Partially Authenticated Algorithms for Byzantine
Agreement

Malte Borcherding

Institute of Computer Design and Fault Tolerance, University of Karlsruhe
76128 Karlsruhe, Germany
email: borcher@ira.uka.de

Abstract

Byzantine agreement is a fundamental issue in
fault-tolerant and secure distributed computing. Pro-
tocols solving Byzantine agreement guarantee that a
sender can transmit o value to a group of receivers
consistently, even if some of the nodes, including the
sender, are arbitrarily faulty.

In the past, protocols for Byzantine agreement were
generally either authenticated or non-authenticated.
Non-authenticated protocols make no use of signatures,
while in authenticated protocols, all messages have to
be signed.

Authenticated protocols can tolerate more faults
and are more message-efficient than non-authenticated
protocols, but they have the disadvantage of time-
consuming sitgnature generation. In this paper, we in-
troduce techniques to reduce the amount of signatures
by combining mechanisms from authenticated and non-
authenticated protocols.

Keywords: Byzantine agreement, fault tolerance,
distributed systems, secure systems, authentication

1 Introduction

The problem of Byzantine agreement arises when
a set of nodes in a distributed system needs to have
a consistent view of a message sent by one of them,
despite the presence of arbitrarily faulty nodes. More
precisely, a protocol solving Byzantine agreement must
satisfy the following conditions:

(B1) All correct nodes decide for the same
value.

(B2) If the sender is correct, all nodes decide
for the value of the sender.

(B3) Each correct node eventually decides for a
value.

Protocols solving Byzantine agreement are generally

divided into two classes: authenticated protocols and
non-authenticated protocols. In authenticated proto-
cols, all messages are signed digitally in a way that the
signatures cannot be forged, and a signed message can
be unambiguously assigned to its signer. This mech-
anism allows a node to prove to others that it has
received a certain message from a certain node. Au-
thenticated protocols can tolerate an arbitrary num-
ber of faulty nodes. In non-authenticated protocols,
no messages are signed. These protocols require more
than two thirds of the participating nodes to be correct
([LSP82]). For both paradigms of authenticated and
non-authenticated protocols, there exist customized
protocol techniques.

Although message authentication allows for an op-
timal fault tolerance, the generation of signatures is a
very time-consuming task. For this reason, the fault
tolerance of protocols which require message authen-
tication only in certain rounds has been investigated
in [Bor95]. The protocols given there were maximally
fault-tolerant for a given number of authenticated
rounds, but not very message-efficient.

A different approach has been taken in in [ST87].
There, authenticated messages are simulated by non-
authenticated subprotocols. This allows to transform
authenticated protocols easily into non-authenticated
protocols while keeping some of their properties. But
with this technique, the good fault-tolerance proper-
ties of authenticated protocols are lost.

Hence, the question arises whether it is possible
to combine techniques for authenticated and non-
authenticated protocols for use in partially authenti-
cated protocols. The resulting protocols should bal-
ance the low message complexity and high fault toler-
ance of authenticated protocols with the fast message
generation on non-authenticated protocols.

In this paper, we answer this question to the posi-
tive. We give protocols which make use of mixed tech-
niques and identify situations in which they are ap-
plicable.

In Proceedings of the 9th International Conference on Parallel and Distributed Computing Systems, Dijon,
France, 1996, pp. 811, ISCA.

2 System Model

Our world consists of n nodes connected by a com-
plete network. We assume that t of the nodes may
behave in an arbitrary manner, while ¢ = n —t always
behave correctly. The number of nodes that actually
behave faulty during a given protocol execution will
be denoted with f (f <t).

The nodes operate at a known minimal speed, and
messages are transmitted reliably in bounded time.
The receiver of a message can identify its immediate
sender, and we assume the existence of an authen-
tic signature scheme such that a signature cannot be
forged and each node knows whom a signature on a
message belongs to.

During a protocol execution, the nodes communi-
cate in successive rounds. In each round, a node may
send messages to other nodes, receive the messages
sent to it in the current round and perform some lo-
cal computation. m of the rounds are distinguished
as authenticated rounds. In these rounds, all messages
are to be signed. As a convention, the first round of a
protocol will be called round 1.

3 Main Techniques

Depending on the environment and the goals, one
can choose between several different possible tech-
niques for solving Byzantine agreement. In the follow-
ing sections, we will identify some of the main ideas.
The described techniques all share the same funda-
mental structure:

1. In the first round, the sender sends its value to all
others.

2. In the following rounds, the nodes report to the
others what they have received in the previous
round, provided some condition is met.

3. Based on the messages received, each node com-
putes its decision value. This decision is made after
the t + 1st round at the latest.

The techniques described differ in the condition in step
2 and the way of computing the decision value in step
3.

3.1 Exponential Information Gathering
(EIG)

This technique is essentially simple fault masking.
Correct nodes echo each message they receive, as long

as they have not reported about that particular mes-
sage in a previous round. Hence, the messages are of
the form “A said B said ... the sender said X”, and
no node appears twice in such a chain. As a result,
for a message which was sent in round k, there should
be n — k echoes, one from each node which is not yet
listed.

After round ¢ + 1, the nodes apply a recursive ma-
jority voting to the messages received. For each mes-
sage x received in round ¢, a node takes the majority
of the echoes about this message received in round
t+ 1. This majority value replaces the actual message
z. Then, the same procedure is applied to the mes-
sages received in round ¢ — 1, using the new values of
the messages of round ¢. This voting is repeated until
the agreed-upon value of the original message of round
1 is determined.

In a nonauthenticated EIG protocol (e.g., in
[LSP82]), there has to be always a majority of cor-
rect echoes about messages from correct nodes. If a set
of nodes reports about a message from a faulty node,
there is either an agreement about all reports (includ-
ing those from faulty nodes), or the message itself is
not important for the agreement (i.e., a message from
a faulty node about a message from a correct node.)

Authentication can be used in this context for re-
stricting the behaviour of the faulty nodes in that they
cannot report wrong values signed by correct nodes.
This technique relaxes the requirements for the num-
ber of correct nodes echoing messages. If every message
in a protocol has to be signed, any number of faulty
nodes can be tolerated. If no messages are signed, it is
required that n > 3t + 1. [Bor95] shows how to deter-
mine the necessary number of authenticated rounds
if a given number of faulty nodes is to be tolerated.
One result is that in order to tolerate ¢ = n/2 faulty
nodes, only [log,(n/2 + 1)] authenticated rounds are
necessary.

3.2 Early Stopping

If in a protocol execution there are less than ¢ faulty
nodes (i.e., f < t), it is not necessary to run the pro-
tocol for ¢t + 1 rounds. In [BGP92], a variation of the
EIG protocol is presented that reaches agreement and
stops after min(¢ + 1, f + 2) rounds, which is optimal
(cf. [DRS90]). This result is obtained by a more com-
plex reasoning about the received messages than the
simple majority voting in the plain EIG protocol.

3.3 Sender Fault Detection

Sender fault detection (SFD) relies on signatures.
The main principle is to discover whether the sender
behaves inconsistently towards other nodes. If a cor-
rect node sees exactly one value signed by the sender
during protocol execution, it decides for that value.
Otherwise, it decides for a default value. The protocol
has to guarantee that either all correct nodes see ex-
actly one signed value or all correct nodes detect that
the sender is faulty.

The following (completely authenticated) protocol
from [DS83] has that property: Each node keeps a local
set which contains the values the node has seen so far.
In the first round, the sender sends its value to all
other nodes. If in the next ¢ rounds, a node sees a
new value signed by as many nodes as there have been
rounds (starting with the sender’s signature), it adds
that value to its set. If it is the first or second value in
the set, the node adds its signature and sends it to all
nodes which have not yet signed.

The proof of correctness is not difficult: If a correct
node sees two different signed values during the first
t rounds, it forwards them to all correct nodes which
have not seen them before. Hence, all correct nodes see
that the sender is faulty and will decide for a default
value. If a correct node sees a second signed value in
the last round, this value carries t + 1 signatures and
has hence been seen and distributed by at least one
correct node before. With a similar argument, it can
be shown that if a correct node does not see a correctly
signed value during the protocol execution, then no
correct node has seen one.

This protocol has the property that if f faulty nodes
behave faulty (f < t), then no valid messages are sent
after round f + 2: Suppose there is a valid message
sent at round f + 3. Then it carries at least 3 signa-
tures from correct nodes. The third correct node must
have seen the value for the first time one round be-
fore adding its signature. This is not possible, since
the first correct signer has broadcast the value at least
two rounds earlier. As a consequence, no valid message
is signed by more than two correct nodes.

This does not imply that the protocols stop after
round f + 2, since no correct node can be sure that no
further value will arrive in the next rounds. Hence, if
the sender is correct and has signed exactly one value,
all nodes have to wait until round ¢ + 1 before they
can make their final decision. On the other hand, if
a correct node has seen and forwarded two different
signed values, it can decide for the default value im-
mediately. Furthermore, it can be sure that all other
correct nodes will decide after the next round.

4 Combination of Different Techniques

As we have seen, for both paradigms of authenti-
cated and non-authenticated algorithms there are suit-
able techniques. This raises the question whether it
is possible to combine these techniques for protocols
which use authentication only in certain rounds.

The answer is not obvious at first sight: When in an
SFD protocol a node receives a (valid) message in the
last (t+1st) round, it knows that all correct nodes have
seen the transmitted value because it has been signed
by t + 1 nodes. If not all rounds are authenticated, it
cannot draw this conclusion.

On the other hand, in EIG protocols it is expected
that correct nodes echo the messages from a correct
node such that there is a majority of correct echoes.
This is not done in SFD protocols, hence this case
has to be taken care of when switching from an SFD
protocol to an EIG protocol.

In the rest of the section, we will use the follow-
ing notation: The authenticated rounds after non-
authenticated rounds will be denoted a;, and the non-
authenticated rounds after authenticated rounds will
be denoted b;, as shown in Fig. 1. If the first round is
authenticated, it is called round ag, and b; otherwise
(then ag is undefined). So a; can never be 1, and b; is
always smaller than a;. Furthermore, the last round is
regarded as authenticated round, so for each b; there
is always a defined a;. The number of pairs (a;,b;),
1 > 0, will be denoted with s. Subprotocols starting at
a; and b; will be called A; and B;, respectively.

Figure 2 shows protocols A; and B;. As can be seen,
A; starts with an SFD part and switches to an EIG
part, while B; does the inverse. The complete protocol
(starting in round 1) will be called Protocol C. Protocol
C is A if the first round is authenticated, and B;
otherwise.

The following theorem gives the requirements for
Protocol C being correct.

Theorem 1. Protocol C reaches Byzantine Agreement

for
n > msalx(2t +a; — 2b; + 2).
1=

Before we prove this theorem, we need some defini-
tions and lemmas. Lemma 5 deals with subprotocols
of type A;, while Lemmas 6 and 7 describe properties
of protocols of type B;. Finally, we will give the proof
of Theorem 1.

Definition 2 (All-faulty Message). A message of
the form “A said B said ... the sender said X”, where
all listed nodes (including the sender) are faulty, is
called all-faulty message.

3 b by & b a; t+1

IR | [RSN

I authenticated round D non-authenticated round

Fig. 1 Positions of the a; and b;

Protocol A;

0. For i = s, A; is an SFD protocol, as described in 3.3. Otherwise, 1. to 3. are applied.
1. In the authenticated rounds a; to b;y1 — 1, the nodes proceed as in an SFD protocol.

2. If a node receives a message in round b;;y; — 1 which it would usually sign and distribute to other
nodes in the next round, it broadcasts this message using protocol B;; to the recipients.

3. The results of the subprotocols started in round b;;; are used together with the values received in
rounds a; to b;+1 — 1 for the decision. If there is only one value, this will be the result, otherwise
the nodes decide for a default value.

Protocol B;

1. In rounds b; to a; — 1, the nodes apply an EIG protocol as described in 3.1.

2. Each echo about a value received in round a; — 1 is transmitted via protocol A; to its n — (a; — 1)
receivers.

3. The results of these protocols are then subject to the recursive majority voting as described in the
EIG protocol.

Fig. 2 Protocols A; and B; in the mixed model

Definition 3 (Partial Correctness A). A protocol
A; is called partially correct if it reaches agreement on
the sender’s message, provided the sender is correct or
the message is an all-faulty message.

Definition 4 (Partial Correctness B). A protocol
B; is called partially correct if it reaches agreement on
the sender’s message, provided that

(a) it is an echo of an all-faulty message or

(b) it is sent in round 1 (i.e., i =1 and by = 1).

In these definitions, the sender is meant to be the
sender of the respective subprotocol, while the term
all-faulty message takes all previous rounds into ac-
count.

Lemmab. A protocol A;—y (i =1,...,s) is partially
correct, provided there is agreement on the echoes in
round b; concerning all-faulty messages.

Proof. Values signed by correct nodes in rounds a;
to b;—1 are seen by all correct nodes and used for the fi-
nal decision. The only problem are messages which are
only signed by faulty nodes. If the protocols starting
at round b; guarantee agreement on these messages,
the protocol started in round a;_; is correct. O

Lemma6. From round b; + 1 to round a; there is al-
ways a majority of correct echoes about messages re-
ceived in the previous round, provided that at most
t —b; + 1 nodes are faulty and n > 2t + a; — 2b; + 2.

Proof. For each message transmitted in round a; — 1,
there are n —a; + 1 > 2t — 2b; + 3 echoes. At most
t —b; + 1 of these are from faulty nodes, as opposed to
at least 2t —2b; +3 — (t — b; + 1) =t — b; + 2 correct
echoes. Hence, the correct echoes are a majority. In
the rounds before round a;, the majority can only be

stronger, since the number of echoes is larger, while the
maximum number of faulty nodes remains the same.
O

Lemma7. A protocol B; (i = 1,...,s) is partially
correct, provided that

(a) n > 2t +a; — 2b; + 2,

(b) there is agreement on messages sent by correct
nodes in round a;, and

(¢c) there is agreement on all-faulty messages sent in
round a;.

Proof. Partial correctness is only concerned with
sender’s messages constituting echoes of all-faulty
messages (or b; = 1). Hence, b; — 1 faulty nodes do not
participate, leaving ¢t — b; + 1 faulty participants. Given
(a), Lemma 6 can be applied. Hence, if (b) holds, then
all correct nodes will agree on the correct messages
(due to the recursive majority voting).

If the sender of B; is faulty, it is necessary that
all echoes be agreed upon. As we have shown, this is
true for the correct echoes. The faulty echoes sent in
round b; + 1 will be agreed upon if all echoes for these
messages are agreed upon. This is again true for the
correct echoes. Continuing this argument, we arrive at
the requirement that there be agreement on the all-
faulty messages sent in round a;, which is stated in
(c). O

Proof of Theorem 1

Lemmas 5 to 7 are now used to prove Theorem 1 by
reverse induction on the A; and B;. The base is that
A is partially correct. We will then show by induction
that the whole protocol is partially correct. Finally,
we prove that a partially correct protocol starting in
round 1 solves Byzantine Agreement.

Proof (of Theorem 1). We will prove (i) to (iv) for n >
max;_, (2t + a; — 2b; + 2):

(i): A, is partially correct.
(ii): A; is partially correct = B; is partially correct

(i=1...s—1).
(iii): B; is partially correct = A;_; is partially correct
(i=1...s).

(iv): A partially correct protocol started in round 1
reaches Byzantine Agreement.

(i): Messages signed by correct nodes are always
agreed upon (they cannot be forged and are seen by
everyone). A protocol A, started for an all-faulty mes-
sage has one more round that there are faulty partic-
ipants. Such a protocol is correct (see proof of SFD
protocol). Hence, A; is partially correct.

(ii): We have to show that the proviso of Lemma 7
is fulfilled. (a) is part of the theorem’s assumptions.
(b) and (c) are fulfilled by the partial correctness of
A,

(iii): Follows directly from Lemma 5 and B;’s partial
correctness.

(iv): If the first round is authenticated, we can
regard the whole protocol as Ag. Then Agy’s partial
correctness guarantees agreement (note that a faulty
sender’s message is an all-faulty message). If the first
round is non-authenticated, the whole protocol is By,
and B;’s partial correctness guarantees agreement. O

5 Discussion

The techniques described in the previous sections
can be applied in different ways, depending on the re-
quirements of the application. Here are some exam-
ples:

e If one strives for low message complexity and ex-
pects only few faulty nodes f. (with regard to a
higher number ¢ which should be tolerated in the
worst case), one can use the following construc-
tion: Let the first m = f. + 2 rounds be authen-
ticated. For the second (non-authenticated) part,
choose an early-stopping EIG protocol. If only f.
nodes are faulty, then no messages will be sent in
the EIG-part of the protocol. This can be shown
as follows:

A valid message in the subsequent EIG protocol
has to carry fe + 2 signatures. In 3.3, it has been
shown that at most two of these signatures belong
to correct nodes, so all faulty nodes must have
signed. Hence, only a correct node could be the
sender of such a message. But all correct nodes
have seen the message before, so no valid message
will be sent. As a consequence, all nodes behave
(implicitly) correctly and the EIG protocol will
stop after two rounds without any message over-
head.

For f > f., all messages sent after round m carry
at least m — 2 signatures from faulty nodes. Hence,
only f —m + 2 faulty nodes can participate in an
early-stopping EIG protocol initiated in round m+
1. Under this condition, the EIG-protocol stops
after f —m+4, so that the complete protocol stops
after max(f, fe)+ 4 rounds. It is an open question
whether this can be optimized in the hybrid model.

o If the goal is to avoid the time-consuming sig-
nature generation and to have early stopping

when only few faults occur, one can start with
a non-authenticated early-stopping EIG-protocol
and switch to an SFD protocol when it becomes
more expensive to handle the exponentially grow-
ing number of messages than to sign the messages
of the SFD-protocol.

e If the cost for signature generation always dom-
inates the cost for message handling, and one
wishes to find a trade-off between worst-case pro-
tocol time and fault tolerance, one should use the
mixed model. This model allows to choose a mini-
mal number of rounds as authenticated rounds in
order to achieve a desired degree of fault tolerance.
These rounds will generally not be consecutive. In
[Bor95] it has been shown that for EIG protocols
only log,(n/2+ 1) authenticated rounds are neces-
sary to tolerate n/2 faulty nodes. The results given
above allow an immediate transfer to the mixed
model.

6 Summary

In this paper, we have investigated partially authen-
ticated protocols which make use of a combination of
different techniques. We have shown that it is possible
to switch between certain techniques for authenticated
and non-authenticated environments within a single
protocol. With these hybrid protocols, it is possible to
find a trade-off between the high fault tolerance and
message efficiency of authenticated protocols on the
one hand and the early-stopping properties and fast
message generation of non-authenticated protocols on
the other hand.

References

[BGP92] Piotr Berman, Juan A. Garay, and Ken-
neth J. Perry. Optimal early stopping in dis-
tributed consensus. In Proceedings of the 6th
International Workshop on Distributed Al-
gorithms (WDAG), LNCS 647, pages 221—
237. Springer-Verlag, 1992.

[Bor95] Malte Borcherding. On the number of
authenticated rounds in Byzantine agree-
ment. In Proceedings of the 9th Interna-
tional Workshop on Distributed Algorithms
(WDAG), LNCS 972, pages 230-241, Le
Mont Saint-Michel, France, 1995. Springer-
Verlag.

[DRS90] Danny
Dolev, Riidiger Reischuk, and H. Raymond
Strong. Early stopping in Byzantine agree-
ment. Journal of the ACM, 37(4):720-741,
1990.

[DS83] Danny Dolev and Raymond Strong. Authen-
ticated algorithms for Byzantine agreement.
SIAM Journal of Computing, 12(5):656-666,
November 1983.

[LSP82] Leslie Lamport, Robert Shostak, and Mar-
shall Pease. The Byzantine Generals prob-
lem. ACM Transactions on Programming
Languages and Systems, 4(3):382-401, 1982.

[ST87] T.K. Srikanth and Sam Toueg. Simulating
authenticated broadcasts to derive simple
fault-tolerant algorithms. Distributed Com-
puting, 2:80-94, 1987.

