
Deriving Structural RT�Implementations from

Algorithmic Descriptions by means of Logical

Transformations �

Christian Blumenr�ohr� Dirk Eisenbiegler

Institute for Circuit Design and Fault Tolerance �Prof� Dr��Ing� D� Schmid��

University of Karlsruhe� Germany e�mail� fblumen�eiseng	ira�uka�de

Abstract

This paper presents a formal synthesis approach where the mapping of an al�

gorithmic description towards its structural implementation at the RT�level is per�

formed by means of basic logical transformations in a higher order logic theorem

prover� The approach goes beyond pure basic blocks and allows representing and

synthesizing arbitrary computable programs� A functional style is used for repre�

senting algorithms based on basic ��recursive operators whose semantics is de�ned
within higher order logic�

� Introduction

With synthesis heading towards more and more abstract design levels� writing sound
synthesis programs is becoming an important matter of scienti
c investigations� Due
to the complexity of nowadays circuits and due to the considered abstraction level� both
exhaustive simulation and full automatic veri
cation approaches fail� The only reasonable
approach towards producing correct synthesis results lies in a synthesis process based on
correctness preserving transformations �see �Camp���� As at the gate level� where circuits
can easily be formalized and transformed according to a boolean calculus� there is a need
to also
nd formal representations at higher levels of abstraction as on the algorithmic
level�
There are many approaches� where synthesis is based on a sequence of behavior

preserving transformations such as YSC �Camp��� CAMAD �PeKu�� and TRADES
�MHMP��� They all provide a �correctness by construction� approach with a
xed set of
circuit transformations that are assumed to be correct or where there are paper�pencil
proofs for their correctness� However� the implementations of the basic circuit trans�
formations are comparatively complex and critical as to correctness� In our approach�
circuit transformations are performed by applying basic mathematical rules within a
theorem proving environment named HOL �GoMe�� thus guaranteeing correctness im�
plicitly� We will call this design style formal synthesis �see �KBES���� Most formal
synthesis approaches introduced in the past are restricted to lower levels of abstraction
�e�g� Lambda�Dialog �MaFo���T�Ruby �ShRa����
This paper addresses formal synthesis at the algorithmic level� It is part of our ongoing

work towards a formal synthesis tool named HASH �higher order logic applied to synthesis

�This work has been partly �nanced by the Deutsche Forschungsgemeinschaft� Project SCHM ������	

of hardware�� In our previous work �BlEi��� algorithmic synthesis was restricted to pure
data �ow graphs� The extension to be presented in this paper allows synthesizing arbitrary
algorithmic descriptions i�e� mixed control and data �ow descriptions�
Starting point for high�level synthesis is an algorithmic description� The result of high�

level synthesis is a structure at the RT�level consisting of a data�path and a controller�
In conventional high�level synthesis� the
rst step is compiling the description into a
control�data �ow graph �CDFG� representation �GDWL��� Based on this representation�
several control states are introduced along the graph thus partitioning the graph into small
cycle free pieces of program each corresponding to one clock tick� However� the number
of the resulting subgraphs grows exponentionally with the nesting depth of the control
structures� Then scheduling� allocation and binding are performed on the subgraphs
leading to a symbolic state transition table and a separated data�path� Afterwards� the
controller and the communication part are generated�
Our formal synthesis approach di�ers from that method� Based on a formalization of

��recursion �see section ��� a set of theorems for deriving structural RT�level implemen�
tations from algorithmic descriptions has been proven� They can be applied to perform
synthesis in two steps� First the program is transformed into an equivalent program with
only one single while�loop �section ��� Afterwards a pre�proven theorem is applied map�
ping the transformed algorithmic description to a RT�level structure �section ��� The
RT�level implementation produced in section � is based on a formalization scheme that
is introduced in section ��

� Formal representation of programs

According to Church�s Thesis� there are several equivalent schemes for describing com�
putable functions� To be able to talk of algorithmic transformations in logic� one
rst
has to de
ne a programming language with a formal semantics� This paper uses simply
typed ��terms for representing computable functions �see �GoMe���� The approach ex�
tends a formalization scheme for ��recursion as it was presented in �EiSK�� and is part of
our new hardware description language called GROPIUS� This language consists of four
parts� each corresponding to one abstraction level from the gate� upto the system�level�
GROPIUS has been developed as an intermediate representation format for our formal
synthesis approach� To allow the designer to specify an algorithm using an imperative
language� it is planned to o�er a conversion from C into our representation style at the
algorithmic level�
In this approach� the elementary parts within a ��recursive program are basic blocks�

conditions and constants� Basic blocks and conditions are compound expressions consist�
ing of basic� nonrecursive operators� Functional expressions are to be used to describe
these expressions� that correspond to �acyclic� data �ow graphs� In our approach� a data
�ow graph �dfg� has the following syntax�

vblock ��� variable j ��� f vblock ��� g vblock ���
expr ��� variable j ��� f expr ��� g expr ��� j operator ��� expr ���
dfg ��� ��� vblock ��� f �let� vblock ��� expr �in� g expr

The basic operations indicated by operator always terminate and so does the entire func�
tion� Basic blocks and conditions both are data �ow graphs� Basic blocks have type
�� � and conditions have type �� bool�
When dealing with ��recursion� one has to be aware of the fact that function applica�

tions may not terminate� Therefore� in this approach� the datatype ��� partial has been

introduced to express results of ��recursive functions�

partial � De�ned of � j Unde�ned

A ��recursive function P has type � � ���partial� P �x� � Unde�ned indicates that
the function did not terminate and P �x� � �De�ned y� indicates that the function did
terminate with y as result�
Before introducing programs� i�e� arbitrary ��recursive functions� we will
rst introduce

blocks� Blocks are ��recursive functions� but there is a restriction as to their type which
is always � � ���partial instead of � � ���partial for some arbitrary �� There are
ve
control structures for building blocks based on basic blocks� conditions and constants�
PARTIALIZE� THEN� IFTE� WHILE and LOCVAR� The syntax for blocks is as follows�

block ��� �PARTIALIZE� basic block j block �THEN� block j
�IFTE� condition block block j �WHILE� condition block j
�LOCVAR� constant block

PARTIALIZE� THEN� IFTE� WHILE and LOCVAR are functions� that map basic blocks�
conditions� blocks and constants to a single block� It has to be noted� that blocks� basic
blocks and conditions are functions themselves� Table � gives a de
nition in a mathemat�
ical notation� A precise de
nition in terms of higher order logic in HOL can be found in
�EiSK���

PARTIALIZE P x � De�ned �P �x��

�P THEN Q� x �

�
De�ned �y� �z� P �x� � De�ned �z� � Q�z� � De�ned �y�
Unde�ned otherwise

IFTE C P Q x �

���
��

De�ned �y� C�x� � �P �x� � De�ned �y�� �
��C�x�� � �Q�x� � De�ned �y��

Unde�ned otherwise

WHILE C P x �

�����
����

De�ned �y� �n� P n�x� � De�ned �y� � ��C�y�� �
�m� m � n�

�z� Pm�x� � De�ned �z� � C�z�
Unde�ned otherwise

LOCVAR init P x �

�
De�ned �y� �z� P �x� init� � De�ned �y� z�
Unde�ned otherwise

PROGRAM init P x �

�
De�ned �y� �z� P �x� init� � De�ned �z� y�
Unde�ned otherwise

Table �� Semantics of control structures

PARTIALIZE is used to turn a basic block P of type �� � to a block PARTIALIZE�P �
of type �� ���partial� PARTIALIZE�P � is a function that maps some x to De�ned�P �x���
It always terminates� Unde�ned is never reached� THEN is used in in
x notation� It maps
two blocks to a single block that executes the two blocks consecutively� The second block is
executed only if the
rst block did terminate� The result of P THENQ becomes Unde�ned�
i� one of the two blocks does not terminate� IFTE is a means for expressing conditional
block applications� The expression IFTE C P Q maps some x either to P �x� or to Q�x�
depending on whether the condition C�x� becomes true or false� respectively� WHILE is
used to describe loops� Starting with an initial state x� the body is iterated until a state
y is reached that does not ful
ll a condition� If such a state does not exist� the result

becomes Unde�ned� LOCVAR is used to introduce local variables� Given an arbitrary
initial value init for the local variable� the function is applied to the pair consisting of the
actual state x and init� If the result is de
ned� the second part of it� which corresponds
to the local variable� will be dropped� and only the
rst part is returned�
The reason for restricting blocks to type � � ���partial rather than � � ���partial

are loops� To iterate some function� the input and the output must have the same type�
However� we also want to allow programs� where input type and output type di�er�
Therefore� an additional operator named PROGRAM has been de
ned� It converts a
block P of type �	 � � ��	 ��partial and some initial value init of type � to a function
�PROGRAM init P � of type �� ���partial�

program ��� �PROGRAM� constant block

�PROGRAM init P � maps some x of type � to P �x� init�� If P �x� init� terminates� then
the result is a pair� PROGRAM�P� init� then returns the second component of P �x� init�
and drops the
rst� For a formal de
nition see table ��

��� An example

The way we formalize programs may at
rst glance seem a little awkward� Usually� imper�
ative programming languages are used and one needs a WP�calculus or a Hoare�calculus
to give the basic language elements a formal semantics� in order to describe mathemat�
ically the input�output function� In our approach programs are directly described in
mathematical notation�
Figure � shows some �ordinary� program in an imperative notation and the corre�

sponding translation into our formalism� The function gcd maps an input pair �p� q�

Imperative Program Functional Representation

FUNCTION gcd gcd �

�var p� q � integer� � integer	 PROGRAM

VAR a� b � integer LOCVAR �
�
�

BEGIN �

a �� p	 PARTIALIZE ����p� q�� y� �a� b�����p� q�� y� �p� b�� THEN

b �� q	 PARTIALIZE ����p� q�� y� �a� b�����p� q�� y� �a� q�� THEN

WHILE �a �� b� DO WHILE ����p� q�� y� �a� b���a �� b� �

BEGIN

IF �a � b� THEN IFTE ����p� q�� y� �a� b���a � b�

a �� a� b	 PARTIALIZE ����p� q�� y� �a� b�����p� q�� y� �a � b� b��
ELSE

b �� b� a	 PARTIALIZE ����p� q�� y� �a� b�����p� q�� y� �a� b � a��

END	 � THEN

RETURN a	 PARTIALIZE ����p� q�� y� �a� b�����p� q�� a� �a� b��

END	 �

Figure �� Greatest common divisor

onto a single output� The pair �a� b� stands for the auxiliary variables with initial value
��� ��� and y corresponds to the output� which has the initial value � and returns the value

of the local variable a� The initial value for the output is always arbitrary� whereas the
initial values for local variables can be
xed�

��� Programs in single�loop�form

In the following� programs of a speci
c pattern named single�loop�form �slf� will play an
important role� programs will
rst be turned into single�loop�form �see section �� and
then a theorem will be applied for mapping single�loop�form programs to hardware �see
section ��� Programs in single�loop�form are constructed as follows�

PROGRAM out init

LOCVAR var init

�PARTIALIZE P � THEN �WHILE C �PARTIALIZE Q�� THEN �PARTIALIZE R�
���

� Formal representation at the RT�level

To formally represent hardware and to perform formal synthesis at the RT� and gate level�
a theory called �Automata� has been developed� In this paper� we only shortly present
the formal representation of automatons� which the next section is based on� A detailed
description of the theory can be found in �Eise�b��
Usually� an automaton is represented by a ��tuple consisting of input alphabet� output

alphabet� set of states� output function� transition function and initial state� Here� an
automaton will be represented by a pair �P� q�� where q is the initial state and P is a
compound output and transition function� P has type � 	 	 �
 	 	 and q has type
	 where ��
 and 	 are the types of the input alphabet� the output alphabet and the
state set� Using a compound output and transition function makes sense� since it is not
possible to unambiguously assign combinatorial units to either the output function or the
transition function� Due to the fact that we only use typed expressions� it is not necessary
to explicitly describe the input alphabet� the output alphabet and the state set�

P and q unambiguously determine the behavior of an automaton� The higher order
logic function automaton describes the semantics of an automaton by mapping �P� q�
to a function automaton�P� q� that maps a time dependent input signal �type num �
�� to a time dependent output signal �type num �
�� Figure � sketches� how some
automaton�P� q� could be �implemented� using a combinatorial component realizing P

and a memory unit D with initial value q�

P

qD

input output
P qautomaton (,)

Figure �� automaton

� Interface synthesis

Unlike other approaches� we distinguish between the algorithmic i�o�behavior description�
and an interface description specifying how the algorithm communicates with the envi�
ronment� The algorithmic description only speci
es the functional relation between some
input values and some output values� Time is not yet considered� The interface descrip�
tion maps the algorithm to a speci
c timing in terms of signal events at the interface of
the circuit� In our approach� the designer writes some arbitrary algorithm and can than
select among a
xed set of interface description patterns� Since the designer does not have
to restart the synthesis from scratch by changing the speci
cation� if another interface
behavior is selected as planned previously� this division supports design reuse�
On the other hand is this method more restrictive than other approaches� where both

descriptions are interwoven� However� we believe that many failures during the synthesis
process can be avoided� if one does not mingle i�o�behavior and timing aspect within a
single description� In our approach timing and i�o�behavior are developed independently�
There are many possible interface speci
cation patterns� For each interface pattern

a speci
c hardware implementation has to be found and an instantiation theorem has
to be proven stating that the implementation de
nitely implements the algorithm with
respect to the interface speci
cation� Usually� the interface of the implementation not
only consists of the data signal from the i�o�behavior given by the algorithmic description�
but there are also additional control signals introduced such as start� reset and ready to
provide a handshake�like communication and to allow interrupting the execution of the
algorithm�
Figure � shows an interface speci
cation pattern named INTERFACE� It describes

the relation between some signals input� start� reset� output and ready with respect to
some arbitrary algorithm S� The speci
cation states that the circuit has an internal state
named ready with initial value true� ready is also forwarded to the output� ready�t� � F

means that at time t the circuit is executing the algorithm� whereas ready�t� � T means
that the circuit is waiting for new input� If no calculation is performed� the output�signal
holds the result of the last program execution� A calculation can only be started� if ready
is set� otherwise setting start is ignored� After a calculation has been started� ready is set
to F� If the result is de
ned� ready will be set after a certain time and at the same time
the value will appear at the output� The execution of the program can be interrupted
by setting the reset signal� If the algorithm does not terminate� ready will be down until
reset is set�
For this interface speci
cation pattern we found a general hardware implementation

for slf�programs S with arbitrary basic blocks P�C�Q and R and arbitrary values var init

and out init� In
gure � the structure of the implementation is de
ned in a formal manner
using the automaton construct from section �� The basic blocks P �C�Q and R directly
correspond to combinational circuits� Figure � gives a graphical representation of this
structure� The structure can be divided into two parts� The upper part corresponds to the
controller �signals reset� start and ready�� the rest of the circuit is used for computations
�circuits P � C� Q and R�� communication �MUX�circuits� and data storage �D�circuits��
We have proven a general theorem ��� stating that the implementation of every slf�

program with arbitrary components P�C�Q and R and arbitrary values var init and
out init ful
lls the given interface speci
cation� After having turned an arbitrary program
into a single�loop program� which is to be explained in the next section� one can apply this
theorem to produce a hardware structure at the RT�level by means of logical re
nement�
Using our formal synthesis techniques at the RT� and gate level �see �EiKB�� Eise�b��

INTERFACE �input� start� reset� output� ready� S� �

��start ��� ready � �

�t� reset t� ready t �
ready t � ��start �t � ���� ready �t � �� � �output �t� �� � output t� �
�t � � � T j ready �t
 ��� � start t �
CASE �S�input t�� OF

De�ned y � �m� ��n� n � m � ��reset �t� n��� �
output �t�m� � y � ready �t �m� �

�n� n � m � ��p� p � n � ��reset �t � p��� �
��ready �t� n��

Unde�ned � �m� ��n� n � m � ��reset �t� n���� ��ready �t�m��

Figure �� A possible interface behavior

we provide a universal concept for formal synthesis from the algorithmic level down to
the gate level�

� �P C Q R var init out init�

IMPLEMENTATION �input� start� reset� output� ready� P� C�Q�R� var init� out init�
�
INTERFACE �input� start� reset� output� ready�
PROGRAM out init

LOCVAR var init

�PARTIALIZE P � THEN �WHILE C �PARTIALIZE Q�� THEN �PARTIALIZE R�

���

� Converting programs to single�loop�form �slf	

The slf�program is derived by applying a set of pre�proven theorems� During this trans�
formation process� the number of control structures is reduced� and at the same time
several boolean auxiliary variables are introduced� In general there is not only one slf�
representation for a program� but there are several equivalent slf�programs� According to
section �� each slf�program corresponds to a speci
c hardware implementation with a spe�
ci
c timing behavior and a speci
c hardware consumption� Di�erent theorem applications
may lead to di�erent equivalent slf�programs with di�erent implementation costs�

��� Transformation theorems

We have proven in a very meticulous manner a minimal set of �� transformation theo�
rems that are necessary for converting every program to an equivalent slf�representation�
Rewriting with these theorems in an arbitrary order always terminates and always ends
up in a slf�program� The result produced does not depend on the order� in which the
theorems are applied� Furthermore we provide additional transformation theorems� This
allows us to produce di�erent slf�representations leading to di�erent costs in terms of
timing and hardware consumption�
Due to lack of space� we cannot introduce all proven theorems� A complete list of the

theorems is given in �BlEi��� As an example we will present four transformation theorems

IMPLEMENTATION �input� start� reset� output� ready� P� C�Q�R� var init� out init� �

�q� q� q�� ��t� �output t� ready t�� �

automaton

� ����a� b� c�� �w� x� y� z���

let d � b � z in let ��e� f�� g� � P ��a� out init�� var init� in
let h � MUX �d� e� y� in let i � MUX �d� f� x� in
let j � MUX �d� g� w� in let k � �b � z in

let l � C��h� i�� j� in let ��m�n�� o� � Q��h� i�� j� in
let ��p� q�� r� � R��h� i�� j� in let s � k � �l in
let t � c � s in let u � MUX �l� n� q� in
let v � MUX �k� i� u� in ��v� t�� �o� v�m� t���

� �q�� q�� q��T� �

��t� �input t� start t� reset t��

Figure �� Representation at RT�level

P

C

Q

R

MUX

MUX

MUX
F
T

F
T

F
T

T

MUX
F
T

MUX
F
T

1

1&
&

input

start
reset ready

output

t

sk

d z

a

b
c

e

g

out_init
var_init

h
l

i

j

w q
1

q
2

3
qy

x

r
p q

o
n
m

u v

f

D

D
D

D

Figure �� RT�Implementation

���� ���� ��� and ���� Theorems ��� and ��� are alternatives to ��� and ���� respectively�
i�e� they can be applied in the same situation but lead to di�erent costs in terms of timing
and hardware consumption�
The theorems ��� and ��� turn a sequence consisting of a basic block and a while�loop

with basic block as body into a single while�loop� Theorem ��� introduces a boolean
variable with initial value F� P is executed� if the variable�s value is F� otherwise Q is
executed� The loop condition has changed� so that the body is performed at least once�
After executing P in the
rst run� the local variable is set to T and P will never be
executed again� Theorem ��� describes a transformation where after executing P also Q
may be performed in the
rst cycle of the loop�
Theorem ��� leads to an implementation where the operations in P and Q can be

shared since they are never executed in the same clock cycle� However the implemen�
tation becomes comparatively slow� Theorem ��� on the other hand leads to a faster
implementation with a higher hardware consumption since P and Q can be executed in
the
rst clock cycle and the loop�condition must be implemented twice�

� � P C Q�

�PARTIALIZE P � THEN �WHILE C �PARTIALIZEQ��
LOCVAR F

WHILE ���x� h�� C�x� � �h�
IFTE ���x� h�� h� �PARTIALIZE ���x� h�� �Q�x�� h��� �PARTIALIZE ���x� h�� �P �x��T���

���

� � P C Q�

�PARTIALIZE P � THEN �WHILE C �PARTIALIZEQ��
LOCVAR F

WHILE ���x� h�� C�x� � �h�
IFTE ���x� h�� h� �PARTIALIZE ���x� h�� �x� h��� �PARTIALIZE ���x� h�� �P �x��T���
THEN

IFTE ���x� h�� C�x�� �PARTIALIZE ���x� h�� �Q�x�� h��� �PARTIALIZE ���x� h�� �x� h���

���

The transformation theorems ��� and ��� are dedicated towards two nested while
loops with a local variable which is to be shifted outwards� Again� there are basically
two possible ways to transform the program� In both cases� a boolean local variable is
introduced� It indicates� whether the inner loop is executed or not� The two programs
again di�er in timing and hardware consumption� Applying theorem ��� leads to a faster
implementation with additional hardware since the inner loop�condition C� has to be
implemented twice�

� �C� C� P init�

WHILE C� �LOCVAR init �WHILE C� �PARTIALIZE P ���
LOCVAR init

LOCVAR F

WHILE ����x� h��� h��� C��x� � h��
IFTE ����x� h��� h��� C��x� h��� �PARTIALIZE ����x� h��� h��� �P �x� h���T���

�PARTIALIZE ����x� h��� h��� ��x� init��F���

���

� �C� C� P init�

WHILE C� �LOCVAR init �WHILE C� �PARTIALIZE P ���
LOCVAR init

LOCVAR F

WHILE ����x� h��� h��� C��x� � h��
IFTE ����x� h��� h��� C��x� h��� �PARTIALIZE ����x� h��� h��� �P �x� h���T���

�PARTIALIZE ����x� h��� h��� ��x� h��� h����
THEN

IFTE ����x� h��� h��� C��x� h��� �PARTIALIZE ����x� h��� h��� ��x� h��� h����
�PARTIALIZE ����x� h��� h��� ��x� init��F���

���

Converting programs into a slf�representation can be executed bottom�up from the
leaves of the syntax tree automatically by embedding heuristics that decide� whether to
apply theorems that lead to faster or to hardware saving implementations� The embedding
of non�formal methods is a general strategy of our formal synthesis approach HASH
�see�KBES���� Besides full automation� the theorems can also be selected interactively
by the designer�

��� Further optimizations

The theorems are not optimal in a sense that for more complex transformation steps too
much auxiliary variables are introduced� Given for instance two nested loops with a basic
block at the beginning of the outer loop� a transformed program with only a single loop
can be generated by
rst applying one of the theorems ��� or ��� to move the basic block
into the inner loop� Afterwards� one of the theorems ��� or ��� must be applied to extract
the local variable that was introduced by the theorem before� According to a desired
timing behavior and hardware consumption� four compound transformations are possible
leading to four di�erent slf�programs� With this method� always two auxiliary variables
are introduced� However� one can think of transformation theorems that introduce only a
single variable� In fact� it is comparatively easy to prove that in each case one variable is
unnecessary� There are two alternatives to handle this problem� Either more complex and
compact transformation theorems are applied that can be derived using the already proven
transformation theorems� or the hardware implementation is passed to state minimization�
When transforming programs to single�loop�form� scheduling is already performed

by choosing the theorems and therefore deciding� whether some operations should be
performed in one clock cycle or not� However it is also possible to execute the body
of a while loop several times within one clock cycle �loop�unrolling� or to cut the body
in pieces and execute the pieces in di�erent clock cycles �loop�cutting�� Loop cutting
requires a scheduling information assigning each operation of a basic block to a phase�
Dividing a basic block into several control steps according to results of existing heuristics
has already been implemented in �EiBK�� and �BlEi��� In �EiBK��� also performing
allocation and binding has been introduced in a formal manner� However� these methods
are restricted to pure basic blocks� We have derived general theorems for both loop�
unrolling and loop�cutting �see �BlEi���� which allows a more �exible synthesis process
with respect to hardware consumption and timing also for ��recursive functions�

 Conclusion

In this paper� we have presented a new methodology for deriving RT�level structures
from circuit descriptions at the algorithmic level� First it is formal� The implementation

is derived by applying basic logical steps within a theorem prover thus guaranteeing
correctness� Second it provides a new synthesis concept� The implementation was derived
by applying program transformations rather than extracting a control and data �ow
graph and analyzing an exponential number of control paths� Together with our formal
synthesis approach applied to RT� and gate level �see �EiKB�� Eise�b�� we thus provide
a universally concept for formal synthesis from the algorithmic level down to the gate
level�
Additionally� due to their functional representation� both the algorithmic description

and the implementation at RT�level can be simulated e ciently� Therefore� the designer
can check at every abstraction level� whether the implementation ful
lls the speci
cation
he has in mind�

References

�BlEi�� C� Blumenr!ohr and D� Eisenbiegler� An e cient representation for formal
synthesis� In ��th International Symposium on System Synthesis� pages ����
Antwerp�Belgium� September ��� IMEC� IEEE Computer Society Press�

�BlEi�� C�Blumenr!ohr and D� Eisenbiegler� Performing high�level synthesis via pro�
gram transformations within a theorem prover� submitted to Fourth Interna�
tional Conference on Mathematics of Program Construction� June ���

�Camp�� R� Camposano� Behavior�preserving transformations for high�level synthesis�
In M� Leeser and G� Brown� editors� Hardware Speci�cation� Veri�cation and

Synthesis� Mathematical Aspects� number ��� in Lecture Notes in Computer
Science� pages �������� Ithaca� New York� July ��� Mathematical Science
Institute� Cornell University� Springer�Verlag�

�EiBK�� D� Eisenbiegler� C� Blumenr!ohr� and R� Kumar� Implementation issues about
the embedding of existing high level synthesis algorithms in HOL� In Joakim
von Wright� Jim Grundy� and John Harrison� editors� Theorem Proving in

Higher Order Logics��th International Conference� TPHOLs��	� number ����
in Lecture Notes in Computer Science� pages �������� Turku�Finland� August
��� Springer�Verlag�

�EiKB�� D� Eisenbiegler and R� Kumar and C� Blumenr!ohr � A constructive approach
towards correctness of synthesis�application within retiming� In The European
Design
 Test Conference� pages �������� Paris� France� March ��� IEEE
Computer Society and ACM�SIGDA� IEEE Computer Society Press�

�Eise�b� D� Eisenbiegler� Automata " A theory dedicated towards formal circuit syn�
thesis� Technical Report Internal report ����� Universit!at Karlsruhe� ���
http� ��goethe� ira� uka�de�fsynth�publications�postscript�Eise�b�ps�gz�

�EiSK�� D� Eisenbiegler� K� Schneider� and R� Kumar� A functional approach for
formalizing regular hardware structures� In Thomas F� Melham and Juanito
Camileri� editors� Higher Order Logic Theorem Proving and its Applications�
number �� in Lecture Notes in Computer Science� pages �������� Valletta�
Malta� September ��� Springer�Verlag�

�GDWL�� D� Gajski� N� Dutt� A� Wu� and S� Lin� High�Level Synthesis� Introduction to

Chip and System Design� Kluwer Academic Publishers� ���

�GoMe�� M�J�C� Gordon and T�F� Melham� Introduction to HOL� A Theorem Proving

Environment for Higher Order Logic� Cambridge University Press� ���

�KBES�� R� Kumar � C� Blumenr!ohr� D� Eisenbiegler� and D� Schmid � Formal syn�
thesis in circuit design�A classi
cation and survey� In M� Srivas and A� Camil�
leri� editors� Formal Methods in Computer�Aided Design� First International

Conference�FMCAD��	� number ���� in Lecture Notes in Computer Science�
pages ������ Palo Alto� CA� USA� November ��� Springer�Verlag�

�MaFo�� E�M� Mayger and M�P� Fourman� Integration of formal methods with system
design� In A� Halaas and P�B� Denyer� editors� International Conference on

Very Large Scale Integration� pages ����� Edinburgh� Scotland� August ���
IFIP Transactions� North�Holland�

�MHMP�� P� Middelhoek� C�Huijs� G�Mekenkamp� and E�Prangsma et al� A method�
ology for the design of guaranteed correct and e cient digital systems� In
IEEE International High Level Design Validation and Test Workshop� Oak�
land� California� November ���

�PeKu�� Z� Peng and K� Kuchcinski� Automated transformation of algorithms into
register�transfer implementations� IEEE Transactions on Computer�Aided

Design of Integrated Circuits and Systems� �������������� February ���

�ShRa�� R� Sharp and O� Rasmussen� The T�Ruby design system� In CHDL ��� pages
������� ���

