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Abstract— This article discusses a rule-based fuzzy
model for the identification of nonlinear MISO
(multiple input, single output) systems. The dis-
cussed method of fuzzy modeling consists of two
parts: structure modeling, i.e. determing the num-
ber of rules and input variables involved respec-
tively, and parameter optimization, i.e. optimizing
the location and form of the curves which describe
the fuzzy sets. For structure modeling we use a
modified TSK-model. The TSK-model was first
proposed by Takagi, Sugeno, and Kang in [1], [2].
For parameter optimization we propose the use of
RPROP, a powerful optimization technique orig-
inally designed for Neural Network training (see
also [3], [4]). We applied RPROP to the modified
version of the TSK-model, implemented the algo-
rithm, and tested its performance [5], [6]. In this
article we focus on the structure modeling part and
show by an example how this structuring algorithm
performs an input space partitioning.

Keywords— Rule-based fuzzy model, nonlinear sys-
tem identification, input space partitioning, para-
meter optimization, RPROP.

I. INTRODUCTION

Fuzzy theory finds its application to deal with
problems in which there is imprecision caused by
the absence of sharp criteria |7|. This is for exam-
ple in human language. Linguistic terms can be
defined by fuzzy sets and we can formulize fuzzy
if-then rules [8]. Operators like AND and OR and
the implication IF ... THEN are defined and so
we can somehow calculate with statements given
in this form.

One important practical application of fuzzy the-
ory is fuzzy control: The desired control actions
are described by human experts in the form of
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fuzzy if-then rules. Combined with fuzzification, a
fuzzy inference machine, and defuzzification, a set
of fuzzy if-then rules provides a fuzzy controller,
which showed itself as a robust and powerful con-
troller in many applications.

In this paper we take another approach. We ex-
ploit measured input-output data of an unknown
process in order to get an interpretable process
description. Therefore, we automatically generate
fuzzy if-then rules which describe the process’ in-
put-output behavior. This is commonly known as
fuzzy modeling or fuzzy identification |9].

In reality, the model response is an approximation
to the system response which holds for a restricted
set of inputs. Such an approximation can be de-
signed at an arbitrary precision (e.g. using a poly-
nomial covering all data points), but usually you
then have identified the set of inputs and not the
underlying process. What we want here is an in-
terpretable model, i.e. a qualitative description of
the underlying process. For this, fuzzy modeling
is a suitable approach.

There are various kinds of fuzzy modeling. One
is to describe the input-output relation of data
with a fuzzy relation. Relation-based approaches
are for example described in [10], [11], [12]. Some
comparisons can for example be found in [13], [14].
Another approach is to divide the input-output
space into clusters. Fuzzy rules are generated by
projection of these cluster to the input space uni-
verses. Each rule represents one or several clus-
ters which can be interpreted as local models. For
clustering, Sugeno and Yasukawa use the fuzzy
c-means method [15|, Nakamori and Ryoke use
fuzzy c-varieties [16].

In this work we have to deal with another prob-
lem. We want to identify complex systems with
a a large number of input variables. Therefore,
methods yielding a polynomial or even exponen-
tial number of rules (depending from the number
of input variables) are not applicable. That is why
we take a “bottom up” rule-based approach: the



algorithm starts with a one-rule model and adds
additional rules at each refining step until the de-
sired accuracy or a maximum number of rules is
reached. The model structure we use here is sim-
ilar to the TSK-model’s [9] which was first pro-
posed by Takagi, Sugeno, and Kang in [1], |2].
Other derivations from TSK can be found for ex-
ample in [17], |18].

In section 2 we describe the modified TSK-model
we use for fuzzy modeling. We also explain the
algorithm’s search for the model structure. For
a description of RPROP, the parameter optimiza-
tion, and the necessary calculations see [5], [6]. In
chapter 3 we demonstrate the way the algorithm
works and performs an input space partitioning.
We show this at an example of two-dimensional
Gaussian bell functions. Chapter 4 closes this ar-
ticle by some conclusions and perspectives.

II. FUuzzy IDENTIFICATION

In this paper we perform a fuzzy model identifica-
tion by approximating m measured or simulated
input-output data pairs (41, y1), .. ., (Umn, Ym) With
i; € IRY,y; € IR (MISO system with N input
variables). For ¢ = 1,...,m, the regarded fuzzy
model performs a mapping

~

i = f(i;)
A. The fuzzy model

We use RPROP for the optimization of the mem-
bership functions’ parameters. RPROP belongs
to the family of gradient decent algorithms and
we therefore need derivable membership functions.
We choose the following sigmoid membership func-
tions since they come near to the triangular mem-
bership functions of the original TSK-model and
their derivations can be easily calculated. A trian-
gular like A is imitated by the superposition of an
ascending and a descending sigmoid. Regarding
this, we define the fuzzy sets as
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Fip(ugi) = (2)
with the parameters p and o to be optimized.
The index set I, = {ik,..., ik} With indices
ijk € {1,...,N} is used to specify the variables
involved in the kth rule’s premise. This is neces-
sary, since not all input variables need to appear
in each premise.

As usual for TSK-like models, the rules’ conse-
quences are weighted sums of the input variables
Pok + Pik - U1 + ... + pyg - uy, defining an arbi-
trary hyperplane in the input-output space. We
name this form “full” consequences. We also con-
sider a simpler class of consequences, the “con-
stant” consequence pgk, consisting only of one in-
put variable independent parameter. This yields
a hyperplane which is orthogonal to the output di-
mension (y-axis). Therefore, the form of the used
fuzzy rules is

if w;, is Fip and ... and Ui, is Fok

R: { then fi = pok +P1k - u1 +...+ pye - un, (3)

optional

For I = () we have a special case. We then have a
linear model

if TRUE
then f = pox +pik - w1 +.. .+ Pk - Un, (4)

optional

R.k:

The fuzzy model Mp is given by a set of r fuzzy
rules, i.e. Mp={Ry,..., R, I1,...,I.}.

The membership wy of @, to the rule R, (k =
1,...,r)is

wi(dy) = /\ij(“jq) (5)

JEl

and by choosing the product as t-norm we obtain

wi(y) =[] Firlusy). (6)

JEI

The model output is calculated via product infer-
ence (Larsen) and weighted average by

This fuzzy model is a composition of several linear
model parts with fuzzy transitions. As an exam-
ple, figure 1 (top) shows the output ¢ (dotted line)
of the fuzzy model given by

Ry ifuyis Fithen fi =140.5-u,

RQ: if U1 is F2 then fg =1-—-1.5- Uy,
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Fig. 1. One-dimensional example of a fuzzy model with
two rules.

as the fuzzy transition between the two linear
model parts f; and f,. The transition is defined
by the fuzzy sets F| and F; with the parameters
1 = e =0, oy =5, and oy = —5, see figure 1
(bottom).

B. Parameter identification

Parameter identification is performed by mini-
mization of the prediction error
1€ =117 - 9|, (8)
where § := (1. .., im)" with §; := §(@).
The error depends from the model output, i.e. for
a given model structure it only depends from the
fuzzy rules’ parameters. Therefore, using this er-
ror function, all parameters can be optimized by
using for example gradient decent algorithms.
The nonlinear optimization algorithm RPROP be-
longs to the family of gradient descent algorithms
with variable step. It changes its behavior inde-
pendently for every parameter to be optimized re-
garding the local topology of the energy or error
function. For a general description see [3], [4]. Fur-
ther remarks concerning its application to our op-
timization problem can be found in [5], [6].
The parameter and step updates only depend
from the gradient’s sign and not from the gradi-

ent’s magnitude, which makes the algorithm ro-
bust against undesirable magnitude fluctuations.
To obtain more information, the sign changes are
regarded, which showed itself as a reliable indica-
tor for the error function’s local topology.

To apply RPROP to the given optimization prob-
lem, at every iteration ¢ the partial derivations
of ||E* by pji (for j = 0,...,N; k = 1,...,7)
and by g, and oy, (for all je I, k=1,...,7)
are needed. See [5], [6] for the necessary deriva-
tions.

C. Heuristic search of model structure

We use a heuristic search algorithm since the de-
termination of the optimal model structure is a
combinatorial problem and an efficient algorithm
to solve such a problem is not (yet) available. By
using a heuristic search we endeavor to find a good
but not necessarily optimal structure within a rea-
sonable calculation time.

r:=1 /* initial linear model (see ch. II-A) */
optimize M; /* e.g. singular value decomposition */
calculate ¢; /* model quality */
Mopt = M,
Copt == C1
while 7 < 74, and (not model good enough) do
ri=r+1
Cr 1= 00
forg:=1tor—1do
for j:=1to N do
M ona = M,
Meong := Meang + qth rule divided in
the jth variable
optimize all parameters (e.g. with RPROP)
calculate c.4nd
if ceana < Cr
M, = Mecana
Cr :— Ccand
end if
end for
end for
if ¢ < Copt
Mopt =M,
Copt +— Cr
end if
end while

/* Meana better than M, */

/* M, better than M,, */

Fig. 2. Scheme of the heuristic structure search.

In Figure 2 the heuristic search algorithm is given



in a pseudo programming language. It alternately
determines a new model structure and then op-
timizes this structure. In between each epoch,
the best structure of all investigated structures is
saved and becomes the starting point for the next
epoch. In every epoch r, each rule is refined in
each input variable, yielding r - N possibilities to
examine. Thus, at every epoch, the input space is
once more divided by adding a new rule.

3rd epoch ui—jjl o - = m
2nd epoch ui-ul u -
1st epoch () -

Fig. 3. Search tree for input space partitioning.

Figure 3 shows the possibilities of model refine-
ments to examine. The algorithm starts with one
rule containing a linear model. At the first epoch,
assuming the refinement in the ith variable was
the best, we have a model with two rules with
premises containing u;. Then, the model is fur-
ther refined by examinating all 2 - N possibilities
yielding a three-rule model, say u; — u;, where the
refinement in u; in the second rule was best, and fi-
nally the four-rule model u; — u; — uy, at the third
epoch. As an advantage, the modeling need not
start at the one-rule model. One can formulate a
priori knowledge by a set of rules and then start
the algorithm improving this initial model.

Starting from scratch, the algorithms needs

T(’rma:m N7 m7 I)

=0 (%T-N' (erI))

r=1

— O <N2mI . ’rmaa:('rmaa: + 1)(rmaw + 2))
6

= O (r},eeN*mlI) 9)
calculation steps® in the worst case. In (9), I is the
maximal number of RPROP iterations. In practi-

cal applications we found I = 100 being sufficient

ax

!For the definition and some theorems of the O-calculus
see [19] pp. 26-31.

as a maximum border. At a first view, the cu-
bic calculation time increase in 7,,,; seems to be
critical for the calculation time, but since there are
usually not many rules necessary (between five and
fifteen), one need not to worry about this. A pos-
itive and more important aspect is the only linear
growth in the number of training examples m.
We use the R? criterion to calculate the model
quality c. It is defined by

n
YO S By

with the variance V'(-) and the expectation value
E(-). R? is to be maximized. To avoid
“over-learning”, i.e. , the identification of noise in
the training data, we divide the training set into
two sets A and B like in [1|. Then, the RPROP
algorithm is performed on A while the quality cal-
culation is based on B. Thus, identification of noise
in A usually yields a decreasing quality since the
noise in A and B can be considered different. As
soon as the model quality starts decreasing, the
training procedure is interrupted.

III. EXAMPLES

The first example demonstrates how the algo-
rithm, especially the input space partitioning,
works.  For this purpose we chose a simple
two-dimensional example. The evaluation of the
algorithm’s performance is described briefly since
it is already described by two examples in [5], [6].

A. Two Gaussian bell functions

To visualize the way the modeling algorithm
works, we chose the following two-dimensional
example.  The function to be approximated
consists of two Gaussian bell functions in the
two-dimensional input space. From this function,
25x25 equidistant and normalized base points were
generated (see figure 4). For better comprehen-
sion of the resulting models we chose rules with
constant consequences.

The figures 5 to 10 show the development of the
fuzzy model. In figure 5 we can see the two par-
tial models: one rule with § ~ —0.23 for u; small
and the other with § ~ 0.06 for u; big and a fuzzy
transition between these two partial models. In



Fig. 4. Two Gaussian bell functions.

r=2 ——

Fig. 5. Estimation, constant consequences, r = 2.

Fig. 6. Estimation, constant consequences, r = 3.

Fig. 7. Estimation, constant consequences, r = 4.

figure 6, the rule for u; big is refined into two new
rules. The models of the estimations in figures 5
to 7 are listed in the figures 11 to 13. For ex-
ample the model in figure 13 can be interpreted
easily: for u; small (Ry) and u; big (R3) we have

r=5 ——

Fig. 8. Estimation, constant consequences, r = 5.

r=6 ——

Fig. 9. Estimation, constant consequences, r = 6.

r=7 ——

Fig. 10. Estimation, constant consequences, r = 7.

fo = f3 =~ —0.2. The two “hills” in the middle
of the u;-range are formed by the rules R; and Rq
by their positive consequence values. The next
refinement (figure 8) pays regard to the displace-
ment of the two bell functions. (The two peaks are
located at different us and w;.) Finally, the addi-
tional rules in figure 9 and figure 10 round off the
bell functions. Thus, in this example, the original
function is modeled with seven fuzzy rules.

B. Performance evaluation

A comparison with four other nonlinear modeling
algorithms is given in [5]. In some cases of the 40
models to identify the presented approach was out-
performed by the best of the other algorithms, but
it shows itself as the overall best technique. Espe-



cially when approximating the real data it outper-
formed all other regarded techniques. In [5] we
also examined Box/Jenkins’ gas furnace [20] as a
well known example for a dynamical system. For
this data, a simple model containing only three
rules already yields a satisfying approximation.

IV. CONCLUSION

In this paper we describe the structure model-
ing and input partitioning of our approach of
rule-based fuzzy modeling. The initial one-rule
model is iteratively refined by adding rules and
partitioning the input space. Every rule can be
considered as a local model and the rules’ fuzziness
results in smooth transitions between these local
models. We illustrated this by a two-dimensional
example.

Whereas we applied a powerful optimization tech-
nique to the parameter optimization problem
(see [5], [6]), the solution for finding a good model
structure must be considered provisionary and it
seems worth spending additional effort in develop-
ing a better method.

In (9), the quadratic growth of O(-) in NV is the re-
sult of the heuristic search algorithm. A stronger
heuristic can further reduce this factor. For ex-
ample by excluding input variables which are not
involved in premises during several epochs (poten-
tially indicating that this variable does not con-
tribute to the model and is unimportant), some
branches of the search tree (figure 3) are cut.
This can considerably reduce the search space.
However, practical investigations showed that vari-
ables, although seeming unimportant at the begin-
ning, are sometimes needed late in the modeling
procedure to get a good model.

Another promising approach is to iteratively re-
fine the model in those input space regions where
the highest approximation error 2 is made. Note,
that one must regard regions since regarding single
input-output pairs can cause a too big influence of
possible outliers.

Finally, the problem of structure modeling as
it appears in this work is well suited for meta
algorithms like for example genetic algorithms.
Tanaka et al. [18] investigated the use of a genetic
algorithm for fuzzy models with trapezoidal mem-
bership functions and a restricted model structure.
A similar approach can be taken here. All condi-

tions for the application of a genetic algorithms
to our method are satisfied: The model structure
can be coded as a string, consequence parameters
are adapted independently from input partition-
ing, and there is an energy or cost function &2
which can be calculated rather quickly. When try-
ing this, research effort should be spent to the cod-
ing scheme, since the application of an appropri-
ate coding scheme largely determines the success
of such a genetic algorithm.

05 r 1 then f; =0, 0630
0 1

Ry: if uy is

1 T T

Ro: if uy is 09T 1 then f, = —0,2345

0 1 1
-05 0 05

Fig. 11. Model for two Gaussian bell functions, (constant

consequences), r = 2.

Ri: if uy is 09 1 then f; = 0,2672

-05 0 05

Ry if uy is 1 then f, = —0, 2462

051 1 then f3 =

0 1 1
-05 0 05

Rs: if uq is —0, 2106

Fig. 12. Model for two Gaussian bell functions, (constant

consequences), r = 3.
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