Deriving Structural RT-Implementations from
Algorithmic Descriptions by means of Logical
Transformations *

Christian Blumenrohr, Dirk Eisenbiegler
Institute for Circuit Design and Fault Tolerance (Prof. Dr.-Ing. D. Schmid),

University of Karlsruhe, Germany e-mail: {blumen,eisen}@ira.uka.de

Abstract

This paper presents a formal synthesis approach where the mapping of an al-
gorithmic description towards its structural implementation at the RT-level is per-
formed by means of basic logical transformations in a higher order logic theorem
prover. The approach goes beyond pure basic blocks and allows representing and
synthesizing arbitrary computable programs. A functional style is used for repre-
senting algorithms based on basic u-recursive operators whose semantics is defined
within higher order logic.

1 Introduction

With synthesis heading towards more and more abstract design levels, writing sound
synthesis programs is becoming an important matter of scientific investigations. Due
to the complexity of nowadays circuits and due to the considered abstraction level, both
exhaustive simulation and full automatic verification approaches fail. The only reasonable
approach towards producing correct synthesis results lies in a synthesis process based on
correctness preserving transformations (see [Camp89]). As at the gate level, where circuits
can easily be formalized and transformed according to a boolean calculus, there is a need
to also find formal representations at higher levels of abstraction as on the algorithmic
level.

There are many approaches, where synthesis is based on a sequence of behavior
preserving transformations such as YSC [Camp89], CAMAD [PeKu94] and TRADES
[MHMP96]. They all provide a “correctness by construction” approach with a fixed set of
circuit transformations that are assumed to be correct or where there are paper&pencil
proofs for their correctness. However, the implementations of the basic circuit trans-
formations are comparatively complex and critical as to correctness. In our approach,
circuit transformations are performed by applying basic mathematical rules within a
theorem proving environment named HOL [GoMe93| thus guaranteeing correctness im-
plicitly. We will call this design style formal synthesis (see [KBES96]). Most formal
synthesis approaches introduced in the past are restricted to lower levels of abstraction
(e.g. Lambda/Dialog [MaFo91],T-Ruby [ShRa95]).

This paper addresses formal synthesis at the algorithmic level. It is part of our ongoing
work towards a formal synthesis tool named HASH (higher order logic applied to synthesis

*This work has been partly financed by the Deutsche Forschungsgemeinschaft, Project SCHM 623/6-1.

Lo LaliAwaly)e A UVRL P v Ao WYLl A | R dg iy lpY il)y arviibolo v do Lol il bWy Pyt
data flow graphs. The extension to be presented in this paper allows synthesizing arbitrary
algorithmic descriptions i.e. mixed control and data flow descriptions.

Starting point for high-level synthesis is an algorithmic description. The result of high-
level synthesis is a structure at the RT-level consisting of a data-path and a controller.
In conventional high-level synthesis, the first step is compiling the description into a
control/data flow graph (CDFG) representation [GDWL94]. Based on this representation,
several control states are introduced along the graph thus partitioning the graph into small
cycle free pieces of program each corresponding to one clock tick. However, the number
of the resulting subgraphs grows exponentionally with the nesting depth of the control
structures. Then scheduling, allocation and binding are performed on the subgraphs
leading to a symbolic state transition table and a separated data-path. Afterwards, the
controller and the communication part are generated.

Our formal synthesis approach differs from that method. Based on a formalization of
p-recursion (see section 2), a set of theorems for deriving structural RT-level implemen-
tations from algorithmic descriptions has been proven. They can be applied to perform
synthesis in two steps: First the program is transformed into an equivalent program with
only one single while-loop (section 5). Afterwards a pre-proven theorem is applied map-
ping the transformed algorithmic description to a RT-level structure (section 4). The
RT-level implementation produced in section 4 is based on a formalization scheme that
is introduced in section 3.

2 Formal representation of programs

According to Church’s Thesis, there are several equivalent schemes for describing com-
putable functions. To be able to talk of algorithmic transformations in logic, one first
has to define a programming language with a formal semantics. This paper uses simply
typed A-terms for representing computable functions (see [GoMe93|). The approach ex-
tends a formalization scheme for p-recursion as it was presented in [EiSK93] and is part of
our new hardware description language called GROPIUS. This language consists of four
parts, each corresponding to one abstraction level from the gate- upto the system-level.
GROPIUS has been developed as an intermediate representation format for our formal
synthesis approach. To allow the designer to specify an algorithm using an imperative
language, it is planned to offer a conversion from C into our representation style at the
algorithmic level.

In this approach, the elementary parts within a p-recursive program are basic blocks,
conditions and constants. Basic blocks and conditions are compound expressions consist-
ing of basic, nonrecursive operators. Functional expressions are to be used to describe
these expressions, that correspond to (acyclic) data flow graphs. In our approach, a data
flow graph (dfg) has the following syntax:

vblock == wvariable | ”(” { vblock”,” } vblock ”)”
expr = variable | 7 (" {expr”,” } expr”)” | operator” (" expr”)”
dfg = 7\ vblock 7.7 { 71let” vblock ”=" expr 7in” } expr

The basic operations indicated by operator always terminate and so does the entire func-
tion. Basic blocks and conditions both are data flow graphs. Basic blocks have type
a — « and conditions have type a — bool.

When dealing with p-recursion, one has to be aware of the fact that function applica-
tions may not terminate. Therefore, in this approach, the datatype («) partial has been

SRS MM U A P SRS s Y S T e SRS VS
partial = Defined of « | Undefined

A p-recursive function P has type a — (f)partial. P(x) = Undefined indicates that
the function did not terminate and P(x) = (Defined y) indicates that the function did
terminate with y as result.

Before introducing programs, i.e. arbitrary p-recursive functions, we will first introduce
blocks. Blocks are p-recursive functions, but there is a restriction as to their type which
is always o — («)partial instead of @ — (f)partial for some arbitrary 3. There are five
control structures for building blocks based on basic blocks, conditions and constants:
PARTIALIZE, THEN, IFTE, WHILE and LOCVAR. The syntax for blocks is as follows:

block = "PARTIALIZE” basic_block | block "THEN” block |
"IFTE” condition block block | "WHILE” condition block |
"LOCVAR” constant block

PARTIALIZE, THEN, IFTE, WHILE and LOCVAR are functions, that map basic blocks,
conditions, blocks and constants to a single block. It has to be noted, that blocks, basic
blocks and conditions are functions themselves. Table 1 gives a definition in a mathemat-

ical notation. A precise definition in terms of higher order logic in HOL can be found in
[EiSK93].

PARTIALIZE Pz = Defined (P(x))
B Defined (y) Jz. P(x) = Defined (2) A Q(z) = Defined (y)
(P THEN @) 2 - Undefined otherwise
Defined (y) C(z) A (P(z) = Defined (y)) Vv
IFTECPQu - ~(C(x)) A (Q(z) = Defined (y))
Undefined otherwise
Defined (y) 3Jn. P"(x) = Defined (y) A =(C(y)) A
Vm.m <n =
WHILE ¢ Pz = 32. P™(x) = Defined (2) A C(2)
Undefined otherwise
LOCVAR init Pz — Deflngd (y) 3z P(y?,urut) = Defined (v, 2)
Undefined otherwise

PROGRAM init P+ — Deflne_d (y) 3. P(Jf‘,lnlt) = Defined (z,y)
Undefined otherwise

Table 1: Semantics of control structures

PARTIALIZE is used to turn a basic block P of type & — « to a block PARTIALIZE(P)
of type a — («)partial. PARTIALIZE(P) is a function that maps some x to Defined(P(x)).
It always terminates, Undefined is never reached. THEN is used in infix notation. It maps
two blocks to a single block that executes the two blocks consecutively. The second block is
executed only if the first block did terminate. The result of P THENQ becomes Undefined,
iff one of the two blocks does not terminate. IFTE is a means for expressing conditional
block applications. The expression IFTE C' P () maps some x either to P(z) or to Q(x)
depending on whether the condition C'(x) becomes true or false, respectively. WHILE is
used to describe loops. Starting with an initial state x, the body is iterated until a state
y is reached that does not fulfill a condition. If such a state does not exist, the result

AMuvviJiiiuly WViITHWIillvAd-. = 2 Wi ATV AW UJvidA UV v VAWUWvey AVUVIVL VWL AW LU . AV AL WAl WA SRV LAR Y

initial value init for the local variable, the function is applied to the pair consisting of the
actual state x and init. If the result is defined, the second part of it, which corresponds
to the local variable, will be dropped, and only the first part is returned.

The reason for restricting blocks to type a@ — («)partial rather than o — (3)partial
are loops. To iterate some function, the input and the output must have the same type.
However, we also want to allow programs, where input type and output type differ.
Therefore, an additional operator named PROGRAM has been defined. It converts a
block P of type av X § — (a x ()partial and some initial value init of type (3 to a function
(PROGRAM init P) of type oo — (3)partial.

program ::= "PROGRAM” constant block

(PROGRAM init P) maps some x of type « to P(z,init). If P(x,init) terminates, then
the result is a pair. PROGRAM(P, init) then returns the second component of P(z, init)
and drops the first. For a formal definition see table 1.

2.1 An example

The way we formalize programs may at first glance seem a little awkward. Usually, imper-
ative programming languages are used and one needs a WP-calculus or a Hoare-calculus
to give the basic language elements a formal semantics, in order to describe mathemat-
ically the input/output function. In our approach programs are directly described in
mathematical notation.

Figure 1 shows some “ordinary” program in an imperative notation and the corre-
sponding translation into our formalism. The function ged maps an input pair (p, q)

Imperative Program Functional Representation
FUNCTION ged ged =
(var p,q : integer) : integer; PROGRAM 0
VAR a, b : integer LOCVAR (0,0)
BEGIN (
0= p: PARTIALIZE (A((p,), , (0, 0))-((,), (p, b)) THEN
b:=g; PARTIALIZE (((b, q)7y7()) ((p7 Q)7y7 (a7)) THEN
WHILE (a # b) DO WHILE (A((p,q),y, (a,b)).a #b) (
BEGIN
IF (a > b) THEN IFTE (A((p,q), v, (a,b)).a > b)
a:=a — b PARTIALIZE (A((p,q),y, (a,0)).((p,q),y, (a — b,b))
ELSE
b:=0b—a; PARTIALIZE (A\((p,q),y, (a,b)).((p,q),y, (a,b — a))
END;) THEN
RETURN g PARTIALIZE (A((p, q),, (a,b)).((p,), a, (a, b))
END;)

Figure 1: Greatest common divisor

onto a single output. The pair (a,b) stands for the auxiliary variables with initial value
(0,0), and y corresponds to the output, which has the initial value 0 and returns the value

e VAt VAV vyiaL Wit We o A AW AaAatVaAL yiatdh AV VARV ARV Ry AV ALYy Ay Y R AV Yy T AR VRAL VALY

initial values for local variables can be fixed.

2.2 Programs in single-loop-form

In the following, programs of a specific pattern named single-loop-form (slf) will play an
important role: programs will first be turned into single-loop-form (see section 5) and
then a theorem will be applied for mapping single-loop-form programs to hardware (see
section 4). Programs in single-loop-form are constructed as follows:

PROGRAM out_init
LOCVAR wvar_init (1)
(PARTIALIZE P) THEN (WHILE C (PARTIALIZE @)) THEN (PARTIALIZE R)

3 Formal representation at the RT-level

To formally represent hardware and to perform formal synthesis at the RT- and gate level,
a theory called “Automata” has been developed. In this paper, we only shortly present
the formal representation of automatons, which the next section is based on. A detailed
description of the theory can be found in [Eise97b].

Usually, an automaton is represented by a 6-tuple consisting of input alphabet, output
alphabet, set of states, output function, transition function and initial state. Here, an
automaton will be represented by a pair (P, q), where ¢ is the initial state and P is a
compound output and transition function. P has type « X ¢ — w X o and ¢ has type
o where ¢, w and o are the types of the input alphabet, the output alphabet and the
state set. Using a compound output and transition function makes sense, since it is not
possible to unambiguously assign combinatorial units to either the output function or the
transition function. Due to the fact that we only use typed expressions, it is not necessary
to explicitly describe the input alphabet, the output alphabet and the state set.

P and ¢ unambiguously determine the behavior of an automaton. The higher order
logic function automaton describes the semantics of an automaton by mapping (P, q)
to a function automaton(P,q) that maps a time dependent input signal (type num —
t) to a time dependent output signal (type num — w). Figure 2 sketches, how some
automaton(P, ¢) could be “implemented” using a combinatorial component realizing P
and a memory unit D with initial value q.

automaton (R0

output

Figure 2: automaton

x L4L1LTL1ACT By 11L1ITOB1S

Unlike other approaches, we distinguish between the algorithmic i/o-behavior description,
and an interface description specifying how the algorithm communicates with the envi-
ronment. The algorithmic description only specifies the functional relation between some
input values and some output values. Time is not yet considered. The interface descrip-
tion maps the algorithm to a specific timing in terms of signal events at the interface of
the circuit. In our approach, the designer writes some arbitrary algorithm and can than
select among a fixed set of interface description patterns. Since the designer does not have
to restart the synthesis from scratch by changing the specification, if another interface
behavior is selected as planned previously, this division supports design reuse.

On the other hand is this method more restrictive than other approaches, where both
descriptions are interwoven. However, we believe that many failures during the synthesis
process can be avoided, if one does not mingle i/o-behavior and timing aspect within a
single description. In our approach timing and i/o-behavior are developed independently.

There are many possible interface specification patterns. For each interface pattern
a specific hardware implementation has to be found and an instantiation theorem has
to be proven stating that the implementation definitely implements the algorithm with
respect to the interface specification. Usually, the interface of the implementation not
only consists of the data signal from the i/o-behavior given by the algorithmic description,
but there are also additional control signals introduced such as start, reset and ready to
provide a handshake-like communication and to allow interrupting the execution of the
algorithm.

Figure 3 shows an interface specification pattern named INTERFACE. It describes
the relation between some signals input, start, reset, output and ready with respect to
some arbitrary algorithm S. The specification states that the circuit has an internal state
named ready with initial value true. ready is also forwarded to the output. ready(t) = F
means that at time ¢ the circuit is executing the algorithm, whereas ready(t) = T means
that the circuit is waiting for new input. If no calculation is performed, the output-signal
holds the result of the last program execution. A calculation can only be started, if ready
is set, otherwise setting start is ignored. After a calculation has been started, ready is set
to F. If the result is defined, ready will be set after a certain time and at the same time
the value will appear at the output. The execution of the program can be interrupted
by setting the reset signal. If the algorithm does not terminate, ready will be down until
reset is set.

For this interface specification pattern we found a general hardware implementation
for slf-programs S with arbitrary basic blocks P, C, () and R and arbitrary values var_init
and out_tnit. In figure 4 the structure of the implementation is defined in a formal manner
using the automaton construct from section 3. The basic blocks P,C,Q)Q and R directly
correspond to combinational circuits. Figure 5 gives a graphical representation of this
structure. The structure can be divided into two parts: The upper part corresponds to the
controller (signals reset, start and ready), the rest of the circuit is used for computations
(circuits P, C, @ and R), communication (MUX-circuits) and data storage (D-circuits).

We have proven a general theorem (2) stating that the implementation of every slf-
program with arbitrary components P,C, () and R and arbitrary values var_init and
out_tnit fulfills the given interface specification. After having turned an arbitrary program
into a single-loop program, which is to be explained in the next section, one can apply this
theorem to produce a hardware structure at the RT-level by means of logical refinement.
Using our formal synthesis techniques at the RT- and gate level (see [EiIKB97, Eise97b))

INTERFACE (input, start, reset, output, ready, S) =
—(start 0) = ready 0 A

Vt. resett = readyt A
ready t A —(start (t + 1)) = ready (t + 1) A (output (t + 1) = output t) A
(t=0 = T|ready (t —1)) A startt =
CASE (S(input t)) OF
Definedy : dm. (Vn.n <m = —(reset (t+n))) =
output (t +m) = y A ready (t +m) A
Vn.n <m = (Yp.p <n = —(reset (t+p))) =
—(ready (t + n))
Undefined : Vm. (Vn.n <m = —(reset (t +n))) = —(ready (t +m))

Figure 3: A possible interface behavior

we provide a universal concept for formal synthesis from the algorithmic level down to
the gate level.

F VP C Q Rvar_nit out inat.
IMPLEMENTATION (input, start, reset, output, ready, P, C, Q), R, var_init, out_init)
=
INTERFACE (input, start, reset, output, ready, (2)
PROGRAM out _init
LOCVAR wvar_init
(PARTIALIZE P) THEN (WHILE C (PARTIALIZE @)) THEN (PARTIALIZE R)

5 Converting programs to single-loop-form (slf)

The slf-program is derived by applying a set of pre-proven theorems. During this trans-
formation process, the number of control structures is reduced, and at the same time
several boolean auxiliary variables are introduced. In general there is not only one slf-
representation for a program, but there are several equivalent slf-programs. According to
section 4, each slf-program corresponds to a specific hardware implementation with a spe-
cific timing behavior and a specific hardware consumption. Different theorem applications
may lead to different equivalent slf-programs with different implementation costs.

5.1 Transformation theorems

We have proven in a very meticulous manner a minimal set of 21 transformation theo-
rems that are necessary for converting every program to an equivalent slf-representation.
Rewriting with these theorems in an arbitrary order always terminates and always ends
up in a slf-program. The result produced does not depend on the order, in which the
theorems are applied. Furthermore we provide additional transformation theorems. This
allows us to produce different slf-representations leading to different costs in terms of
timing and hardware consumption.

Due to lack of space, we cannot introduce all proven theorems. A complete list of the
theorems is given in [BIEi98]. As an example we will present four transformation theorems

IMPLEMENTATION (input, start, reset, output, ready, P, C, Q), R, var _init, out_init) =
Jq1 q2 g3. (M. (output t, ready t)) =

automaton
((A(a, b, ¢), (w, z,y,).

letd=0b A zin let ((e, f),9) = P((a, out_init), var_init) in
let h = MUX (d, e, y) in let i = MUX (d, f,) in
let j = MUX (d, g, w) in let kK =—-b A zin
let [=C((h,i),7) in let ((m,n),0) = Q((h,i),7) in
let ((p,q),r) = R((h,i),j) in lets=Fk V —lin
lett=c V sin let v =MUX (I,n,q) in
let v = MUX (k,i,u) in ((v,t), (0,v,m,1)))

) (Q17 42, g3, T))
(At. (input t, start t, reset t))

Figure 4: Representation at RT-level

reset c " }14; ready
start * E - j& ~1s
21D
T
MUX o
F T [
T ~
= MUX — m
7%F ||»Q7n
T —|° MUX MUX
- P a] |
:\:/IUX tiIRE R — output
N | o T |
g T r.'|'
D
q
W 1 Dq
X 2| [p
yl %

Figure 5: RT-Implementation

\¥/» \+/» \V) AL A (V) L AVVLLLIMD S e VY) et aalbliibivioe VAV A \Y /)y ALV LA
i.e. they can be applied in the same situation but lead to different costs in terms of timing
and hardware consumption.

The theorems (3) and (4) turn a sequence consisting of a basic block and a while-loop
with basic block as body into a single while-loop. Theorem (3) introduces a boolean
variable with initial value F. P is executed, if the variable’s value is F, otherwise () is
executed. The loop condition has changed, so that the body is performed at least once.
After executing P in the first run, the local variable is set to T and P will never be
executed again. Theorem (4) describes a transformation where after executing P also @)
may be performed in the first cycle of the loop.

Theorem (3) leads to an implementation where the operations in P and) can be
shared since they are never executed in the same clock cycle. However the implemen-
tation becomes comparatively slow. Theorem (4) on the other hand leads to a faster
implementation with a higher hardware consumption since P and () can be executed in
the first clock cycle and the loop-condition must be implemented twice.

FVYPCQ.
(PARTIALIZE P) THEN (WHILE C (PARTIALIZE Q)) =
LOCVAR F (3)
WHILE (A(z, h). C(z) V —h)
IFTE (A(x, k). h) (PARTIALIZE (A(z, h). (Q(z), h))) (PARTIALIZE (A(z, h). (P(z),T)))

FVYPCQ.
(PARTIALIZE P) THEN (WHILE C (PARTIALIZE Q)) =
LOCVAR F
WHILE (A(z, h). C(z) V =h) (4)
IFTE (A(x, h). h) (PARTIALIZE (A(z, h). (, 1)) (PARTIALIZE (A(z, h). (P(z), T)))
THEN
IFTE (A(z, k). C(z)) (PARTIALIZE (A(z, h). (Q(x),h))) (PARTIALIZE (A(z, h). (z,h)))

The transformation theorems (5) and (6) are dedicated towards two nested while
loops with a local variable which is to be shifted outwards. Again, there are basically
two possible ways to transform the program. In both cases, a boolean local variable is
introduced. It indicates, whether the inner loop is executed or not. The two programs
again differ in timing and hardware consumption. Applying theorem (6) leads to a faster
implementation with additional hardware since the inner loop-condition Cs has to be
implemented twice.

F VCl Cz P init.
WHILE C; (LOCVAR init (WHILE C, (PARTIALIZE P))) =
LOCVAR init
LOCVAR F (5)
IFTE (A\((x, h1), ha). Co(x, h1)) (PARTIALIZE (A((x, h1), ho). (P(x,h1), T)))
(PARTIALIZE (A((x, h1), he). ((z,init),F)))

F VvC; Cy P init.
WHILE €y (LOCVAR init (WHILE Cy (PARTIALIZE P))) =
LOCVAR init
LOCVAR F
WHILE (}\((I, hl), h2) Cl (I) \ h2)

THEN
IFTE (\((z, 7)), ha). Ca(w, h1)) (PARTIALIZE (A((z, h1), ho). ((z, h1), h2)))
(PARTIALIZE (A((z, h1), ha). ((z, init), F)))

Converting programs into a slf-representation can be executed bottom-up from the
leaves of the syntax tree automatically by embedding heuristics that decide, whether to
apply theorems that lead to faster or to hardware saving implementations. The embedding
of non-formal methods is a general strategy of our formal synthesis approach HASH
(see[KBES96]). Besides full automation, the theorems can also be selected interactively
by the designer.

5.2 Further optimizations

The theorems are not optimal in a sense that for more complex transformation steps too
much auxiliary variables are introduced. Given for instance two nested loops with a basic
block at the beginning of the outer loop, a transformed program with only a single loop
can be generated by first applying one of the theorems (3) or (4) to move the basic block
into the inner loop. Afterwards, one of the theorems (5) or (6) must be applied to extract
the local variable that was introduced by the theorem before. According to a desired
timing behavior and hardware consumption, four compound transformations are possible
leading to four different slf-programs. With this method, always two auxiliary variables
are introduced. However, one can think of transformation theorems that introduce only a
single variable. In fact, it is comparatively easy to prove that in each case one variable is
unnecessary. There are two alternatives to handle this problem. Either more complex and
compact transformation theorems are applied that can be derived using the already proven
transformation theorems, or the hardware implementation is passed to state minimization.

When transforming programs to single-loop-form, scheduling is already performed
by choosing the theorems and therefore deciding, whether some operations should be
performed in one clock cycle or not. However it is also possible to execute the body
of a while loop several times within one clock cycle (loop-unrolling) or to cut the body
in pieces and execute the pieces in different clock cycles (loop-cutting). Loop cutting
requires a scheduling information assigning each operation of a basic block to a phase.
Dividing a basic block into several control steps according to results of existing heuristics
has already been implemented in [EiBK96] and [BIEi97]. In [EiBK96], also performing
allocation and binding has been introduced in a formal manner. However, these methods
are restricted to pure basic blocks. We have derived general theorems for both loop-
unrolling and loop-cutting (see [BIEi98]), which allows a more flexible synthesis process
with respect to hardware consumption and timing also for p-recursive functions.

6 Conclusion

In this paper, we have presented a new methodology for deriving RT-level structures
from circuit descriptions at the algorithmic level. First it is formal. The implementation

e ALy s My ¥yt o WY AV ogtvtat PGl Fy auaaaat b it R A @ Bttt o §

correctness. Second it provides a new synthesis concept. The implementation was derived
by applying program transformations rather than extracting a control and data flow
graph and analyzing an exponential number of control paths. Together with our formal
synthesis approach applied to RT- and gate level (see [EIKB97, Eise97b]) we thus provide
a universally concept for formal synthesis from the algorithmic level down to the gate
level.

Additionally, due to their functional representation, both the algorithmic description
and the implementation at RT-level can be simulated efficiently. Therefore, the designer
can check at every abstraction level, whether the implementation fulfills the specification
he has in mind.

References

[BIEi97] C. Blumenréhr and D. Eisenbiegler. An efficient representation for formal
synthesis. In 10th International Symposium on System Synthesis, pages 9-15,
Antwerp,Belgium, September 1997. IMEC, IEEE Computer Society Press.

[BIEi98] C.Blumenrdhr and D. Eisenbiegler. Performing high-level synthesis via pro-
gram transformations within a theorem prover. submitted to Fourth Interna-
tional Conference on Mathematics of Program Construction, June 1998.

[Camp89] R. Camposano. Behavior-preserving transformations for high-level synthesis.
In M. Leeser and G. Brown, editors, Hardware Specification, Verification and
Synthesis: Mathematical Aspects, number 408 in Lecture Notes in Computer
Science, pages 106128, [thaca, New York, July 1989. Mathematical Science
Institute, Cornell University, Springer-Verlag.

[EiBK96] D. Eisenbiegler, C. Blumenréhr, and R. Kumar. Implementation issues about
the embedding of existing high level synthesis algorithms in HOL. In Joakim
von Wright, Jim Grundy, and John Harrison, editors, Theorem Proving in
Higher Order Logics:9th International Conference, TPHOLs’ 96, number 1125
in Lecture Notes in Computer Science, pages 157-172, Turku,Finland, August
1996. Springer-Verlag.

[EiKB97] D. Eisenbiegler and R. Kumar and C. Blumenrdhr . A constructive approach
towards correctness of synthesis-application within retiming. In The European
Design € Test Conference, pages 427-432, Paris, France, March 1997. IEEE
Computer Society and ACM/SIGDA, IEEE Computer Society Press.

[Eise97b] D. Eisenbiegler. Automata — A theory dedicated towards formal circuit syn-
thesis. Technical Report Internal report 14/97, Universitit Karlsruhe, 1997.
http: //goethe. ira. uka.de/fsynth/publications/postscript/Eise97b.ps.gz.

[EiSK93] D. Eisenbiegler, K. Schneider, and R. Kumar. A functional approach for
formalizing regular hardware structures. In Thomas F. Melham and Juanito
Camileri, editors, Higher Order Logic Theorem Proving and its Applications,
number 859 in Lecture Notes in Computer Science, pages 101-114, Valletta,
Malta, September 1994. Springer-Verlag.

NALS VY AJdJ X
L 1

[GoMe93]

[KBES96]

[MaF091]

4T . \J(,UJDI.\J, EA] uuuu, 4 de ¥Y¥ L.l, ilia Je AJiil. .l.lbyll/_.L/(/U(/b L}ylbblbl/ObO, L Tovi vwwoLourveuvie vy

Chip and System Design. Kluwer Academic Publishers, 1994.

M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

R. Kumar , C. Blumenrohr, D. Eisenbiegler, and D. Schmid . Formal syn-
thesis in circuit design-A classification and survey. In M. Srivas and A. Camil-
leri, editors, Formal Methods in Computer-Aided Design. First International
Conference, FMCAD’96, number 1166 in Lecture Notes in Computer Science,
pages 294-309, Palo Alto, CA, USA, November 1996. Springer-Verlag.

E.M. Mayger and M.P. Fourman. Integration of formal methods with system
design. In A. Halaas and P.B. Denyer, editors, International Conference on
Very Large Scale Integration, pages 59-70, Edinburgh, Scotland, August 1991.
IFIP Transactions, North-Holland.

[MHMP96] P. Middelhoek, C.Huijs, G.Mekenkamp, and E.Prangsma et al. A method-

[PeKu94]

[ShRa95]

ology for the design of guaranteed correct and efficient digital systems. In
IEEE International High Level Design Validation and Test Workshop, Oak-
land, California, November 1996.

Z. Peng and K. Kuchcinski. Automated transformation of algorithms into
register-transfer implementations. IEEFE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 13(2):150-166, February 1994.

R. Sharp and O. Rasmussen. The T-Ruby design system. In CHDL ’95, pages
587-596, 1995.

