before sending a message to B, though, they
replace those signatures Ac which are consecutively at the end, with Ap.
If there are only signatures by nodes in A, the value is set to 1. Likewise, in
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Fig. 2. Impossibility of Byzantine agreement with local authentication

messages to C, signatures Ap are replaced by A¢, and the value is set to
0. This is possible since the nodes in A may cooperate. If, for example, a;
receives 1g, sboaspass» it Will forward this message to C' as 1o, gbyascascaic -

It can easily be seen that for each message received by a node in B in scenario o,
there is an indistinguishable message in scenario o3, and vice versa. The same
holds for the nodes of C' in scenarios o; and o3. Since a node b; has to decide for
1 in o2, and a node ¢; has to decide for 0 in o7, they decide for different values
in o3. This violates (B1). This reasoning is depicted in Fig. 1. |

Ezample 1. The idea of the proof will be demonstrated at the most simple ex-
ample: There are three nodes a, b, and ¢. One of them may be faulty, and the
sender is a. Scenarios o1 and o3 are depicted in Fig. 2. Messages to and from «a
in the second round are omitted, as well as self-addressed messages. The boxes
at each node show the respective views of the public keys, and faulty nodes are
shadowed.

If c is correct, it will receive 0, in the first round of o; and 3. In the second
round, it will receive O qac, Oape, and 1,,5, Where ap is not recognizable to c.
From these messages, ¢ can deduce that one of the following cases must hold:

1. ais correct and has sent 0. The unrecognizable signature has been produced
by b. In this case, ¢ has to decide for 0.

2. b is correct, but a has sent different values to b and c. Furthermore, a has
sent different public keys to b and ¢. Then, ¢ has to decide for the same
value as b.

In order to fulfill (B2), ¢ has to decide for 0. If a is faulty, b sees messages



Protocol for Crusader Agreement

1. The sender signs its value and sends it to all others.

2. If a node recognizes the signature, it transmits the received value and
signature to all others. Otherwise, it decides for a faulty sender.

3. If a node has not decided in the second step, it looks at the values signed
by the sender it has seen so far. If there is exactly one distinct value, it
decides for that value. Otherwise, it decides for a faulty sender.

Fig. 3. Crusader agreement for crusader authentication

consistent with oo and decides for 1, which violates (B1). If b and ¢ always
decide for some default value, one of them violates (B1) in oy or os.

The proof for the achievable fault tolerance for crusader agreement is sim-
ilar to the proof given above. Hence, to reach crusader agreement under local
authentication, more than two thirds of correct nodes are necessary.

3.3 Sound, but Incomplete Authentication

For this kind of authentication we assume that no two correct nodes have differ-
ent public keys of a third node. However, a node may not know the public keys
of all other nodes. In this setting, two cases can be distinguished. In the first
case, there is no agreement on who knows which keys, while in the second case,
this agreement is assumed.

Crusader Authentication Here, we assume that only the public keys of the
faulty nodes are distributed incompletely, but it is not known who actually knows
whose public key.

This requires a more benign behaviour of the faulty nodes during the key
distribution process. A faulty node may still choose not to send its public key
to some other nodes, but it does not distribute different keys. Apart from that,
it may behave arbitrarily. Instead of (A3), (A3)’ holds in this context:

correct nodes which assign a certain message to a node assign it to
A3) All t nod hich i tal t d ign it t
the same node.

We will refer to this level of authentication as crusader authentication, since
the public keys of the nodes are agreed upon like values sent by crusader agree-
ment: If a correct node A has a key of B, it is the correct one. Otherwise, A
knows that B is faulty.

In such a setting, crusader agreement is possible for any number of faulty
nodes. It can be reached in only two rounds (see Fig. 3).

Theorem 2. The protocol in Fig. 3 reaches crusader agreement for anyn > t+2
if crusader authentication holds.



Proof. (C1) is trivially fulfilled for those nodes which decide that the sender is
faulty. Now assume that two correct nodes decide for different values. Then both
must have received their values with the sender’s signature in the first round.
Furthermore, they must not have received a different signed value in the second
round. But that is impossible, since both must have sent their values to all others
in the second round.

(C2) is fulfilled, because a correct sender signs its value in the first round and
sends it to all nodes. Since the sender is correct, all nodes assign the message
correctly and send it to all others in the second round. There exists exactly one
value signed by the sender, so all correct nodes will decide for that value. (C3)
is fulfilled by the limited number of rounds. |

Byzantine agreement can be reached with n > 2t + 1. The protocol in Fig. 4
has this fault tolerance. It is a variation of the Exponential Information Gath-
ering (EIG) protocol which was introduced by Bar-Noy et al. [BDDS87], based
on the protocol in [LSP82]. In this protocol, the sender starts by sending its
value to all other nodes. In the following ¢ rounds, each node signs and forwards
messages received in the previous round to the other nodes.

During protocol execution, each node maintains an EIG tree which contains
the received information in a structured manner. Such a tree has t+ 1 levels, one
level per communication round. The root has n — 1 children, and in each of the
following levels, the vertices have one child less than those of the previous level.
Hence, on level r, each vertex has n — r children (we consider the root level as
level 1). A part of such a tree for n = 7 is shown in Fig. 5.

The vertices have labels which are assigned in the following manner: The
root is labeled with the sender’s name. In the following levels, the children of
a vertex are labeled with the names of the nodes not yet on the path from the
root. We identify a vertex in the tree by the the sequence of labels from the root
to the respective vertex. Note that in no such sequence a node’s name appears
twice. A vertex labeled with the name of a correct (faulty) node will be called a
correct (faulty) vertex. From the construction, a vertex on level r has at most ¢
faulty children and at least n — r — t correct children.

In the first round of the protocol, each node stores the value received from
the sender in the root of its EIG tree. In the following rounds, each correct node
broadcasts the contents of the level of its tree most recently filled in, and fills
the next level with messages it receives. If a node X receives a message from Y
claiming that it has stored v in vertex ABCDE, X stores v in vertex ABCDEY
of its KIG tree. Hence, a value v in vertex ABCDFEY is interpreted as “Y said
E said ... B said A said v”. If a node failed to send a value, a default value is
stored.

Due to the structure of the tree, not all received messages are stored. Those
messages in which a node reports about a message which was once sent by itself
are ignored. In Fig. 5, labels and stored values are separated by a colon. The
faulty vertices are shadowed.

When a node has completed its tree (after round ¢ + 1), it uses the collected
data to decide for the outcome of the protocol. This is done by resolving each



Protocol for Byzantine Agreement

1. The nodes fill their EIG trees for ¢t + 1 rounds. They only consider mes-
sages which carry the recognizable signature of the immediate sender.

2. A leaf is resolved to its value with the last signature removed.

3. For anon-leaf on level r < t+1 with label X, two cases are distinguished:

— The signature of X is known: Consider the set of resolved children
which are signed correctly. If it has at least ¢t — r 4+ 1 members, take
the (relative) majority value. The vertex is then resolved to that
value without the last signature. If the set has fewer members, the
vertex is resolved to a default value.

— Signature of the X is unknown: Take a set of maximum size of
resolved children which carry the same signature. If it contains at
least ¢ — r + 1 elements, take the relative majority. The vertex is
then resolved to that value, with the last signature removed. If no
such set exists, the vertex is resolved to a default value.

4. The result of the protocol is the resolved value of the root.

Fig. 4. Byzantine agreement for crusader authentication

vertex to a certain value, depending on the resolved values of its children. The
exact rules are given in steps 2 and 3 of the protocol. A vertex which is resolved
to the same value by all correct nodes will be called common. The following
example will demonstrate the rules for resolving.

Ezample 2. Let n =7 and ¢t = 3 (see Fig. 5). Let us further assume that the five
children of a vertex at level r = 2 are resolved to the following values: default,
default, 144,244/, 245 - A reducing node who knows the signature of b notices that
only one of these values has been signed correctly. Since 1 < t—r+1 = 2, it will
choose the default value.

A node which does not know the signature of b uses values 2, and 24 for its
decision, since they constitute the largest set of values with the same signature,
and the set has two elements'. The majority value is 2,5, and the vertex will be
resolved to 2,. Since two correct nodes can reduce this vertex to different values,
it is not common.

The following two lemmas will be used to prove the correctness of the pro-
tocol:

Lemma 3. Assuming crusader authentication and n > 2t + 1, the following
holds: A correct vertex is resolved to its stored value, with the last signature
removed.

! We assume implicitly that it is possible to decide whether two signatures were made
with the same private key. This can be achieved when each signature is required to
come with the respective public key.
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Fig. 5. Part of an EIG tree

Proof. The proof is by induction on the levels of the tree, from the leaves to the
root. For a leaf, the lemma is trivially correct. Now suppose that for all vertices
above level  the lemma is true. Then it is also true for a correct vertex on level
r, because it has at least ¢t — r + 1 correct children (due to n > 2t + 1).

From the induction hypothesis, all of them will be resolved to their stored
values. Since the vertex on level r is correct, its stored value is the same as the
resolved values of the children. Furthermore, the signatures on the values are
correct. Hence, the vertex will be resolved as stated in the lemma. O

Lemma4. Assuming crusader authentication and n > 2t + 1, the following
holds: A faulty vertex which has only faulty ascendants® is common.

Proof. The proof is again by induction on the levels from the leaves to the root.
On the last level (¢+ 1), the lemma is true, because there is no such vertex. Now
suppose that for all vertices above level r the lemma is true. We will now show
that the lemma is true for the vertices on level r.

Consider a faulty vertex on level r which has only faulty ascendants. With
the induction hypothesis and Lemma 3, all children of this vertex are common.
Then all correct nodes resolve that vertex to the same value, because they will
base their decision on the same set of values. This can be shown as follows: A
set of t —r + 1 elements can not contain only values from faulty vertices, since a
faulty vertex with faulty ascendants in level r has at most ¢ — r faulty children.
But if there is one value from a correct vertex in the set, then all values carry
the correct signature, since a correct node will only forward values with correct
signatures. O

Theorem 5. Assuming crusader authentication and n > 2t + 1, the following
holds: The algorithm in Fig. 4 reaches Byzantine agreement.

Proof. If the sender is correct, the root of the tree will be resolved to the value
received in the first round by all correct nodes, due to Lemma 3. Hence, all
correct nodes agree on the correct value.

2 An ascendant is a vertex on the direct path to the root.



If the sender is faulty, the root is common due to Lemma 4. Hence, all correct
nodes agree on the same value. |

The next theorem shows that the fault tolerance of n > 2t + 1 cannot be
improved.

Theorem 6. Byzantine agreement cannot be reached for n < 2t, if only crusader
authentication holds.

Proof. Suppose that n < 2¢ holds. Then the nodes can be partitioned in four
nonempty sets A, B, C, and D, such that no set contains more than ¢/2 members.
Now consider four scenarios, where in each scenario the members of two sets
behave faulty. The sender is always a;.

In all four scenarios, the nodes in C' will play the role of those who do not
know the public keys of nodes in A. If A is correct, they will only pretend not
to know the keys. If A if faulty, they will actually not know the keys.

Scenario 0; (C and D faulty): All public keys are known to all nodes. In
the first round, a; sends 0,, to all, and the nodes in A and B forward all
messages correctly.

The nodes in C' behave correctly, except that they pretend not to know the
public keys of the nodes in A. The nodes in D behave towards the nodes
in C as follows: They pretend to receive from nodes in A messages of the
form my: 4, where A’ is recognizable to D. Furthermore, they forward
messages 144 to C' as 04/, arp. Apart from this, they behave correctly.

Scenario oy (B and C faulty): All public keys are known to all nodes. In
the first round, a; sends 1,, to all, and the nodes in A and D forward all
messages correctly.

The nodes in C behave correctly, except that they pretend not to know the
public keys of the nodes in A. The nodes in B behave towards the nodes
in C' as follows: They pretend to receive from nodes in A messages of the
form m: . 4, where A’ is recognizable to B. Furthermore, they forward
messages 04...4 to C as 14/, ap. Apart from this, they behave correctly.

Scenario o3 (A and B faulty): All public keys except those from nodes in A
are known to all nodes. The keys of A are known to all except the nodes
in C.

During the agreement protocol, the nodes behave exactly as in o3.

Scenario 04 (A and D faulty): All public keys except those from nodes in A
are known to all nodes. The keys of A are known to all except the nodes
in C.

During the agreement protocol, the nodes behave exactly as in o;.

The nodes in the respective sets have the following views (see Fig. 6):

— The nodes in B cannot distinguish ¢y from o4. Hence, they decide in both
scenarios for 0.

— The nodes in C' cannot distinguish o3 and 4. Since the nodes in B decide
for 0 in o4, the nodes in C have to decide for 0 in o3 and o4.
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Fig. 6. Proof of Theorem 6

— The nodes in D cannot distinguish o2 and o3. Hence, they decide in both
scenarios for 1.

With this reasoning, the nodes in C' and D decide for different values in o3,
which contradicts (B1). |

Partial Authentication In this setting it is common knowledge whose public
keys are distributed completely. For simplicity, we will only regard the case in
which a node’s public key is either known to all nodes or to none. This situation
arises when the keys are distributed by a globally trusted server which does not
know all keys, or when some of the nodes are not able to sign messages. There is
no relationship between the state of a node (faulty/correct) and the distribution
of its public key. Here, (A3) holds, but (A4) becomes

(A4)" Only a known set of s nodes can sign messages.

We will call this level of authentication partial authentication. A node whose
public key is known is called signer. We can distinguish whether or not the
sender is a signer.

Sender is no signer If n > s > 2t 4+ 1, the sender sends its value to the signers
in the first round. Then the signers distribute this value via an authenticated
protocol with all other non-signing nodes as bystanders. The final result is the
majority of the results of these protocols.

Such a protocol, where some node do not send any messages (and hence do
not sign), is described in [DS83] (Theorem 6). In this protocol, the non-signing
nodes have to draw their conclusions from the messages they receive from the
signers. The protocol runs for ¢+ 1 rounds. For our purposes, the protocols could
also be run for only ¢ rounds.

A sketch of the proof is as follows: If the sender is faulty, there are at most
t — 1 faulty signers left, and all correct nodes will agree on the values of the s
sub-protocols. Hence, all correct nodes will eventually agree on the same value.

If the sender is correct, all correct signers will send the same values in their
respective sub-protocols. These protocols have the property that the nodes reach
agreement on the values of the correct nodes, even if the number of rounds is
not greater than the number of faulty nodes. Hence, a majority of the results of
the sub-protocols will be the correct value.




For s < 2t, no better fault tolerance than in the unsigned case can be
achieved. This is shown in the following theorem:

Theorem 7. If the sender of a protocol does not sign its messages and s < 2t
holds, then Byzantine agreement cannot be reached with n < 3t, assuming partial
authentication.

Proof. Suppose n < 3t and s = 2t. Then it is possible to partition the nodes into
three nonempty sets A, B, and C, such that A contains exactly the non-signers
and no set contains more than ¢ elements. The sender is a;. Now consider three
scenarios oy, 02, and o3:

Scenario o, (B faulty): a; sends 0 in the first round. When a node b; receives
a message from A without any signatures (i.e., the message passed only
nodes in A), it forwards 1;, to all nodes. All other messages are correctly
signed and forwarded.

Scenario oy (C faulty): a; sends 1 in the first round. When a node ¢; receives
a message from A without any signatures (i.e., the message passed only
nodes in A), it forwards O, to all nodes. All other messages are correctly
signed and forwarded.

Scenario o3 (A faulty): In the first round, a; sends 0 to C' and 1 to B. In the
remainder of the protocol, a node a; forwards a signed message unchanged
to all nodes. Unsigned messages are passed to B as 1 and to C' as 0.

In o1, the nodes in C have to decide for 0, since the sender is correct. For
the same reason, the nodes in B have to decide for 1 in o». Scenario o3 has been
constructed in a way that it is indistinguishable from ¢y by C' and from o2 by
B. Hence, the nodes in B and C' decide for different values in o3, contradicting
(B1). m|

With a similar argument, it can be shown that the same restrictions apply
for crusader agreement.

Sender is signer For n > s > 2t + 1, the protocol from [DS83] mentioned above
could be used. With the (less efficient) EIG-protocol in Fig. 7, one signer can be
omitted, such that Byzantine agreement is possible for n > s > 2t.

Theorem 8. Assuming partial authentication, the following holds: If the sender
signs and n > s > 2t holds, the protocol in Fig. 7 reaches Byzantine agreement.

Proof. We distinguish whether the sender is correct or faulty:

Sender correct: There is exactly one value signed by the sender. Since there
are at least t + 1 correct nodes, at least ¢t of which are signers, at least one leaf
is reduced to the sender’s value signed by ¢ correct nodes. This value will be
considered recursively in the process of resolving. Hence, there is exactly one
value for the result of the protocol, which is the value signed by the sender.



Protocol for Byzantine Agreement

1. The nodes fill their EIG trees for ¢ + 1 rounds.
2. Aleafis resolved to its value. If the last sender was a signer, the signature
is removed.
3. For a vertex on level » < t 41 with label X, two cases are distinguished:
— X is signer: Take the majority of the vertice’s resolved children
which carry X’s signature.
— X is no signer: Take the majority of the vertice’s resolved children.
4. The result of the protocol is the resolved value of the root.

Fig. 7. Byzantine agreement with partial authentication and a signing sender

Sender faulty: Here, we show that all vertices in the second level are common.
The vertices which correspond to correct signers are common with the same
argumentation as in the case of a correct sender.

The vertices which correspond to correct non-signers are common, because
they have at least ¢ correct and signed children (as opposed to at most ¢ —1 faulty
children). Since these vertices are common (same argumentation as above), there
is always a majority of correctly resolved children.

Finally, there are the faulty vertices (signed or not). Their correct children
are common, as can be shown as above. For their faulty children to be common,
it is (by recursion) necessary that all faulty vertices at level t+ 1 with only faulty
ascendants be common. This is the case, since there are no such vertices.

Hence, all correct nodes take the same set of values as a basis for the final
decision. This leads to a common value. O

For n = s = 2t, any protocol for complete authentication can be used. Hence,
Byzantine agreement is possible for any n > s > 2t. For 0 < s < 2t—1,n > 3t—1
(or n = s) is necessary:

Theorem 9. Under the assumption of partial authentication the following holds:
If the sender signs its messages and 0 < s < 2t — 1 holds, then Byzantine
agreement is only possible if n > 3t —1 orn =s.

Proof (Sketch). Byzantine agreement is always possible with n = s ([LSP82]).
Now suppose n > s = 2t — 1 and n < 3t — 2 holds. From Theorem 7 follows that
it is generally impossible to reach Byzantine agreement on the messages sent
by the non-signers. Hence, the non-signers may as well send no messages at all.
Now let the faulty signers, except the sender, be in A, the correct signers in B,
and the non-signers in C'.

If the sender is faulty, A can behave towards C as if the sender sends “1”,
while B receives (and sends) messages consistent with the sender saying “2”.
The nodes in C' cannot distinguish whether A or C' is faulty, although they have
to agree with the correct nodes. |



Crusader agreement is possible for any number of faulty nodes. It can easily
be verified that the protocol of Fig. 3 reaches crusader agreement under the
assumption of partial authentication and a signing sender.

3.4 Complete Authentication

In this setting it is assumed that all nodes agree on the public keys of all nodes.
If n < 3t, this agreement may be reached using a trusted entity at the time of
set-up (e.g., a trusted person traveling from site to site) or dynamically by using
a trusted server. It is worth noting that if a trusted server would exist during
execution of the protocols, it could also help solving Byzantine agreement very
easily. With complete authentication, n > t is possible. This case is dealt with
to a great extent in the original papers ([PSL80, LSP82]), and in [DS83].

If n > 3t +1, one should install complete authentication by agreement on the
public keys at the very beginning. Once this level of authentication is reached, an
arbitrary number of nodes may become faulty without disturbing agreement. In
addition, with complete authentication, very simple and message-efficient pro-
tocols become possible.

4 Summary

In this paper, we have focused on protocols for Byzantine agreement and crusader
agreement in the presence of incomplete and incorrect authentication. We have
identified several possible scenarios which yield different degrees of maximum
fault tolerance.

BA CA
No auth. 3t+1 [LSP8&2] 3t+1 [Dol82]
Byz. auth. 3t+1 3t+1
Crus. auth. 2t+1 t
Partial auth., 204+2 ifs>2t+1 (2t +2ifs>2t+1
Sender doesn’t sign|3t + 1 else 3t+1 else
Partial auth., 2t if s > 2t t
Sender signs t—1lifs<2tAs<n
Complete auth. t [LSP82] t

Table 1. Minimal n for different levels of authentication and types of agreement

Table 1 gives an overview of the results. It shows minimum values for n
(number of nodes) with regard to ¢ (maximum number of faulty nodes). In the
results for partial authentication, s denotes the number of signing nodes.

In the past, only the two extreme levels “no authentication” and “complete
authentication” have been investigated. As can be seen, there is a trade-off be-
tween the level of authentication and the possible fault tolerance. The stronger



the authentication, the higher the possible fault tolerance. Furthermore, we have
shown that there are environments where the two agreement problems under
consideration do not have the same fault tolerance.
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