
Proof Search Without Backtracking for

Free Variable Tableaux

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der Fakultät für Informatik

der Universität Karlsruhe (Technische Hochschule)

genehmigte

Dissertation

von

Martin Giese

aus Berlin

Tag der mündlichen Prüfung: 12. Juli 2002

Erster Gutachter: Prof. Dr. Reiner Hähnle, Chalmers University of
Technology, Göteborg (Schweden)

Zweiter Gutachter: Prof. Dr. Wolfram Menzel, Universität Karlsruhe

Acknowledgments

I would like to take this opportunity to express my gratitude to a number
of people without whom I could never have completed this thesis.

First and foremost, I sincerely thank my supervisor, Prof. Dr. Reiner
Hähnle. Without his encouragement, advice, and support, I would have
neither begun nor finished this thesis. I am deeply impressed with
the thoroughness with which he read through the submitted version of
this thesis in a matter of days, providing valuable comments at a very
detailed level.

I am also grateful to Prof. Dr. Wolfram Menzel, who not only acted
as ‘Korreferent’, but was always available for discussions. He has sup-
ported and guided me in my studies ever since I started as a student
assistent in 1995.

I am indebted to my colleagues, Wolfgang Ahrendt, Thomas Baar,
Bernhard Beckert, and Elmar Habermalz for the pleasant working at-
mosphere and the numerous discussions which provided the substratum
from which grew the results presented here. I also thank Richard Bubel,
who helped me with parts of the implementation.

Finally, a very special Thank You goes to my wife Simone. How
would I have managed the final months of work on this thesis without
your constant love and support? I owe you more than I can put into
words.

Rücksetzungsfreie Beweissuche

in Tableaukalkülen

Diese Dissertation befaßt sich mit dem automatischen Beweisen von Formeln der Prä-
dikatenlogik erster Stufe im Umfeld des KeY-Projekts [ABB+00]. Die Deduktionskompo-
nente des KeY-Systems wird verwendet, um Aussagen über Programme zu beweisen, die
in einer dynamischen Logik [Bec01] ausgedrückt sind. Um die Probleme zu vermeiden,
die sich beim Zusammenschluß von separaten automatischen und interaktiven Beweis-
systemen ergeben, wird ein Beweiser entwickelt, der in einem einzigen System und unter
Benutzung eines einzigen Kalküls sowohl interaktives als auch automatisches Beweisen
zuläßt. Zum interaktiven Beweisen wurden in bisherigen Systemen entweder Sequenzen-
kalküle oder natürliches Schließen verwendet. Um eine möglichst nahtlose Integration
der automatischen Beweissuche zu ermöglichen haben wir uns im Vorfeld für eine Ver-
sion des Sequenzenkalküls entschieden, der freie Variablen im Sinne des Tableaukalküls
benutzt [Gie98]. Da für die dynamische Logik keine Klauselnormalform existiert, muß
ein Nicht-Normalform-Kalkül verwendet werden.

Eine Schwierigkeit bei tableaubasierten Verfahren ist allerdings deren Verwendung
von destruktiven Regeln, in denen die Beweisprozedur eine bestimmte Instantiierung
auswählt, die vorhandene Formeln im Beweisbaum zerstört. Solche Regeln machen es
schwer, eine vollständige Beweisprozedur zu entwerfen, die ohne Rücksetzung (back-
tracking) arbeitet. In fast allen bisherigen Tableaubeweisern wird dieses Problem durch
die sogenannte iterative Tiefensuche gelöst, die einen beschränkten Teil des Suchraums
durch Tiefensuche durch Rücksetzung exploriert, und bei Mißerfolg die Schranke erhöht.

Diese rücksetzungsbasierten Verfahren sind für das beschriebene Szenario ungeeig-
net: Zum einen kann aus einem bestimmten Beweiszustand nicht abgelesen werden,
welche Teile des Suchbaums bereits durchsucht wurden. Wenn die automatische Pro-
zedur innerhalb einer gewissen Zeit keinen Beweis findet, besteht also für den Benutzer
des Systems keine Möglichkeit, nachzuvollziehen, warum der Versuch fehlgeschlagen ist.
Zweitens liegt es in der Natur von Rücksetzungsschritten, daß alle Information, die nach
dem Rücksetzpunkt hergeleitet wurde, verlorengeht, da sie von der zurückzusetzenden
Entscheidung abhängen kann. Dadurch muß aber eventuell auch Information, die von
dieser Entscheidung unabhängig ist neu berechnet werden, was in der Praxis zu er-
heblichen Effizienzeinbußen führt. Drittens schließlich ist es im Bereich der Verifikation
nicht ungewöhnlich, daß eine zu beweisende Aussage gar nicht wahr ist, etwa weil die
Implementierung oder Spezifikation fehlerhaft ist. In diesem Fall möchte man aus dem
fehlgeschlagenen Beweisanfang ein Gegenbeispiel ableiten [Ahr02], was in einer rückset-
zungsbasierten Beweisprozedur nicht möglich ist.

Der Hauptbeitrag dieser Abhandlung besteht in einem Verfahren, das die rückset-
zungsfreie Beweissuche für Tableaux mit freien Variablen ermöglicht. Um Rücksetzungs-
schritte zu vermeiden, wird beim Beweisaufbau auf destruktive Schritte völlig verzichtet.
Der wesentliche destruktive Schritt im Tableaukalkül mit freien Variablen ist der Ast-
abschluß, in welchem durch Unifikation von komplementären Literalen einige der freien

Variablen global instantiiert werden. In dem erarbeiteten Verfahren werden diese Ab-
schlüsse nicht durchgeführt. Stattdessen wird nach jedem Beweisschritt überprüft, ob es
eine einzige schließende Substitution für die freien Variablen gibt, die sämtliche Äste des
Tableaus gleichzeitig abschließt.

Dieses Prinzip ist an sich nicht neu, es wird gelegentlich als delayed closure bezeichnet.
Da der immer wieder auszuführende Abschlußtest aber als zu aufwendig galt, wurde es
nie in einer ernsthaften Implementierung verwendet. Hier wird gezeigt, daß es möglich
ist, die Berechnungen für den globalen Abschlußtest inkrementell durchzuführen, so daß
für jede hinzukommende Abschlußmöglichkeit mit in der Praxis relativ geringem Auf-
wand feststellbar ist, ob der gesamte Beweis geschlossen werden kann. Die Praktikabilität
des Verfahrens wird durch einen experimentellen Vergleich mit einem auf Rücksetzung
basierenden Beweiser belegt.

Eine Stärke dieser Methode des inkrementellen Abschlusses von Tableaux ist die Ver-
träglichkeit mit vielen Verfeinerungen und Suchraumeinschränkungen, die von Beweisern
mit iterativer Tiefensuche bekannt sind. Die Verwendung solcher Verfeinerungen ist für
eine effiziente Implementierung von großer Bedeutung. Außer solchen von bestehenden
Beweisprozeduren übernommenen Verfeinerungen werden einige neue Möglichkeiten vor-
gestellt, die direkt mit dem Verfahren des inkrementellen Abschlusses zusammenhängen.

Ferner wird eine Familie von Simplifikationsregeln für den Tableaukalkül vorgestellt,
die es erlauben, einige der erfolgreichsten Techniken aus modernen automatischen Be-
weisern im Rahmen eines mit inkrementellem Abschluß arbeitenden Systems für ein
Nicht-Normalform-Kalkül zu verwenden. Die vorgestellten Regeln sind auch für einen
gewöhnlichen rücksetzungsbasierten Beweiser anwendbar.

Ein besonders wichtiger Aspekt beim automatischen Beweisen ist die Behandlung der
Gleichheit. Um zu einem effizienten Verfahren zu gelangen, muß eine auf Rewriting ba-
sierende Gleichheitsbehandlung in den Kalkül eingebaut werden. In dieser Arbeit wird
ein Tableaukalkül beschrieben, der auf dem bei Resolutionsbeweisern bewährten basic
superposition Kalkül mit syntaktischen Ordnungsconstraints beruht. Es wird eine Me-
thode vorgestellt, die Vollständigkeit eines solchen Kalküls nachzuweisen, die zu erheblich
einfacheren Vollständigkeitsbeweisen als bisherige Ansätze führt, und die es erleichtert,
bekannte Techniken für Resolutionsbasierte Saturierungsverfahren auf Tableaukalküle
zu übertragen. Wie für die erwähnten Simplifikationsregeln, sind auch diese Resultate
ebenso relevant für rücksetzungsbasierte Beweisprozeduren.

Contents

1 Introduction 5

1.1 Scientific Contributions . 8

1.2 Structure . 9

2 Preliminaries 11

3 Existing Approaches 13

3.1 Smullyan Style Tableaux . 13

3.2 Disconnection and Related Calculi . 13

3.3 Strong Fairness Conditions . 14

3.4 Delayed Closure Approaches . 15

4 The Incremental Closure Approach 17

4.1 Block Tableaux with Delayed Closure . 17

4.2 A Proof Procedure for Delayed Closure 20

4.3 Abstract View . 22

4.4 Implementation Issues . 29

4.4.1 Infrastructure of an Implementation 29

4.4.2 Representation of Instantiation Sets 33

4.5 Combination of Restrictors . 39

4.6 Experimental Results . 40

4.7 The Functional View . 45

4.8 Related Work . 46

4.9 Summary . 48

5 Refinements 49

5.1 The Propositional Case . 49

5.2 Goal Selection . 49

5.3 Formula Selection . 50

5.4 Subsumption in Buffers . 51

5.5 Indexing . 52

5.6 Pruning . 54

5.7 Universal Variables . 56

5.8 Regularity . 60

1

Contents

5.9 k-ary Branching . 61
5.10 Summary . 63

6 Simplification Rules 65

6.1 Simplification Rules for Tableaux . 65
6.2 Simplification with Global Instantiation 67
6.3 Constrained Formulae . 68
6.4 Constrained Formulae and Incremental Closure 73
6.5 Dis-Unification Constraints . 74

6.5.1 Simplification with Dis-unification constraints 74
6.5.2 Conjunctive DU Constraints . 76
6.5.3 Checking Satisfiability of Conjunctive DU Constraints 78

6.6 Simplification with Universal Variables . 80
6.7 Emulating Hyper Tableaux . 83
6.8 Implementation of Regularity . 92
6.9 Development of Refinements . 94
6.10 Related Work . 95
6.11 Summary . 95

7 Equality Handling 97

7.1 Ordering-Based Equality Handling in Tableaux 98
7.2 Preliminaries . 101
7.3 A Simple Calculus . 104

7.3.1 The Calculus . 104
7.3.2 Completeness . 108

7.4 A Calculus with Histories . 113
7.4.1 Completeness of the Calculus with Histories 116
7.4.2 Termination . 119
7.4.3 Regularity . 121

7.5 Using Dis-Unification Constraints for Superposition 122
7.6 Tableaux with Basic Ordered Paramodulation 124
7.7 Related Work . 125
7.8 Summary . 126

8 Future Work 127

9 Conclusion 129

2

List of Figures

4.1 Standard Tableaux vs. Block Tableaux. 18
4.2 A first order tableau with two branches. 19
4.3 An open tableau with closer sets cl0(n). 23
4.4 Recursive computation of restricted closer sets cl(n). 25
4.5 Closing the tableau of Fig. 4.4. 28
4.6 A UML diagram for an incremental closure prover. 30
4.7 Changing the sink structure for a β-expansion. 32
4.8 An object diagram for a state of the prover. 37
4.9 A sequence diagram for δ propagation. 38
4.10 Scatter plot of average times for the two provers. 43
4.11 Times for the count-to-n problem for the two provers. 44

5.1 Tableau closable with universal variables 57
5.2 A simple clause tableau. 60
5.3 The problem with a Global Constraint. 61
5.4 A 5-ary Merger tree . 62

6.1 A propositional hyper tableau. 84
6.2 A ‘rule view’ hyper tableau. 84
6.3 A first-order hyper tableau using rigid variables and constrained formulae 85

7.1 A tableau with equality. 99
7.2 A tableau using the rigid basic superposition rules. 106

3

List of Figures

4

1 Introduction

T
his is a Work on automated theorem proving. The goal of this discipline is

the construction of software which takes statements expressed in some logical
formalism as input, and eventually gives an answer indicating whether that

statement is logically valid with respect to a given semantics of the input language. One
talks of a ‘prover’ because such software usually proceeds by attempting to construct
some sort of proof of the statement.

We shall specifically be talking about automated theorem proving for classical first
order predicate logic. The validity of first order formulae is only semi-decidable. Ac-
cordingly, an automated theorem prover will in general not terminate if the input is not
valid. The minimal behaviour of a first order prover is thus simply to terminate for
all valid statements—this is called completeness—and run indefinitely otherwise—this
is soundness.

What, then, is a good theorem prover? Well, one that terminates as quickly as possible,
if it terminates at all. To find the best theorem prover, one takes a collection of valid
statements, and measures the execution time required by various programs.

Unfortunately, this approach does not work: Typically, every theorem prover will be
faster than other provers for some problems and slower for others. The lesson to be
learnt from this is that which theorem prover is best depends on what problems must
be solved. In other words, one should be clear about the application domain before one
chooses an automated theorem proving technology.1

This observation obviously applies to any piece of software. For instance, which is
the best sorting algorithm depends on factors like the number of data sets to be sorted,
the range of values of the sort key, the amount of main memory available, and the
possibilities of accessing the data to be sorted. But for automated theorem provers, this
truth is sometimes neglected.

The automated theorem proving method we are going to present has been developed
in the context of the KeY project [ABB+00, ABB+02]. This project was started in
November 1998 at the University of Karlsruhe, Germany. It is now a joint project of
the University of Karlsruhe and Chalmers University of Technology, Göteborg, Sweden.
The aim of the KeY project is to integrate formal software specification and verification
into industrial software engineering processes. While a large part of this project is
concerned with the development of formal specifications for object oriented software, it
also important to be able to formally verify parts of a software system with respect to
the given specifications.

1This is a one-way implication: even within a given application domain, problems might have very
different structure. The point is that we can’t say anything without knowing the application domain.

5

1 Introduction

There are two ways in which theorem proving plays a role in this context:

• One can reason about properties of a specification, independently of an imple-
mentation. For instance, one might want to prove that a given invariant of some
class implies that of a superclass. Another application might be the detection of
specification errors by proving specifications to be inconsistent.

• One can reason about implementations. In particular, one could prove that an
implementation guarantees a post-condition given in the specification, or that it
preserves a class invariant.

The theorem prover to be used in such a context has to meet a number of requirements:

1. It has to support the interactive construction of proofs. First, proving proper-
ties of programs includes reasoning about numbers and recursive data structures,
and most proofs about these require induction. Automated theorem proving over
inductive theories would require guessing induction hypotheses, which is feasible
only for very simple proofs. Second, reasoning about programs containing loops
or recursion also requires induction. Third, even when induction is not needed,
proofs of program properties are often so large that an automated theorem prover
cannot find them without help from the user.

2. It must support automated proof search whenever possible. If parts of a proof can
be found automatically, the system should support this. Ideally, user interaction
should only be needed for the ‘creative’ parts of the proof. The ‘trivial’, ‘boring’
or ‘standard’ parts should be done automatically.

3. The system has to use a specialized logic which is suitable for reasoning about
programs. As parts of the proofs about programs will have to be constructed
interactively, it is important to choose a formalism which is transparent to a human
user. In the KeY project, the JavaDL logic is used, which is a dynamic logic for
reasoning about Java programs [Bec01]. All we need to know about that logic
here is that it is a kind of modal logic, where the box and diamond operators are
decorated with programs.

4. The construction of counter examples should be supported, in case the user tries to
prove a statement which is not valid [Ahr01, Ahr02]. This is particularly relevant
for the context of program verification, as the system should help the user in
detecting mistakes in the specification or implementation.

5. The previous requirements should be met by a uniform logical framework, and
implemented in a single system. In particular, interactive and automated proof
construction should be based on the same calculus and data structures. Previous
experiments [ABH+98] with the integration of interactive and automated theo-
rem proving in a program verification context have shown that a hybrid system
consisting of separate interactive and automated provers is problematic.

6

This wish list shows how inadequate our initial termination-based description of an
automated theorem prover was. Although this work is only concerned with the aspect of
automated theorem proving for first order logic, these requirements restrict the possible
choices of calculus and proof procedure.

First of all, we cannot use a calculus that requires problems to be given in clausal form.
Transforming proof obligations into a normal form is not acceptable for an interactive
system, because the user needs to recognize the structure of formulae coming from the
specification. There is also no clausal form for the formulae of dynamic logic.

This essentially excludes resolution based calculi from the start. Although there are
non-clausal versions of resolution (see e.g. [BG01]), it is not clear whether these could
be applied for a dynamic logic, and resolution is also not very well suited for interactive
use, as it is too different from the way humans construct proofs.

On the other hand, a sequent calculus for dynamic logic has successfully been used
for interactive verification in a previous project [Rei92]. The non-clausal free variable
tableau calculus (see eg. [Häh01, Fit96]) is very close to a sequent calculus, and tableau
methods have been developed for modal logics. It has been shown [Gie98] that a synthesis
between a non-clausal free variable tableau and a sequent calculus is possible which is
suitable for interactive and automated theorem proving.

Automated deduction for the KeY system is thus going to be based on a non-clausal
free variable tableau calculus. Virtually all existing automated theorem provers for such
a calculus work with a technique known as iterative deepening. This technique uses
backtracking to explore a finite part of the search space in the hope of finding a proof.
The explored portion of the search space is bounded by some limit on the complexity of
considered proofs. If no proof with the given maximal complexity is found, the limit is
raised, and proof search is restarted.

This backtracking based method is problematic in our context, because information
about the part of the search space already explored is discarded every time the procedure
backtracks. This means that if the procedure does not find a proof within a certain time,
the current state of the prover permits no analysis of the possible reasons for the failure.
It is not possible for the user to find out what went wrong by looking at a partial proof.
And, more importantly, the current state of the backtracking procedure provides no basis
for a counter example search which could automatically provide this information to the
user.

This observation leads us to the topic of the present work, namely to develop a proof
procedure for a free variable tableau calculus which does not require backtracking.

There is another incentive to study backtracking-free proof procedures for free variable
tableau calculi, which is independent of the requirements of the KeY project. The
standard non-clausal free variable tableau calculus is proof confluent. This means that
any partial proof of a theorem can be extended to a complete proof. In other words,
there are no ‘dead ends’ in the search space. The proof procedure cannot make any
wrong decisions, in the sense that some work would need to be undone in order to find
a proof. Backtracking in an iterative deepening process is only needed because of dead

7

1 Introduction

ends artificially introduced by the limit on the complexity of proofs. Connection tableaux
[LS01b] for instance are not proof confluent. There are ways to start proof construction
for a valid theorem, which will never lead to a closed proof. In that context, backtracking
seems a natural choice. But for a proof confluent calculus, it should not be necessary.

An analysis of incremental closure proof search for the standard proof confluent tableau
calculus shows that backtracking not only seems unnatural, but that it is also inefficient.
Backtracking means that previously collected information is discarded. In a typical proof
confluent calculus, most rule applications are independent of each other. This means that
when a step of the proof construction is undone via backtracking, most of the discarded
information will later be regenerated in exactly the same way. This repeated application
of the same proof steps makes the backtracking procedure inefficient.

We have now presented two reasons to investigate proof search without backtracking
for free variable tableaux. At this point, we should become a little more precise. We are
interested in proof search for classical first order predicate logic. Validity of formulae in
this logic is only semi-decidable. If an automated theorem prover terminates, establishing
the validity of a formula, we can consider it to have found a proof of that formula,
whatever the internal mechanisms of the prover. If it does not terminate, it goes through
an infinite sequence of internal states, which can be interpreted as an enumeration of
proof attempts. The best any prover for first order logic can do is to enumerate proof
attempts, until it eventually finds a valid proof for its input formula. Backtracking is
just one possible technique of organizing an enumeration. There is nothing inherently
wrong with backtracking. We thus reformulate our goal as follows:

Find a procedure to enumerate partial tableau proofs without discarding any
information that could later be useful.

By being useful, we mean both useful for the procedure itself, and useful for an analysis
if the procedure is interrupted.

We will present our results only from the perspective of automated proof search. We
rely on the work in [Gie98] for the integration of the proposed methods with an interactive
prover.

1.1 Scientific Contributions

The central scientific contribution of this thesis is the incremental closure technique,
which is used to define a proof procedure for free variable tableaux without backtrack-
ing. We show the practicality of our approach by an experimental comparison with
a procedure using backtracking and iterative deepening. We also show that many of
the refinements previously known for backtracking procedures are compatible with our
approach.

A further contribution consists in a family of powerful simplification rules which can
be used to subsume some of the most successful redundancy elimination techniques em-
ployed in state-of-the-art theorem provers. These rules can be applied in the incremental
closure framework, but also in a backtracking prover.

8

1.2 Structure

Finally, a method for handling equality in free variable tableaux, based on ordered
rewriting is presented. We introduce a method for proving completeness of such cal-
culi which leads to shorter completeness proofs than previous approaches, and which
permits the adaptation of results from resolution saturation procedures. Like for the
simplification rules, our results are also applicable for backtracking proof procedures.

1.2 Structure

The remainder of this work is structured as follows.

• We will need some standard terminology and notation, which is introduced in
Chapter 2.

• There are some existing approaches to proof search without backtracking. We will
review these in Chapter 3.

• In Chapter 4, we introduce the incremental closure technique, which is the main
contribution of this thesis.

• Chapter 5 describes a number of possible refinements, some of them specific to the
incremental closure approach, and some adopted from backtracking procedures.

• A family of simplification rules is presented in Chapter 6.

• We show how to integrate equality handling into our framework in Chapter 7.

• Some areas for future research are pointed out in Chapter 8.

• We conclude with a short summary of our results in Chapter 9.

9

1 Introduction

10

2 Preliminaries

Before we discuss existing approaches to our problem of finding a backtracking-free
tableau proof procedure, we introduce some standard terminology and notations. We
will define the syntactic entities needed for our discussion. We shall not give a definition
of the semantics of first order logic, as this definition is standard, and we are not going
to use it explicitly in our proofs.1 We will also assume that the reader has a basic
knowledge of analytic tableaux, and standard backtracking proof procedures. Fitting’s
textbook [Fit96] is a good introduction to the field.

Definition 2.1 A first order signature is a quadruple (Prd,Fun,Var, α), where Prd is
a set of predicate symbols, Fun a set of function symbols, Var a set of variables, and
α : (Prd∪Fun) → IN a function assigning an arity to each function and predicate symbol.
Prd, Fun, and Var are required to be pairwise disjoint. Function symbols with arity 0 are
also called constant symbols, and predicate symbols with arity 0 are called propositional
constants.

In the following, we assume a fixed first order signature with an infinite set of variables
Var. These will be needed, because our calculi can require the introduction of new
variables. Having an infinite supply, we won’t need to extend the signature later.

Definition 2.2 The set Trm(V) of terms with variables in V over a given signature,
with V ⊆ Var is defined to be the least set with V ⊆ Trm(V), and f(t1, . . . , tα(f)) ∈
Trm(V) for any f ∈ Fun and t1, . . . , tα(f) ∈ Trm(V). The set Trm of all terms is defined

as Trm := Trm(Var). The set Trm0 of ground terms is defined as Trm0 := Trm(∅).
The set Fml(V) of formulae with free variables in V , with V ⊆ Var is defined to be

the least set with

• true, false ∈ Fml(V),

• p(t1, . . . , tα(p)) ∈ Fml(V) for any p ∈ Prd and t1, . . . , tα(p) ∈ Trm(V),

• ¬φ ∈ Fml(V) for any φ ∈ Fml(V),

• φ ∧ ψ, φ ∨ ψ ∈ Fml(V) for any φ, ψ ∈ Fml(V),

• ∀x.φ, ∃x.φ ∈ Fml(V) for any φ ∈ Fml(V ∪ {x}), and x ∈ Var.

The set Fml of all formulae is defined as Fml := Fml(Var). The set Fml0 of closed
formulae is defined as Fml0 := Fml(∅).

1We will need some slightly non-standard semantic notions in Chapter 7, so appropriate definitions will
be given there.

11

2 Preliminaries

Note that the set Trm0 is non-empty only if the signature contains at least one constant
symbol. We shall thus assume that this is the case for our fixed signature.

Definition 2.3 A substitution is a mapping µ : Var → Trm, such that µ(x) = x for all
but finitely many x. We define the domain of a substitution as dom(µ) := {x ∈ Var |
µ(x) 6= x}. Substitutions are extended to homomorphisms of terms and formulae in the
usual way. Composition of substitutions is the same as functional composition and is
denoted by ◦: (µ ◦ ν)(t) = µ(ν(t)). A substitution µ is idempotent if µ ◦ µ = µ.
A ground substitution is a substitution µ with µ(x) ∈ Trm0 for all x ∈ dom(µ). We
shall use the notation µ = [x1/t1, . . . , xn/tn] to describe the concrete unification with
dom(µ) = {x1, . . . , xn} and µ(xi) = ti.

In most of the following work, we are going to simplify the presentation by not using
arbitrary first order formulae, but working on a certain normal form instead.

Definition 2.4 A formula is in negation normal form (NNF), iff negation signs appear
only in front of atomic formulae p(t1, . . . , tn). A formula is in skolemized negation
normal form (SNNF), iff it is in NNF and does not contain ∃ quantifiers.

We rely on the following well-known result:

Proposition 2.5 Any closed formula φ can be transformed by application of de Morgan’s
rules and skolemization into a formula φ′ in SNNF that is satisfiable iff φ is satisfiable.

This fact alone is not a sufficient justification for our restriction to a normal form, given
the context of our work outlined in Chapter 1. After all, the same is true for clause
normal form. We use SNNF because results for SNNF can easily be generalized to full
first-order logic. Full first order logic only adds arbitrary use of negation and existential
quantifiers. Negation is invariably handled in proofs and calculi for full first order for-
mulae using duality: The part of a proof or calculus for handling ¬(φ ∨ ψ) for instance,
corresponds exactly to that for (¬φ)∧(¬ψ), and similarly for the other connectives. Using
SNNF means that such applications of de Morgan’s rules are performed in advance, and
don’t clutter our proofs. Existential quantification may be handled in tableau calculi
by one of various skolemization rules [HS94, BHS93, BF95, CNA98, GA99]. Although
skolemization is usually formalized as a rule to be applied in the course of tableau con-
struction, it is possible in general to factor out skolemization from proof search, and
do it in advance, like for negation. This removes further ballast from our proofs. To
summarize, presenting our results for SNNF only makes definitions and proofs simpler
without any loss in generality.

These are all the standard syntactic notions and notations we need for the time being.
Any further terminology will be introduced later on, as and when it is needed.

12

3 Existing Approaches

We shall describe some existing ideas for backtracking-free tableau proof procedures
in this chapter. In particular, we shall point out for each of these, why they are not
suitable for our application domain, as described in Chapter 1. It cannot be the aim
of this chapter to give a detailed presentation of the various approaches, so the reader
will have to refer to the given literature for the exact definitions. In particular, we have
to assume that the reader is familiar with the standard free variable tableau calculus as
presented e.g. in [Fit96].

3.1 Smullyan Style Tableaux

One of the first formulations of the tableaux method by Smullyan [Smu68] directly
supports proof search without backtracking. This is due to the use of a different rule for
universal quantifiers than that of free variable tableaux.

In a Smullyan style tableau, a formula ∀x.φ gets handled by putting formulae [x/t]φ
on the tableau for ground terms t. By contrast, in free variable tableaux, one introduces
a formula [x/X]φ, where X is a new free variable. This will be covered in detail in the
following chapter, see Def. 4.2. The main point is that the introduced variable is later
going to be instantiated by a ground term. But the instantiation is delayed until a useful
instantiation is found. It is essentially the process of finding the right instantiations which
introduces backtracking into free variable tableau procedures.

The problem with Smullyan style tableaux is that the term t has to be guessed. As an
automated theorem prover cannot be expected to guess the right ground term, it would
have to enumerate all ground terms and apply the tableau extension for each of them.
This can be done, and it yields a proof procedure that works without backtracking. But
that proof procedure is very inefficient in practice, because the enumeration might take
a long time until the correct instantiation is found.

This is of course the reason why we insisted on a backtracking-free proof procedure
for free variable tableaux in Chapter 1. Tableaux without free variables are just too
inefficient.

3.2 Disconnection and Related Calculi

Billon [Bil96] proposed a method for proof search without backtracking in tableau-like
calculi, known as the disconnection calculus. Billon gives a very generic description,
which can also be applied to matrix based methods. For a tableau calculus the main
idea is as follows. A (clausal) tableau is built as usual, introducing free variables, until a

13

3 Existing Approaches

branch closure becomes possible under some instantiation for the free variables. Instead
of setting a backtracking choice point and applying a unification for the free variables,
one generates copies of the clauses the complementary literals come from, and applies
the unifier on them. These instantiated clauses are then used to expand the proof tree.
In other words, free variables on the tableau are never instantiated, but one generates
the required instances. A proof is found, when all branches of the tableau could be closed
by instantiating all free variables with the same (arbitrary) constant symbol. Recently,
Letz and Stenz [LS01a, LS02, Ste02] have further investigated the disunification calculus
and implemented an automated theorem prover which uses it.

Baumgartner, Eisinger and Furbach [BEF99, BEF00] have defined the Confluent Con-
nection Calculus (CCC), which is in many ways similar to the disconnection calculus.
The criteria for branch closure and the organization of clause copying are slightly differ-
ent, but the principle of constructing copies and instantiating them is the same. More
recently, Baumgartner [Bau00] and Baumgartner and Tinelli [BT03] have extended these
ideas to create first order versions of the Davis-Putnam-Logemann-Loveland procedure.

Although these calculi are a promising basis for an automated theorem prover, they
do not fit our requirements, as laid down in Chapter 1. First, they are only formulated
for problems given in clausal form. It would probably be possible, but not easy, to
develop non-clausal versions. More importantly, the way instantiation works is quite far
from the way humans construct proofs. While an integration with a calculus suitable
for human use is feasible for the standard free variable tableau calculus [Gie98], it is not
clear how this could be done for the disconnection calculus or CCC. In particular, if one
considers equality handling, which is important in our application domain, the necessary
modifications for the disconnection calculus [Bil96, LS02] are rather unintuitive. For
instance, an application of a rewriting step can lead to the generation of new branches.
Finally, it is not clear how the calculi would have to be changed to accommodate problems
in which modal or dynamic logic formulae might occur.

To summarize, the calculi described in this section, though suitable for pure automated
theorem proving, are inadequate for our goals, because they are not compatible with
dynamic logic, and because they are not suitable for interactive use.

3.3 Strong Fairness Conditions

A proof procedure has been described by Beckert [Bec98, Bec03] which, in a sense, takes
the opposite approach of that described in the previous section. A free variable tableau
is again extended until a branch closure becomes possible. But now, the corresponding
instantiation is applied, changing some of the formulae on the tableau. A reconstruction
step follows to reintroduce literals which were destroyed by the instantiation. To prevent
the procedure from going into cycles, Beckert defines a tableau subsumption relation.
Any proof step that leads to a tableau which is subsumed by an earlier tableau is forbid-
den. Together with some more fairness restrictions, one obtains a complete depth-first
search procedure.

This procedure works on a standard free variable calculus. Closing branches actually

14

3.4 Delayed Closure Approaches

leads to the instantiation of free variables. Also, Beckert has defined the procedure for
full first order logic, and not only for clause tableaux. This makes it a good candidate
for the application scenario outlined in Chapter 1.

We chose not to use this approach, mainly because of its conceptual complexity. In
particular, the tableau subsumption relation is not easy to understand. There are unex-
pected and not well-understood phenomena, like the need to apply reconstruction steps
on branches which are already closed. No implementation of the procedure has yet been
attempted, but it is clear that the efficiency of an implementation depends on how effi-
ciently the tableau subsumption relation can be tested. One should also not forget that
an implementation of a new proof procedure is normally not very powerful. Various
refinements have to be incorporated into the procedure to reduce redundancy. If the
basic procedure is already hard to understand, it will be very difficult to extend it. We
shall see in the following chapters that our approach is easily adapted to use various
refinements known from backtracking procedures.

3.4 Delayed Closure Approaches

In this section, we shall mention two approaches which are close to the incremental
closure technique we are going to present in the next chapter. Both are based on the
idea of expanding a tableau without applying instantiations to close branches. Instead,
after a number of expansions steps, one tests whether an instantiation can be found
that closes all branches simultaneously. We call this approach ‘delayed closure’, because
closure of single branches is delayed to the point where all branches can be closed. We
will give a detailed introduction to tableaux with delayed closure in Sections 4.1 and 4.2.

A proof procedure based on delayed closure, including a Prolog implementation, is
given in Sect. 7.5 of Fitting’s textbook [Fit96]. That implementation is only of didac-
tic value however, as the way the global closure test is implemented leads to severe
inefficiency, see the footnote on page 21.

Another method based on delayed closure has been presented by Konev and Jebelean
[KJ00]. Their ideas are very close to ours, so we will defer a detailed comparison to
Sect. 4.8, when we have presented our approach.

This concludes our general discussion of existing approaches for proof search without
backtracking in tableau procedures. Our work is of course related to that of other
researchers in many more ways than could be covered here. The following chapters will
contain sections describing further related work.

15

3 Existing Approaches

16

4 The Incremental Closure

Approach

4.1 Block Tableaux with Delayed Closure

Although this chapter is mainly concerned with the definition of a proof procedure and
not a calculus, it is useful to use a slightly non-standard formulation as a basis for the
proof procedure.

Free variable tableaux are usually defined as trees, the nodes being labeled with for-
mulae. One then talks about closing branches of the tableau by unifying literals that lie
one some branch, that is on some path between a leaf and the root of the tableau.

However, it is sometimes useful to change a formula on a branch or even to delete it.
Such an operation is usually local to one branch and should not be visible on the other
ones. This cannot be expressed in the usual formulation of tableaux. For that reason, we
shall use what Smullyan [Smu68] calls block tableaux : nodes of the tableau are labeled
with finite sets of formulae and only the formulae at a leaf node are considered for tableau
expansion and closure.

The other deviation from the usual formulation is that we shall use no closure rule.
This rule normally states that a branch of a tableau may be closed by applying the
most general unifier of some complementary pair of literals on that branch to the whole
tableau. Instead, we shall try to find a single unifier that closes all branches of a tableau
simultaneously, for reasons which will become apparent later in this chapter. We call
this approach delayed closure.

We now formally define our concept of free variable tableaux for formulae in skolemized
negation normal form (SNNF), see Def. 2.4.

Definition 4.1 An instantiation is a mapping σ : Var → Trm0 from the set of all
variables to ground terms. Let I denote the set of all instantiations.

This differs from the usual concept of a ground substitution, see Def. 2.3, in that we
require all, i.e. potentially infinitely many variables to be mapped. Although any given
tableau can contain only a finite number of free variables at a time, this concept will
simplify some of our definitions because we do not need to keep track of them.

Definition 4.2 A goal is a finite set of formulae. A tableau is a finite tree where each
node is labeled with a goal. A leaf is a node with no children. The leaf goals of a tableau
are the goals that label its leaves.

17

4 The Incremental Closure Approach

A ∨B
C ∨D

A B

C D

{A ∨B,C ∨D}

{A,C ∨D} {B,C ∨D}

{A,C} {A,D}

Figure 4.1: Standard Tableaux vs. Block Tableaux.

A node n is said to be above a node n′ in a given tableau, if n is on the path between
n′ and the root, but n 6= n′. Conversely, n is below n′ if n′ is above n.

A tableau for a finite set of SNNF formulae S is defined inductively as follows:

1. The tableau consisting of the root node labeled with the goal S is a tableau for S,
called the initial tableau.

2. If there is a tableau for S that has a leaf n with goal {α1∧α2}∪G, then the tableau
obtained by adding a new child n′ with goal {α1, α2} ∪G to n is also a tableau for
S. (α-expansion)

3. If there is a tableau for S that has a leaf n with goal {β1 ∨β2}∪G, then the tableau
obtained by adding two new children n′, resp. n′′ with goals {β1}∪G, resp. {β2}∪G
to n is also a tableau for S. (β-expansion)

4. If there is a tableau for S that has a leaf n with goal {∀x.γ1} ∪G, then the tableau
obtained by adding a new child n′ with goal {[x/X]γ1,∀x.γ1} ∪ G to n, where X
did not previously occur in the tableau, is also a tableau for S. (γ-expansion)

A complementary pair is a pair φ, ¬ψ, where φ and ψ are unifiable atomic formulae. A
goal G is closed under an instantiation σ, iff there is a complementary pair {φ,¬ψ} ⊆ G
with σ(φ) = σ(ψ). A tableau T is closed under an instantiation σ, iff each leaf goal of
T is closed under σ. A tableau is closable iff it is closed under some instantiation.

Fig. 4.1 illustrates the difference between standard and block tableaux. In the block
tableau, the information that the formula C∨D is consumed on the two leftmost branches
but not on the right one is made explicit. Obviously, block tableaux are a bit bulkier to
write down, so we shall underline the new formula in each goal. Also, we shall sometimes
give examples in standard tableau notation, if the added precision of the block tableau
formulation is not needed.

Example 4.3 As an example for a first order tableau, see Fig. 4.2. We follow the
convention of denoting free variables like X by capital letters. The left leaf goal is
obviously closed under an instantiation σ exactly if σ(X) = a, while the right leaf
goal is closed if σ(X) = b. Both conditions cannot be met simultaneously, so the
tableau is not closed.

18

4.1 Block Tableaux with Delayed Closure

{∀x.(px ∨ qx),¬pa,¬qb}

{pX ∨ qX,¬pa,¬qb,∀x.(px ∨ qx)}

pX,¬pa,¬qb,∀x.(px ∨ qx) qX,¬pa,¬qb,∀x.(px ∨ qx)

Figure 4.2: A first order tableau with two branches.

It is obvious that the usual soundness and completeness proofs for free variable tab-
leaux are also applicable to this formulation.

Proposition 4.4 Let S be a set of closed formulae in SNNF. S is unsatisfiable iff there
is a closable tableau for S.

At this point, we should say a few words about the ‘free variables’ of the free variable
tableau calculus. The distinction between free and bound variables is usually needed in
the definition of model based semantics for first order logic. The interpretation of a first
order formula depends on a carrier set D, an interpretation function I for the function
and predicate symbols of the signature, and a variable assignment β. The latter is a
function which maps every variable to an element of the domain. It is used to interpret
formulae and terms containing free variables. The need for this variable assignment
arises when one defines the validity of quantified formulae in a model. For instance, one
defines:

A formula ∀x.φ is valid under D, I, β, iff φ is valid under D, I, βax for every
a ∈ D, where

βax(y) :=

{

a if x = y,

β(y) otherwise.

In a deduction context, it is sufficient to restrict oneself to problems formulated as closed
formulae, i.e. formulae in which all variables are bound by quantifiers. Although variable
assignments permit the definition of semantics of formulae with free variables, their main
use is in the recursive definition of the semantics of quantified formulae. In this context,
it is natural to evaluate variables by mapping them to elements of the domain.

In free variable tableau calculi, new free variables are introduced by γ rules. In contrast
to their use in the definition of model semantics, these free variables are not only free
in some currently considered subformula. They are free in the formulae on the tableau
branch. Also, as these variables are new, they will never be quantified in any context.
During tableau construction, the free variables are instantiated by unification when one
or more branches are closed. This, as part of a calculus, is a syntactic manipulation.
The variables are instantiated to terms, and not to elements of the domain.

It is customary to use variable assignments for the free variables of the tableau when
one shows soundness of the calculus. It turns out however that the soundness proof
actually becomes simpler if one works with ground substitutions instead of variable

19

4 The Incremental Closure Approach

assignments. Such soundness proofs have been used successfully in [Gie98], for instance.
This means that it is never necessary to instantiate the free variables introduced by γ
rules using a variable assignment.

Due to this fact, it is possible to introduce a new syntactic category for the free vari-
ables of the tableau calculus, giving a formal basis for our convention of using capital
letters for the free variables. This was done in [Gie98], where the free variables of the cal-
culus are called metavariables, while the usual variables are referred to as logic variables.
Logic variables are always bound, and they are interpreted using variable assignments;
metavariables are never bound, and they are interpreted using ground substitutions or
instantiations. This distinction helps to make soundness and completeness proofs simpler
and more transparent.

For this work however, we have decided to use the usual name of ‘free variables’. The
reason for this is that the reader accustomed to the usual nomenclature would probably
be confused by the use of a new name, and this work contains no proofs where the
distinction would be of much value. In nearly every reference in this book to a ‘free
variable’, we mean a free variable in the sense of the free variable tableau calculus. The
reader might notice however that we will always instantiate free variables to ground
terms before interpreting them.

4.2 A Proof Procedure for Delayed Closure

From Prop. 4.4, it is easy to derive a complete proof procedure:

T := initial tableau for S
while (not closable (T)) do

if expandable(T) then

select possible expansion of T
expand T

else

answer ’ satisfiable ’
end

end

answer ’ unsatisfiable ’

This is a complete proof procedure, provided the selection of tableau expansions is fair.
Being fair means the same thing as in standard tableaux, namely that if the procedure
does not terminate, any extension step possible on a goal will at some point be applied
on that goal or one of its descendants. In particular, in a non-terminating run, infinitely
many instances of each γ-formula will ultimately be produced on each branch.

The main problem with this proof procedure is the test closable (T): In general, there
may be several complimentary literals in each leaf goal, leading to different closing in-
stantiations. The right combination of complementary literals has to be found in the
leaf goals to close all goals simultaneously.

Theorem 4.5 Deciding whether a tableau is closable is NP-complete in the total size of
the literals in the leaf goals.

20

4.2 A Proof Procedure for Delayed Closure

Proof. Unifiability can be decided in linear time [PW78], so with indeterministic selection
of complementary pairs, closable (T) is in NP. On the other hand, SAT can be reduced
to this problem as follows. We take a signature containing two constant symbols T and
F and a number of predicate symbols: For every propositional symbol A of the SAT
problem, introduce a predicate symbol pA, as well as a free variable XA. Translate every
clause C of the SAT problem to one leaf goal G of the tableau by

G :=
⋃

A∈C

{¬pA(T), pA(XA)} ∪
⋃

¬A∈C

{¬pA(F), pA(XA)} ,

e.g., A∨¬B is translated to {¬pA(T), pA(XA),¬pB(F), pB(XB)}. Closing instantiations
of these goals are easily seen to correspond to truth value assignments of the propositional
symbols of the SAT problem that make the corresponding clauses true. Accordingly, the
set of goals generated from a set of clauses can be closed simultaneously if and only if
the set of clauses is satisfiable. ut

This means that with the proof procedure outlined above, an NP-complete problem
has to be solved after each proof step. Of course, such an asymptotic complexity may
or may not be a problem in practice, depending on the nature of the problems and
the possibilities for optimizing a solver. But if the closure test is implemented in the
straightforward fashion of going through every combination of complementary literals
and checking for simultaneous unifiability, the complexity does turn out to be prohibitive
in practice. Even for small problems, a tableau might easily have several dozen branches,
and there are often several different combinations of complementary literals on each
branch, leading to an exponential behaviour of the outlined algorithm.1

Does this mean that the given proof procedure is unpractical? Not necessarily. The
problem of finding the right complementary pairs has to be solved in any free variable
tableau proof procedure, backtracking or not. In a backtracking prover, this search is
implicit in the proof procedure. If the global closure test is made explicit, one has the
opportunity to make it more efficient in practical cases.

Our technique for doing this is the Incremental Closure approach, which was first
introduced in [Gie01], and which shall be presented here in greater detail. It is based on
the given proof procedure, but it uses a better closure test: We compute closable (T) in
an incremental fashion, based on the following observations:

• If a pair of complementary literals present on a branch is unifiable, it will stay
unifiable after any extension of that branch. Even if an extension step introduces
new branches, they can still all be closed by taking those complementary literals.
For instance, a goal

{pX,¬pY, q ∨ r, . . .}

1 This is the problem of the proof procedure given by Fitting, which we mentioned in Sect. 3.4. That
procedure fully expands a tableau up to a given complexity limit, and then tries to close all branches
by going through every combination of complementary literals.

21

4 The Incremental Closure Approach

may be closed by any instantiation that assigns the same ground term to X and
Y . After application of a β-expansion, we obtain

{pX,¬pY, q ∨ r, . . .}

{pX,¬pY, q, . . .} {pX,¬pY, r, . . .}

and both goals are still closable by those instantiations. This is due to the fact
that Def. 4.2 ensures that literals are never removed from a goal by a tableau
expansion. It is this monotonicity property that makes an incremental closure test
seem worthwhile.

• The closure test has to find an instantiation for the free variables introduced by
γ-expansions. But a free variable occurs in the proof tree only below the node in
which it has been introduced. In general, this does not mean that the instanti-
ations of free variables X,Y introduced in disjoint subtableaux are independent:
both might be linked to the instantiation of a third variable Z present in both sub-
tableaux. But still, free variables enjoy a certain locality which should be exploited
in our algorithm. To do this, the closure computation shall follow the structure of
the proof tree.

4.3 Abstract View

In this section, we will explain the Incremental Closure approach on an abstract level.
In particular, we shall abstract away from concrete representations of instantiations, and
assume that we can perform calculations on (potentially infinite) sets of instantiations.
How to represent these in an actual implementation is discussed in Sect. 4.4.2.

Definition 4.6 Let
unif(φ, ψ) := {σ ∈ I | σ(φ) = σ(ψ)}

be the set of instantiations that unify two atomic formulae. We define the closer set of
G

cl0(G) :=
⋃

φ,¬ψ∈G

unif(φ, ψ)

to be the set of instantiations under which a goal G is closed. For a node n of a tableau,
let lg(n) be the set of leaf goals associated with the leaves that are descendants of n. Use
this to define the closer set of n

cl0(n) :=
⋂

G∈lg(n)

cl0(G)

to be the set of instantiations under which all leaves below n are closed.

It is obvious from the definitions that closability of tableaux may be characterized as
follows:

22

4.3 Abstract View

n1 : ∀x.(qx ∨ ¬px),∀y.qy,¬qb, pa

n2 : qX ∨ ¬pX,∀y.qy,¬qb, pa,∀x.(. . .)

n3 : qX,∀y.qy,¬qb, pa,∀x.(. . .) n4 : ¬pX,∀y.qy,¬qb, pa,∀x.(. . .)

cl0(n3) = unif(qX, qb)

= {σ ∈ I | σ(X) = b}

cl0(n4) = unif(pX, pa)

= {σ ∈ I | σ(X) = a}

cl0(n1) = cl0(n2) = cl0(n3) ∩ cl0(n4) = ∅

Figure 4.3: An open tableau with closer sets cl0(n).

Proposition 4.7 If root is the root node of the tableau, then cl0(root) is the set of
instantiations that close the whole tableau. A tableau is closable iff cl0(root) 6= ∅.

Example 4.8 We shall clarify these notions using the tableau in figure Fig. 4.3. n2

was constructed by applying a γ-expansion at n1, and n3, n4 were introduced by a
β-expansion at n2. The newly introduced formulae are underlined in each goal.

The goal at n3 contains only one complementary pair qX,¬qb. So cl0(n3) =
unif(qX, qb) = {σ ∈ I | σ(X) = b}, the set of instantiations that map X to
b. Similarly, cl0(n4) = {σ ∈ I | σ(X) = a}, because of the complementary
pair ¬pX, pa. For cl0(n2) we have to find instantiations that close both leaf goals,
cl0(n2) = cl0(n3)∩cl0(n4). There are obviously no such instantiations, cl0(n2) = ∅.
The same holds for the root n1, of course.

The instantiations contained in the sets cl0(n) refer to all free variables, including
those that are introduced only below n in the tableau. It is sufficient to restrict the
instantiations to variables introduced above n. We need a few notions to formalize this.

Definition 4.9 An instantiation for a set of variables V is a mapping from V to the
set of ground terms. Let I(V) denote the set of all instantiations for V . In particular,
I = I(Var).

Let 2 be the empty instantiation, which is the single instantiation for an empty set of
variables, {2} = I(∅).

Given an instantiation σ ∈ I(V) and a set of variables W ⊆ V , let σ|W ∈ I(W) be the
restriction of σ to W . For a variable X ∈ V , we shall write σ|X := σ|V \{X} to exclude
X from the domain of σ.

We extend restriction to sets of instantiations as follows: For a set I ⊆ I(V) and
W ⊆ V , let I|W := {σ|W | σ ∈ I}, and similarly I|X := {σ|X | σ ∈ I} for X ∈ V .

The empty instantiation 2, which is the only element of I(∅), is a somewhat peculiar
object. We will use elements of I(V) to denote closing instantiations in situations,

23

4 The Incremental Closure Approach

where only the variables in V are relevant, in the sense that we are not interested in the
instantiation of other variables. In particular, this means that an implementation could
discard the information about the actual instantiations of irrelevant variables to save
space. Now for the closure of the whole tableau, none of the free variables is relevant. It
is sufficient that there is some instantiation for them. Hence our interest in the set I(∅).
One should keep in mind that there are exactly two sets of instantiations for an empty
set of variables, namely ∅ meaning that there is no closing instantiation (yet), and {2},
meaning that there is one.

We can now follow up on Def. 4.6 by restricting the sets of closing instantiations to
the free variables of interest.

Definition 4.10 Let fv(n) be the set of free variables introduced at γ-expansions on
nodes above some node n.2

This set is empty for the root of the tableau.
We use this to define the restricted closer set of a node n as

cl(n) := cl0(n)|fv(n) .

The following fact is an immediate consequence of this definition and Prop. 4.7:

Proposition 4.11 If root is the root node of the tableau, then a tableau is closable iff
cl(root) 6= ∅, or equivalently iff cl(root) = {2}.

In order to take the structure of the tableau into account, as announced in the previous
section, we will now sate how cl(n) may be calculated recursively from the values for the
nodes below n.

Lemma 4.12 Let n be a node of a tableau.

• If n is a leaf labeled with goal G, then

cl(n) = cl0(G)|fv(n) .

• If an α-expansion is applied on n, leading to a child n′, then

cl(n) = cl(n′) .

• If a β-expansion is applied on n, leading to children n′ and n′′, then

cl(n) = cl(n′) ∩ cl(n′′) .

• If a γ-expansion is applied on n, leading to a child n′ with a new free variable X,
then

cl(n) = cl(n′)|X .

2This implies that a free variable introduced by a γ-expansion on the node n will not be included in
fv(n).

24

4.3 Abstract View

n1 : ∀x.(qx ∨ ¬px),∀y.qy,¬qb, pa

n2 : qX ∨ ¬pX,∀y.qy,¬qb, pa,∀x.(. . .)

n3 : qX,∀y.qy,¬qb, pa,∀x.(. . .) n4 : ¬pX,∀y.qy,¬qb, pa,∀x.(. . .)

cl(n3) = unif(qX, qb)|{X}

= {σ ∈ I({X}) | σ(X) = b}

cl(n4) = unif(pX, pa)|{X}

= {σ ∈ I({X}) | σ(X) = a}

cl(n2) = cl0(n3) ∩ cl0(n4) = ∅

cl0(n1) = cl0(n2)|X = ∅

Figure 4.4: Recursive computation of restricted closer sets cl(n).

Proof. The cases for leaf goals and α-expansions follow immediately from the definitions.
For the β case, let V := fv(n) = fv(n′) = fv(n′′). To show the ‘⊆’ direction, let

σ ∈ cl(n) = cl0(n)|V . Then there exists σ0 ∈ cl0(n) with σ0|V = σ. Now as lg(n) =
lg(n′) ∪ lg(n′′), we have σ0 ∈ cl0(n) = cl0(n′) ∩ cl0(n′′), so σ ∈ cl0(n′)|V = cl(n′), and
similarly σ ∈ cl(n′′). For the ‘⊇’ direction, let σ ∈ cl(n′)∩ cl(n′′) = cl0(n′)|V ∩ cl0(n′′)|V .
Then there are σ1 ∈ cl0(n′) and σ2 ∈ cl0(n′′) with σ1|V = σ2|V = σ. Define σ0 by

σ0(X) :=

σ(X) if X ∈ V ,

σ1(X) if X is introduced at or below n′,

σ2(X) if X is introduced at or below n′′,

don’t care if X doesn’t occur in the tableau.

Then σ0 coincides with σ1 for all free variables occurring in leaves under n′, so σ0 ∈
cl0(n′), and similarly σ0 ∈ cl0(n′′), and so σ0 ∈ cl0(n). It follows that σ ∈ cl(n), since
σ0|V = σ.

Finally, for a γ-expansion at n, we have fv(n′) = fv(n) ∪̇ {X} if X is the new free
variable. Then,

cl(n) = cl0(n)|fv(n) = (cl0(n)|fv(n′))|fv(n) = cl(n′)|fv(n) = cl(n′)|X ,

as is easily verified. ut

Example 4.13 Fig. 4.4 continues the previous example, giving values of cl(n) computed
recursively according to Lemma 4.12.

To get an incremental algorithm, we now need to examine how the values of cl change
when a tableau expansion produces new complementary pairs. In general, one expansion

25

4 The Incremental Closure Approach

step might lead to several new complementary pairs in one goal, or there might be two
new goals, each of which can contain new complementary pairs. We shall examine the
changes to cl induced by one new complementary pair φ,¬ψ at one leaf l, called the
focused leaf. If there are several new complementary pairs, these changes must be
applied consecutively for each of them.

For each node n, let cl(n)old denote the value of cl(n) before taking into account the
new complementary pair φ,¬ψ, while cl(n)new is the updated value. As noted in the
previous section, possible closing instantiations are never destroyed by an expansion step,
so the sets cl can only grow when the tableau is expanded, i.e. cl(n)new ⊇ cl(n)old for all
nodes of the tableau.

Definition 4.14 Define
δ(n) := cl(n)new \ cl(n)old

to be the set of new closing instantiations for a node n that arise by taking into account
a new complementary pair φ,¬ψ at a focused leaf l.

This δ can be calculated recursively as stated in the following Lemma.

Lemma 4.15 Let δ(n) be a set of new closing instantiations for a node n as in Def. 4.14.

• If n 6= l, and n is not above l in the tableau, then

δ(n) = ∅

• If n = l is the focused leaf, then

δ(n) = unif(φ, ψ)|fv(n) \ cl(l)old

• If an α-expansion is applied on n, leading to a child n′, then

δ(n) = δ(n′)

• If a β-expansion is applied on n, leading to children n′ and n′′, and l is equal to,
or below n′, then

δ(n) = δ(n′) ∩ cl(n′′)old

• If a γ-expansion is applied on n, leading to a child n′ with a new free variable X,
then

δ(n) = δ(n′)|X \ cl(n)old

Proof. Obviously, if the n is not at or above the focused leaf l, then cl(n)new = cl(n)old,
so δ(n) = ∅. In other words, δ(n) is non-empty at most for nodes n on the path between
l and the root of the tableau. This takes care of the first case. For the focused leaf l, δ
is given by

δ(l) = (cl(l)old ∪ unif(φ, ψ)|fv(l)) \ cl(l)old = unif(φ, ψ)|fv(l) \ cl(l)old ,

26

4.3 Abstract View

showing the second case.
The other cases show how to ‘propagate’ this change up the branch towards the

root. They follow from the recursive expressions for cl(n) given in Lemma 4.12. For
α-expansions, we trivially have

δ(n) = cl(n)new \ cl(n)old = cl(n′)new \ cl(n′)old = δ(n′) .

For a β node with children n′ and n′′, we assume that n′ is the one at or below which l
lies. This implies that cl(n′′)new = cl(n′′)old, so we have

δ(n) = cl(n)new \ cl(n)old

= (cl(n′)new ∩ cl(n′′)new) \ (cl(n′)old ∩ cl(n′′)old)

= (cl(n′)new ∩ cl(n′′)old) \ (cl(n′)old ∩ cl(n′′)old)

= (cl(n′)new \ cl(n′)old) ∩ cl(n′′)old

= δ(n′) ∩ cl(n′′)old

Finally, for γ nodes, we have to show that

cl(n)new \ cl(n)old = δ(n′)|X \ cl(n)old .

For this, it suffices that σ ∈ cl(n)new iff σ ∈ δ(n′)|X under the side-condition that
σ 6∈ cl(n)old. But under that side-condition,

σ ∈ cl(n)new iff ∃σ0 ∈ cl(n′)new with σ0|
X = σ

iff ∃σ0 ∈ cl(n′)new \ cl(n′)old with σ0|
X = σ

iff ∃σ0 ∈ δ(n′) with σ0|
X = σ

iff σ ∈ δ(n′)|X .

ut

According to Prop. 4.11, the tableau is closable when cl(root) 6= ∅. This means that
if it was not previously closable, it becomes closable if δ(root) 6= ∅, or equivalently, if
δ(root) = {2}. The central idea of the incremental closure procedure is to keep track
of the sets cl(n) and update them by propagating the additional closures δ(n) up the
branch using the equations of Lemma 4.15.

Example 4.16 Let us continue the previous example to demonstrate the propagation
of δ values. In Fig. 4.5, there is a new node n5 stemming from a γ-expansion at n3.
This leads to the new complementary pair qY,¬qb. Before this new complementary
pair is taken into account, the values of cl are as before. The value cl(n5)old is
inherited from n3, so

cl(n5)old = {σ ∈ I({X,Y }) | σ(X) = b} .

Now, taking n5 as focused leaf and including qY,¬qb, we can calculate δ for all
nodes between n5 and the root as shown in the figure. A non-empty δ value is
calculated for the root, so the tableau is closed.

27

4 The Incremental Closure Approach

n1 : ∀x.(qx ∨ ¬px),∀y.qy,¬qb, pa

n2 : qX ∨ ¬pX,∀y.qy,¬qb, pa,∀x.(. . .)

n3 : qX,∀y.qy,¬qb, pa,∀x.(. . .) n4 : ¬pX,∀y.qy,¬qb, pa,∀x.(. . .)

n5 : qY , qX,¬qb, pa,∀x.(. . .),∀y.qy

δ(n5) = unif(qY, qb)|{X,Y } \ cl(n5)old

= {σ ∈ I({X,Y }) | σ(Y) = b and σ(X) 6= b}

δ(n3) = δ(n5)|Y

= {σ ∈ I({X}) | σ(X) 6= b} δ(n4) = ∅

δ(n2) = δ(n3) ∩ cl(n4)old

= {σ ∈ I({X}) | σ(X) = a}

δ(n1) = δ(n2)|X \ cl(n1)old

= {2} \ ∅

= {2}

Figure 4.5: Closing the tableau of Fig. 4.4.

28

4.4 Implementation Issues

Note that the computation needs the old values of cl for some of the nodes (n5, n4 and
n1 in the example), so an implementation of this algorithm will have to store these values
between consecutive closure tests. Also, these stored values will have to be updated, when
a new complementary pair is taken into account.

The idea of storing previous sets of closing instantiations and updating them by prop-
agating δ sets toward the root is the core of the Incremental Closure technique. The
following sections and chapters discuss various modifications and refinements, but the
basic principle is the one that was described in this section.

4.4 Implementation Issues

While the last section concentrated on what we wish to compute, we shall now discuss
how this computation may be organized in an actual implementation. The presented
structure closely corresponds to that of the the prototypical implementation PrInS.3

We shall start by giving an idea of how the incremental closure technique may be
implemented, based on its simplest form as outlined in the previous section. We shall
also give some experimental results to compare the technique to a simple backtracking
prover.

4.4.1 Infrastructure of an Implementation

Still assuming we could calculate with infinite sets of instantiations, we shall now show
how the computation and propagation of the δ values is organized. As storing and
modifying the sets of closing instantiations cl(n) is a central part of the technique, it
makes sense to describe the procedure in a state-based way. On the other hand, it turns
out that operations on the state are typically of very local nature—to calculate a new
δ, one only has to look at one previously calculated δ, and possibly the remembered
set cl of a neighbouring node. For that reason, we shall take an object-oriented (OO)
view, which supports local state-based calculations very well. In fact, the prototypical
implementation PrInS is written in the Java programming language [GJS97].

Alternatively, it is also viable to describe this approach in a way that is closer to lazy
functional programming. This view is described in Sect. 4.7, along with a number of
arguments in favor of the OO view.

A UML class diagram [UML01] for an incremental closure prover is depicted in Fig. 4.6.
The prover keeps track of a set of leaf goals, each of which contains a set of formulae.
Rule applications modify the set of leaf goals. For a β-expansion, one of the goals is
replaced by two new ones.

Every leaf goal has an associated Sink object. A sink is an object capable of receiving
a set of instantiations and performing some computation on it. One can say that the
Sink is a consumer for sets of instantiations. This is realized by giving a put method to
the Sink objects that takes a set of instantiations as parameter. In Java terms, Sink is

3That acronym stands for ‘Proving with Instance Streams’, an old name for the incremental closure
approach which stems from a different view of the approach, explained in 4.7.

29

4 The Incremental Closure Approach

Prover Goal Formula

<<interface>>
Sink

+put()

RootSink
 closable: bool
+put()
+isClosable(): bool

MergerSink
 buffer
+put()

* *

Merger

2

other

*1

leaf goals

out

Restrictor
 variable
 buffer
+put()

out

Figure 4.6: A UML diagram for an incremental closure prover.

an interface consisting of that one method put. Different objects may implement this
interface and do different things with the parameter, as appropriate. In object diagrams,
we will give Sink objects a more conspicuous border to make them easier to distinguish
from the other kinds of objects:

aSink:SomeSink

attributes

After any expansion step that leads to a new complementary pair, the proof procedure
will pass the set δ(n) of new closing instantiations to the associated sink by calling the
put method. In an OO notation that is:

goal . sink .put(unif(φ, ψ)|fv(n) \ cl(n)old)

Of course, to do this calculation, we have to keep the set cl(n)old in memory for each
goal. We shall assume, for the time being, that we actually do keep them in some buffer
associated with each goal. In Sect. 4.5, we will describe a more efficient alternative.

There are three kinds of objects that act as sinks, defined by three classes implementing
the Sink interface. One is the RootSink, which will receive δ(root). This contains a flag
closable that records whether a non-empty set of instantiations has yet been received:

RootSink::put(S) is

if S nonempty then

closable := true

end

end

30

4.4 Implementation Issues

The prover holds a reference to the unique RootSink and queries the closable attribute
after each proof step to determine whether the tableau constructed so far is closable.

The next flavour of sink is provided by Merger objects, which correspond to the splits in
the tableau and are responsible for calculating the intersections δ(n) = δ(n ′)∩ cl(n′′)old.

The structure of a Merger is shown in the following diagram:

out

merger:Merger

rightMergerSink:MergerSink

buffer = ...
other

leftMergerSink:MergerSink

buffer = ...

other

It consists of two MergerSink objects, one to receive δ(n′) and one for δ(n′′). The
current set cl(n′), resp. cl(n′′) is stored in a buffer B (attribute buffer in Fig. 4.6) in the
corresponding input sink. Furthermore there is a reference out to an output sink, to
which δ(n) will be passed on. The two sinks are mutually connected by an association
other, so they can access each others buffers via other .B. Accordingly, the put method of
the MergerSink object works as follows:

MergerSink::put(S) is

J := S ∩ other.buffer // δ(n) = δ(n′) ∩ cl(n′′)old

buffer := buffer ∪ S // cl(n′)new = cl(n′)old ∪ δ(n′)
out.put(J)

end

The last kind of sink is the Restrictor . It corresponds to the γ-expansions of the
tableau, and according to Lemma 4.15, its put method must restrict the domain of each
incoming instantiation and send the result to an output sink out, if it was not previously
known. Thus, a Restrictor looks as follows:

out

restrictorX:Restrictor

variable = X
buffer = ...

out

31

4 The Incremental Closure Approach

. . . β1 ∨ β2 . . .

aSink

; . . . β1 ∨ β2 . . .

. . . β1 β2 . . .

merger

aSink

out

left right

Figure 4.7: Changing the sink structure for a β-expansion.

Here is the implementation of the put method for a Restrictor :

Restrictor :: put(S) is

R := S. restrict (variable) \ buffer // δ(n) = δ(n′)|X \ cl(n)old

buffer := buffer ∪ R // cl(n)new = cl(n)old ∪ δ(n)
out.put(R)

end

Note that this setup requires keeping a lot of buffers in memory. In Sect. 4.5 we will
show how this can be amended.

The proof procedure can now be stated thus:

T := initial tableau for S
r := new RootSink
associate r with goal of T
while (not r . closable) do

if expandable(T) then

select possible expansion of T
expand T
possibly generate new Merger or Restrictor
handle new complementary pairs

else

answer ’ satisfiable ’
end

end

answer ’ unsatisfiable ’

At the initialization, a RootSink object is associated with the single goal of the tableau.

In the case of a β-expansion, i.e. a new split in the tableau, the step ‘possibly generate
new Merger or Restrictor ’ creates a new Merger object. The buffers are initialized with
the current value of cl of the parent node. The output of the merger object is sent to the
sink s of the parent node, and the new child nodes are associated with the input sinks
of the merger, as shown in Fig. 4.7. Analogously, for a γ-expansion, a new Restrictor

object is created and connected to the Sink structure.

After the sinks have been updated, the procedure checks for new complementary pairs

32

4.4 Implementation Issues

introduced by the expansion, calculates δ(n) = unif(φ, ψ)\cl(n)old for each of them, and
sends δ(n) into the associated sink of the goal.

After all new closing instantiations have been passed to the sinks, the tableau is
closable, if the closable flag of the root sink has been set.

4.4.2 Representation of Instantiation Sets

We have so far assumed that we can compute with infinite sets of instantiations. In
a concrete implementation, we have to represent these with finite data structures. We
shall now describe the representations used in the prototypical prover PrInS.

We use syntactic constraints to denote sets of instantiations: These are first-order
formulae with a certain fixed signature, endowed with a fixed interpretation over the
domain consisting of all ground terms. Free variables in constraints are identified with
the free variables of the tableau. For the proof procedure as it has been presented so far,
we need only one predicate symbol ≡, interpreted as syntactic equality. Conjunction,
disjunction and negation in constraints will respectively be written as C & D, C | D
and !C, to make constraints more easily distinguishable from ordinary formulae. We
need existential quantification, which will be written [X]C. We also use the symbols
> to denote the unsatisfiable constraint and ⊥ for the constraint satisfiable by every
instantiation. 4 A constraint represents the set of instantiations that satisfy it.

Example 4.17 The constraint
X ≡ a & Y ≡ f(X)

is satisfied by all instantiations that map X to a and Y to f(a).

[Y]X ≡ f(Y)

is satisfied by any instantiation that maps X to a term with top function symbol
f . The constraint

X ≡ f(X)

is unsatisfiable, since f(t) cannot be syntactically equal to t for any term t.

As the interesting question about sets of instantiations was whether they were empty,
we are now interested in the satisfiability of constraints. Satisfiability checking for syn-
tactic constraints is a well-researched field, see e.g. [Com91].

We can now modify the procedure to use constraints wherever we were previously
working with sets of instantiations. E.g. unif(p(s), p(t)) yields a constraint s ≡ t. The
intersection of sets of instantiations required in the Mergers corresponds to the conjunc-
tion of constraints. In the updates of the MergerSinks’ buffers, set union is required,
which can be represented as disjunction of constraints. The domain restriction for in-
stantiations in Restrictor objects corresponds to existential quantification. Finally, the
set difference operation needed in Restrictor objects, and to represent unif(φ, ψ)\cl(n)old

for a new complementary pair can be modeled by taking negation into the constraint

4A more in-depth treatment of constraints will follow in Sect. 6.3.

33

4 The Incremental Closure Approach

language: A\B becomes C&!D for constraints C and D corresponding to instantiation
sets A and B.

There is however a problem with this direct translation: each additional connective
in the constraint language makes the satisfiability check more expensive. This is par-
ticularly the case for negation. It is therefore worthwhile to look closely at the kinds
of constraints that really occur, and how they are combined, to optimize the constraint
handling. We shall show that it is possible to modify our procedure so that it can be im-
plemented using only satisfiability and subsumption checking for constraints that consist
of conjunctions of syntactic equalities.

Our uses for negation of constraints come from set difference operations, which are
needed in two places: For leaves

δ(l) = unif(φ, ψ)|fv(l) \ cl(l)old

and for γ-expansions
δ(n) = δ(n′)|X \ cl(n)old .

In both cases the effect is that of preventing the propagation of instantiations that were
previously known to close a subtableau. If one just used

δ(l) = unif(φ, ψ)|fv(l)

and
δ(n) = δ(n′)|X

instead, the procedure would remain correct, and one could do without negation in the
constraint language. But this would lead to inefficiency because of the propagation
of redundant constraints. In practice, one has to find a compromise between the two
extremes, in other words

unif(φ, ψ)|fv(l) \ cl(l)old ⊆ δ(l) ⊆ unif(φ, ψ)|fv(l)

and
δ(n′)|X \ cl(n)old ⊆ δ(n) ⊆ δ(n′)|X ,

which can be easily computed but still catches enough previously known closing instan-
tiations.

The compromise we shall adopt here is to refrain from propagation of a δ, whenever it
is subsumed by cl(n)old, that is when all the new instantiations are already known. We
can then do without negation in the constraint language.

Definition 4.18 A constraint C is subsumed by a constraint D, if any instantiation
that satisfies C also satisfies D.

Example 4.19 In our previous examples (see e.g. 4.16) we had a leaf l with a new
complementary pair qY,¬qb, which would lead to a constraint Y ≡ b. The set
of previously known closing instantiations cl(l)old is represented by the constraint

34

4.4 Implementation Issues

X ≡ b. Using negation, we would propagate a δ of Y ≡ b & !X ≡ b. Using the
subsumption variant, we would determine that Y ≡ b is not subsumed by X ≡ b,
because there are instantiations that map Y to b but not X to b. Thus, a δ of Y ≡ b
would be propagated. By contrast, a new complementary pair r(X,Y),¬r(b, b)
would lead to a constraint X ≡ b & Y ≡ b, which would not be propagated in
either case, because this constraint is subsumed by X ≡ b.

If the constraint language does not contain negation, there is another possibility for
simplification: We can shift existential quantifiers out of the constraint, possibly renam-
ing bound variables (as in the usual computation of a conjunctive normal form). We can
then leave out the quantifiers, preserving constraint satisfiability.

Example 4.20 The constraint

([Y]X ≡ fY) & ([Y]Z ≡ gY)

is equivalent to

[Y1][Y2](X ≡ fY1 & Z ≡ gY2) ,

which is satisfiable iff

X ≡ fY1 & Z ≡ gY2

is satisfiable.

Of course, existential quantifiers do make a difference for subsumption. But in a
clever implementation, one does not need to store the existentially quantified variables
explicitly: At any node n, all variables not in fv(n), i.e. all variables introduced at or
below n, can be considered to be existentially quantified.

If we forbid negation and quantification in our constraints (see below), we are left
with only positive boolean combinations of syntactic equality constraints. These can be
transformed into a disjunction of conjunctions of equations. Such a constraint

(s11 ≡ t11 & . . . & s1k1 ≡ t1k1) | . . . | (sl1 ≡ tl1 & . . . & slkl
≡ tlkl

)

is satisfiable if and only if one of the disjuncts is satisfiable, and each of those amounts to
a simultaneous unification problem. In other words, the constraint satisfaction problems
we have to handle are essentially unification problems.

There is however no need to handle arbitrary disjunctive constraints: Disjunction is
used to represent the union of instantiation sets, and the only place where we require
set union in the implementations of the last section is to add new closing instantiations
to the buffers. But then, the buffers can be implemented as lists or sets of conjunctive
constraints.

Our approach of replacing negation by subsumption can be carried one step further:
We no longer check whether a new δ is subsumed by the disjunction of all the constraints
in a buffer. Instead, we check whether it is subsumed by any one of those constraints.
Again, we obtain a weaker subsumption test, but one that can be checked more efficiently.

35

4 The Incremental Closure Approach

Example 4.21 Assume that we have a signature containing only two constants a and
b. Let a buffer contain two constraints X ≡ a and X ≡ b. The disjunction of these
constraints is satisfied by any instantiation, as X has to be instantiated either with
a or with b. Thus the disjunction also subsumes any other constraint. By contrast,
the constraint Z ≡ a is not subsumed by either of the two constraints in the buffer.

Situations like the one in the example occur rarely enough in practice to make this
further simplification worthwhile.

Summing up, the put method of a MergerSink object now looks as follows:

MergerSink::put(C) is

foreach D in other . buffer do

J := C & D
if J satisfiable then // propagate only satisfiable constraints

out.put(J)
end

end

add C to B
end

For a Restrictor , we have:

Restrictor :: put(C) is

R := C. restrict (variable)
foreach D in buffer do

if R subsumed by D // with respect to fv(n)
return

end

end

out.put(R)
add C to B

end

The constraints our program needs to handle are now purely conjunctive.

Example 4.22 Fig. 4.8 contains a UML object diagram for the state of a prover that
corresponds to the tableau in Fig. 4.5, but before propagation of the δ for the new
complementary pair. The two Goal objects have already been updated.5 There
is a Merger object containing two MergerSinks. Each of the buffers contains one
constraint, corresponding to the sets cl(n3/4) of Fig. 4.4.

Now the prover initiates δ propagation for the new complementary pair qY,¬qb
in the left goal. The sequence diagram in Fig. 4.9 demonstrates what happens.
The left MergerSink receives the unification constraint Y ≡ b. It joins this to the
constraint X ≡ a from the other MergerSink’s buffer. The conjunction is passed
upwards and reaches the RootSink, which sets its closable flag. When the whole
call chain terminates, the prover queries the RootSink and knows that the tableau
is closable.

5We have listed the formulae of the goals in the objects for simplicity, although that is not legal UML.

36

4.4 Implementation Issues

merger:Merger

leftMergerSink:MergerSink

buffer = { X=b }

other rightMergerSink:MergerSink

buffer = { X=a }otheraProver:Prover

leaf goals

sink

rightGoal:Goal

¬pX, all y. qy, ¬qb, pa, all x. (qx v ¬px)

leftGoal:Goal

qY, qX, ¬qb, pa, all x. (qx v ¬px), all y. qy

sink

rootSink:RootSink

closable = false

out

restrictorY:Restrictor

variable = Y
buffer = {X=b}

out

restrictorX:Restrictor

variable = X
buffer = {}

out

Figure 4.8: An object diagram for a state of the prover.

37

4 The Incremental Closure Approach

aP
rover

leftM
ergerS

ink
rightM

ergerS
ink

rootS
ink

:put(Y
=

b)

:list constraints in buffer

:X
=

a

J=
(_

|_
 &

 X
=

a
)=

(X
=

a
)

is sa
tisfia

b
le

:put(X
=

a)

clo
sa

b
le

 =
 tru

e

:isC
losable()

:yes

a
d

d
 `Y

=
b

' to
 b

u
ffe

r

restrictorY

:put(_|_)

restrictorX:put(_|_)

Figure 4.9: A sequence diagram for δ propagation.

38

4.5 Combination of Restrictors

4.5 Combination of Restrictors

As it has been presented so far, our architecture requires keeping a lot of buffers for
previously known closing instantiations in memory. In this section, we will look at an
optimization that reduces the number of needed buffers.

Consider a scenario where n consecutive γ-expansions have taken place on a branch.
There would be a chain of k Restrictor objects, where each would keep a buffer of previ-
ously known instantiations. Any new instantiation is domain-restricted and checked for
containment in a buffer k times. It is more efficient to combine these k steps to remove
all k variables in a single step and only then check for containment in a buffer. If n
is the top-most γ-expansion node in the chain, n′ its child, and n′′ is the child of the
bottom-most one, we can use a single Restrictor object to calculate

δ(n) = δ(n′′)|fv(n′) \ cl(n)old .

But we don’t even have to buffer cl(n)old for this single Restrictor . As chains of
Restrictor objects have been eliminated, the output of a Restrictor will be passed either
into a RootSink or a MergerSink. For the RootSink, the buffer must be empty, because
otherwise a closing instantiation for the tableau has already been found. So the new
δ can be passed on without any subsumption checking. Otherwise, the Restrictor is
connected to a MergerSink, which contains a buffer itself. Clearly, the contents of that
buffer are identical to those of the Restrictor . So one can eliminate the buffer from the
Restrictor objects and let the MergerSinks do the subsumption checking. This gives us the
following implementation for the put method of a MergerSink:

MergerSink::put(C) is

foreach D in buffer do

if C subsumed by D // with respect to fv(n)
return

end

end

foreach D in other . buffer do

J := C & D
if J satisfiable then

out.put(J)
end

end

add C to B
end

The put method for a Restrictor is simplified to:

Restrictor :: put(C) is

R = C.restrictTo(fv(n′))
out.put(R)

end

At this point, one could also consider removing the Restrictor objects altogether and
adding a restriction to fv(n′), resp. fv(n′′) to the MergerSinks. In fact this shall be done
in Sect. 5.7, but for the time being, that modification has no real advantage.

39

4 The Incremental Closure Approach

4.6 Experimental Results

In this section we shall report some results obtained with the prototypical implementa-
tion PrInS.

Experimental comparisons between theorem proving methods are very problematic.
With a sufficiently large benchmark library, like the TPTP [SS97], one can compare
entire theorem provers. But the result will depend not only on the underlying principles,
e.g. whether a resolution or tableau style calculus was used, but also strongly on aspects
like the set of refinements (preprocessing, subsumption, etc.) used, indexing techniques,
the implementation language, and last but not least whether the theorem prover was
optimized with respect to the benchmark library in question.

To cleanly separate the effects of incremental closure from those of various refinements,
the technique was first tested with a very simple implementation: None of the various
refinements introduced in the following sections were used.6 Formulae in goals are kept
in a list and the first formula in this list is used for expansion. On the other hand,
an equally simple backtracking prover was implemented using the same data structures.
Iterative deepening was applied on the number of γ-expansions per branch. The proof
search of this backtracking prover is practically identical to that of leanTAP [BP94].

Of course, this approach has a number of drawbacks. The most prominent one is that
it can be based only on comparatively simple benchmarks. Without suitable refinements,
neither a backtracking prover nor an incremental closure prover can handle more difficult
problems. This provokes the question whether results obtained in such a comparison
‘scale well’, whether they still apply if both provers are refined. We believe that this
is the case, because there will always be problems that require heavy backtracking in a
backtracking prover, however sophisticated it may be, and an approach that can avoid
this behaviour will have an advantage. It is however important that the various known
refinements for a backtracking prover can actually be incorporated into the incremental
closure prover. The following chapters will show that this is possible.

Table 4.1 summarizes the results of running both provers on some of the ‘Pelletier
Problems’ introduced in [Pel86].7 Each prover was run 50 times on each of the problems
on a PC with a 2.53 GHz Intel PentiumTM 4 processor running Linux. Sun’s HotSpotTM

Client VM was used to execute the compiled Java programs.

The given times represent elapsed real time, averaged over the 50 runs. For problems
34, 38, and 43 the backtracking prover did not find a proof within a time limit of 300
seconds. Java provides no means of measuring the pure CPU time consumed by a thread
or process, so measuring ‘wall clock time’ was the only alternative. An advantage of this
approach is that the given times include time needed for garbage collection, swapping,
etc. The drawback is that there is a certain variation in run times due to system activity

6To be quite precise, the goal selection strategy from Sect. 5.2 was used. But as a backtracking prover
will work on each subtree at least until one instantiation has been found that closes the whole
subtree, the behaviour of Sect. 5.2 is automatic for backtracking provers. Using that refinement in
the incremental closure procedure does thus not introduce a bias in the comparison.

7These simple problems were chosen because leanTAP cannot handle anything more complicated.

40

4.6 Experimental Results

problem leanTAP clone Incremental Closure

time [s] std. dev. expand unify time [s] std. dev. expand unify

1 : SYN040+1 0.0004 0.0005 16 16 0.0009 0.0015 16 23

2 : SYN001+1 0.0003 0.0005 4 4 0.0004 0.0006 4 7

3 : SYN041+1 0.0001 0.0002 3 2 0.0002 0.0005 3 2

4 : LCL181+1 0.0004 0.0007 16 16 0.0011 0.0025 16 23

5 : LCL230+1 0.0010 0.0026 9 12 0.0001 0.0004 9 14

6 : SYN387+1 0.0002 0.0004 1 1 0.0002 0.0004 1 1

7 : SYN388+1 0.0004 0.0017 1 1 0.0002 0.0004 1 1

8 : SYN389+1 0.0002 0.0004 3 4 0.0002 0.0004 3 5

9 : SYN391+1 0.0002 0.0004 11 19 0.0006 0.0011 11 27

10 : SYN044+1 0.0004 0.0008 18 42 0.0003 0.0005 19 72

11 : SYN390+1 0.0001 0.0004 4 4 0.0002 0.0004 4 7

12 : SYN393+1 0.0015 0.0008 192 465 0.0024 0.0005 192 598

13 : SYN045+1 0.0003 0.0005 40 52 0.0006 0.0014 40 71

14 : SYN392+1 0.0003 0.0006 38 60 0.0006 0.0005 38 83

15 : SYN046+1 0.0002 0.0005 16 16 0.0005 0.0005 16 23

16 : SYN416+1 0.0001 0.0003 3 2 0.0001 0.0003 3 2

17 : SYN047+1 0.0007 0.0011 116 167 0.0008 0.0005 116 208

18 : SYN048+1 0.0002 0.0004 8 3 0.0003 0.0005 4 2

19 : SYN049+1 0.0006 0.0007 25 71 0.0006 0.0008 15 58

20 : SYN050+1 0.0012 0.0011 68 26 0.0007 0.0008 20 16

21 : SYN051+1 0.0004 0.0005 41 74 0.0007 0.0012 21 64

22 : SYN052+1 0.0002 0.0004 27 27 0.0004 0.0005 14 25

23 : SYN053+1 0.0003 0.0005 42 32 0.0006 0.0006 21 30

24 : SYN054+1 0.0040 0.0007 446 1049 0.0031 0.0015 128 634

25 : SYN055+1 0.0006 0.0005 66 99 0.0003 0.0004 9 19

26 : SYN056+1 0.4299 0.0275 30082 59121 0.0091 0.0027 275 2137

27 : SYN057+1 0.0010 0.0012 71 203 0.0009 0.0004 39 282

28 : SYN058+1 0.0004 0.0005 40 71 0.0007 0.0013 35 83

29 : SYN059+1 0.3772 0.0198 31547 161583 0.0015 0.0005 83 422

30 : SYN060+1 0.0000 0.0002 14 15 0.0005 0.0005 11 17

31 : SYN061+1 0.0003 0.0008 28 40 0.0005 0.0005 9 26

32 : SYN062+1 0.0004 0.0005 32 58 0.0008 0.0006 51 137

33 : SYN063+1 0.0006 0.0006 100 151 0.0010 0.0005 97 219

34 : SYN036+2 Timeout 2.4367 0.1874 3938 64201

35 : SYN064+1 0.0003 0.0009 18 4 0.0002 0.0004 6 2

36 : SYN065+1 0.0004 0.0005 34 21 0.0008 0.0022 10 15

37 : SYN066+1 0.0017 0.0007 146 175 0.0007 0.0010 27 37

38 : SYN067+1 Timeout 0.2293 0.0198 1330 17638

39 : SET043+1 0.0002 0.0004 6 4 0.0003 0.0006 5 7

40 : SET044+1 0.0005 0.0005 37 37 0.0004 0.0006 16 28

41 : SET045+1 0.0003 0.0005 16 12 0.0001 0.0004 10 16

42 : SET046+1 0.0026 0.0005 277 578 0.0013 0.0005 48 189

43 : SET047+1 Timeout 3.5518 0.0714 1338 109024

44 : SYN068+1 0.0005 0.0005 40 69 0.0003 0.0008 15 40

45 : SYN069+1 0.0119 0.0053 847 3486 0.0006 0.0006 33 92

46 : SYN070+1 2.2614 0.0454 162131 922934 0.0016 0.0008 65 295

Table 4.1: Comparison between provers on some Pelletier Problems.

41

4 The Incremental Closure Approach

entirely unrelated to the theorem provers. The second column of the table gives the
sample standard deviation of the measured run times.

The ‘expand’ column states the number of tableau expansion steps performed during
proof search. For the leanTAP clone, this can of course very different from the size of the
found proof: all expansions are counted, even if they are later removed in a backtracking
step. For PrInS, on the other hand, these numbers actually reflect the size of the found
proof. The ‘unify’ column contains the number of calls to the unification procedure.
For the leanTAP clone, this procedure is called every time a branch is closed (also if it is
later reopened via backtracking), for PrInS, the joining/satisfiability testing steps in the
Mergers are also counted. Note that in the propositional case, ‘unification’ just means
to check whether two literals are the same. These numbers are of course not average
values, as they are the same for all 50 runs.

Comparison of the run times is complicated by the statistical variations of the mea-
surements. We use a t-test to determine whether the differences in average running time
may be considered significant. More precisely, as the standard deviations of the measure-
ments differ between the two provers for many of the problems, the significance test is of
the kind that is known as Behrens-Fisher problem. We use the Welch modification (see
[Wel47]) to the t-test to take this into account. Note that there is a potential problem
with the application of the t-test: as times are measured in milliseconds, and some of
the problems take only very few milliseconds, we actually get a discrete distribution for
our samples. We assume that this is no problem in our case, as the mean of 50 samples
very nearly follows a normal distribution, whether the samples are from a discrete set
or not. Using an α level of 1%, the difference in running time is considered significant
for the entries shown with a shaded background in Table 4.1. The shading was applied
for the faster of the two provers.

Problems 1 to 17 are propositional. The difference in running time is significant in
only one case, although the measurements indicate that the leanTAP clone tends to be
slightly faster. This was to be expected, as the incremental closure technique incurs a
certain overhead for for the allocation of Mergers, etc. without having any advantages,
because no backtracking is required in any case. Note that both provers find the same
proofs for the propositional case, hence the identical numbers of tableau expansions.

For the non-propositional problems 18 to 46, the superiority of the incremental closure
prover becomes apparent. There is a significant improvement in many cases, and the
speedup ratio is sometimes dramatic. For three problems, a proof was found within
seconds by the incremental closure prover, while non was found after five minutes by
the backtracking prover. The backtracking prover is significantly faster on only three
of the simpler non-propositional problems; the leanTAP clone needs to do very little
backtracking, so the administrative overhead of the incremental closure prover exceeds
the gain from the complete avoidance of backtracking.

To understand the situation, it is also helpful to look at Fig. 4.10, which contains a
scatter plot of the average runtimes of leanTAP vs. PrInS for the given problems (exclud-
ing problems 34, 38, and 43), differentiating between propositional and non-propositional
problems. The points below the diagonal represent problems for which the the average

42

4.6 Experimental Results

 0.0001

 0.001

 0.01

 0.1

 1

 0.0001 0.001 0.01 0.1 1

P
rI

nS
 ti

m
e

[s
]

LeanTAP time [s]

Times for Pelletier Problems

propositional
non-propositional

Figure 4.10: Scatter plot of average times for the two provers.

43

4 The Incremental Closure Approach

 0.001

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40

tim
e

[s
]

n

Times for count-to-n problem

LeanTAP
PrInS

Figure 4.11: Times for the count-to-n problem for the two provers.

required time of PrInS is below that of the leanTAP clone. The distribution of the points
clearly indicates that the incremental closure technique introduces a slight overhead for
propositional and very simple non-propositional problems, but an interesting speedup
for the more complicated ones.

This behaviour becomes clearly visible if one runs the provers on a family of problems
which require heavy backtracking. For instance, take the formula set

p(a),¬p(fn(a)),∀x.(p(x) → p(f(x))) ,

where we define f 0(a) = a and fn+1(a) = f(fn(a)). We call this the count-to-n problem.
This set is unsatisfiable for every n. With our set of α,β and γ rules, it requires n γ-
expansions of ∀x.(p(x) → p(f(x))), each of which yields a β formula p(X) → p(f(X))
for some free variable X which then lead to a split in the tableau. Each of the branches
in the tableau contains mainly literals of the form ¬p(X) and p(f(X)) for different free
variables. There are in general very many possibilities of unifying two such literals on any
branch, but only one combination of closing complementary pairs will close the proof.
This means that a backtracking prover will do a lot of backtracking before it finds a
proof.

Fig. 4.11 shows measured running times for both provers for a range of values for n.
While the leanTAP clone needs almost one minute for n = 16, PrInS solves the problem
for n = 40 in about 1.5 seconds.

44

4.7 The Functional View

4.7 The Functional View

The incremental closure technique described in this chapter was originally called the
instance stream technique and sketched in in a position paper of 2 pages [Gie00b].

The view taken there was centered around the sequences of closing instantiations
passed between the mergers, which were described as lazily computed lists or streams.

A refutation procedure was described as a function that takes an open branch as
argument and returns a lazy list of instances closing this branch. This means that
elements of the stream are calculated only by need.

Here is a rough sketch of a function ‘refute’ that takes a set M of formulae in negation
normal form and returns a stream of instances, i.e. a list of substitutions for free variables
occurring in M , under which M can be refuted. If the initial formula set is unsatisfiable,
refute returns a non-empty stream.

refute({α1 ∧ α2} ∪M) = refute({α1, α2} ∪M)
refute({β1 ∨ β2} ∪M) = merge(refute({β1} ∪M), refute({β2} ∪M))
refute({∀x.γ1} ∪M) = refute({γ1[x/X],∀x.γ1} ∪M) |FreeVars({∀x.γ1}∪M)

refute({L,¬L′} ∪M) = first mgu(L,L′), if it exists,
followed by refute({L,¬L′} ∪M)
– – (only once for each pair of literals)

The auxiliary function merge lazily combines unifiers from two lazy lists with each
other. Its main function is basically the same as that of the Merger objects, but there is
an additional aspect: To start proof search, one computes whether refute(M) is empty
for a set of formulae M . The lazy evaluation process then triggers the implicit expansion
of the prof tree. In particular, the implementation of the merge function controls the
choice of the next branch to expand, because it determines from which of the two streams
a next element should be queried.

This view of incremental closure is appealing in its way. The author’s first (Java) im-
plementation was structured according to the functional view, and it has even prompted
other researchers to attempt an implementation in a functional language, see [vE00,
ON02].

However, the functional view has a number of severe drawbacks which eventually led
to the adoption of the imperative, object-oriented view presented earlier in this chapter.

One point stems from the fact that it is vital for efficiency to use a certain amount
of subsumption checking before the merging of instance streams. This means that if
the same closing instantiation is found several times for the same subtree, it is going
to be processed only once. Consequently, it is quite possible that further expansion
of a subtree for which a closing instantiation has already been found will not yield
any new possibilities. The merge function must thus be implemented very carefully,
because requesting the next element of one of the instance streams might not terminate.
Certain additional mechanisms have to be built in to ensure fairness. Further complexity
arises if refinements like pruning, see Sect. 5.6, are to be incorporated. In the end, the
merge function became so complicated that it was practically impossible to implement
correctly. Making it too lazy made it inefficient, and making it not lazy enough led to

45

4 The Incremental Closure Approach

termination problems. There were just too many opportunities for mistakes. In fact,
the implementations presented in both [vE00] and [ON02] are accidentally incomplete.
See [HS03] for a very nice discussion of this problem.

Another problem of the lazy list view lies in the decision on which branch to apply
the next rule. For the lazy list view, this is done implicitly by the merge function. Now
it turns out that this is practically the only indeterminism in the proof procedure. It is
the main decision point. But the primary purpose of the merging functions should be to
efficiently find out whether a proof is closed. Although the information available to the
mergers can be useful for the code that decides how to expand the proof (see Sect. 5.2),
these are two separate concerns which should also be implemented separately.

4.8 Related Work

Apart from the other approaches to tableau proof search without backtracking mentioned
in Chapter 3, one very related approach and one more remote connection should be
mentioned.

Konev and Jebelean [KJ00] have independently developed an approach similar to the
one presented in this chapter. The basic idea of expanding a proof and calculating closing
instantiations following the proof structure is the same as for incremental closure. Konev
and Jebelean use a natural deduction calculus formulated as a single-succedent sequent
calculus, while we use a tableau calculus which is equivalent to a multiple-succedent
sequent calculus, but this is only a minor difference.

Instead of delaying branch closure as we do, Konev and Jebelean define proof trees as
AND-OR-trees. This means that there are two kinds of branching nodes in their proof
trees. AND nodes represent β splits in the tableau. Both of the branches have to be
closed. OR nodes are used to represent the decision of whether or not to apply a rule
that requires an instantiation. In particular, an OR node is generated at branch closure.
On one of the branches, the goal is closed, requiring an according instantiation, on the
other it is left open and may be expanded further. There is a certain elegance in this ap-
proach. For instance, it permits the application of rules which require an instantiation,
like for instance the simplification rules we shall present in Chapter 6 or the equality
handling rules of Chapter 7, by producing two branches, one with the rule application
performed, one without. This possibility is mentioned in the conclusion of [KJ00], but it
is not further discussed. We will cope with such rules in the chapters to come by using
constrained formulae. Though this is less elegant and homogeneous than the approach
of [KJ00], the constraint solution is probably more efficient: If n independent rule appli-
cations are possible on a branch, which require various (independent) instantiations, the
OR-node approach will lead to 2n branches. Later rule applications have to be applied
separately on all of these. Using constraints, one only introduces n new constrained
formulae on one branch. In other words, it is probably not a good idea to make use of
the additional possibilities of the AND-OR-tree formulation.

The major difference between our work and that of Konev and Jebelean however is
our focus on refinements, which are needed to make the proof procedure efficient. For

46

4.8 Related Work

instance, the approach as described in [KJ00] contains no mechanism corresponding to
our Restritor objects. The instantiations of all free variables are kept and stored. This
is sensible for Konev and Jebelean, because they are interested in generating human
readable versions of automatically found proofs. But in a pure automated reasoning
context, this is a waste of memory. They also do not mention any subsumption test for
closing instantiations. Of the various refinements described in the next three chapters,
only the goal selection strategy of 5.2 is mentioned.

To summarize, the approach taken by Konev and Jebelean is basically similar to the
incremental closure technique. But their presentation lacks a number of features which
are important for efficient automated deduction.

An entirely different area of research which may be regarded as related to the incre-
mental closure technique concerns parallel implementations of Prolog. The declarative
nature of Prolog programs inspired the hope that it would be possible to develop ef-
ficient implementations of Prolog on parallel machines, and a lot of research has been
done in this direction [Clo87, Clo92, Wre90]. Amongst others, dataflow architectures
seem to have received considerable attention [Bic84, CK85, Hal86]. Unfortunately, to
our knowledge, none of the proposed approaches have been only remotely as successful
as the conventional implementations of the Prolog language. Apparently, operational as-
pects play an even larger role for efficient parallel programs than they do for sequential
programs, undermining the declarative nature of parallel Prolog programs.

Be that as it may, it is interesting to compare the dataflow approaches to the incre-
mental closure technique. The approaches described in [CK85, Hal86] are based on the
idea of using the data channels of a dataflow machine to transport variable instantiations
which close single Prolog goals.8 This is very similar to what the Sink structure does
in an incremental closure prover. The difference between the approaches for dataflow
implementations of Prolog and our work is the organization of the data streams. In our
case, closing instantiations from two subtableaux, i.e. solutions for two sub-problems are
sent to a single entity, the Merger, which coordinates the work and tries to join com-
patible solutions. In the cited papers on parallel Prolog, the data channel is directly
between the two inference machines responsible for two sub-problems. Any solution for
the first problem is passed on to the second inference machine, which tries to complete
it in order to obtain a combined solution. This architecture makes sense in the context
of logic programming, because it means that the programmer can impose an order on
the sub-problems to be solved, as in sequential Prolog. This can be very important for
efficiency. Using a concept like the Mergers for Prolog execution would certainly be much
too inefficient in most cases.

In an automated theorem prover however, it is impossible to say which of the two goals
produced by a β-expansion should be considered first, so we may as well try to approach
them simultaneously and employ some heuristic to decide how much work should be
spent on which problem.

It is not hard to envisage a multiprocessor implementation of an incremental closure
prover, where independent provers are spawned to find closing instantiations for parts of

8Apparently this idea was pioneered as early as 1974 by Kowalski [Kow74].

47

4 The Incremental Closure Approach

the tableau. The δ-propagation would then be spread over several processors. We have
not put any effort into the investigation of this possibility however.

4.9 Summary

In this chapter, we have introduced the incremental closure technique, which can be used
to eliminate backtracking from a proof procedure for free variable tableaux. It is built
around the idea of incrementally computing instantiations that close sub-tableaux until
one global instantiation is found that closes the whole tableau.

The technique was first presented on an abstract level, using potentially infinite sets
of instantiations. The abstract procedure was then refined in a number of steps, into a
detailed, implementation oriented design.

An experimental comparison between an incremental closure prover and a backtracking
prover was given, which showed the superiority of the incremental closure approach for
problems which require much backtracking.

Finally, some related work, including a functional view of incremental closure, was
presented.

48

5 Refinements

The Incremental Closure approach has the desirable property that it can easily be refined
in a number of ways. We stress this point, because incremental closure is surely not the
answer to all problems in automated theorem proving. It is therefore important to see
how this new technique can be combined with successful existing approaches.

This section presents a number of possible refinements. While some of them are
particular to the incremental closure technique, many are adaptations of refinements
known from backtracking procedures.

5.1 The Propositional Case

It occasionally happens that a sub-tableau T is closable under any instantiation. This is
always the case in proofs of propositional formulae, where no free variables are required
at all, but it can also happen with first-order formulae if there is a complementary pair
that is unifiable without instantiation of variables that are introduced outside T .

Example 5.1 Consider again the tableau in Fig. 4.5 on page 28. The left branch is
closable with [Y/b], so after restriction to the set {X} of free variables introduced
at or above the β-extension at n2, one finds that the left branch is closable under
any instantiation for X. It is useless to expand that part of the tableau any further,
because no more closing instantiations can be found.

Definition 5.2 A sub-tableau rooted at some node n is called propositionally closable,
if cl(n) = I(fv(n)).

In the implementation using constraints, this corresponds to a constraint (equivalent
to) true being passed through the sink structure. If this is detected, the corresponding
goals and the Sink structure may be deallocated to reduce memory consumption.

Although this optimization has only little effect in most cases, it is indispensable for
propositional logic, and it is easily implemented.

5.2 Goal Selection

So far, the Sink structure built during a proof has only been used to check whether the
tableau is closable. It turns out that it can also be useful for goal selection, i.e. deciding
on which goal the next expansion step should take place.

49

5 Refinements

Consider a tableau node n with two children n′ and n′′. There is a corresponding Merger

object that contains two MergerSinks, each of which contains a buffer B that represents
the current value of cl(n′), resp. cl(n′′). One or both of these sets may be empty:

• If cl(n′) = cl(n′′) = ∅, a closing instantiation has been found for neither of the
branches. At least one has to be found on each of the branches, so the procedure
might as well restrict expansion steps to, say, the left sub-tree until one is found
there. It might turn out that this sub-tree is propositionally closable, so the cor-
responding data structures can be deleted. Simultaneously expanding the other
sub-tree would only increase the required space.

• If cl(n′) 6= ∅ and cl(n′′) = ∅ (resp. cl(n′) = ∅ and cl(n′′) 6= ∅), at least one closing
instantiation has been found for the left (resp. right) branch and not for the other.
Before any other expansions are performed on the left (resp. right) branch to find
further closing instantiations, the other branch should be expanded until a closing
instantiation is found there as well.

• If cl(n′) 6= ∅ and cl(n′′) 6= ∅, some heuristic has to be applied that ensures that
expansions are regularly performed on both branches.

These considerations can be used to find the next goal that should be expanded by
starting from the root sink and at each Merger selecting one of the sub-tableaux. For
propositional goals, if we delete propositionally closable sub-tableaux as described in the
previous section, the procedure then becomes a ‘one-branch-at-a-time procedure’. This
means that the prover only works one branch of the tableau at a time, like backtracking
provers do.

The case that at least one closing instantiation has been found for both subtrees
is a little tricky. One should keep in mind that due to subsumption checks, a closable
subtableau may or may not have more than one closing instantiation. There is no way to
find out, except by further expanding the subtableau. One heuristic that does definitely
not work is to expand each subtableau until it yields a new closing instantiation – there
might not be such an instantiation, so this heuristic is unfair.

A fair heuristic would be to chose the left and right subtableaux alternatingly. How-
ever, experimentation suggests that this is a little inefficient, because it leads to doing a
little work on too many branches simultaneously. A sensible compromise seems to be to
work on a branch until a γ-expansion becomes necessary, then give the other branches
a chance. This is fair because only a finite number of expansions can be done on a
subtableau without intervening γ-expansions.

There are many possibilities for goal selection heuristics, and much can be gained by
a good choice. But one must take care not to make the proof procedure incomplete.

5.3 Formula Selection

One of the most obvious refinements for the proof procedure as implemented in the
prototype PrInS introduced in Sect. 4.6 is to be more careful in the selection of the

50

5.4 Subsumption in Buffers

formula expanded on each branch. It is obviously sensible to give certain formula types
higher priority than others. In particular, literals should be considered first, to see if a
branch is already closable. Then α-expansions should be performed, because they lead
neither to splitting, nor to introduction of free variables. It is harder to decide whether
β- or γ-expansions should be preferred, but β-expansions are generally performed first,
because they do not need to be reapplied like γ-expansions. Of course one can also
develop heuristics to choose e.g. between several eligible β-formulae.

While the formula selection problem is very similar to that of a backtracking prover,
there are some new aspects for an incremental closure prover. First, the number of
rule applications needed to close a proof can be much smaller, because there is no
backtracking. That means that more time can be expended per rule application, e.g. to
decide which formula to expand. And second, heuristics for formula selection and goal
selection may be combined, to pick a preferred expansion among all possible expansions
of all goals.

5.4 Subsumption in Buffers

An obvious place for optimizations in an implementation of the incremental closure
technique are the buffers contained in MergerSinks. These were defined in Sect. 4.4.1,
to store sets cl(n) of known closing instantiations of subtableaux. In Sect. 4.4.2, we
suggested implementing these buffers as sets of conjunctive unification constraints. In
practice, this implementation, using the subsumption technique described on page 36
is quite sufficient in many cases. In fact, the overall running time of the prover is
rarely dominated by the δ propagation process. This is due to the fact that most of
the computed δ constraints don’t ‘travel’ very far in the Sink structure. They either get
subsumed at some point, or they are incompatible with the known closing instantiations
of some other subtree. On the other hand, if propagation does bring a δ close to the root,
this often means a significant progress in the proof search, because a large subtableau
can already be closed.

But the problem of detecting closability of a tableau is NP-hard, so there will always
be cases in which δ propagation is expensive. For such cases, it is worthwhile to work on
the efficiency of δ propagation. Even though the problem remains NP-hard, we might be
able to avoid the exponential behaviour in some cases, and in other cases an improvement
by a large constant factor could still make a big difference in practicality.

If we analyze the final implementation of the put method for MergerSinks given in
Sect. 4.5, we see that there are two potentially time consuming operations: Checking
whether the new δ is subsumed by one of the constraints in the buffer, and if this is
not the case, checking whether the conjunction with each of the constraints in the other
buffer is satisfiable. Clearly, the easiest way to keep the amount of work low is to
keep the buffers small. Any superfluous constraint in a buffer slows down subsequent δ
propagations. Checking whether a new δ is subsumed by one of the known ones as is
done in Sect. 4.4.2 and 4.5 is one way of keeping buffers small: if a new closing constraint
that is subsumed by a previously known one were not discarded, it would get stored in

51

5 Refinements

at least one of the buffers, making it larger unnecessarily. We refer to this subsumption
check as forward subsumption. Forward subsumption means discarding new information
if it is subsumed by older information.

One can also check whether the converse holds, namely whether a new closing instan-
tiation that is about to be put into the buffer subsumes one of the previously known
instantiations. This is referred to as backward subsumption. Any constraints in a buffer
that are subsumed by a new constraint can be removed from the buffer.

Example 5.3 Let the buffer of some MergerSink contain the constraint C1 = (X ≡
a & Y ≡ a), indicating that the prover has found out that the subtableau in
question can be closed if both X and Y are instantiated to a. After some further
expansion, the prover finds that the subtableau can be closed whenever X and Y
receive the same instantiation. The constraint C2 = (X ≡ Y) gets propagated.
C2 is not (forward) subsumed by C1, so it gets added to the buffer. But C1 is
(backward) subsumed by C2, so C1 can be removed from the buffer.

There is a trade-off to consider when subsumption is used. While subsumption check-
ing can help in keeping buffers small, it also takes time. Experimentation with PrInS
revealed that forward subsumption has a considerable impact even for the small problems
discussed in Sect. 4.6. In fact, without forward subsumption, the incremental closure
prover is rarely faster than the backtracking prover, because although few expansion
steps were needed, the running time was dominated by δ propagation.

The case is different for backward subsumption. In the problems it was tested on, it
was almost never the case that a constraint in the buffer was subsumed by a newer one.
But testing for backward subsumption slowed the prover down noticeably. Of course,
depending on the application domain, one might encounter problems where backward
subsumption pays off. In any case, it is an option to consider when buffers grow too
large.

While subsumption checking can ward off exponential blow-up in some cases at a
modest cost by reducing the size of buffers, it is also possible to accelerate operations on
large buffers. This will be discussed in the next section.

5.5 Indexing

There are at least two places in our suggested implementation where we perform what
amounts to a linear search over a set of entities which might become large. One of these
searches occurs when a new literal L is added to a branch. The prover scans the literals
already present on that branch and checks whether any of these are unifiable with L.
In a large proof, this might be time consuming, although most of the literals present
are probably not unifiable with L. A linear search is also performed by the MergerSinks’
put method, both for checking subsumption by a constraint in the buffer and for finding
compatible constraints in the buffer of the buffer of the ‘other’ MergerSink. If backward
subsumption is used, this would also done by a linear scan of the constraints in the buffer.
Again, if the buffers are large, these scans can be time consuming, and for most of the

52

5.5 Indexing

constraints in the buffer, the conjunction will not be satisfiable, resp. the subsumption
check will fail.

The term indexing techniques is used in automated theorem proving literature for data
structures and algorithms which store a large number of items (e.g. terms, clauses, sub-
stitutions, etc.) in such a way that a small subset of these items relevant for a particular
query (e.g. terms unifiable, clauses subsumed, substitutions compatible with a given ter-
m/clause/substitution) can be retrieved quickly. Most of the known indexing techniques
have been developed for resolution theorem provers (see e.g. [Gra96, NHRV01, RSV01]),
where it is important to find a small number of candidates for clause subsumption, res-
olution, or superposition from a set of possibly millions of clauses. Indexing techniques
have classically not played a major role for tableau provers for two reasons: One is that
the operations in a tableau prover typically concern only the formulae on a single branch.
Instead of producing very many clauses, like a resolution prover, a tableau prover will
produce very many branches, each of which is usually of moderate size, so there is not
much benefit in using indexing techniques. The other reason is that the data structures
used for indexing are sometimes quite complex, so the cost of just allocating and ini-
tializing them is not negligible. This does not matter for a resolution system, where an
index is created once in the beginning, but for a tableau, one has this overhead for every
new branch.

The situation is a little different for an incremental closure prover. For one thing,
the MergerSink buffers can get large. It is not unusual for a buffer to accumulate in the
order of fifty constraints. This does not compare to a set of millions of clauses, but it
can make indexing worthwhile. Depending on the problem to be solved, a branch might
also accumulate a considerable number of literals to be scanned for unifiability. This is
especially the case if the techniques from Sect. 6.7 are used. And finally, the overhead
for creating the indexing structures is not as severe as for a backtracking prover because
branches are not constantly deleted and recreated. If an index is created, it will remain
useful for the rest of the proof search.

Unfortunately this does not mean that we can usefully adopt the most successful
indexing techniques from resolution theorem provers. The amount of effort that should
be put into an indexing structure strongly depends on the typical size of the sets of items
constructed by the prover.

Take the set of literals on a branch, for instance. In an application domain where one
rarely gets more than five literals on a branch, one should not worry about indexing
at all. Of course, it never hurts to store positive and negative literals separately and
scan only one of the lists. This simple measure will already halve the average time
needed for finding unifiable literals. If the application domain leads to larger numbers of
literals, one can go a step further by keeping a separate list of literals for each top-level
predicate symbol. Literals with distinct top-level predicate symbols can’t be unifiable.
Of course, this works only if the problem formulations typically use several different
predicate symbols. If there are many different predicate symbols, the lists of literals
per predicate can be organized in a hash table, otherwise a linear list is probably more
effective. If indexing on top-level predicate symbols is not sufficient – either because
there are only few predicate symbols, or because the lists still become too large – one

53

5 Refinements

might consider a Prolog-like indexing scheme which uses the predicate and the top-level
function symbol of the first subterm. The point is that the indexing technique to be
chosen according to the intended application domain.

For MergerSink buffers, most of the known indexing techniques for resolution are useless,
because we need to index constraints and not clauses or terms. There is however a
method called substitution tree indexing [Gra96, Gra94] which actually stores a set of
substitutions in a tree structure. Though this was not thoroughly investigated, it is
expected that this technique could be adapted to suit our needs. In experiments with
the current implementation of PrInS, buffer sizes rarely grew to a size which would
have warranted the design of an indexing structure. But this may well be necessary,
depending, as usual, on the application domain.

5.6 Pruning

Pruning (see e.g. [BH98, Häh01, BFN96a]), which is also known as Condensation, Back-
jumping or intelligent backtracking is an important technique known from backtracking
procedures and SAT-provers for propositional logic. It is an excellent example of how a
known refinement can be ‘ported’ to the incremental closure framework.

Pruning can reduce the search space dramatically: The prover keeps track of the an-
cestry of formulae, i.e. the set of formulae in the tableau which were used to derive it.1 If
a branch is closed by unifying a particular complementary pair φ,¬ψ, the prover exam-
ines the β-expansions that occurred earlier on the branch. If for a particular expansion
at a node n, neither the ancestry of φ, nor that of ¬ψ contains the sub-formula β1/2

introduced by the expansion, then the closure would have been possible without that
expansion. This is because the sequence of proof steps that led to a closed subtableau
under n1/2 would have been possible below n, leading to a closed subtableau without
performing the β-expansion step.

Consequently, the β-expansion can be removed a posteriori, saving the work of closing
the other branch introduced by it. Of course, in a backtracking prover, the decision
for that particular complementary pair might be revised in a backtracking step, and
then the expansion has to be reintroduced. By contrast, in a propositional setting, no
backtracking is needed, and the β-expansion can be eliminated permanently.

In a way, pruning is a way to make up for errors in the formula selection heuristics.
If a β-expansion turns out to be unnecessary, it can be rendered harmless by pruning.

The question is now how the pruning technique can be adapted to the incremental
closure approach. As in the backtracking case, we have to provide for the case that the
complementary pair φ,¬ψ in question is not the one used to finally close the whole proof.
A backtracking prover reintroduces the β-expansion when it backtracks. We want to do
without backtracking, so we cannot simply remove the expansion. But what can we do?

As in the backtracking prover, we record for each formula an ancestry of β-expansions
on which it depends. We can use references to the Merger objects for this, as there is

1Actually, it suffices to record only the β-subformulae introduced by β-expansions.

54

5.6 Pruning

exactly one of these for each β-expansion. In terms of the abstract view given in Sect. 4.3,
we now compute with sets of pairs (σ, h) of instantiations with ancestries, instead of just
sets of instantiations. We have to redefine the operations unif, ∩, ∪ and \ to work
with sets of such pairs. In particular, the ∩ operation in the Merger has to combine the
histories of instantiations, taking the unions of ancestor sets.

The ‘pruning’ takes place, when a Merger m receives an instantiation that does not
have m in its ancestry: it can pass such an instantiation to the output sink independently
of the contents of the buffer of the other branch:

MergerSink::put(S) is

P := {(σ, h) ∈ S | this Merger 6∈ h}
out.put(P)
S := S \ P
J := S ∩ other.buffer
buffer := buffer ∪ S
out.put(J)

end

The first three lines in the body perform the pruning, while the other three process
the remaining instantiations as before.

Example 5.4 Pruning can be used in the tableau in Fig. 4.5 on page 28. Let m be the
Merger corresponding to the β-expansion at n2. Then the literals qX in n3 and
n5 and ¬pX in n4 have a history of {m}, while the other literals have an empty
history. The closing instantiation [Y/b] discovered in n5 depends on the literals qY
and ¬qb, which have an empty history, so the history of [Y/b] is also empty, and
the instantiation can be passed through by m directly, without combining it with
cl(n4)old.

It is interesting to ask whether passing through of closing instantiations is as effective
as actually discarding a branch and reinserting it for backtracking. Consider a problem
where a given backtracking prover finds the right complementary pair immediately for
some subtableau, so there is no need for backtracking. In that case, the given closing
instantiation is also the first one that the incremental closure prover will find for that
subtableau. The goal selection strategy of Sect. 5.2 will then ensure that at least one
closing instantiation will be found for the rest of the tableau before the pruned branch
is reconsidered. If the backtracking prover required no backtracking, those other closing
instantiations should close the whole proof, so the incremental closure prover will not
reconsider the pruned branch either.

We now give an experimental comparison of the prover as described in Sect. 4.6 to a
version that uses pruning and that discards propositionally closed subtrees as proposed
in Sect. 5.1. Table 5.1 shows some results for the pigeon hole family of problems in the
propositional MSC007-1 formulation of the TPTP library. For this kind of propositional
problem, pruning obviously brings a dramatic improvement.

For the problems of Table 4.1 on page 41, there is hardly any improvement for the
propositional problems. They are just too simple for pruning to have any discernible

55

5 Refinements

without pruning with pruning
size time [s] expansions time [s] expansions

2 0.001 3 0.001 3
3 0.006 61 0.003 36
4 35 33566 0.046 438
5 >1000 ? 1.0 5671
6 >1000 ? 140 75260

Table 5.1: Effect of Pruning for Pigeon Hole problems (MSC007−1)

without pruning with pruning
problem time [s] expand unify time [s] expand unify

SYN054+1 0.0160 128 634 0.0120 88 331
SYN056+1 0.0940 275 2137 0.0590 271 1764
SYN059+1 0.0100 83 422 0.0110 64 309
SYN063+1 0.0050 97 219 0.0040 91 180
SYN036+2 2.9020 3938 64201 0.4150 2581 14662
SYN067+1 0.2440 1330 17638 0.0580 838 5601
SET047+1 3.5330 1338 109024 0.0690 664 3995

Table 5.2: Effect of Pruning for some Pelletier problems

effect. Table 5.2 shows some results for non-propositional problems.2 The benefit be-
comes of pruning is quite noticeable for the more complex problems, although of course
not as extreme as for the pigeon hole problems.

5.7 Universal Variables

In the tableau calculus as it has been presented so far, each occurrence of a free variable
introduced by a γ rule had to receive the same instantiation in order to close a proof.
In fact, finding a consistent instantiation for the free variables is the central problem we
want to solve with the incremental closure approach. Variables with the property that
all occurrences have to be instantiated in the same way are called rigid variables. In a
resolution calculus, for instance, the variables occurring in clauses are not rigid, as they
may be instantiated differently (by unification) in each resolution step. Indeed, one often
talks about an implicit variable renaming step before each resolution. It is not allowed
to rename the rigid variable occurrences in a tableau.

As has been observed e.g. in [BH98], there are cases in which this rigidity may be
relaxed in a tableau calculus. That means that it is sound to instantiate the same
variable independently on different branches or even in different literals on the same

2The times are different from Table 4.1 because the experiments were done on another computer.

56

5.7 Universal Variables

∀x.px,¬pa ∨ ¬pb

pX,¬pa ∨ ¬pb,∀x.px

¬pa, pX,∀x.px ¬pb, pX,∀x.px

Figure 5.1: Tableau closable with universal variables

branch.

Example 5.5 The tableau in Fig. 5.1 is not closable according to the definitions given
so far: X has to be instantiated with a to close the left branch and with b to
close the right branch. But the formula ∀x.px is still present on each branch, so
a γ-expansion could be applied on one of the branches to introduce a literal pX ′.
The proof then becomes closable.

One can formalize this possibility to introduce a variant of a formula, that is a copy
with renamed variables.

Definition 5.6 Let φ ∈ G be a formula occurring in a goal G of a tableau, and X some
free variable. Let Ḡ be the union of G and all goals above G in the tableau. φ is called
universal with respect to X if σ([X/t](φ)) is a logical consequence of σ(Ḡ) for all σ ∈ I
and all ground terms t. Let uv(φ) be the set of variables with respect to which φ is
universal. ut

Obviously, if a formula φ ∈ G is universal with respect to a variable X, it is sound to
include a variant [X/X ′]φ in G, for which X ′ is then universal, or simply to replace φ by
such a variant. Or we can decide to keep this renaming of universal variables implicit,
and simply allow universal variables to be instantiated independently per formula. Of
course, multiple occurrences of the same variable in one formula must still receive the
same instantiations. We can modify our definition of a closed tableau (see Def. 4.2)
accordingly:

Definition 5.7 A goal G is closed under an instantiation σ, iff there are a complemen-
tary pair {φ,¬ψ} ⊆ G, and ground substitutions µ and ν for the universal variables of
φ and ¬ψ respectively, such that σ(µ(φ)) = σ(ν(ψ)). A tableau T is closed under an
instantiation σ, iff each leaf goal of T is closed under σ. A tableau is closable iff it is
closed under some instantiation.

The point is that the substitutions µ and ν can be chosen independently per branch.

Example 5.8 Consider again the tableau of Fig. 5.1. In both goals, pX is universal
w.r.t. X, because of the formula ∀x.px. The left branch is closed under any in-
stantiation σ, because we can instantiate the universal variables with µ = [X/a],
and similarly for the right branch with µ = [X/b]. ν can be left empty on both

57

5 Refinements

branches. Taking universal variables into account, the whole tableau is thus closed
under any instantiation σ.

As universality of a formula with respect to a given variable is undecidable in general,
one usually uses the simple criteria of the following lemma to detect universality in
common cases.

Lemma 5.9 The following sufficient conditions for universality of variables hold:

1. If an α-expansion is applied on a formula α = α1 ∧ α2, then uv(α1/2) ⊇ uv(α) in
the resulting goal.

2. If a β-expansion is applied on a formula β = β1 ∨β2, then uv(β1) ⊇ uv(β) \ fv(β2)
in the resulting left goal, and similarly for β2 in the right goal.

3. If a γ-expansion is applied on a formula γ = ∀x.γ1 introducing a new free variable
X, then uv([x/X]γ1) ⊇ {X} ∪ uv(γ) in the resulting goal.

Proof. We only prove the α case, the others are similar. Let G and G′ be the goals before
and after the expansion. Further, let X ∈ uv(α1∧α2). Take an arbitrary σ ∈ I and some
ground term t. Then σ([X/t]α1) is certainly a logical conseuence of σ([X/t](α1 ∧ α2)),
which in turn, since X is universal for the conjunction, is a logical consequence of Ḡ.
Hence, σ([X/t]α1) is also a consequence of Ḡ′. ut

In an implementation, one can keep a set of universal variables together with each
literal. Alternatively, and more economically, one can keep a set of rigid variables for
each goal and treat all other free variables occurring in formulae of a goal as universal.
If one uses the given criterion, rigid variables are added to this set only in β-expansions.
The new rigid variables in a β-expansion are exactly those variables which occur free in
both β1 and β2.

As rigid variables are now introduced by β-expansions instead of γ-expansions, one
can modify the calculus to require a copy of the expanded formula to be retained in
β-expansions and not in γ-expansions, as in the following definition:

Definition 5.10 A universal variable tableau for a finite set of SNNF formulae S is
defined inductively as follows:

1. The tableau consisting of the root node labeled with the goal S is a tableau for S,
called the initial tableau.

2. If there is a tableau for S that has a leaf n with goal {α1∧α2}∪G, then the tableau
obtained by adding a new child n′ with goal {α1, α2} ∪G to n is also a tableau for
S. (α-expansion)

3. If there is a tableau for S that has a leaf n with goal {β1 ∨β2}∪G, then the tableau
obtained by adding two new children n′, resp. n′′ with goals {τβ1, β1 ∨ β2} ∪ G,
resp. {τβ2, β1 ∨ β2} ∪G to n, where τ is a renaming of the variables with respect
to which β is known to be universal, is also a tableau for S. (β-expansion)

58

5.7 Universal Variables

4. If there is a tableau for S that has a leaf n with goal {∀x.γ1} ∪G, then the tableau
obtained by adding a new child n′ with goal {[x/X]γ1} ∪G to n, where X did not
previously occur in the tableau, is also a tableau for S. (γ-expansion)

This gives us a complete calculus if we use a criterion for detection of free variables at
least as strong as that of Lemma 5.9. See [Gie98], Sect. 7.4, for a completeness proof.

Apart from reducing the number of needed tableau expansions in some cases, this way
of formulating the calculus has the advantage of leading to a more homogenous formula
selection problem (see Sect. 5.3): It is always sensible to do α- and γ-expansions first,
fairness is now an issue only for β-expansions. In a sense, we have combined the old β-
and γ-expansions into our new β rule.

An interesting special case occurs for a β-expansion when the sets fv(β1) and fv(β2)
of free variables of the subformulae are disjoint. In that case, the β-expansion does
not introduce any rigid variables. The calculus can be modified in such a way that the
original formula β1∨β2 is not included in the new goals. This means that the β-expansion
does not need to be applied multiple times to ensure completeness.

So far, in this section, we have only talked about the tableau construction aspects of
universal variables, and hardly about the question of detecting tableau closure. How can
universal variables be handled in an incremental closure prover? We have to accommo-
date the new notion of closed goal and tableau, and we should also review the places
where we talk about the free variables fv(n) present at a node.

It is clear that the instantiations in our closer sets cl should not refer to universal
variables, because it is sufficient to know that an instantiation µ or ν for them exists
when we unify a new complementary pair. In Def. 4.10, we defined the closer sets cl(n)
as sets of instantiations of the free variables fv(n) introduced above (but not at) the
node n. If we use universal variables, we should revise the definition of fv(n) to be the
set of rigid variables introduced by β-expansions above (but not at) n. In Lemma 4.15,
the calculation of

δ(n) = unif(φ, ψ)|fv(n) \ cl(l)old

then automatically performs the restriction to the set of relevant rigid variables. Vari-
ables which are universal for φ and ψ should be renamed before unification to make sure
that no unifying instantiations are missed. The remaining δ propagations of Lemma 4.15
have to be adapted, taking into consideration that the γ rule does not introduce rigid
variables, but the β rule does. This leads to

δ(n) = δ(n′)

for a γ-expansion at n and

δ(n) = δ(n′)|fv(n′) ∩ cl(n′′)old

for a β-expansion. With this modification, the combination of Restrictor s described in
Sect. 4.5 is automatic, and as restriction is now part of the calculation for β-expansions,
it would even be natural to leave away the Restrictor objects altogether and perform the
computation of the restrictors in the MergerSinks.

59

5 Refinements

Clause set:
px ∨ qx
¬pb ∨ ra

¬qb
¬ra

∅
pX qX

¬qb
¬pb ra ∗
∗ ¬ra

∗

Figure 5.2: A simple clause tableau.

It might seem that the detection and handling of universal variables are not of much
consequence for practical problems. After all, the fact that ∀x.px holds for a formula
means that the predicate p is not very interesting semantically. Things become more
interesting for binary predicates however, like in ∀x.x ≥ 0. Universal variables are also
interesting in combination with the simplification rules introduced in Chapter 6. And
finally, for equality handling they permit using rules similar to (unfailing) Knuth-Bendix
completion which are much more powerful than rewriting techniques for rigid variables
only, see the second item on page 120.

5.8 Regularity

The regularity restriction is a well-known restriction for backtracking clausal tableau
provers, see [LSBB92, BH98, Häh01]. For clausal ground tableaux, this restriction forbids
rule applications that introduce a literal on a branch that is already present. It is not
hard to see that rule applications leading to such duplicates are not needed for a complete
proof procedure.

In our setting, there are two problems with the regularity restriction. The first is that
we are interested in first order tableaux with rigid variables. Whether two literals are
equal or not might depend on the instantiation of rigid variables, and we do not yet
know this instantiation when a tableau is expanded.

The second problem is that it is not straightforward to define regularity for non-clausal
problems. Forbidding multiple occurrences of the same formula on a branch might render
the calculus incomplete, as the simple formula (p ∧ p) ∧ ¬p shows. It is unsatisfiable,
but this can be shown only by performing an α-expansion on p ∧ p, which leads to two
identical literals.

A solution for the first order case has been proposed in [LSBB92]. It consists in gath-
ering the requirements that instantiations should not render literals equal in a global
constraint. In other words it is not the formulae which are annotated with constraints,
but the whole tableau. The trouble is that this approach is not compatible with back-
tracking free proof search without further effort.

Example 5.11 Consider the clause set and proof in Fig. 5.2. The tableau is closed with
σ(X) = b, and one sees that an instance of the clause px ∨ qx with [x/b] is indeed
needed to find a closed tableau for the clause set. Now in Fig. 5.3, the redundant

60

5.9 k-ary Branching

Clause set:
px ∨ qx
¬pb ∨ ra

¬qb
¬ra
pb ∨ rb

∅
pX qX

pb rb

Constraint: X 6≡ b

6≡

Figure 5.3: The problem with a Global Constraint.

clause pb ∨ rb was added. Assume that the prover expands the left branch with
pb ∨ rb, after initially using px ∨ qx as before. Instantiating X with b would now
lead to an irregular tableau, so we add X 6≡ b to the global constraint. But then
a new instance of the clause px ∨ qx is needed on each of the branches, and the
same problem might recur indefinitely.

This behaviour is acceptable for a backtracking prover, which will at some point try
expanding with another clause instead of pb ∨ rb. But for a procedure without back-
tracking, the only solution would be to use a complicated fairness condition to avoid
repeating the mistaken expansion.

As for the question of non-clausal regularity conditions, several proposals may be found
in the literature, see e.g. [BH98, Let99, BHRM94]. These usually rely on the concept of
disjunctive paths through formulae, which we are also going to need in the next chapter,
see Def. 6.25. Although the existing proposals are valid, they lack the simplicity of the
original clausal version.

There is an elegant way of handling the regularity restriction in our framework using
constrained formulae and a simplification rule. As these shall only be introduced in the
next chapter, we defer the description of our approach to Sect. 6.8.

5.9 k-ary Branching

Up to this point in our presentation of the incremental closure technique, we have as-
sumed conjunction and disjunction to be binary operations. This makes the presentation
and the implementation simpler, but it is not a crucial requirement. In this section, we
will sketch how to cope with variadic conjunction and disjunction.

Handling variadic conjunction is in fact trivial: One only needs an expansion rule that
replaces α1 ∧ · · · ∧ αk by α1, . . . , αk in a goal. The δ propagation process does not need
to be changed for this modification.

Variadic β-expansion is more interesting. The expansion rule itself introduces k new
goals for a k-ary disjunction, as one would expect. If one uses universal variables, any
free variable that was universal for the disjunction and which occurs in more than one
of the disjuncts βi must be made rigid. One then needs a variadic Merger object.

Let n be the node where the k-ary β-expansion is performed, and let n1, . . . , nk be the

61

5 Refinements

merger1

left right

merger4

left right

merger2

left right

merger3

left right

Figure 5.4: A 5-ary Merger tree

new children. Adapting the β case of Lemma 4.15, and assuming a focused leaf that lies
below n1, we get

δ(n) = δ(n1) ∩ cl(n2)old ∩ · · · ∩ cl(nk)old .

In other words, we have to compute the new closing instantiations which also close all
of the other branches. As it is, this formula is not suitable for computation. If we only
keep buffers for cl(nk), the intersection of k − 1 buffers has to be computed every time
a new δ is processed, which is inefficient. On the other hand, introducing buffers for
⋂

j 6=i cl(nj) leads to k additional buffers which have to be updated every time a new δ
is processed. One easily sees that updating these buffers requires the computation of
the intersection of k − 2 buffers is needed, so we recursively run into the same problem
again.

The solution is to combine several mergers into a tree. We can build a k-ary Merger

from k− 1 binary Mergers, which are arranged in a tree structure of minimal depth. See
Fig. 5.4 for a 5-ary Merger tree, for example. This solution requires one buffer for each
of the k inputs and k − 2 extra ‘internal’ buffers. Only O(log k) intersection and buffer
update operations are needed for each δ.

The same structure of Mergers could be achieved by inserting appropriate parentheses.
For instance, the structure in Fig. 5.4 is generated by ((β1 ∨β2)∨ β3)∨ (β4 ∨ β5). There
are however some minor differences:

• In the collection of ancestries for pruning (see Sect. 5.6, the Merger tree can be

62

5.10 Summary

considered a unit, represented for instance by the topmost Merger. If one of the
outer MergerSinks receives an instantiation that can be passed through, it can be
passed on directly to the topmost sink, without going through the inner Mergers.
In particular, the inner MergerSinks do not need to do the ancestry checking step
required for pruning.

• If the MergerSinks restrict instantiation domains, e.g. as suggested in Sect. 5.7, this
calculation is not needed for the inner MergerSinks.

• In the case one of the new branches is propositionally closable (see Def. 5.2), one
could, at least in theory reduce the depth of the Merger tree by restructuring it
accordingly. However, this is hardly of practical relevance unless one regularly has
problems with very large disjunctions which often lead to propositionally closable
branches.

It remains to note that it does not necessarily speed up proof search to handle long
disjunctions in this way. If large disjunctions are successively bisected, a good formula
selection strategy might be able to postpone splitting on some of the disjunctions and
thus be more efficient. However, such considerations are very dependent on the heuristics
used and the problems to be solved. The purpose of this section was to point out how
k-ary branching can be implemented, if this is wished.

5.10 Summary

In this chapter, we have discussed a number of refinements for an incremental closure
prover. Some, like subsumption and indexing in instantiation buffers (Sect. 5.4 and 5.5)
were specific to the incremental closure technique. Others, like pruning or universal
variables (Sect. 5.6 and 5.7) showed how known refinements from backtracking provers
may be integrated into our framework.

All of these refinements required relatively small modifications of the basic framework
presented in Chapter 4. The next two chapters will cover two further families of re-
finements, namely simplification rules and equality handling. These will require a new
ingredient: adding syntactic constraints to formulae in goals.

63

5 Refinements

64

6 Simplification Rules

In this chapter, we shall extend our tableau calculus by adding the syntactic feature of
constrained formulae. These will be used to introduce a family of very powerful tableau
extension rules. It is conceivable, in principle, to adapt these rules to a backtracking
proof procedure without constrained formulae. But using constraints reduces the need for
backtracking in proof search. And we shall see that the incremental closure framework
and constrained formulae are a perfect match. The same principle shall be used in
Chapter 7 to obtain a calculus with built-in equality handling.

We will start out with a discussion of simplification rules for tableaux.

6.1 Simplification Rules for Tableaux

Non-clausal form analytic tableaux have a number of advantages over the proof proce-
dures for clausal form implemented in most successful automated theorem provers. For
instance, when the logic is enhanced by modal operators, clausal form cannot be used
without previously translating the problems into first-order. Another case is the inte-
gration of automated and interactive theorem proving [ABH+98, Gie98], where normal
forms would be counter-intuitive. Unfortunately, standard non-clausal form tableaux
tend to be rather inefficient, as many of the refinements available to clausal procedures
are hard to adapt. Typical cases in point are unit resolution, especially for proposi-
tional provers like the Davis-Putnam-Logemann-Loveland (DPLL) procedure [DLL62],
the βc rules of the KE calculus [DM94], the application of ‘result substitutions’ in St̊al-
marcks Procedure [SS98], and hyper tableaux [BFN96a]. The common feature of these
techniques is that they involve inferences between several formulae derived from the
formula to be proved, either by using one formula to simplify another one, or—for hy-
per tableau—making tableau expansions depend on the presence of certain literals on
a branch. In the basic tableau calculus we have considered so far, the only action that
takes more than one formula into account is branch closure.

In [Mas98], Massacci presents a simplification rule for propositional and modal tableau
calculi. This rule is of the form

simp
ψ, φ

ψ[φ], φ

which should be read as a new way of expanding a tableau in Def. 4.2, p. 17, namely:

If there is a tableau for S that has a leaf n with goal {ψ, φ} ∪ G, then the
tableau obtained by adding a new child n′ with goal {ψ[φ], φ} ∪ G to n is
also a tableau for S.

65

6 Simplification Rules

The interesting part of this rule is the notation ψ[φ], which denotes the formula that
results form first replacing any occurrence of φ, resp. ¬φ, in ψ by true, resp. false and
applying a set of boolean simplifications to the result. Formally, for the propositional
case, one defines

ψ[φ] =

true if ψ = φ

false otherwise, if ¬ψ = φ,

eval¬(ψ1[φ]) otherwise, if ψ = ¬ψ1,

eval∧(ψ1[φ], ψ2[φ]) otherwise, if ψ = ψ1 ∧ ψ2,

eval∨(ψ1[φ], ψ2[φ]) otherwise, if ψ = ψ1 ∨ ψ2,

ψ otherwise.

The eval functions perform boolean simplification as follows:

eval¬(ψ) =

false if ψ = true,

true if ψ = false,

¬ψ otherwise

eval∧(ψ1, ψ2) =

ψ2 if ψ1 = true,

ψ1 if ψ2 = true,

false if ψ1 = false or ψ2 = false,

ψ1 ∧ ψ2 otherwise

eval∨(ψ1, ψ2) =

ψ2 if ψ1 = false ,

ψ1 if ψ2 = false ,

true if ψ1 = true or ψ2 = true,

ψ1 ∨ ψ2 otherwise

This simplification operator can easily be extended to allow other connectives like
implication and equivalence.

Massacci shows that proof procedures using this rule can subsume a number of other
theorem proving techniques for propositional logic, e.g. the unit rule of DPLL [DLL62],
the βc rules of KE [DM94], regularity and hyper tableaux [BFN96a]. This is done mainly
by specifying the strategy of when and where to apply the simp rule.

While DPLL and hyper tableaux are originally formulated for problems in clause
normal form (CNF), the simplification rule is applicable for arbitrary non-normal form
formulae, making it a good framework to generalize CNF techniques to the non-normal
form case. Massacci gives variants of the simplification rule for various modal logics. In
[Mas97], he also gives a variant of the rule for first-order free-variable tableaux. Unfortu-
nately, this rule does not in general subsume first-order versions of unit-resolution, hyper
tableaux etc., because it places strong restrictions on the instantiation of free variables.

This chapter presents variants of the simplification rule for first order logic which
overcome this limitation, and which are particularly suited for use in an incremental

66

6.2 Simplification with Global Instantiation

closure prover. They were first introduced in [Gie00a], but the proofs of various theorems
were only sketched there. See also [Gie03] for an alternative proof of theorem 6.8.

6.2 Simplification with Global Instantiation

Consider a tableau goal containing the formulae pX ∨ qX and ¬pa, where X is a (rigid)
free variable. If X were instantiated with a, the disjunction could be simplified:

(pa ∨ qa)[¬pa]
; eval∨(pa[¬pa], qa[¬pa])
; eval∨(false , qa)
; qa

Our task is to find a version of this ground simplification that works with free variables.
The step from a ground version to a free variable version of a rule or a proof is usually
referred to as lifting.

In a backtracking prover, where rigid variables are globally instantiated, the obvious
way of lifting the simplification rule consists in applying a substitution to the whole
proof that unifies certain subformulae, so that a simplification becomes possible.

Such a rule would be formulated using the most general unifier (mgu) of the simplifying
formula and some subformula of the simplified formula. A little care must be taken to
prevent the instantiation of bound variables by such a unifier.

Definition 6.1 An occurrence of a subformula φ in ψ is called simplifiable, if no vari-
able occurring free in φ is bound by ψ.

Example 6.2 px is simplifiable in ∀y.(qy ∧ px), but not in ∀x.(qy ∧ px). It is also
simplifiable in (∀x.qx) ∧ px, because the quantifier does not bind the x occurring
free in px.

We have to take account of universal quantifiers in the definition of ψ[φ]. We define:

(∀x.ψ1)[φ] := eval∀x(ψ1[φ]) ,

where

eval∀x(ψ) =

true if ψ = true,

false if ψ = false,

∀x.ψ otherwise.

Using this notion, a simplification rule with global instantiation can be given:

ψ, φ
µ(ψ)[µ(φ)], µ(φ)

where µ is an mgu of φ and some simplifiable subformula of ψ,
and µ is applied on all open goals.

67

6 Simplification Rules

While this approach is sound, it relies on the application of a global instantiation for the
free variables. The problem with such a rule is that it introduces a new backtracking
point, because the applied unifier might not lead to a proof. Not only does this make the
rule unsuitable for an incremental closure prover. It is also problematic for a backtracking
prover as efficiency will suffer if more backtracking points than necessary are introduced.

6.3 Constrained Formulae

A universal technique for avoiding the global application of substitutions is to decorate
formulae with unification constraints. In the terminology of [GH03], we use constrained
formula tableaux. A unification constraint C is a conjunction of syntactic equalities
between terms or formulae, written as

s1 ≡ t1 & . . . & sk ≡ tk .

We use the symbol ≡ for syntactic equality in the constraint language to avoid confusion
with the meta-level =.

Definition 6.3 Let C = s1 ≡ t1 & . . . & sk ≡ tk be a unification constraint. We define

Sat(C) = {σ ∈ I | for all i, σ(si) equals σ(ti) syntactically}

to be the set of instantiations satisfying a constraint. A constraint C is called satisfi-
able, if Sat(C) is not empty, which means that there is a simultaneous unifier for the
pairs {si, ti}. A constraint C subsumes a constraint D, iff Sat(D) ⊆ Sat(C). Two
constraints C and D are equivalent, iff Sat(C) = Sat(D).

A constrained formula is a pair of a formula φ and a constraint C, written as φ� C.
The empty constraint, which is satisfied by all ground substitutions, is usually omitted.

A goal is henceforth a finite set of constrained formulae. For a goal G and an instan-
tiation σ ∈ I, we define

σ(G) = {σ(φ) | (φ� C) ∈ G and σ ∈ Sat(C)} .

The intuition for a constrained forumla is to consider the formula φ as available for branch
closure only if the free variables are instantiated in a way that satisfies the constraint.

Example 6.4 Consider a goal containing two constrained formulae

pX � X ≡ Z,¬pa� Z ≡ b .

The goal is not closed with this complementary pair under any instantiation σ, as
unification forces X to be instantiated with a, the first constraint requires σ(Z) =
σ(X) = a, while the second constraint imposes σ(Z) = b. Note that it is quite
possible for variables to occur in a constraint but not in the accompanying formula,
and vice versa.

68

6.3 Constrained Formulae

We can replace rules which globally apply an mgu of two formulae φ and ψ by versions
which add unification constraints of the form φ ≡ ψ to the resulting formulae. This is
a local operation that does not require backtracking. The check that free variables are
instantiated correctly for the given rule application is postponed to the branch/tableau
closure test.

Example 6.5 Let a goal contain two formulae

pX ∨ qX,¬pa .

The simplification step of the previous section requires instantiation of X with
a and yields a simplified formula qa. We can thus add the constrained formula
qa� X ≡ a to the goal.

Obviously, if formulae φi � Ci which already carry constraints are involved in a rule
application, the conjunction C0 & C1 . . . has to be passed on to the resulting formulae.
This is referred to as constraint propagation. Constraints are propagated through rule

applications, until a branch is closed. Closure between two literals L� C and ¬L ′ � C ′

is only allowed if the constraint C & C ′ & L ≡ L′ is satisfiable. Formally, the clauses of
Def. 4.2 now become1

If there is a tableau for S that has a leaf n with goal {α1 ∧ α2 � C} ∪ G,
then the tableau obtained by adding a new child n′ with goal {α1 � C,α2 �
C} ∪G to n is also a tableau for S. (α-expansion)

and similarly for the other expansions, while branch closure is defined as follows:

A goal G is closed under an instantiation σ, iff there is a complementary pair
{φ � C,¬ψ � D} ⊆ G with σ ∈ Sat(C) ∩ Sat(D), and σ(φ) = σ(ψ), or if
there is a formula (false � C) ∈ G with σ ∈ Sat(C).

The last sentence is needed because the simplification rules we shall introduce simplify
formulae to false occasionally.

Using unification constraints, the simplification rule takes the form

simpc0
ψ � C, φ � D

ψ � C, φ� D,µ(ψ)[µ(φ)] � (C &D & φ ≡ ξ)

where ξ is a simplifiable subformula of ψ,
µ is an mgu of ξ and φ,

and C &D & φ ≡ ξ is satisfiable

The simpc0 rule keeps an unsimplified copy of ψ � C in the goal. This will change in
later versions. An immediate consequence of keeping both original formulae is that com-
pleteness follows trivially from the completeness of the calculus without simplification.
We only need to ascertain soundness.

1We are not taking universal variables into account at this point.

69

6 Simplification Rules

Theorem 6.6 The tableau calculus with constrained formulae using the simp c0 rule is
sound, i.e. if a proof exists for a finite set of SNNF formulae, then that set is unsatisfiable.

Proof. Let σ be the instantiation used to close the tableau. Consider the ground proof-
tree obtained by replacing each goal of the proof by σ(G). In particular, this implies
omitting any formulae with constraints that are not satisfied by σ. Tableau expansions
for formulae with unsatisfied constraints are left out. For a β expansion this means that
only one of the branches needs to be kept, it doesn’t matter which.

The definition of a closed constrained formula tableau guarantees that there is a com-
plementary pair in each leaf goal of the resulting ground proof. Furthermore, as con-
straints can only be strengthened by rule applications, all proof steps needed to derive
the complementary pair are still present in the reduced proof. Simplification steps are
are transformed into instances of the ground simplification rule

ψ, φ

ψ, φ, ψ[φ]

It remains to show that this ground version of the rule is sound. For this, it is sufficient
to show that in any model where ψ and φ hold, ψ[φ] also holds, which immediately
follows from the definition of ψ[φ]. ut

It is a little misleading to call simp c0 a simplification rule, because the original formula
ψ � C has to be retained for completeness. Indeed, one cannot simply delete the original
formula, because there is no guarantee that the closing instantiation of the proof will be
such that the simplification is possible.

There is however an important special case: if the ‘new’ part of the constraint D&φ ≡ ξ
subsumes the ‘old’ part C, the original formula ψ � C may be discarded, because this
means that the simplification step is valid in all ground instances of ψ allowed by the
constraint C. Let simpc1 be the rule obtained with this modification:

simpc1 ψ � C, φ � D
(ψ � C)?, φ� D,µ(ψ)[µ(φ)] � (C &D & φ ≡ ξ)

where ξ is a simplifiable subformula of ψ,
µ is an mgu of ξ and φ,

C &D & φ ≡ ξ is satisfiable,
and ψ � C is omitted from the result if D & φ ≡ ξ subsumes C.

This allows real, destructive simplification steps in some cases, especially when no uni-
fication is needed.

Example 6.7 Consider a goal G containing constrained formulae

pX ∨ qX � X ≡ a & Y ≡ a, ¬pa� X ≡ Y .

The constraints in question are C = (X ≡ a & Y ≡ a) and (D & φ ≡ ξ) = (X ≡
Y & pX ≡ pa). These are equivalent, so the latter one certainly subsumes the
former. We can simplify the goal to

qa� X ≡ a& Y ≡ a, ¬pa� X ≡ Y .

70

6.3 Constrained Formulae

Note that the resulting combined constraint is equivalent C whenever the sub-
sumption holds.

Theorem 6.8 The simpc1 rule is sound. It is also complete, in the sense that a goal
that can be closed under some σ after applying a sequence R of expansions steps, can
still be closed under σ by a modified sequence R′ after an application of the simp c1 rule.
Moreover, there is such an R′ that is at most as long as the original R.2

Proof. Soundness may be shown as for simp c0, see Theorem 6.6.
Completeness would be difficult to show by a Hintikka-style argument, because of the

destructive nature of simpc1. Apart from that, such a proof would not yield the statement
about the proof sizes. We shall construct R′ from R by a proof transformation, in which
rule applications on (descendents of) a discarded original formula ψ � C can either
be applied to (descendents of) the simplified or simplifying formula, or be discarded
altogether. We have described an alternative way of performing this proof transformation
in [Gie03].

In case the simpc1 application does not discard the original formula, we can simply take
R′ = R. If the original formula ψ is discarded, we start by categorizing all subformulae
of σ(ψ). Still assuming formulae in SNNF, subformulae might be

1. untouched by the simplification step, or

2. changed by the simplification step in such a way that the top operator remains
untouched, i.e. only proper subterms were modified, or

3. part of a subformula replaced by true or false in the base cases of the definition of
ψ[φ], implying that they are also subformulae of σ(φ), or

4. part of a subformula removed or replaced by true or false by the eval function.

We can now analyze the tableau expansions needed by R to close the proof. Expansions
steps in R are ‘analytic’, meaning that they derive only subformulae of previously present
formulae. Expansion steps that do not operate on ψ or some formula derived from ψ
can be applied unaltered. The same holds for subformulae derived from ψ, as long as
they belong to the first two categories. At some point however, there will be α, resp.
β-expansions in R, for a formula A∧B, resp. A∨B, where only one subformula A is left,
because of an evaluation of A∧ true , resp. A∨ false in ψ[φ]. In the case of a β-expansion,
we can just leave out the branch for B and use the one for A in R′. The proof will still
be closable and smaller than the original one as we have at least one branch less. In the
case of A ∧ B, where B was simplified to true, we need to analyze B. We recursively
define a formula ξ to be φ-implied, if

• ξ = φ, or

• ξ = ξ1 ∧ ξ2, where ξ1 and ξ2 are both φ-implied, or

2Note that the simpc1 application is not counted in R′. So the overall proof size may increase by 1.

71

6 Simplification Rules

• ξ = ξ1 ∨ ξ2, where at least one of ξ1 and ξ2 is φ-implied, or

• ξ = ∀x.ξ1, where ξ1 is φ-implied and x is not free in φ.

If one now goes through the definitions of ψ[φ] and the eval functions, remembering that
we assume formulae in SNNF, one sees that B must be φ-implied in order to be simplified
to true. One now proceeds as follows for the α-expansion of A ∧ B and all following
expansions of subformulae of B in R, maintaining the invariant that all formulae derived
by such proof steps on the current branch are φ-implied: α- and γ-expansions are simply
omitted. β-expansions are also omitted but one continues on the branch of R that
receives the φ-implied disjunct. This is done until the expansions of R actually derive
φ. One can then continue expansions on φ normally, as that formula has been left in the
goal by the simplification step.

Each branch of the reduced proof corresponds to some branch of the original proof,
with some expansion steps and formulae omitted. We know that all omitted formulae are
φ-implied but not equal to φ, so they cannot be literals. The final goal of the transformed
proof thus contains all the literals of the corresponding branch of the original proof.
Therefore, the resulting proof is still closable.

We left out two special cases, namely that the simplification step simplifies the whole
formula to true or false . In the false case, the branch is of course immediately closable.
In the true case, the whole original formula ψ is φ-implied, and we can proceed as before
for the A ∧ true case. ut

This proof can be extended to arbitrary first order formulae by using polarity of
subformulae in the notion of φ-implied formulae, amongst other modifications. We are
not going to discuss this in detail as the basic technique remains the same.

The simpc rules enjoy an interesting relative termination property, which it shares
with the α and β rules, namely that only a finite number of simplification steps can be
performed without intervening γ-expansions, under certain side conditions.

Definition 6.9 Two constrained formulae φ� C, ψ � D are called variants, if C and
D are equivalent, and for all σ ∈ Sat(C), σ(φ) = σ(ψ).

Example 6.10 pX � X ≡ a and pa � X ≡ a are variants. pa � X ≡ a and
pa� X ≡ Y are not variants according to this definition, because the constraints
are not equivalent.

We can now formulate our relative termination property:

Theorem 6.11 Starting from a given tableau goal, only a finite number of α, β, and
simpc0 rule applications without intervening applications of the γ rule are possible, if
simpc0 is never applied twice to the same pair of constrained formulae, and any formula
which is a variant of a formula already present on a branch is discarded. The same is
true for the simpc1 rule.

72

6.4 Constrained Formulae and Incremental Closure

Proof. A formula φ can only be simplified by setting one of its subterms to true or
false , and the resulting simplified formulae are all smaller than φ. So the number of
distinct formulae that can be generated is finite. On the other hand, all constraints that
could be generated are conjunctive combinations of existing constraints and syntactic
equations between subformulae of formulae on a branch, so there can be only finitely
many non-equivalent constraints. Accordingly, the number of non-variant constrained
formulae must be finite. For simp c1, formulae are occasionally discarded from a goal.
This implies that even less rule applications are possible, so the same argument holds.

ut

As a practical consequence of this termination property, there is no need to interleave
γ and simpc applications in a proof procedure to guarantee fairness. One can apply all
viable simplifications before considering an application of the γ rule. Note that it is not
clear how useful this property really is in a serious implementation. A similar property
is discussed for a set of equality handling rules in Sect. 7.4.2, and a number of problems
with it are discussed in Sect. 7.4.3.

6.4 Constrained Formulae and Incremental Closure

It is quite easy to adapt the incremental closure technique to work with constrained
formula tableaux. The only place where a change is needed is in the handling of com-
plementary pairs that initiates δ propagation. Where Lemma 4.15 on page 26 stated

δ(n) = unif(φ, ψ)|fv(n) \ cl(l)old

for the focused leaf n = l, we now have to take the constraints into account, getting

δ(n) = (unif(φ, ψ) ∩ Sat(C) ∩ Sat(D))|fv(n) \ cl(l)old

for a new complementary pair φ � C,ψ � D. As δ propagation is also implemented
using constraints, this simply translates to propagating the constraint

φ ≡ ψ & C &D

instead of just φ ≡ ψ.

Although tableaux with constrained formulae and incremental closure are a very nat-
ural match, it should be mentioned that constrained formula tableaux may be used in a
backtracking procedure as well. There are at least two different ways to do this.

One possibility is to take the constraints into account when a branch is closed by
computing a unifier that not only unifies the complementary pair but also satisfies the
attached constraints. If there is no such unifier, the branch closure is not allowed. This
unifier can then be applied on the whole tableau as usual.

Another possibility is to use backtracking without global instantiation by computing
the unification constraint φ ≡ ψ&C&D when a branch is to be closed, and adding it to
an accumulated global constraint. Any rule application or branch closure that produces

73

6 Simplification Rules

a constraint which is incompatible with the accumulated constraint is forbidden. Of
course, simultaneous backtracking is required for the accumulated constraint and the
tableau if this scheme is used.

We shall briefly reconsider these alternatives at the end of Sect. 7.3.1 in the context
of equality handling rules.

6.5 Dis-Unification Constraints

Although the simpc1 rule permits the original formula ψ � C to be deleted from the goal
in some cases, it will usually have to be kept. This can lead to redundancies as exemplified
by the following tableau branch for the set of formulae {pa, qa,¬pX ∨ ¬qX ∨ rX}. We
write only the new formula in each goal to make the tableau more readable. All the old
formulae remain in each goal.

1 : {pa, qa,¬pX ∨ ¬qX ∨ rX}
2 : {¬qa ∨ ra� X ≡ a, . . .}
3 : {¬pa ∨ ra� X ≡ a, . . .}

Goal 2 is the result of simplifying the disjunction with pa, goal 3 comes from a simplifi-
cation of the same formula with qa. After generation of 2, one would intuitively expect
the step leading to goal 3 to be redundant: The constraint introduced in 3 demands
that X be instantiated with a. If this were done globally, we would get a ground proof
starting as follows:

1 : {pa, qa,¬pa ∨ ¬qa ∨ ra}
2 : {pa, qa,¬qa ∨ ra}

The original disjunction is kept by the first-order simplification rule only in case X is
not instantiated with a. In the ground case, qa can now be used to simplify the formulae
¬qa ∨ ra introduced in goal 2, leading to a final goal

3 : {pa, qa, ra} .

One can easily see that in the presence of a large formula and many simplifying literals,
a large number of redundant formulae may be generated by the simp c0 and simpc1 rules.
We need to modify the simplification rule to forbid multiple simplifications of one formula
with the same instantion.

6.5.1 Simplification with Dis-unification constraints

One way of solving this problem is to use constraints to record instantiations under which
a formula could have been discarded in a ground calculus. To do this, we have to require
the constraint language to be closed under negation (denoted ‘!’) as well as conjunction.
The resulting constraint satisfiability problems are known as dis-unification problems,
see e.g. [Com91], so we will talk of dis-unification or DU constraints.

A little care has to be taken with the semantics of DU constraints: Some DU con-
straints that are not satisfiable in a given signature might become satisfiable when the

74

6.5 Dis-Unification Constraints

signature is extended. E.g., !X ≡ a, is not satisfiable in a signature consisting only of
the constant symbol a, but it becomes satisfiable if the signature is extended by new
constant or function symbols. In our context, satisfiability should be considered with
respect to a possibly extended signature. For one thing, it turns out that satisfiability
and subsumption can be checked more efficiently with this definition. The same effect
for term ordering constraints has previously been noted in [NR95a]. And if we decide
to extend the calculus with a δ rule for existential quantification, new skolem symbols
might be introduced at a later point, extending the signature, so we would need the
extended signature semantics anyway.

Using DU constraints, the simplification rule can be reformulated as follows:

simpc2
ψ � C, φ� D

ψ � C & !(D & φ ≡ ξ), φ� D, µ(ψ)[µ(φ)] � (C &D & φ ≡ ξ)

where ξ is a simplifiable subformula of ψ,
µ is an mgu of ξ and φ,

and C &D & φ ≡ ξ is satisfiable

This rule differs from simpc0 in that the constraint of the original formula ψ is changed
by adding !(D & φ ≡ ξ). What this means is that the formula is no longer available
for simplification steps requiring an instantiation under which this simplification would
have been possible.

We can allow the original formula to be discarded if the new constraint C&!(D&φ ≡ ξ)
is unsatisfiable, because it could never participate in a branch closure in that case. It
turns out that this new constraint is unsatisfiable if and only if D & φ ≡ ξ subsumes
C. In other words the simpc2 rule will discard the original formula in exactly the same
cases as simpc1.

Example 6.12 For the formula set above, we now get the following derivation:

1 : {pa, qa, ¬pX ∨ ¬qX ∨ rX}
2 : { ¬qa ∨ ra� X ≡ a,

pa, qa, ¬pX ∨ ¬qX ∨ rX � !X ≡ a}

The constraint !X ≡ a now prevents the simplification of the original disjunction
with qa. Instead, the new formula can be simpified with qa, and in this case it can
even be discarded, as no unification is needed. We thus get the following goal:

3 : {ra� X ≡ a, pa, qa, ¬pX ∨ ¬qX ∨ rX � !X ≡ a}

If X is instantiated with a, this corresponds closely to the ground proof shown
above. One arrives at the same goal by simplifying first with qa, and then with
pa. In a sense, the simpc2 rule removes redundancy due to commutation of sim-
plification steps.

The simpc2 rule has similar properties as the previous versions of the simplification
rule.

75

6 Simplification Rules

Theorem 6.13 The simpc2 rule is sound. It is also complete in the sense of Theo-
rem 6.8.

Proof. Soundness follows from Theorem 6.6, as stricly less rule applications are possible
than with simpc0. Completeness is shown using the same technique as for Theorem 6.8.
We take the addition of the DU constraint into account by considering three cases. If
the closing constraint σ does not satisfy C, any proof steps on ψ � C can be left out
anyway, as they do not contribute to the closure of the subtableau. If σ ∈ Sat(C), but
σ 6∈ Sat(D & φ ≡ ξ), we can perform all extensions as in R, because σ satisfies the
changed constraint C & !(D&φ ≡ ξ). Finally, if σ ∈ Sat(C) and σ ∈ Sat(D&φ ≡ ξ), we
perform the proof transformation as in the proof of Theorem 6.8, considering the original
formula to be deleted, because its constraint and the constraints of any formulae derived
from it is not satisfied by σ. ut

Theorem 6.14 Starting from a given tableau goal, only a finite number of α, β, and
simpc2 rule applications without intervening applications of the γ rule are possible, under
the same conditions as for Theorem 6.11.

Proof. The simpc2 allows even less rule applications than the simp c1 rule, so the property
follows from Theorem 6.11. ut

We introduced formulae with unification constraints in Sect. 6.3 as a universal means
of translating rules which require global instantiation and backtracking into local rules
which can do without backtracking. In this section, we introduced dis-unification con-
straints as a means of encoding another kind of destructiveness, namely the deletion of
formulae from goals for the purpose of excluding rule applications. Note that in classical
predicate logic, there is no other reason to delete a formula from a tableau goal due to
the monotonicity properties of the logic and the calculus. DU constraints can thus also
be considered a universal technique for adapting refinements from backtracking provers
to the incremental closure framework.

6.5.2 Conjunctive DU Constraints

The drawback of this variant of the simplification rule is the high cost of checking satisfia-
bility for arbitrary dis-unification constraints. As a compromise, one can keep unification
(U) and dis-unification (DU) parts of constraints separate and weaken the DU part of
constraints, when this makes calculations more convenient. The unification part has
to be preserved, as it is needed for soundness. But the DU part only serves to reduce
redundancy during proof search, so it is legitimate to simplify constraint handling to
improve the overall performance.

Definition 6.15 A conjunctive DU constraint is a constraint of the form

C0 & !C1 & !C2 . . . ,

76

6.5 Dis-Unification Constraints

where the Ci are conjunctive unification constraints as defined in Sec. 6.3, that is without
negation. C0 is the unification (U) part and !C1 & !C2 . . . the dis-unification (DU) part
of the constraint.

Satisfiability (for possibly extended signatures) is fairly easy to check for constraints
of that form, as we will show in Sect. 6.5.3. The problem is that !(D & φ ≡ ξ) no longer
has this form if the constraint D of the simplifying formula φ has a non-empty DU part.
The solution is to drop the DU part of D when φ � D is used to simplify another
formula. We shall illustrate this strategy in an example.

Example 6.16 Let a goal contain three formulae

F = pa, G = pX ∧ qb, H = (pX ∧ qY) ∧ rc .

Now G can be simplified with F with a unifier µ = [X/a], giving

µG[µF] � X ≡ a = qb� X ≡ a .

Also, H can be simplified by G with a unifier ν = [Y/b], giving

νH[νG] � Y ≡ b = rc� Y ≡ b .

Using full DU constraint handling, we get the following derivation if first G, then
H are simplified:

{F, G, H}

{µG[µF] � X ≡ a, F, G� !X ≡ a, H}

{νH[νG] � Y ≡ b& !X ≡ a, µG[µF] � X ≡ a, F,

G� !X ≡ a, H � !(Y ≡ b& !X ≡ a}

The final constraint of H is no longer in the desired form, and it cannot be trans-
formed into an equivalent constraint of that form either. The suggested solution
would omit the DU constraint !X ≡ a of G when it is used to simplify another
formula. This gives the following final goal, in which all constraints are of the
desired form:

{νH[νG] � Y ≡ b, µG[µF] � X ≡ a, F, G� !X ≡ a, H � !Y ≡ b}

The simpc2 rule is still sound with this modification, as all rule applications would also
have been possible with simpc0, and all generated constraints are at still at least as strong
as the ones simpc0 would have generated. On the other hand, this modification allows
more rule applications than the original simp c2 with full DU constraint propagation, so
the calculus remains complete.

In a way, the simpc0 rule gives an upper bound on allowed rule applications to preserve
soundness, while simpc2 is a lower bound needed to preserve completeness. Any strategy

77

6 Simplification Rules

for weakening constraints or discarding formulae which lies between these two is still
sound and complete.

There is another place where the DU parts of constraints can (and should) be dis-
carded, namely before δ propagation. Remember that the DU constraints are only
meant to restrict rule applications in a completeness preserving way. If the tableau can
be closed by an instantiation which violates the DU constraints of some of the comple-
mentary pairs, the closure is still sound. The procedure is still complete if we choose to
propagate DU constraints, but that would make the tableau harder to close, which is
not desirable.

The same observation holds for any other kind of constraints which are only introduced
to restrict rule applications, but which are not necessary for soundness, like the syntactic
ordering constraints used for equality handling in the following chapter, for instance.

6.5.3 Checking Satisfiability of Conjunctive DU Constraints

We shall now see that checking the satisfiability of conjunctive DU constraints is com-
paratively simple, if one adopts the extended signature semantics. It can be reduced
to checking subsumption of conjunctive unification constraints. We start by some well-
known facts about most general unifiers.

Proposition 6.17 If a conjunctive unification constraint

C = l1 ≡ r1 & · · · & lk ≡ rk

is satisfiable, then there exists an idempotent most general unifier µC , i.e. a unification
such that

• µC = µC ◦ µC ,

• µC(li) = µC(ri) for i = 1, . . . , k, and

• For all instantiations σ ∈ Sat(C), there is an instantiation τ ∈ I such that σ =
τ ◦ µC .

The following lemma extends the connection between constraints and most general uni-
fiers.

Lemma 6.18 Let C and D be satisfiable conjunctive unification constraints.

1. σ ∈ Sat(C) iff σ = σ ◦ µC for any σ ∈ I.

2. C subsumes D iff µD = µD ◦ µC .

Proof. Claim 1.: If σ ∈ Sat(C), then there is a τ ∈ I with σ = τ ◦ µC , hence

σ = τ ◦ µC = τ ◦ µC ◦ µC = σ ◦ µC .

Conversely, if σ = σ ◦ µC , then for any equation l ≡ r of C,

σ(l) = σ(µC(l)) = σ(µC(r)) = σ(r) ,

so σ is indeed a solution of C.

78

6.5 Dis-Unification Constraints

Claim 2.: Note that two terms s, t are equal, iff for all σ ∈ I, σ(s) = σ(t). Hence, two
substitutions µ, µ′ are equal iff for all σ ∈ I, σ ◦ µ = σ ◦ µ′.

Let C subsume D. For any σ ∈ I, we have σ ◦ µD = σ ◦ µD ◦ µD by idempotency.
Hence, σ ◦ µD ∈ Sat(D), according to the first part of this lemma. Because C subsumes
D, we also have σ ◦ µD ∈ Sat(C), from which σ ◦ µD = σ ◦ µD ◦ µC . As this holds for
arbitrary σ, it follows that µD = µD ◦ µC .

Conversely, assume that µD = µD ◦ µC , and let σ ∈ Sat(D). Then,

σ = σ ◦ µD = σ ◦ µD ◦ µC = σ ◦ µC ,

and hence σ ∈ Sat(C). This holds for arbitrary σ, and thus C subsumes D. ut

We can now prove a simple characterization of the satisfiability of conjunctive DU
constraints.

Theorem 6.19 A conjunctive DU constraint

C = C0 & !C1 & · · · & !Ck,

where C0 to Ck are conjunctive unification constraints, is satisfiable by an instantiation
to a possibly extended signature, iff

• C0 is satisfiable, and

• C0 & !Ci is satisfiable, that is Ci does not subsume C0, for i = 1, . . . , k.

Proof. First, let C be satisfiable. We choose some σ ∈ Sat(C). Due to the semantics
of constraints, σ ∈ Sat(C0), and σ 6∈ Sat(Ci) for i = 1, . . . , k. Hence none of the Ci
subsumes C0.

For the converse, let C0 be satisfiable and none of the Ci subsume C0 for i > 0. We
may assume without loss of generality that all Ci for i = 1, . . . , k are satisfiable. If some
were unsatisfiable, we could leave them out without changing Sat(C). We now pick
corresponding mgus µi = µCi

for C0 to Ck. Let V be the set of all variables occurring
in µi(x) for any x ∈ domµi, i = 0, . . . , k. We introduce a new constant symbol cX for
each X ∈ V , plus an additional constant symbol d. We define an instantiation δ ∈ I by

δ(X) :=

{

cX if X ∈ V ,

d otherwise.

Because of the new constant symbols used, δ is a bijection between terms over the
old signature with variables in V and ground terms of the new signature. Hence two
substitutions µ, µ′ over the old signature with variables in V are equal iff δ ◦ µ = δ ◦ µ′.
We now define σ := δ ◦µ0. We will prove that σ ∈ Sat(C), by showing that σ ∈ Sat(C0)
and σ 6∈ Sat(Ci) for i > 0.

As µ0 is an mgu for C0, it follows that σ = δ ◦µ0 ∈ Sat(C0). Assume that σ ∈ Sat(Ci)
for some i > 0. Due to Lemma 6.18, point 1, σ = σ◦µi, and thus δ◦µ0 = δ◦µ0◦µi. Hence,
due to the properties of δ, µ0 = µ0 ◦µi, so Ci subsumes C0, which is a contradiction. ut

79

6 Simplification Rules

6.6 Simplification with Universal Variables

In practice, the simplification rules as outlined above tend to require a lot of instances
of γ-formulae. This can lead to a further redundancy problem.

Example 6.20 Given the formulae

{pa, pb, pc, ∀x.¬px ∨ qx} ,

one can apply a γ expansion, yielding a formula ¬pX ∨ qX. This can be simplified
by the various p-literals, to

qa� X ≡ a, qb� X ≡ b, qc� X ≡ c

But these literals have mutually contradictory constraints, so any further rule
application or closure can involve at most one of these literals. One needs three
instances of the γ formula to produce compatible literals

qa� X1 ≡ a, qb� X2 ≡ b, qc� X3 ≡ c

But with three instances, not only these three useful literals are deducible, but a
total of nine q-literals coming from the simplification of each instance ¬pXi ∨ qXi

with each of the three p-literals:

qa� X1 ≡ a, qb� X1 ≡ b, qc� X1 ≡ c,
qa� X2 ≡ a, qb� X2 ≡ b, qc� X2 ≡ c,
qa� X3 ≡ a, qb� X3 ≡ b, qc� X3 ≡ c

As all of these will subsequently be used to simplify any subformula qY on the
branch, this can quickly lead to a huge (though finite) number of rule applications.

One way to reduce the number of distinct instances of γ formulae is to use universal
variables as introduced in Sect. 5.7. A universal variable may be instantiated differently
for consecutive applications of the simplification rule. We shall write [X̄]φ � C for a
constrained formula which is universal with respect to some variables X̄. Before giving
a formal definition of the simplification rule with universal variables, let us continue our
example to give an intuition of how it works.

Example 6.21 Starting from the same set of formulae as in Example 6.20, the γ-
expansion now yields [X](¬pX ∨ qX). The variable X is universal, so we may
instantiate it individually for the three applications of the simplification rule, giv-
ing

[X]qa� X ≡ a, [X]qb� X ≡ b, [X]qc � X ≡ c

The important thing here is that X is still universal for these simplified formulae.
They are thus no longer incompatible, because X may be instantiated differently
for each of them. Due to the fact that the constraint completely determines the

80

6.6 Simplification with Universal Variables

instantiation of X in each case, the universal variable and constraint could be
eliminated altogether in these literals, giving

qa, qb, qc .

That is a technical optimization however, which is not strictly necessary.

What was said about universal varibales in Sect. 5.7 also applies to constrained for-
mula tableaux. But we need to modify the definition of universal variables to take the
constraint into account.

Definition 6.22 Let (φ � C) ∈ G be a constrained formula occurring in a goal G
of a constrained formula tableau, and X some free variable. Let Ḡ be the union of G
and all goals above G in the tableau. φ � C is called universal with respect to X if
σ([X/t](φ)) is a logical consequence of σ(Ḡ) for all σ ∈ I and all ground terms t such
that σ ◦ [X/t] ∈ Sat(C).

To simplify the formulation of the simplification rule, we can require the universal
variables of two formulae to be made disjoint by renaming before we apply a simplification
step. We need a criterion for detecting universal variables in the result of a simplification
step, similar to Lemma 5.9. This criterion is simply that any free variable appearing in
the simplified formula that was universal in the original formulae, remains universal.

Lemma 6.23 Consider an application of the simp c2 rule, where the universal variables
of the two original formulae are disjoint. Then the resulting simplified formula is uni-
versal with respect to any variable for which one of the original formulae was universal.
The universal variables of the original formulae are unchanged.

Proof. We show only the case for a universal variable X of the original formula ψ � C,
the case for a universal variable of φ� D being very similar. Let G and G′ be the goals
before and after the expansion. Take an arbitrary σ ∈ I and some ground term t with
σ ◦ [X/t] ∈ Sat(C &D&φ ≡ ξ). We abbreviate σ ′ := σ ◦ [X/t]. Since σ′ ∈ Sat(C), σ′(ψ)
is a logical consequence of Ḡ. But we also have σ′(φ) = σ′(ξ), so σ′(ψ) may be (ground)
simplified to σ′(ψ)[σ′(φ)], which is thus also a consequence of Ḡ. As σ′ is a unifier of φ
and ξ, and µ is an mgu, it follows from Lemma 6.18 that this formula is syntactically
equal to σ′(µ(ψ)[µ(φ)]), which is thus also a consequence of Ḡ′. ut

If we annotate the simpc2 rule, with the sets [X̄] of universal variables, we get the
following:

simpc2u
[X̄]ψ � C, [Ȳ]φ� D

[X̄]ψ � C & !(D & φ ≡ ξ), [Ȳ]φ� D,

[X̄ ∪ Ȳ]µ(ψ)[µ(φ)] � (C &D & φ ≡ ξ)

where ξ is a simplifiable subformula of ψ,
µ is an mgu of ξ and φ,

and C &D & φ ≡ ξ is satisfiable

81

6 Simplification Rules

If we use universal variables, the ‘simplifiable subformula’ condition could be relaxed
to permit simplification of subformulae with bound variables under certain conditions.
In a non-SNNF setting, simplification below existential quantifiers is also possible, for
instance simplification of ∃y.(py ∨ qy) with [X].¬pX to ∃y.qy. A formal definition of
this becomes rather technical however, so we shall keep the restriction to simplify our
discussion.

The simpc2u rule is sound and complete for a free variable tableau calculus with
universal variables. Completeness can be shown by a combination of the technique of
[Gie98], Sect. 7.4, for showing completeness of tableaux with universal variables, and the
proof transformation technique of Theorems 6.8 and 6.13. By contrast, the termination
property does not hold anymore, if universal variables are used. To apply the simp c2u

rule, it is necessary in general to rename universal variables in the original formulae to
make them disjoint. But this renaming destroys termination.

Example 6.24 Consider the formulae pa and [X]¬pX ∨ pfX. With simplification and
renaming of universal variables, one can consecutively deduce the following con-
strained literals without any intervening applications of other expansion rules.

[X1].pfa� X1 ≡ a
[X1, X2].pffa� X1 ≡ a&X2 ≡ fa

[X1, X2, X3].pfffa� X1 ≡ a&X2 ≡ fa&X3 ≡ ffa
etc.

This means that in a prover using the simp c2u rule, simplification and β- or γ-
expansions3 need to be interleaved to retain fairness. How exactly this should be done
falls into the realm of heuristics, but we can point out some considerations, based on
practical experience with our implementation PrInS.

As the simpc2u rule without renaming obviously enjoys the termination property, re-
naming and γ/β-expansion can be interleaved, but that would amount to effectively
ignoring universality most of the time. Simplification steps tend to be much more useful
for most problems than further rigid variable introducing expansions.

It is interesting to note that there are many problems, Schubert’s ‘Steamroller’ [Sti86]
being a particularly prominent example, in which simplification with universal variables
actually does terminate. This is true, in particular, when some simplification strategy,
like the hyper strategy discussed in the next section is used, which does not apply arbi-
trary simplification steps. To handle such cases efficiently, it is advisable to equip a proof
procedure with some sort of cycle detection that only interleaves simplifier applications
with γ rules, if they threaten to lead to infinite simplification sequences. One possibility
is to set a limit to the size of inferred formulae, which can be incrementally increased as
the tableau is expanded. This would always allow rule applications which really simplify
a formula in the sense of making it smaller.

In PrInS, a heuristic based on histories of formulae is employed: For each goal, a
list of deferred rule applications is kept. Pending repetitions of γ/β-expansions are put

3Recall that in Sect. 5.7, we discussed the two possibilities of either repeated γ-expansions on the same
formula, or repeated β-expansions with renaming of variables.

82

6.7 Emulating Hyper Tableaux

into this list, as well as simplifications steps where a formula ψ is to be simplified with
some φ that is itself a descendant of some formula obtained by simplifying ψ. Deferred
rule applications are rescheduled when no other expansions are possible anymore. This
heuristic is simple to implement—the history bookkeeping is similar to that for pruning,
see Sect. 5.6—and it has proven to be sufficiently effective in many cases.

6.7 Emulating Hyper Tableaux

Although we have identified cases in which we can discard the original formula in a
simplification step, we should not forget that this is not possible in general. With
the simpc2 and simpc2u rules, we can at least strengthen the constraint of the original
formula, but this does not change the fact that our so-called simplification rule actually
makes goals larger in most cases. The reason of using the name simplification is the
analogy to the ground and propositional simplification rules which our first-order version
subsumes.

In order for the simplification rules to be useful in a prover, one needs a simplification
strategy, that is a strategy that prescribes when to apply which kinds of simplification
steps.

We claimed at the beginning of this chapter that our simplification rules are capable
of simulating first-order versions of various refinements, including hyper tableaux, and
regularity. We have yet to show that this has been achieved. In this section, we shall
describe a simplification strategy that implements a non-clausal analogue of hyper tab-
leaux, and in Sect. 6.8, we shall consider the regularity restriction which was already
mentioned in Sect. 5.8.

Hyper tableaux are defined for problems stated in clause normal form (CNF), see
[BFN96a, BFN96b, Küh97, Bau98]. For clause tableaux, it is customary not to include
the clauses in the tableau itself. Instead, one only uses the literals which result from
expanding the tableau with a clause. Hyper tableaux permit an expansion with a clause
only if all new branches which receive negative4 literals of the clause are immediately
closed, as shown in Fig. 6.1. All inner nodes are thus positive literals.

Alternatively, one can take the view of interpreting the clauses as tableau expansion
rules themselves. In this view, a clause is ‘fired’ if there is a positive literal on a branch
for every negative literal of the clause. The tableau is then extended by one new branch
for each of the positive literals of the clause. It is very intuitive to write clauses as
implications to support this view, see Fig. 6.2.

In the first-order case, one has to apply a substitution to unify the negative literals
of the clause with corresponding positive literals on the branch. The way variables are
handled differs between the various presentations of hyper tableaux. While [Bau98]
uses universal variables in branch literals where possible, that version of hyper tableaux
does not use rigid variables. Instead, it uses ‘purifying substitutions’ which generate
ground instances of clauses if necessary. This happens whenever a variable is shared

4We consider positive hyper tableaux here. It is possible to exchange the roles of positive and negative
literals, which leads to negative hyper tableaux.

83

6 Simplification Rules

Clause set:

A
B
¬D
¬E

¬A ∨ ¬B ∨ C
¬C ∨D ∨E

∅

A

B

¬A ¬B C
× ×

¬C D E
×

¬D ¬E
× ×

Figure 6.1: A propositional hyper tableau.

Clause set:

true → A
true → B
D → false
E → false
A ∧B → C
C → D ∨E

∅

A

B

C

D E
× ×

Figure 6.2: A ‘rule view’ hyper tableau.

84

6.7 Emulating Hyper Tableaux

Clause Set:
p(a, b)

p(x, z) → p(x, y) ∨ p(y, z)
p(x, f(x)) → q(x)

∅

p(a, b)

p(a, Y) p(Y, b)

q(a) � Y ≡ f(a)

Figure 6.3: A first-order hyper tableau using rigid variables and constrained formulae

between two positive literals of a clause without occurring in any of the negative literals.
A version described in [Küh97] uses rigid variables in such situations, using copies of
clauses to avoid destructive instantiation, in a way somewhat similar to the disconnection
calculus [Bil96]. In [vE01], a variant with rigid variables and constraints is proposed,
but constraints are attached to branches instead of formulae as is done in our calculi.

We can define a version of first-order hyper tableaux using constrained formulae.
As usual, we use rigid variables when necessary, and constraints to capture necessary
instantiations. An example of this approach is given in Fig. 6.3. After putting the literal
p(a, b) on the branch using the first clause, we expand the tableau using the second
clause, where p(x, z) is instantiated with p(a, b). As the two branches share the new
variable Y , this has to be rigid. Subsequent expansion of the left branch with the third
clause is possible only if Y is instantiated to fa. This restriction is captured in the
constraint of the generated literal.

These rigid variable, constrained formula hyper tableaux can be emulated using our
simplification rule with universal variables and a suitable simplification strategy. From
now on, we shall consider normal analytic tableaux again. The set of clauses is given as
a set of universally quantified disjunctions of literals. For the clause set of Fig. 6.3, we
would start with a goal

{p(a, b), ∀x, y, z(¬p(x, z) ∨ p(x, y) ∨ p(y, z)), ∀x.(¬p(x, f(x)) ∨ q(x))} .

γ-expansion then leads to disjunctions of literals where all free variables are universal:

{p(a, b), [X,Y,Z]¬p(X,Z) ∨ p(X,Y) ∨ p(Y,Z), [X]¬p(X, f(X)) ∨ q(X)} .

A hyper tableau expansion step is now simulated by simplifying away negative literals in
the disjunctions using the goal’s positive literals, and applying β-expansion only when
no negative literals are left. In our example we would first derive

[X,Y,Z]p(a, Y) ∨ p(Y, b) � X ≡ a& Z ≡ b ,

where the universal variables X, Z may be eliminated as their instantiation is completely
determined by the constraint, giving

[Y]p(a, Y) ∨ p(Y, b) .

85

6 Simplification Rules

A β-expansion then yields two branches with p(a, Y ′) and p(Y ′, b) respectively, where
Y ′ is a new rigid variable. This β-expansion will be repeatedly applied by the proof
procedure introducing a new rigid variable each time. Similarly, simplifying the disjunc-
tion [X]¬p(X, f(X)) ∨ q(X) with p(a, Y ′) will lead to a literal q(a) � Y ′ ≡ f(a), which
requires no β-expansion.

This principle can be captured in a strategy, which is an ensemble of rules describing
when rule applications are allowed. In this case, the strategy would be:

Use simplification only to simplify any negative literals inside disjunctions
with positive literals occurring on the branch. Use β-expansion only for
disjunctions which contain no negative literals.

As this strategy requires simplifying away all negative literals in a disjunction before a
β-expansion is allowed, we can further restrict the strategy to simplify away the negative
literals in a fixed order:

Use simplification only to simplify any leftmost negative literals inside dis-
junctions with positive literals occurring on the branch. Use β-expansion
only for disjunctions which contain no negative literals.

With this strategy, the emulation of a hyper tableau expansion will require only as many
intermediate simplification steps as there are negative literals in the clause/disjunction
in question.

There is obviously not much merit in using this emulation of hyper tableaux in an
actual implementation, if problems are given as clause sets.5 It would be simpler and
more efficient to implement a rigid variable constrained formula hyper tableau calculus
directly, instead of implementing non-clausal tableaux and simplification, and then re-
stricting it to clauses. The interesting point about the emulation is that it suggests a
way of generalizing hyper tableaux to non-clausal problems.

The simple unsatisfiable propositional formula φ = (p∧¬p)∨(q∧¬q) demonstrates that
one cannot simply forbid β-expansions of formulae if they contain a negative literal. That
strategy would prohibit any expansion for φ, so we would lose completeness. Instead,
one has to look at disjunctive paths (d-paths) through formulae [And81, Bib87, MR93].
These can be considered as clauses generated if a formula were to be transformed into
clause normal form using the standard procedure based on distributivity. For instance,
a formula p ∨ (q ∧ ¬r) corresponds to two clauses p ∨ q and p ∨ ¬r, so the d-paths of
that formula are the sequences6 〈p, q〉 and 〈p,¬r〉. Although it would be possible in
principle to let d-paths traverse quantifiers, we are going to simplify this presentation
by treating quantified formulae as atomic entities, in keeping with our decision not to
discuss simplifications below quantifiers. Note that for formulae in negation normal
form, one can always shift all universal quantifiers to the top level, possibly renaming

5There is an advantage in cases where the original formula can be discarded, see the remark on page 88,
after the proof of Theorem 6.26.

6We shall denote sequences by surrounding them with angle brackets 〈·〉. Concatenation of sequences
p, q is written as juxtaposition pq.

86

6.7 Emulating Hyper Tableaux

bound variables, and then replace them by a set of quantifier-free formulae with universal
variables through a series of γ-expansions.

Definition 6.25 The set of disjunctive paths, or d-paths of a formula φ, denoted dp(φ)
is defined by induction over the structure of φ as follows.

• If φ is a literal or a universally quantified formula, then dp(φ) := {〈φ〉}.

• If φ = α1 ∧ α2 is a conjunction, then dp(φ) := dp(α1) ∪ dp(α2).

• If φ = β1 ∨ β2 is a disjunction, then dp(φ) := {pq | p ∈ dp(β1), q ∈ dp(β2)}.

For the formula φ = (p ∧ ¬p) ∨ (q ∧ ¬q), this definition gives:

dp(p ∧ ¬p) = {〈p〉 , 〈¬p〉}
dp(q ∧ ¬q) = {〈q〉 , 〈¬q〉}

dp(φ) = {〈p, q〉 , 〈p,¬q〉 , 〈¬p, q〉 , 〈¬p,¬q〉}

As d-paths correspond closely to clauses, it is not surprising that the correct generaliza-
tion of our simplification strategy may be formulated like this:

Use simplification only to simplify any leftmost negative literal of some d-
path of a formula on the branch. Use β-expansion only for disjunctions which
have at least one d-path that does not contain a negative literal.

For our formula φ, β-expansion will thus be applied because of the d-path 〈p, q〉. Let us
call this strategy the NNF hyper tableau strategy.

Theorem 6.26 The constrained variable tableau calculus with universal variables and
the simpc2u rule is complete if restricted according to the NNF hyper tableau strategy.

Proof. We will not give a full completeness proof here, because it resembles previous
proofs given in this chapter and elsewhere. The overall approach consists in

1. proving completeness for a corresponding (non-destructive) Smullyan-style calcu-
lus.7

2. lifting the completeness proof to a free variable version with universal variables.

3. showing completeness with DU constraints as in Theorem 6.13.

The first point is the one most specific to our hyper tableau strategy, so we shall have
a closer look at it. We assume a Smullyan-style tableau calculus with a non-destructive
simplification rule

ψ, φ

ψ[φ], ψ, φ

7By a Smullyan-style tableau calculus [Smu68], we mean one without free variables: the γ rules in-
stantiate quantifiers directly by ground terms. Therefore, all formulae occurring in the tableau are
closed, and all literals are ground. See also Sect. 3.1.

87

6 Simplification Rules

Since we consider a Smullyan-style calculus, we do not need unification in this rule. The
aspect of omitting φ can be deferred to the third step of the proof. Completeness is
shown with a Hintikka-style construction. We call a set of formulae H a Hintikka set if

1. α1 ∈ H and α2 ∈ H for any α1 ∧ α2 ∈ H.

2. β1 ∈ H or β2 ∈ H for any β = β1 ∨ β2 ∈ H, such that there is a p ∈ dp(β) which
contains no negative literals.

3. [x/t]γ1 ∈ H for any ∀x.γ1 ∈ H and all ground terms t.

4. β[L] ∈ H for any L ∈ H such that ¬L is the leftmost negative literal of some
d-path of a disjunctive formula β ∈ H.

5. there are no complementary literals L,¬L ∈ H, and false 6∈ H.

As usual, one now shows that any Hintikka set has a model. To do this one defines a
model M which has the set of ground terms as domain, and which interprets any positive
literal L ∈ H as true and every other literal false.8 We can now show by induction on the
number of junctors and quantifiers of formulae (or any other quantity which is decreased
by rule applications) that every formula in H is indeed valid in M . This is standard for
α- and γ-formulae, as well as for literals. For β formulae, we have two cases.
Case 1.: If β = β1 ∨ β2 with p ∈ dp(β) containing no negative literals, either β1 ∈ H or
β2 ∈ H, due to point 2. Thus, by the induction hypothesis, one of the disjuncts is valid
in M , and so β also is.
Case 2.: If every p ∈ dp(β) contains at least one negative literal, we have to consider
two sub-cases:
Case 2a.: There is some L ∈ H such that ¬L is the leftmost negative literal of one of
the d-paths of β. Then β is simplifiable with L, and the resulting formula β[L] is in H
due to point 4. Furthermore, the induction hypothesis ensures that both L and β[L] are
valid in M , from which validity of β follows.
Case 2b.: There is no literal L ∈ H for any of the leftmost negative literals ¬L of any d-
path of β. Our definition of the interpretation ensures that each of the leftmost negative
literals is valid in M . Every d-path of β thus contains at least one valid literal, from
which one can derive validity of β by a simple induction on the structure of β.

It now remains to show that every open branch of an infinite tableau constructed by
fair application of all rules is a Hintikka set, which is done as for standard tableaux. ut

Sometimes, a simplification step permits to discard the original formula ψ. In such
cases, a prover using the NNF hyper tableaux strategy has an advantage over usual
clausal hyper tableaux, even if the problem is given in clausal form: it can simplify
the clause set while proof search is under way. Essentially, unit resolution between a
universal branch literal and a clause is performed. For instance, given a literal [X]p(X)
and a universal disjunction [Y]¬pY ∨ rY , the latter can be destructively simplified to

8This is different from the standard proof, where the evaluation of literals not in H is irrelevant, but
common for clausal hyper-tableaux-like calculi, see e.g. [Häh01].

88

6.7 Emulating Hyper Tableaux

[Y]rY for that branch. This can not be done in normal hyper tableaux, as these do not
keep separate clause sets per branch. Note that these separate clause sets do not imply
higher memory consumption, because the representation of clauses can easily be shared
between branches in an implementation.

The NNF hyper tableau strategy was implemented in the prover PrInS. Tables 6.1
and 6.2 list some results comparing the prover with that strategy (right columns) to
the version without simplification, but including pruning. The effectiveness of hyper-
tableaux has of course been asserted earlier, e.g. in [BFN96a] and [Küh97]. Our results
clear confirm this. We will point out some particular results in the remainder of this
section.

With the given strategy, PrInS is able to solve the Steamroller problem in the full
first order formalization PUZ031+1 in about 50 ms.9 This used to be considered a
hard problem for a long time, although today, no state-of-the-art theorem prover has
difficulties with it. In particular, hyper tableaux are a good way of quickly finding a
proof. The interesting aspect of PrInS solving PUZ031+1 is that it does not use CNF
transformation. To our knowledge, PrInS is the first non clausal theorem prover to have
solved the Steamroller problem.

The problem SYN067+1, also known as Pelletier problem 38, is an example for the ad-
vantage of not needing a clause normal form. The full first order formalization SYN067+1
has a rating of 0.33 in version 2.6.0 of the TPTP library, meaning that one third of the
provers considered state-of-the-art are not able to solve it. The reason for this is that
the clause normal form for this problem, if computed in the standard way, consists of
more than 80 clauses of length up to 9. The full first order version in SYN036+2 is an
equivalence of two formulae with nested quantifiers, and is not very large. The NNF
PrInS works on is of course somewhat larger, because p ↔ q has to be translated to
(p∨¬q)∧ (¬p∨ q). But the NNF still helps in keeping large parts of the formula nested
below the top level operators which are handled first. With the NNF hyper tableaux
strategy, PrInS solves SYN067+1 in about 35 ms on average. The prover performs 64
α, β and γ expansions and 71 simplification steps. Both the NNF hyper tableau strat-
egy and incremental closure help in this case: the simple version of PrInS described in
Sect. 4.6 needs 1330 rule applications and about 0.23 seconds for SYN067+1, while the
leanTAP clone (without simplification) cannot solve the problem within 5 minutes.

The problems SYN548+1 and SYN550+1, which are rated 0.67 and 0.33, respectively,
are translations of the modal formulae

32(2(p ∨ 2q) ⇔ 2p ∨ 2q)

and

32p⇔ 3232p

in the logic S4 into first order logic. The translation used transforms a box formula into
∀y.(R(x, y) → . . .) and a diamond to ∃y.R(x, y)∧ . . .), where the predicate R represents

9The machine and environment are as described in Sect. 4.6.

89

6 Simplification Rules

without simplification with simplification
problem time [s] expand unify time [s] expand unify

GRA001−1 0.041 206 1283 0.002 48 15
GRP001−4 Out of Memory Time Out
GRP010−4 Out of Memory Time Out
GRP011−4 Out of Memory Time Out
LCL039−1 Out of Memory Time Out
LCL076−1 Out of Memory Time Out
LCL077−1 Out of Memory Time Out
LCL078−1 Out of Memory Time Out
LCL181+1 0.003 16 23 0.002 8 3
LCL230+1 0.000 9 14 0.001 5 3

MSC007−1.008 Time Out 108.304 308160 109591
MSC007−2.005 Time Out 1.867 11677 26455

PUZ001+1 Out of Memory 0.185 1687 358
PUZ031+1 Time Out 0.053 277 544
SET043+1 0.001 5 7 0.001 5 2
SET044+1 0.002 16 28 0.003 16 10
SET045+1 0.000 11 16 0.001 10 4
SET046+1 0.001 54 144 0.001 10 4
SET047+1 0.048 664 3995 0.015 52 51
SYN001+1 0.000 4 7 0.001 4 1
SYN036+2 0.353 2581 14662 0.152 810 417
SYN040+1 0.048 16 23 0.334 8 7
SYN041+1 0.000 3 2 0.001 3 2
SYN044+1 0.001 19 70 0.003 11 5
SYN045+1 0.004 40 70 0.006 14 4
SYN046+1 0.002 16 23 0.001 8 7
SYN047+1 0.008 108 180 0.008 30 21
SYN048+1 0.012 4 2 0.030 2 1
SYN049+1 0.002 13 34 0.002 4 1
SYN050+1 0.003 20 16 0.002 9 1
SYN051+1 0.008 24 66 0.001 7 3
SYN052+1 0.002 14 25 0.004 11 3
SYN053+1 0.002 23 32 0.005 12 5
SYN054+1 0.012 88 331 0.003 12 5
SYN055+1 0.001 9 19 0.001 7 1
SYN056+1 0.067 371 1764 0.009 41 19
SYN057+1 0.005 43 208 0.002 14 5

Table 6.1: Effect of Simplification for some TPTP problems

90

6.7 Emulating Hyper Tableaux

without simplification with simplification
problem time [s] expand unify time [s] expand unify

SYN058+1 0.003 20 46 0.002 11 3
SYN059+1 0.012 64 309 0.007 41 17
SYN060+1 0.000 11 17 0.018 6 3
SYN061+1 0.002 9 26 0.001 8 3
SYN062+1 0.001 31 66 0.001 10 1
SYN063+1 0.003 91 180 0.012 39 42
SYN064+1 0.000 6 2 0.003 2 1
SYN065+1 0.004 10 15 0.002 9 1
SYN066+1 0.001 22 26 0.002 12 5
SYN067+1 0.062 838 5601 0.035 135 98
SYN068+1 0.000 13 30 0.001 10 2
SYN069+1 0.001 31 86 0.003 23 4
SYN070+1 0.001 57 169 0.007 42 17
SYN071+1 0.332 471 8803 0.011 57 39
SYN072+1 Out of Memory 0.195 1294 576
SYN073+1 0.065 6 3 0.001 5 3
SYN074+1 6.143 1570 50197 0.021 160 29
SYN075+1 5.217 1613 46193 0.026 214 41
SYN076+1 Out of Memory Time Out
SYN077+1 Out of Memory 0.055 243 652
SYN078+1 Out of Memory 0.004 88 21
SYN079+1 0.000 5 13 0.001 4 3
SYN080+1 0.008 66 419 0.001 12 4
SYN081+1 0.005 18 40 0.001 8 5
SYN082+1 0.009 13 26 0.001 13 6
SYN083+1 3.264 136 29514 0.005 29 12
SYN084+1 0.005 233 924 0.002 46 54
SYN387+1 0.000 1 1 0.000 1 1
SYN388+1 0.001 1 1 0.001 1 1
SYN389+1 0.000 3 5 0.001 3 3
SYN390+1 0.001 4 7 0.003 4 1
SYN391+1 0.001 11 27 0.020 9 3
SYN392+1 0.003 38 83 0.005 18 15
SYN393+1 0.020 192 598 0.038 106 47
SYN416+1 0.000 3 2 0.000 3 2
SYN548+1 Out of Memory 0.112 559 329
SYN550+1 Out of Memory 0.031 135 35

Table 6.2: Effect of Simplification for some TPTP problems (cont.)

91

6 Simplification Rules

the reachability relation. This is a very good situation for the NNF hyper tableau
strategy, because in the disjunction coming from the universal formula, the R literal will
be the left-most negative literal on any disjunctive path. Thus, the formula will not be
extended further until the R literal can be simplified away. This effect disappears if the
input formula is transformed into clause form first.

Prominent among the problems not solved by the prover with simplification in Ta-
ble 6.1 are the group theory statements GRPxyz, which would require equality handling.
This is covered in Chapter 7. The LCL problems that cannot be solved express deriv-
ability of certain formulae in Hilbert calculi. The problem for hyper tableaux is that the
clauses of the problems are interpreted as hyper tableau clauses that blindly enumerate
theorems in using the axioms and modus ponens rule of the Hilbert Calculus, hoping to
come across the right conclusion by chance.

6.8 Implementation of Regularity

We already mentioned the regularity restriction in Sect. 5.8. For ground clause tableaux,
this restriction simply forbids expansions which lead to multiple occurrences of the same
literal on a branch. We pointed out that it is not easy to define a useful regularity
restriction for non-clausal first order tableaux. Specifically, the problem with non-clausal
tableaux is that some expansions are needed for completeness although they produce
multiple occurrences of the same formula on a branch. The problem with the first order
case is that two literals might be equal under some instantiation of the rigid variables,
and not under another, and that the instantiation is not yet known when the tableau
expansion takes place.

Massacci [Mas97, Mas98], points out that eager application of his simplification rule
for propositional logic entails a non-clausal version of regularity. In this section, we shall
show that our simplification rules permit to lift this result to the first-order case.

We shall first demonstrate how simplification can be used to emulate a regularity check
for propositional clauses. To do this, we have to put the clause set into the initial goal
of the tableau again, instead of keeping it separate as is done for clausal tableaux.

Example 6.27 We start with the goal

{¬A ∨B, A ∨B, A ∨ ¬B, ¬A ∨ ¬B} .

β-expansion on ¬A ∨B gives two new goals

G1 = {¬A, A ∨B, A ∨ ¬B, ¬A ∨ ¬B} ,
G2 = {B, A ∨B, A ∨ ¬B, ¬A ∨ ¬B} .

The regularity restriction now prohibits expanding G1 with ¬A∨¬B, and G2 with
A ∨ B, as this would lead to goals with two occurrences of the literals ¬A and B
respectively. But these disjunctions can be simplified using the literals:

(¬A ∨ ¬B)[¬A] = eval∨(true,¬B) = true ,
(A ∨B)[B] = eval∨(A, true) = true .

92

6.8 Implementation of Regularity

This means that the two disjunctions can be discarded from the goals, which
effectively prevents their use in an expansion. Note that the simplification rule
could (and probably should) also be used to simplify the remaining two disjunctions
from each goal. But that is not required by the regularity restriction.

It is now clear how we will get regularity for the non-clausal case: we will simply require
formulae to be simplified with respect to the literals present on the branch before an
expansion, at least in those cases where the simplification step is ‘positive’ in the sense
that some subformula gets simplified to true. In a sense, this is the opposite of the NNF
hyper tableau strategy of the previous section, where we simplified negative occurrences
of literals using positive literals. We illustrate this technique with another example.

Example 6.28 Instead of the goal G1 in the previous example, consider the equivalent
NNF goal

{¬A, (A ∨B) ∧ ((A ∧ ¬A) ∨ ¬B)} .

We can immediately simplify the occurrence of ¬A in the complex formula with
the literal, giving

((A ∨B) ∧ ((A ∧ ¬A) ∨ ¬B))[¬A] = (A ∨B) ∧ (A ∨ ¬B) .

No subsequent expansion of the simplified formula can now lead to a duplication
of the literal ¬A.

This, in a nutshell, is the way regularity is subsumed by simplification in the proposi-
tional case, as described in [Mas97, Mas98]. After reading the previous section, it should
come as no surprise that regularity can be enforced for first order tableaux using our
first order simplification rules with DU constraints. To do this, we adopt the following
simplification strategy:

Any possible ‘positive’ simplification step, that is any step in which a subfor-
mula gets simplified to true gets applied on a β-formula before it is expanded.
Also, any simplification step possible on a literal is applied before a literal is
used to simplify another formula.

The main difference from the propositional case is that we do not require eager appli-
cation of simplification steps on conjunctions. The reason for this is that such a strategy
can lead to cycles, similar to those for the hyper tableau strategy.

Example 6.29 Take a goal with the formulae

{pa, [X]pX ∧ pfX} .

The left side of the conjunction can be simplified to true under X ≡ a, which gives
a new literal [X ′]pfX ′ � X ′ ≡ a, which is equivalent to pfa. Remember that
universal variables are—at least conceptually—renamed. This literal can in turn
be used to simplify the left side of the conjunction, yielding pffa, etc.

93

6 Simplification Rules

Luckily, we can do without such simplification steps. We simply apply α-
expansion leading to a goal with the three literals

{pa, [X]pX, [Y]pfY } ,

which permit various simplifications. The second literal may be used, for instance,
to simplify away the first and third ones.

For disjunctions of literals, positive simplification steps have the effect of adding DU
constraints to the disjunction. The ‘simplified’ formula ψ[φ] is simply evaluated to true,
so it can be discarded immediately. When the β formula is finally expanded, the literals
on the new branches inherit the DU constraints, which ensure that they are not used
in a branch closure that requires an instantiation that would render them identical to
a literal already on the branch. In a sense, we use constrained formulae to achieve the
effect for which a global constraint is used in [LSBB92], see Sect. 5.8.

Example 6.30 Let the following goal be given:

{pa, ¬qb, pX ∨ ¬qX} .

Before β expansion is permitted, the β formula has to be simplified with the two
literals. While the simplified formula ψ[φ] is true (with some constraint) in both
cases, the simplification steps add the DU constraint !(X ≡ a) & !(X ≡ b) to the
disjunction. The β-expansion then gives two branches with goals

{pa, ¬qb, pX � !(X ≡ a) & !(X ≡ b)} ,
{pa, ¬qb, ¬qX � !(X ≡ a) & !(X ≡ b)} .

The constraints do not prevent X from being instantiated with a or b, but they
prevent the new literals to be used for branch closure in that case, and they prevent
further proof steps involving these literals which would require such an instantia-
tion.

The question arises whether it is effective enough to add DU constraints to formulae.
After all, in the previous example, the β expansion was executed anyway, there will be no
backtracking step to remove it later, and the variable X might still be instantiated to a
or b. The idea is that this method should be used together with the pruning technique as
described in Sect. 5.6. Then, if the left subtree can be closed under an instantiation with
σ(X) = a for instance, this closure can not depend on the constrained literal pX � · · ·
introduced by this β-expansion, so the Merger will simply pass the closing instantiation
up the tree without requiring closure of the right subtree.

6.9 Development of Refinements

In the previous sections, the introduction of simplification rules with DU constraints
and universal variables was motivated by pointing out redundancies arising if these

94

6.10 Related Work

refinements are not used. It might be interesting to note that the author was prompted
to introduce these refinements in the prover PrInS through observations of the prover.

An immediate consequence of using a non-backtracking proof procedure is that the
prover can be halted in the middle of an unsuccessful proof search, and that the current
state of the proof tree will reflect the work that has been done so far. In a backtracking
prover, most of this information has been thrown away in backtracking steps.

Given an incomplete proof tree, one can then take one of the open branches and try to
analyse the formulae in the leaf goal. The redundancies mentioned above were detected
that way.

Surely, this approach is not viable if redundant rule applications only appear when
a goal already contains hundreds of formulae. But for some problems, a combinatorial
explosion will take place early enough, so that one only needs to look at a few dozen
formulae to discover it.

6.10 Related Work

A mechanism similar to the simplification rules presented in this chapter has inde-
pendently been developed by Peltier [Pel97, Pel99]. The idea of using formulae on a
branch to simplify other formulae is the same as for the simplification rules of Mas-
sacci [Mas97, Mas98], and the ones presented here. The problem of dealing with the
instantiation of rigid variables is solved differently however. While we use ordinary first
order formulae and attach a syntactic constraint to them, Peltier intertwines constraints
and formulae. For instance, in a formula

∀x.∀y.(x = y ∨ p(x, y)) ,

x = y plays the role of a constraint, which makes the formula p(x, y) available only if
x and y are instantiated by different ground terms. The symbol = denotes syntactic
equality, and not an equality predicate like

.
= in the following chapter. On the other

hand, quantification over the variables x, y used in the syntactic equality is possible.
This means that the semantics of such mixtures of formulae and constraints can only be
defined with respect to a Herbrand model, that is a model in which the elements of the
carrier set are ground terms. The possibility of attaching different constraints to different
parts of a larger formula might be an advantage of Peltier’s approach, but we have not
investigated this. Keeping formulae and constraints apart, as we do, and differentiating
between variables bound in quantifiers, and free variables which may occur in constraints
certainly makes the calculus easier to understand, and easier to reason about.

6.11 Summary

We have used the technique of attaching syntactic unification constraints to the formulae
in a tableau to deal with rules which are possible only under certain instantiations of rigid
variables in a proof confluent framework. This technique was used to define a number of
simplification rules. We showed how these rules can be used to define non-clausal first

95

6 Simplification Rules

order versions of hyper tableaux and regularity. We also discussed the use of syntactic
dis-unification constraints to simulate destructive rules in a proof confluent way.

In the next chapter, we are going to use constrained formula tableaux to add equality
handling to our framework.

96

7 Equality Handling

The previous chapters dealt with first order predicate logic without equality. It is not
strictly necessary to include a special treatment for the equality predicate in the defini-
tion of the semantics of a logic, nor is it theoretically necessary to employ any special
treatment of equality in a calculus. Given a set of formulae in first order logic with
equality, one can add an axiomatization of equality to the problem, so that the com-
bined set of formulae is unsatisfiable with respect to first order logic without equality, if
and only if the original set was unsatisfiable in the logic with equality.

This approach is completely unpractical however. It is well known that only very small
problems can be solved with the axiomatic approach. For larger problems, the equality
axioms introduce so much redundancy that none of the optimizations described in the
previous chapters could cope with it. This holds for resolution provers as well as tableau
provers, backtracking or not.

There are basically two ways to improve on the axiomatic approach. One way is
to transform problems into a form which makes the equality axioms superfluous. The
first such transformation was proposed by Brand [Bra75], more recent developments are
described in [MS97, BGV97]. The other way to treat equality is to actually build it into
the calculus and the proof procedure. This is the approach we are going to investigate
here.

The simplest way of building in equality is with paramodulation rules, that is rules
based on the replacement of equals, as one would do in a mathematical proof. Given a
formula φ(s) containing an occurrence of a term s, and an equation s

.
= t, we can derive

φ(t), which has the occurrence of s replaced by t. An integration of paramodulation
into the resolution calculus was proposed by Robinson and Wos in [RW69]. For sequent
based calculi, work goes back even earlier, see e.g. [Kan63]. A simple paramodulation
rule is also used to build equality into free variable tableaux in [Fit96].

Unfortunately, unrestricted paramodulation can also lead to a lot of redundant deriva-
tions, as equations have to be applied in both directions. The key to reducing this
redundancy is to use term orderings and to require that equations only be applied in
a way that makes terms and formulae smaller with respect to such an ordering. The
most prominent application of term orderings for equality reasoning is of course the
Knuth-Bendix Completion procedure [KB70]. A good overview of the state-of-the art
in ordered paramodulation from a resolution perspective can be found in [NR01]. An
overview of equality handling methods for tableaux and other sequent-based calculi is
given in [DV01].

The topic of this chapter is a method for equality handling in free variable tableaux
which is based on ordered paramodulation. Our rules are similar in spirit to the sim-

97

7 Equality Handling

plification rules presented in the previous chapter, and like those they are particularly
well suited for the incremental closure approach, but they could also be applied in a
backtracking prover. In other words, the results presented in this chapter are useful
independently of the incremental closure technique.

7.1 Ordering-Based Equality Handling in Tableaux

Efficient equality handling for first order tableaux or related calculi, like matings or the
connection method, has been problematic for a long time. It is generally believed that
only techniques based on ordered rewriting can sufficiently reduce the search space of
equality reasoning to make it tractable. It was also believed that the best approach
to the integration of free variable tableaux and equality handling would be to search
for simultaneous rigid E-unifiers [GRS87] of disequations on the tableau and use these
to close branches instead of usual unifiers. So the overall idea was to solve the rigid
E-unification problems using ordered rewriting techniques.

Example 7.1 We construct a tableau from the following formula:1

∀x, y, u, z.((a
.
= b ∧ ¬g(x, u, v)

.
= g(y, fc, fd))

∨ (c
.
= d ∧ ¬g(u, x, y)

.
= g(v, fa, fb)))

After applying four γ-, one β- and two α-expansions, we get the following two goals
(leaving out the γ formula):

{a
.
= b, ¬g(X,U, V)

.
= g(Y, fc, fd)}

{c
.
= d, ¬g(U,X, Y)

.
= g(V, fa, fb)}

Closing one of these goals constitutes what is known as a rigid E-unification
problem. The task is to find instantiations for the rigid variables X,Y,U, V , such
that the two sides of the negated equation are equal with respect to the equational
theory E = {a

.
= b}, resp. E = {c

.
= d}, defined by the positive equational literals

in the goal. In general these equations might also contain free variables, and of
course, all occurrences of these variables must be instantiated to the same terms.

One gets a simultaneous rigid E-unification problem, if one tries to solve sev-
eral rigid E-unification problems with a single instantiation. For instance, the
simultaneous rigid E-unification problem produced by the two goals above has the
following solution:

[X/fa, Y/fb, U/fc, V/fd] .

The inequation in the first goal becomes

¬g(fa, fc, fd)
.
= g(fb, fc, fd)

under that instantiation, so equality of the two sides does indeed follow from the
equation a

.
= b, and similarly for the second goal.

1This example is taken from [DV97]. We use
.
= to denote the equality predicate.

98

7.1 Ordering-Based Equality Handling in Tableaux

a
.
= b c

.
= d

¬g(X,U, V)
.
= g(Y, fc, fd) ¬g(U,X, Y)

.
= g(V, fa, fb)

a
.
= b c

.
= d a

.
= b c

.
= d

¬g(X1, U1, V1)
.
= g(Y1, fc, fd) ¬g(X2, U2, V2)

.
= g(Y2, fc, fd)

¬g(U1, X1, Y1)
.
= g(V1, fa, fb) ¬g(U2, X2, Y2)

.
= g(V2, fa, fb)

Figure 7.1: A tableau with equality.

Unfortunately, in 1996, simultaneous rigid E-unification was shown to be undecidable
[DV96], unexpectedly invalidating a number of attempts at a completeness proof that
were based on the opposite assumption. The outlined plan could thus only be imple-
mented using incomplete procedures for E-unification. In particular, procedures were
used, which produce complete sets of solutions to rigid E-unification problems for each
branch, and try to join these solutions to obtain a solution for the simultaneous problem,
see e.g. [Bec94]. Experimenting with such a setting, it turned out that the combination
of a first order theorem prover and an incomplete solver for rigid E-unification problems
seemed to be complete despite the incompleteness of the unification machinery, though
nobody knew exactly why. Even if the needed simultaneous unifier was not found at a
given point in the proof construction, some simultaneous unifier would always be found
after the tableau was expanded a little further [Bec93, Bec94, Pet94].

We shall try to give an intuition of this effect without actually attempting to present
a procedure that solves rigid E-unification problems. We do assume the reader to be
familiar with rewriting techniques in general however.

Example 7.2 For the two goals of the previous example, an E-unification procedure
based on ordered rewriting would fail to find a simultaneous unifier. For the first
goal, it would find a unifier

[X/Y, U/fc, V/fd] ,

but that will not lead to a closure of the second goal. There is no incentive for
instantiation of X and Y to fa and fb, if the other goal is not taken into account,
and it is desirable to handle goals as independently as possible.

However, if the tableau is further expanded by repeating the same steps as before
on each of the two goals, the situation changes. If we omit the γ formulae, we now
get a tableau with the four goals

{a
.
= b, ¬g(X,U, V)

.
= g(Y, fc, fd), ¬g(X1, U1, V1)

.
= g(Y1, fc, fd)}

{a
.
= b, c

.
= d, ¬g(X,U, V)

.
= g(Y, fc, fd), ¬g(U1, X1, Y1)

.
= g(V1, fa, fb)}

{c
.
= d, a

.
= b, ¬g(U,X, Y)

.
= g(V, fa, fb), ¬g(X2, U2, V2)

.
= g(Y2, fc, fd)}

{c
.
= d, ¬g(U,X, Y)

.
= g(V, fa, fb), ¬g(U2, X2, Y2)

.
= g(V2, fa, fb)}

99

7 Equality Handling

The structure of the tableau, showing only the literals at the nodes where they are
introduced, is given in Fig. 7.1. Each goal now contains two negated equations. To
close the tableau, the prover has to choose one of these from each branch, and then
find a simultaneous solution for the four rigid E-unification problems. It turns out
that the right choice is to take the second negated equation for the leftmost and
rightmost branch, and the first for the two middle branches. Let us consider the
corresponding rigid E-unification problems from left to right. First, we have

{a
.
= b, ¬g(X1, U1, V1)

.
= g(Y1, fc, fd)}

Here, the unification
[X1/Y1, U1/fc, V1/fd]

is found. In the next goal

{a
.
= b, c

.
= d, ¬g(X,U, V)

.
= g(Y, fc, fd)} ,

the negated equation may be rewritten using the equations. Assuming a term
ordering where c is larger than d, this will give

¬g(X,U, V)
.
= g(Y, fd, fd) .

The corresponding unifier is joined to the other one, giving

[X1/Y1, U1/fc, V1/fd, X/Y, U/fd, V/fd] .

The next goal
{c

.
= d, a

.
= b, ¬g(U,X, Y)

.
= g(V, fa, fb)}

also allows rewriting. If we assume a to be greater than b in the ordering, we will
get

¬g(U,X, Y)
.
= g(V, fb, fb) .

The unifier of these terms can also be joined to the previously collected one, giving

[X1/Y1, U1/fc, V1/fd, X/fb, Y/fb, U/fd, V/fd] .

Finally, for the last goal, no rewriting is possible, and a unifier like the one for the
first goal is produced. Putting all together, we have found the following simulta-
neous E-unifier

[X1/Y1, U1/fc, V1/fd, X/fb, Y/fb, U/fd, V/fd, U2/V2, X2/fa, Y2/fb]

To summarize, although there is a simultaneous E-unifier for the tableau after
only one γ-expansion, a procedure using rewriting and syntactic unification in-
dependently on the goals will not find it. This procedure is thus incomplete for
simultaneous rigid E-unification. After two more γ-expansions however, this same
procedure finds a unifier that closes the tableau.

100

7.2 Preliminaries

The procedure we applied in this example is actually part of a typical procedure to
compute per-branch solutions of rigid E-unification problems. The question whether this
approach leads to a complete tableau calculus for first order logic with equality remained
open for some years.

In 1997, Degtyarev and Voronkov finally showed completeness for such a combination
of tableaux and rigid E-unification [DV97, DV98], and thus for a tableau calculus with
integrated superposition-based equality handling.

One might have expected that all problems would be solved after this discovery. A
number of publications would follow, providing variations on the theme, like what is
known as ‘basic ordered paramodulation’ in the resolution community, or a version with
universal variables (see Sect. 5.7), or hyper tableaux (see Sect. 6.7) with equality. Cu-
riously enough, this has not happened! We surmise that the reason for this is the
complexity of Degtyarev and Voronkov’s completeness proof: It is over ten pages long,
and very technical, although the proof of one of the used theorems is not even included
in those papers (Theorem A.15 in [DV97] is taken from [DV94]).

In this chapter, we present calculi similar to (a clausal version of) the one presented in
[DV98], though we prefer to integrate the superposition process into the tableau calculus
instead of defining a separate calculus for rigid E-unification. We then show the com-
pleteness of this calculus using an adaptation of the technique called model generation,
well known for resolution calculi. This technique was first introduced by Bachmair and
Ganzinger [BG90, BG94, BG01] to show completeness of resolution calculi with strict
superposition. Nieuwenhuis and Rubio have adapted the model generation technique for
resolution calculi with constraint propagation [Rub94, NR95b, NR97, NR01], which is
nearer to our application. For that reason, we shall follow Nieuwenhuis and Rubio in
our notation and presentation.

Apart from being significantly shorter than the proof of Degtyarev and Voronkov,
our completeness proof has the advantage of requiring only few additional ingredients
not known from resolution. This should make it easy to produce tableau versions of
variants known for resolution, like basic ordered paramodulation (see Sect. 7.6) or hyper
resolution resp. hyper tableaux. The results in this chapter were first presented in [Gie02].

7.2 Preliminaries

We need to introduce a few more concepts and notations, which are specific to equal-
ity handling. We shall also deviate from some of the techniques used in the previous
chapters, in order to make our presentation simpler.

As before, we shall assume a fixed signature consisting of function symbols with fixed
arity, constant symbols being considered as functions of arity zero. But we now admit
only a single binary predicate symbol ‘

.
=’ denoting equality. The equality symbol is

handled in a symmetric way, i.e. two formulae s
.
= t and t

.
= s are considered identical.

A literal is either an equation s
.
= t or a negated equation ¬s

.
= t. We do not include

other predicates for two reasons: first, it is well known that other predicates can be
simulated with equality, by introducing constants true and false and representing a

101

7 Equality Handling

literal p(t1, . . . , tn) by an equation p(t1, . . . , tn)
.
= true. Second, it is conceptually easy

to modify our proofs to work with non-equality predicates, but doing so makes them
harder to read.

Further, we shall limit our exposition to problems given in clausal form. Questions
of equality handling are typically orthogonal to the treatment of the rest of first order
logic, and working on clauses makes our proofs much more readable. This implies that
we are going to work with clausal tableaux, in contrast to the NNF tableaux which
we have been using since their introduction in Definition 4.2. The incremental closure
technique remains valid for them, as branch closure works in the same way for both
kinds of tableaux. We define a clause to be a finite set of (equality) literals.

We shall have to talk about models and interpretations in our completeness proofs.
Contrary to the usual approach of using a carrier set and an interpretation function to
evaluate terms, we shall follow [NR01] in defining an interpretation to be a congruence
relation on ground terms. In other words, we take a quotient of the set of all ground
terms as carrier set, and interpret terms to their congruence class. We do not need to
define an interpretation for predicates, as we only have one predicate

.
=, which is inter-

preted as equality of equivalence classes. Herbrand’s Theorem guarantees that for our
purposes, this definition is equivalent to defining interpretations with arbitrary carrier
sets. Validity of a formula φ in an interpretation I will be written I |= φ. Interpreta-
tions will often be described by sets of rewrite rules in the way captured by the following
definition.

Definition 7.3 A (ground) rewrite rule is an ordered pair l ⇒ r of ground terms. If R
is a set of rewrite rules, the interpretation induced by R is the minimal congruence R∗

on ground terms, such that lR∗r for all l ⇒ r ∈ R.

The following notions are needed to formalize the application of equations on some
subterm of a literal.

Definition 7.4 A position is a sequence of numbers designating subterms. s|p is the
subterm of s at position p, that is

• s|λ = s, where λ is the empty sequence.

• f(s1, . . . , sn)|k.q = sk|q for 1 ≤ k ≤ n.

s[r]p denotes the result of replacing the subterm at position p in s by r, that is

• s[r]λ = r, and

• f(s1, . . . , sn)[r]k.q = f(s1, . . . , sk−1, sk[r]q, sk+1, . . . , sn) for 1 ≤ k ≤ n.

We also need to fix a suitable rewrite ordering. In contrast to the usual definitions, we
do not need to order terms with variables.

Definition 7.5 A total ground reduction ordering is a total ordering � on the set of
ground terms, which is

102

7.2 Preliminaries

• well-founded, i.e. there is no infinite chain t0 � t1 � t2 � · · · , and

• monotonic, i.e. u[s]p � u[t]p for all ground terms u, s, t with s � t and positions p.

A total ground reduction ordering � is extended to a total well-founded ordering �l on
ground literals as follows: A ground literal is assigned a multiset by m(s

.
= t) := {s, t}

and m(¬s
.
= t) := {s, s, t, t}. Then L �l L

′ iff m(L) �� m(L′), where �� is the multiset
extension of �.

We shall need the following well-known fact in our proofs:

Proposition 7.6 Any total ground reduction ordering � enjoys the subterm property,
that is u � t for all proper subterms t of a ground term u.

It will also be useful to keep the following properties of the literal ordering �l in mind,
which follow immediately from this definition:

Proposition 7.7 If s � t and s′ � t′, then

s
.
= t �l s

′ .= t′ iff s � s′ or (s = s′ and t � t′)
s
.
= t �l ¬s

′ .= t′ iff s � s′

¬s
.
= t �l s

′ .= t′ iff s � s′

¬s
.
= t �l ¬s

′ .= t′ iff s � s′ or (s = s′ and t � t′)

We shall assume a fixed total ground reduction ordering �, and corresponding lit-
eral ordering �l, throughout the remainder of this chapter. In our examples, we will
occasionally use the lexicographic path ordering (LPO) on ground terms.

Definition 7.8 Let > be a strict total ordering on the function and constant symbols
of a signature, called precedence. We inductively define the lexicographic path or-
dering (LPO) � on the set of ground terms as follows. Let s = f(s1, . . . , sm) and
t = g(t1, . . . , tn). Then s � t, iff

• si � t for some i ∈ {1, . . . ,m}, or

• f > g and s � tj for all j ∈ {1, . . . , n}, or

• f = g, and there is some j ∈ {1, . . . , n} such that si = ti for i < j, sj � tj, and
s � ti for i > j.

It is well-known that the LPO is a total ground reduction ordering for any (strict, total)
precedence.

Our equality handling rules will use constrained formulae—or rather constrained lit-
erals, as we construct clause tableaux—in a similar way as the simplification rules of
Chapter 6 did. However, we need a different constraint language here. Specifically, we
shall express ordering requirements as constraints.

103

7 Equality Handling

For the purposes of this chapter, a constraint is a quantifier-free first order formula
which can use two predicate symbols with fixed interpretation, namely ‘≡’ represent-
ing (syntactic) equality and and ‘�’ for the reduction ordering. As before, we denote
conjunction as ‘&’ in constraints. Disjunction and negation will not be needed. A sub-
stitution satisfies a constraint, if the constraint is true under the fixed interpretation
when its free variables are assigned values according to the substitution. A constraint is
satisfiable, if there is a substitution that satisfies it.

Example 7.9 The constraint
X ≡ f(Y) & Y � X

is not satisfiable under any total ground reduction ordering, due to the subterm
property. The constraint

X � a& b � X

may or may not be satisfiable, depending on whether there is a ground term be-
tween a and b in the chosen term ordering.

A family of practical algorithms for checking the satisfiability of constraints interpreted
over recursive path orderings (RPOs) is discussed in [NR99]. For Constraints interpreted
over Knuth-Bendix orderings, see [KV01].

7.3 A Simple Calculus

In this section, we shall introduce the simplest version of our calculus and show its
completeness. Variations of the calculus will be introduced in the following sections.

7.3.1 The Calculus

We describe a clausal free variable tableau calculus to refute sets of clauses. Let a set C
of clauses be given. The calculus consists of three rules:

ext
θL1 | · · · | θLk

where C = {L1, . . . , Lk} ∈ C,
and θ renames each variable in C into a new (free) variable.

sup-p

s
.
= t� A

l
.
= r � B

s[r]p
.
= t� s|p ≡ l & s � t& l � r &A &B

where p is a position in s and s|p is not a variable.

sup-n

¬s
.
= t� A

l
.
= r � B

¬s[r]p
.
= t� s|p ≡ l & s � t& l � r &A&B

where p is a position in s and s|p is not a variable.

104

7.3 A Simple Calculus

The superposition rules sup-p and sup-n are only applied if the constraint of the new
literal is satisfiable. The two literals involved as premises in the sup-p-rule are required
to be distinct,2 although one might be a renaming of the other.

Note that constraints are attached to the formulae on a branch, and that these con-
straints are propagated by the rules, like in the simplification rules of the previous chap-
ter. When we don’t write a constraint (as in the ext -rule) we mean the empty constraint
that is satisfied by any substitution.

All rules are non-destructive, i.e. the original formulae stay in the expanded goals.
They were not included in the rules given above to save space. The rules are used to
expand a tableau, similarly to Def. 4.2.

Branches are now closed by unifying the two sides of a negated equation: An instan-
tiation σ ∈ I closes a goal G of a tableau, if there is a constrained negated equation
(¬s

.
= t� A) ∈ G such that σs = σt (that is syntactic identity) and σ satisfies A. The

whole tableau is closed, if there is a single substitution σ that closes all leaf goals of the
tableau simultaneously.

The sup-rules implement what is known as rigid basic superposition. The term ‘rigid’
refers to the rigidity of the free variables of our tableau calculus. One talks of superpo-
sition when only ordered application of equations is allowed, and only on the maximal
side of an equation, which in our case is enforced by the constraint s � t. Finally the
basicness restriction forbids application of equations on subterms created by unifiers
introduced by previous superposition steps. In our case, this is achieved by deriving a
literal s[r]p

.
= t� s|p ≡ l . . . instead of determining a most general unifier µ of s|p and l

and generating a literal µ(s[r]p
.
= t), as would be done in a calculus without constraints.

In an incremental closure implementation, closure of a tableau is determined as usual,
except that instead of propagating constraints corresponding to the unification of pairs
of complementary literals, we now propagate constraints expressing the unification of
two sides of a negated equation. Mergers are introduced for applications of the ext -
rule. sup-applications do not need to be reflected in the Sink structure. Obviously, as
clauses are not necessarily of length 2, one needs to use the technique of Sect. 5.9 for
n-ary branching. One should also consider keeping the unification constraints and the
ordering constraints separate, as unification constraints are relevant for soundness, while
ordering constraints are not. Before δ-propagation, one can then discard the ordering
part, as was suggested for the dis-unification part of constraints in Sect. 6.5.2. The
advantage of this approach is twofold: One gets less restrictive constraints, which might
allow closing the proof earlier. And the constraint is simplified by leaving out orderings,
reducing the burden for the closure test.

Example 7.10 We give a simple example to show how the calculus works. We will

2This restriction cannot be imposed in calculi dealing with universal equations, like the original Knuth-
Bendix completion, unfailing Knuth-Bendix completion, or resolution saturation procedures. We can
require the literals to be distinct, because we have rigid variables. With rigid variables, a term can’t
be unified with one of its proper subterms, so superposition would only be possible at the top position,
leading to a trivial equation.

105

7 Equality Handling

1 : ¬fb
.
= a

2 : fX
.
= gY

3 : fZ
.
= a 4 : gZ

.
= a

5 : a
.
= gY � Z ≡ X & fZ � a & fX � gY

6 : ¬a
.
= a� Z ≡ b & fZ � a& fb � a

7′ : fX
.
= a� Y ≡ Z & gY � fX

8′ : ¬a
.
= a� X ≡ b& Y ≡ Z & gY � fX

Figure 7.2: A tableau using the rigid basic superposition rules.

show that the following set of clauses is unsatisfiable.

¬fb
.
= a

fx
.
= gy

fz
.
= a ∨ gz

.
= a

The finished tableau is given in Fig. 7.2, but we shall explain how it is constructed,
step by step. As term ordering, we choose a lexicographic path ordering (see
Def. 7.8) with precedence g > f > b > a. We can start by expanding with the first
two clauses, which gives us a goal with the two literals

1 : ¬fb
.
= a

2 : fX
.
= gY

where X and Y are free variables. Between these, a sup-n application is possible
by overlapping the left sides. The resulting literal is

¬gY
.
= a� X ≡ b & fb � a& fX � gY .

The constraint of this literal is unsatisfiable, because it requires X to be instanti-
ated with b, but every term gY is larger than fb under the LPO with the chosen
precedence. Accordingly, this rule application is not allowed. Instead, we need to
further expand the tableau, using the third clause. We now get two branches, with

3 : fZ
.
= a

on the left branch, and
4 : gZ

.
= a

on the right one. On the left branch, a superposition step of 3 on 2 leads to the
literal

5 : a
.
= gY � Z ≡ X & fZ � a& fX � gY .

106

7.3 A Simple Calculus

This time, the constraint is satisfiable, for instance by instantiating X and Z to
ga, and Y to a. But there is no further inference between literal 5 and the other
literals on this branch. In particular, superposition between the right sides of 5 and
2 is not possible, because of the ordering constraint fX � gY of 5. Superposition
of 2 on 3 would lead to the same literal 5. But superposition of 3 on 1 produces

6 : ¬a
.
= a� Z ≡ b& fZ � a & fb � a ,

the constraint of which is satisfied whenever Z is instantiated to b. As this is a
negated equation between two identical terms, this goal is closed for σ(Z) = b. No
further superposition steps can be performed without expanding the left goal with
further clause copies, so we now turn to the right goal, which currently contains
the following three literals:

1 : ¬fb
.
= a

2 : fX
.
= gY

4 : gZ
.
= a

These allow only one superposition step, namely between 4 and 2, producing the
literal

7 : fX
.
= a� Y ≡ Z & gY � fX & gZ � a ,

the constraint of which is easily seen to be satisfiable. As gZ is always larger than
a under the given ordering, we can slightly simplify the constraint:

7′ : fX
.
= a� Y ≡ Z & gY � fX .

Literal 7′ permits one further superposition step on 1, which gives us

8 : ¬a
.
= a� X ≡ b& fb � a& fX � a& Y ≡ Z & gY � fX ,

where the constraint may again be simplified by removing the trivially satisfied
conjuncts, to

8′ : ¬a
.
= a� X ≡ b& Y ≡ Z & gY � fX .

No other superposition steps are possible on this goal. As any term gY is larger
than fb in our term ordering, the goal is now closed under any σ with σ(X) = b
and σ(Y) = σ(Z). This allows us to close the tableau with

[X/b, Y/b, Z/b] .

Thanks to the ordering constraints, only few superposition steps were possible,
which led to a very small search space.

The sup-n and sup-p rules can also be used in a backtracking prover. We discussed
that possibility for the simplification rules in Sect. 6.4.

107

7 Equality Handling

• One gets a backtracking calculus similar to that of Degtyarev and Voronkov, if one
does not keep the constraints together with the literals, but instead gathers them
all in one global constraint G that is required to be satisfiable. This introduces
a backtracking choice point for each rule application that adds to the global con-
straint. In addition branch closure requires backtracking, as usual in free variable
tableaux: whenever a negated equation ¬s

.
= t appears on a branch, a backtrack-

ing point is introduced and the constraint s ≡ t is added to G. The procedure
tries to close the other branches, always keeping G satisfiable, and keeping below a
certain instantiation depth limit. If this fails, extension of the branch is continued.
If no proof is found up to a given depth limit, the whole procedure is restarted
with an increased limit (iterative deepening). In contrast to the classic formula-
tion of tableaux, the unifiers generated in superposition applications and branch
closures should not be applied to the tableau, as this would yield possibilities for
new, spurious rule applications on the other branches, weakening the ‘basicness’
property. Of course, rule applications on other branches that generate constraints
incompatible with the global constraint G need not be considered in this scheme.

The essential difference to the calculus of Degtyarev and Voronkov is that they
discard the first premise in a sup-rule application. Of course, actually discarding a
literal is possible only in a backtracking calculus. In Sect. 7.4, we shall investigate
a way of simulating this destruction in a proof confluent way.

• One can avoid the backtracking points introduced by the sup-rules by keeping the
constraints of literals. These are only added to the global closure constraint G
when a branch is closed, and accordingly backtracking is only needed over branch
closures.

We emphasize the applicability of our results in a backtracking context for two reasons:
First, to make it clear that our results may be applied in a broader context than just
with an incremental closure prover. And second, to convince the reader that our results
do indeed subsume those of Degtyarev and Voronkov [DV97], in that our calculus (at
least in the version presented in Sect. 7.4) has all the properties they show of theirs.

7.3.2 Completeness

The completeness proof follows the usual lines: Assuming that there is no closed tableau
for a set of clauses, one constructs an infinite tableau by applying rules exhaustively—
in particular, the ext -rule has to be applied infinitely often for each clause on each
branch. Then one chooses a ground instantiation σ for the free variables, such that
after applying the substitution to the tableau, every branch contains at least one literal
from every ground instance of each of the clauses. From the assumption, it follows that
at least one branch B of the tableau is not closed by σ. From the literals on σB, an
interpretation is constructed, which is then shown to be a model for the clause set.

Our proof differs from this standard approach only in the construction of the inter-
pretation and in the proof that the clause set is indeed satisfied by it.

First, we need the following notion:

108

7.3 A Simple Calculus

Definition 7.11 Given a set B of constrained literals, a ground instantiation σ for all
free variables occurring in B, and a set R of ground rewrite rules, the set of variable-
irreducible ground instances of B under σ with respect to R, written irredR(σ,B), is the
set of all ground literals (¬)σl

.
= σr, where ((¬)l

.
= r � A) ∈ B, A is satisfied by σ, and

σx is irreducible by R for all variables x occurring in l or r.

Note that irreducibility is not required for the whole terms σl and σr, but only for
the instantiations of variables occurring in them. Also, the instantiation of variables
occurring only in the constraint A is allowed to be reducible. We are going to work only
on variable-irreducible ground instances of the constrained literals on a branch. The
reason for this will become clear later.

We can now define the ‘model generation’ process, which constructs a ground rewrite
system by induction with �l over variable-irreducible ground instances of literals on a
branch. The tricky part here is that the rewrite relation that variable-irreducibility refers
to is only just being built during the induction.

Definition 7.12 Let B be a set of constrained literals and σ a ground substitution on
all variables in B. For any ground literal L, we define Gen(L) = {l ⇒ r} and say L
generates the rule l ⇒ r, iff

1. L ∈ irredRL
(σ,B),

2. L = (l
.
= r),

3. R∗
L 6|= L,

4. l � r, and

5. l is irreducible w.r.t. RL,

where RL :=
⋃

L�lK
Gen(K) is the set of all previously generated rules. Otherwise, we

define Gen(L) := ∅. The set of all rules generated by any ground literal is denoted
RB,σ :=

⋃

K Gen(K).

Note that only positive equations generate rules. When no confusion is likely concern-
ing the set B and the substitution σ, we will just write R instead of RB,σ.

We have the following two useful lemmas, which are slightly reformulated versions of
Lemma 3.2 of [NR01]:

Lemma 7.13 For any set of constrained literals B and ground substitution σ, the gen-
erated set of rules R = RB,σ is convergent, i.e. confluent and terminating. The subset
RL is also convergent for any ground literal L.

Proof. R terminates because l � r for all rules l ⇒ r ∈ R (condition 4). To show
confluence, by Newman’s Lemma, one thus only needs to show local confluence, which
follows from the fact that there can be no critical pairs in R. For assume l ⇒ r ∈ R and
l′ ⇒ r′ ∈ R with l|p = l′. Let l ⇒ r be generated by a literal K. l′ ⇒ r′ cannot be in

109

7 Equality Handling

RK , for otherwise condition 5 would have prevented the generation of l ⇒ r. So l′ ⇒ r′

is generated by a literal K ′ with K ′ �l K. But then either l′ � l, which is impossible
because l′ is a subterm of l. Or l′ = l and r � r′, but then l′ would be reducible by
l ⇒ r, violating condition 5 for Gen(K ′) = {l′ ⇒ r′}.

For arbitrary ground literals L, RL ⊆ R, so RL is also terminating, and RL cannot
contain critical pairs either. Hence, RL is also convergent. ut

Lemma 7.14 For all ground literals L, if R∗
L |= L, then R∗ |= L.

Proof. Let R∗
L |= L.

Case 1: L = (s
.
= t). R contains at least all the rewrite rules of RL, i.e. R ⊇ RL. Thus,

the equation must also hold in R∗.

Case 2: L = (¬s
.
= t). According to Lemma 7.13, RL is convergent, so s and t have

distinct normal forms s′ � s and t′ � t w.r.t. RL. Now consider rules l ⇒ r ∈ R \ RL.
By definition of RL, their generating literals l

.
= r must be larger than L in the literal

ordering (they can’t be equal because L is a negated equation). By the definition of � l,
this implies that l � s � s′ and l � t � t′. So rules in R \ RL can not further rewrite s′

or t′, hence these are the normal forms of s and t also w.r.t. R. And as they are distinct,
R∗ |= ¬s

.
= t. ut

We can now show the central property of the model R∗ constructed in Def. 7.12,
namely that it satisfies all the irreducible instances (w.r.t R) of literals in B under
certain conditions.

Lemma 7.15 (Model Generation) Let B be a set of constrained literals and σ a
ground substitution for the free variables in B, such that

• B is closed under the application of the sup-p and sup-n rules, and

• there is no literal ¬s
.
= t� A ∈ B such that σs = σt (syntactically) and σ satisfies

A.

Then R∗ |= L for all L ∈ irredR(σ,B).

Proof. Assume that this were not the case. Then there must be a minimal (w.r.t. �l)
L in irredR(σ,B) with R∗ 6|= L. We distinguish two cases, according to whether L is an
equation or a negated equation:

Case 1: L = (s
.
= t). If s = t syntactically, then clearly R∗ |= L, so we may assume

that s � t. As RL ⊆ R, we certainly have L ∈ irredRL
(σ,B). Also, due to Lemma 7.14,

we already have R∗
L 6|= L. But Gen(L) = ∅, because otherwise the rule s ⇒ t would be

in R, implying R∗ |= L. As conditions 1 through 4 for L generating a rule are fulfilled,
condition 5 must be violated. This means that there is a rule l ⇒ r ∈ RL that reduces
s, so s|p = l for some position p in s. Now let L be the variable-irreducible (w.r.t. R)
instance of a constrained literal L0 = (s0

.
= t0 � A) ∈ B. Similarly, let l ⇒ r be

generated by a literal K = (l
.
= r) ≺l L that is the variable-irreducible (w.r.t. RK)

110

7.3 A Simple Calculus

instance of a constrained literal K0 = (l0
.
= r0 � B) ∈ B. It turns out that p must be

a non-variable position in s0, because otherwise, since s = σs0, we would have p = p′p′′

with s0|p′ = x and σx|p′′ = l, thus σx would be reducible by l ⇒ r ∈ R, contradicting the
variable-irreducibility of L.3 From all this, it follows that an application of the sup-p-rule
between the literals L0,K0 ∈ B is possible:

sup-p

s0
.
= t0 � A

l0
.
= r0 � B

s0[r0]p
.
= t0 � s0|p ≡ l0 & s0 � t0 & l0 � r0 &A&B

As B is required to be closed under rule applications, the resulting literal, call it L ′
0,

must be in B. Now L′ := (s[r]p
.
= t) = σL′

0 is a variable-irreducible (w.r.t. R) instance
of L′

0: indeed, σ obviously satisfies the new constraint. Furthermore, σx is irreducible
by R for any variable x occurring in s0 or t0. For an x occurring in r0, σx is known to
be irreducible by rules in RK . But for rules g ⇒ d ∈ R \ RK , we have g � l � r � σx,
so g cannot be a subterm of σx. This shows that σx is irreducible by R for all variables
x in L′

0, so L′ ∈ irredR(σ,B). Moreover, since l and r are in the same R∗-equivalence
class, replacing l by r in s does not change the (non-)validity of s

.
= t, i.e. R∗ 6|= L′.

And finally, by monotonicity of the rewrite ordering �, L �l L
′. This contradicts the

assumption that L is the minimal element of irredR(σ,B) which is not valid in R∗.

Case 2: L = (¬s
.
= t). If s = t syntactically, then the second precondition of this lemma

is violated, so we may assume s � t. Due to Lemma 7.14, R∗
L 6|= L, i.e. R∗

L |= s
.
= t.

According to Lemma 7.13, RL is convergent. Validity of s
.
= t in R∗

L then means that
s and t have the same normal form w.r.t. RL. This normal form must be � t, and
thus ≺ s. Therefore, s must be reducible by some rule l ⇒ r ∈ RL with s|p = l for
some position p. As in case 1, let L be the variable-irreducible (w.r.t. R) instance of a
constrained literal L0 = (¬s0

.
= t0 � A) ∈ B and let l ⇒ r be generated by a literal

K = (l
.
= r) ≺l L that is the variable-irreducible (w.r.t. RK) instance of a constrained

literal K0 = (l0
.
= r0 � B) ∈ B. Again as in case 1, p must be a non-variable position

in s0. It follows that an application of the sup-n rule is possible between L0 and K0:

sup-n

¬s0
.
= t0 � A

l0
.
= r0 � B

¬s0[r0]p
.
= t0 � s0|p ≡ l0 & s0 � t0 & l0 � r0 &A &B

We can now show, in complete analogy with case 1 that L′ := (¬s[r]p
.
= t) ∈ irredR(σ,B),

R∗ 6|= L′ and L �l L
′, contradicting the assumption that L is minimal in irredR(σ,B)

with R∗ 6|= L. ut

We now have all the necessary tools to show that our calculus is complete in the sense
that there exists a finite closed tableau for any unsatisfiable set of clauses. We are going

3This is the place where the use of variable-irreducible instances is necessary. Otherwise, the combina-
tion of constraint inheritance and the non-variable-position condition would give problems. This idea
is also used by Nieuwenhuis and Rubio [NR01], but they need a slightly more complicated notion of
variable irreducibility because they work with clauses.

111

7 Equality Handling

to show a little more, namely that a closed proof will be found if we simply expand the
tableau in a fair way without requiring backtracking. Of course, this property is partly
due to the fact that we postpone the instantiation of free variables to a global closure test.
If we closed branches one at a time, we would have to backtrack over branch closures,
but not—contrary to what is the case in the calculus of Degtyarev and Voronkov—over
every application of the superposition rules. In order to state the completeness theorem,
we need the following definition of a fair proof procedure.

Definition 7.16 A proof procedure is a procedure that takes a set of clauses C and
builds a sequence of tableaux T0, T1, T2, . . . for C where T0 is the empty tableau, and each
Ti+1 results from the application of an ext or sup rule on one of the leaf goals of Ti. A
proof procedure finds a proof for C, if one of the Ti is closed.

The limit of a sequence of tableaux constructed by a proof procedure is the possibly
infinite union of all those tableaux. A leaf goal of such a limit is the union of all goals
on some branch of the limit tableau.

A proof procedure is fair, if for any sequence of tableaux it constructs that does not con-
tain a closed tableau, the following holds: If T is the limit of the sequence of constructed
tableaux, then

• The ext-rule is applied infinitely often for every clause on every branch of T .

• Every possible application of the sup-rules between two literals on a branch of T is
eventually performed on that branch.

Theorem 7.17 Let C be an unsatisfiable set of clauses. Then a fair proof procedure
finds a proof for C.

Proof. Assume that the procedure does not find a proof. Then it constructs a sequence
of tableaux T0, T1, T2, . . . with a limit T . T has at least one open leaf goal for any
instantiation of the free variables in T . For assume that under a certain σ all leaf goals
are closed. Then there is a literal ¬s

.
= t � C in every leaf goal with σs = σt and

σ ∈ Sat(C). This literal is introduced at some (possibly inner) node of the limit tableau.
Make a new tableau T ′ by cutting off every branch below some such node. Then σ
still closes T ′ and T ′ has only branches of finite length and is finitely branching. Thus,
by König’s Lemma, T ′ must be a finite closed tableau for C. One of the tableaux Ti
must contain T ′ as initial subtableau, and thus Ti is closed under σ, contradicting the
assumption that the procedure finds no proof.

We now fix the instantiation σ. Namely, σ should instantiate the free variables intro-
duced by the ext -rule in such a way that every leaf goal of σT contains at least one literal
of each ground instance of every clause in C. This is can be done because by fairness of
the procedure, the ext -rule is applied infinitely often for each clause on every branch.

We have seen that there must now be a leaf goal B of T , such that B is not closed by
σ. We apply the model generation of Def. 7.12 on B and σ to obtain a set of rewrite
rules R = RB,σ. As B and σ obviously satisfy the preconditions of Lemma 7.15, every
variable-irreducible instance of B is valid in R∗.

112

7.4 A Calculus with Histories

It now remains to show that every clause in C is valid in R∗ to contradict the assump-
tion that C is unsatisfiable. We do this by showing that all ground instances of clauses
in C are valid. Let τC be a ground instance of C ∈ C, where τ is a ground substitution
for the variables occurring in C. We now define a new substitution τ ′ such that τ ′x
is the normal form w.r.t. R of τx. This makes τ ′x irreducible by R for all variables x
of C. Now τ ′C is obtained from τC by replacement of a number of subterms by other
subterms equivalent under R∗. Thus R∗ |= τC iff R∗ |= τ ′C. By construction of σ and
B, there must be a literal L ∈ C such that θL ∈ B for some renaming of variables θ, and
such that τ ′L = σθL. As θL carries no constraint, this makes τ ′L a variable-irreducible
instance of θL, so R∗ |= τ ′L and accordingly R∗ |= τ ′C. ut

7.4 A Calculus with Histories

The calculus proposed by Degtyarev and Voronkov has a relative termination property
similar to the one described for the simplification rules in Theorem 6.11 and 6.14: In
their calculus, only a finite number of applications of the superposition rules is possible
without intervening applications of the γ-rule, which corresponds to our ext -rule.

A little surprisingly—after all, we did not use universal variables, which cause non-
termination for the simplification rules—this is not the case for the superposition calculus
considered so far.

Example 7.18 We start with a goal containing the following two literals:

1 : fgx
.
= gx

2 : gx
.
= a

By repeated application of the sup-p rule, we can derive

3(sup-p of 2 on 1) : gx
.
= fa� gx � a

4(sup-p of 3 on 1) : gx
.
= ffa� gx � fa

5(sup-p of 4 on 1) : gx
.
= fffa� gx � ffa

...

where the generated constraints have been suitably simplified. Indeed, all the
generated constraints can be seen to be satisfiable (though of course by different
instantiations), regardless of the reduction ordering chosen.

Such a derivation cannot occur in the calculus of Degtyarev and Voronkov, because
they discard the formula that superposition takes place on. The cost of this is that
backtracking over the order of applied superposition steps becomes necessary.

The practical value of this relative termination property is questionable. We will
discuss this in Sect. 7.4.2. Still, it is at least of a certain theoretical value, so we will
show how our calculus may be modified to make superposition derivations terminating.
We shall see that backtracking is not required in our case.

113

7 Equality Handling

We need to somehow simulate destructive rule applications in our calculus. More
precisely, we have to prohibit a rule application if it depends on literals, which would
previously have been discarded in a destructive calculus. We have already seen one
possibility for doing this in Sect. 6.5.1, namely to add dis-unification constraints to
formulae. We are going to follow a different approach here for two reasons. First, even
the weak form of destructiveness caused by changing the constraint of an existing literal
in a rule application would be rather difficult to integrate into our model generation
proof, because in certain cases, the accumulated constraint can become unsatisfiable,
so that the original formula is discarded. This would mean that it is no longer present
in the ‘leaf goal’ of the limit tableau, see Sect. 7.5. Second, this is an opportunity to
introduce a different technique for simulating destructive rules.

We start by explaining the general principle. We shall use a slight variation in the
actual calculus. The idea is as follows: instead of discarding rewritten literals, we label
each literal L with a history hL, which is a list of (references to occurrences of) literals
that would have been discarded during the derivation of L in a destructive calculus. We
constrain the superposition rules in a way that excludes rule applications between L and
a literal that occurs in the history hL of L.

A calculus that discards the rewritten literal would then have a positive superposition
rule like this:

L = (s
.
= t� A · hL)

K = (l
.
= r � B · hK)

s[r]p
.
= t� s|p ≡ l & s � t& l � r &A&B · {L} ∪ hL ∪ hK

where p is a position in s, s|p is not a variable and L 6∈ hK and K 6∈ hL.

The important part is the history of the new literal. Histories are propagated somewhat
like constraints. Derivation of L would have implied discarding the literals in hL, and
likewise for hK . The new superposition step now discards L, so we get the combined
history of {L} ∪ hL ∪ hK .

This rule is entirely non-destructive. If we used DU-constraints, we would change the
constraint of L to register the instantiations under which L could have been discarded.
Here we remember the destruction of L in the new literal, while L itself is not changed.

With this formulation of the rules, our calculus would closely correspond to that of
Degtyarev and Voronkov, though one can show that it still allows certain derivations
excluded by the destructive version.

Example 7.19 Assume a goal with three literals

1 : gfc
.
= a

2 : c
.
= b

3 : gfc
.
= fb

and an LPO with precedence g > f > c > b > a. Now superposition of 2, resp. 3

114

7.4 A Calculus with Histories

on 1 produces two new literals:

4(sup-p of 2 on 1) : gfb
.
= a · {1}

5(sup-p of 3 on 1) : fb
.
= a · {1}

We can now apply superposition of 5 on 4, to derive

6(sup-p of 5 on 4) : ga
.
= a · {1, 4}

This step would be possible in no derivation of a destructive calculus, as only either
4 or 5 could have been derived, due to the destruction of 1.

We are not going to let this worry us; we shall conduct our proofs for an even more
restrictive calculus for the following reasons:

• As we show completeness of a more restrictive calculus, our completeness result is
strictly stronger. It works in exactly the same way for a weaker restriction.

• The proof is not further complicated by the stronger restriction.

• The termination property is much easier to show in our calculus.

• In a way, the underlying principle of our completeness proof becomes clearer with
the more restrictive calculus.

We shall call the literals introduced by the ext -rule (as opposed to those introduced
by applications of the superposition rules) ext-literals. Our calculus will record in the
history of each literal which ext-literals were involved in its derivation. Putting other
literals into the histories is not going to be necessary. We allow each ext-literal to be
used at most once in the derivation of a literal, which is easily formalized by requiring
the histories of literals used in the superposition rules to be disjoint. In a destructive,
backtracking formulation analogous to the one of Degtyarev and Voronkov, this would
mean that both literals used in a superposition step are discarded.

Here are the three rules of our calculus with histories:

ext
L1 · {L1} | · · · | Lk · {Lk}

where {L1, . . . , Lk} = θC, with C ∈ C
and θ renames each variable in C into a new (free) variable.

sup-p

s
.
= t� A · h1

l
.
= r � B · h2

s[r]p
.
= t� s|p ≡ l & s � t& l � r &A &B · h1 ∪ h2

where p is a position in s, s|p is not a variable and h1 ∩ h2 = ∅.

sup-n

¬s
.
= t� A · h1

l
.
= r � B · h2

¬s[r]p
.
= t� s|p ≡ l & s � t& l � r &A&B · h1 ∪ h2

where p is a position in s, s|p is not a variable and h1 ∩ h2 = ∅.

115

7 Equality Handling

Again, the superposition rules sup-p and sup-n are only applied if the constraint of
the new literal is satisfiable. The two literals involved as premises in the sup-p-rule are
required to be distinct.

As in the simple calculus of the previous section, a ground instantiation σ closes a
goal G of a tableau, if there is a constrained negated equation ¬s

.
= t� A · h ∈ B such

that σs = σt (that is syntactic identity) and σ satisfies A. The whole tableau is closed,
if there is a single instantiation σ that closes all leaf goals simultaneously.

One easily sees that the history of every literal has at least one element, and that the
literals with a one element history are precisely the ext-literals.

7.4.1 Completeness of the Calculus with Histories

For our completeness proof, we have to modify the proof given in the previous section
slightly, to cope with the disjoint history restriction in the sup-rules. We require the
following notions.

Definition 7.20 Let S be a set of constrained literals with history and σ an instantiation
for the free variables in S. Two literals L,K ∈ S are called variants, if they are equal
up to renaming of free variables, if histories are not regarded.4 They are called copies
(under σ) if moreover the free variables are assigned the same ground terms under σ.
S is called rich (under σ), if every literal L ∈ S has an infinite number of copies with
pairwise disjoint histories in S.

For instance, f(X)
.
= Y � X ≡ a · {L1, L2} and f(U)

.
= V � U ≡ a · {L1, L3} are

variants. They are also copies under σ if σX = σU and σY = σV .
As will become apparent in the proof of Theorem 7.22, we will do the model construc-

tion with only a subset of the literals on an open leaf goal. To avoid confusion, we are
going to denote the concerned sets of constrained literals with history S instead of B as
in the previous section.

The construction of a model from a set S works exactly as in Def. 7.12. The only
new aspect is that the literals in S have histories: we simply forget those when applying
a ground substitution. So irredR(σ,S) shall simply be a set of ground literals without
history as before. Thus, for the generated set of ground rewrite rules R = RS,σ, Lemmas
7.13 and 7.14 hold as before.

The differences are in the Model Generation Lemma (Lemma 7.15 for the simple
calculus) and the actual completeness proof. Most of the Model Generation Lemma and
its proof are actually identical to the simple version, but we shall repeat the proof here
to make it more readable and also to make sure that we do not accidentally skip an
important difference. The new parts are marked by a gray bar in the margin.

Lemma 7.21 (Model Generation) Let S be a set of constrained literals with history
and σ an instantiation for the free variables in S, such that

• S is closed under the application of the sup-p and sup-n rules,

4The variable renaming also applies to the constraints.

116

7.4 A Calculus with Histories

• there is no literal ¬s
.
= t � A · h ∈ S such that σs = σt (syntactically) and σ

satisfies A, and

• S is rich under σ.

Then R∗ |= L for all L ∈ irredR(σ,S).

Proof. Assume that this were not the case. Then there must be a minimal (w.r.t. �l)
L in irredR(σ,S) with R∗ 6|= L. We distinguish two cases, according to whether L is an
equation or a negated equation:

Case 1: L = (s
.
= t). If s = t syntactically, then clearly R∗ |= L, so we may assume

that s � t. As RL ⊆ R, we certainly have L ∈ irredRL
(σ,S). Also, due to Lemma 7.14,

we already have R∗
L 6|= L. But Gen(L) = ∅, because otherwise the rule s ⇒ t would be

in R, implying R∗ |= L. As conditions 1 through 4 for L generating a rule are fulfilled,
condition 5 must be violated. This means that there is a rule l ⇒ r ∈ RL that reduces
s, so s|p = l for some position p in s. Now let L be the variable-irreducible (w.r.t. R)
instance of a constrained literal L0 = (s0

.
= t0 � A · hL) ∈ S. Similarly, let l ⇒ r

be generated by a literal K = (l
.
= r) ≺l L that is the variable-irreducible (w.r.t. RK)

instance of a constrained literal K0 = (l0
.
= r0 � B · hK) ∈ S. As S is rich, there are

infinitely many copies under σ of L0 with pairwise disjoint histories. Each of the finitely
many elements of hK can be contained in the history of at most one of these copies, and
all the remaining ones have a history disjoint to hK . So we may assume that L0 and K0

are chosen in a way that hK and hL are disjoint. Further, it turns out that p must be
a non-variable position in s0, because otherwise, since s = σs0, we would have p = p′p′′

with s0|p′ = x and σx|p′′ = l, thus σx would be reducible by l ⇒ r ∈ R, contradicting the
variable-irreducibility of L. From all this, it follows that an application of the sup-p-rule
between the literals L0,K0 ∈ S is possible:

sup-p

s0
.
= t0 � A · hL

l0
.
= r0 � B · hK

s0[r0]p
.
= t0 � s0|p ≡ l0 & s0 � t0 & l0 � r0 &A&B · hL ∪ hK

As S is required to be closed under rule applications, the resulting literal, call it L ′
0,

must be in S. Now L′ := (s[r]p
.
= t) = σL′

0 is a variable-irreducible (w.r.t. R) instance
of L′

0: indeed, σ obviously satisfies the new constraint. Furthermore, σx is irreducible
by R for any variable x occurring in s0 or t0. For an x occurring in r0, σx is known to
be irreducible by rules in RK . But for rules g ⇒ d ∈ R \ RK , we have g � l � r � σx,
so g cannot be a subterm of σx. This shows that σx is irreducible by R for all variables
x in L′

0, so L′ ∈ irredR(σ,S). Moreover, since l and r are in the same R∗-equivalence
class, replacing l by r in s does not change the (non-)validity of s

.
= t, i.e. R∗ 6|= L′.

And finally, by monotonicity of the rewrite ordering �, L �l L
′. This contradicts the

assumption that L is the minimal element of irredR(σ,S) which is not valid in R∗.

Case 2: L = (¬s
.
= t). If s = t syntactically, then the second precondition of this lemma

is violated, so we may assume s � t. Due to Lemma 7.14, R∗
L 6|= L, i.e. R∗

L |= s
.
= t.

According to Lemma 7.13, RL is convergent. Validity of s
.
= t in R∗

L then means that

117

7 Equality Handling

s and t have the same normal form w.r.t. RL. This normal form must be � t, and
thus ≺ s. Therefore, s must be reducible by some rule l ⇒ r ∈ RL with s|p = l for
some position p. As in case 1, let L be the variable-irreducible (w.r.t. R) instance of a
constrained literal L0 = (¬s0

.
= t0 � A · hL) ∈ S and let l ⇒ r be generated by a literal

K = (l
.
= r) ≺l L that is the variable-irreducible (w.r.t. RK) instance of a constrained

literal K0 = (l0
.
= r0 � B · hK) ∈ S. Again as in case 1, p must be a non-variable

position in s0, and we can choose L0 and K0 with disjoint histories. It follows that an
application of the sup-n rule is possible between L0 and K0:

sup-n

¬s0
.
= t0 � A · hL

l0
.
= r0 � B · hK

¬s0[r0]p
.
= t0 � s0|p ≡ l0 & s0 � t0 & l0 � r0 &A &B · hL ∪ hK

We can now show, in complete analogy with case 1 that L′ := (¬s[r]p
.
= t) ∈ irredR(σ,S),

R∗ 6|= L′ and L �l L
′, contradicting the assumption that L is minimal in irredR(σ,S)

with R∗ 6|= L. ut

The main point is that if S is rich, we can find enough copies of the required literals
that some of them have disjoint histories. Now in the actual completeness proof, we
have to extract a rich set of literals from an open branch in such a way that the validity
of the irreducible instances of that set will imply the validity of each of the clauses in
our clause set.

Using the definitions of a fair proof procedure from Def. 7.16, we can now show the
following completeness theorem.

Theorem 7.22 Let C be an unsatisfiable set of clauses. Then a fair proof procedure for
the calculus with histories finds a proof for C.

Proof. Assume that the procedure does not find a proof. As in the proof of Theorem 7.17,
we can conclude that it constructs in the limit an infinite tableau T which has at least
one open leaf goal under any instantiation for the free variables in T .

We now fix the instantiation σ. Namely, σ should instantiate the free variables intro-
duced by the ext -rule in such a way that every leaf goal of σT contains infinitely many
occurrences of literals of each ground instance of every clause in C. This is possible
because the ext -rule is applied infinitely often for each clause on every branch, and using
a dovetailing process that lets each of the ground instantiations be used infinitely often.

There must now be a leaf goal B of T , such that B is not closed by σ. As there are
infinitely many occurrences of literals of each ground instance of every clause on B, and
every clause is finite, for every ground instance τC of every clause, there must be at
least one literal LτC ∈ τC, such that there are infinitely many ext-literals L′ ∈ B with
σL′ = LτC .

Collect all these ext-literals LτC on B in a set E∞. As we are dealing with ext-literals,
the histories of literals in E∞ are disjoint, so E∞ is rich under σ. Now define B∞ to
contain all literals of E∞ as well as all literals on B derived from literals in E∞ alone.

118

7.4 A Calculus with Histories

As B is closed under sup-rule applications by fairness of the proof procedure, so is
B∞. Furthermore, B∞ is rich, as can be seen by induction on the number n of literals
in the history of a given literal L: For n = 1, L is an ext-literal, so L ∈ E∞. Hence
there are infinitely many copies of L with pairwise disjoint histories. For n > 1, L must
be derived by an application of a sup-rule from literals with a history smaller than n.
The induction hypothesis guarantees an infinite number of copies with pairwise disjoint
histories of these literals in B∞. The same rule application is obviously possible between
these copies, and as B∞ is closed under sup applications, one easily sees that there must
be infinitely many copies of L.

We apply the model generation of Def. 7.12 on B∞ and σ to obtain a set of rewrite
rules R = RB∞,σ. As B∞ and σ satisfy the preconditions of Lemma 7.21, every variable-
irreducible instance of B∞ is valid in R∗.

It now remains to show that every clause in C is valid in R∗ to contradict the assump-
tion that C is unsatisfiable. This is done as in the proof of Theorem 7.17, except that
it now suffices to take expansions contributing to E∞ into account. We must show that
all ground instances of clauses in C are valid. Let τC be a ground instance of C ∈ C,
where τ is a ground substitution for the variables occurring in C. We now define a
new substitution τ ′ such that τ ′x is the normal form w.r.t. R of τx. This makes τ ′x
irreducible by R for all variables x of C. Now τ ′C is obtained from τC by replacement
of a number of subterms by other subterms equivalent under R∗. Thus R∗ |= τC iff
R∗ |= τ ′C. By construction of σ and B∞, there must be a literal L ∈ C such that
θL ∈ E∞ ⊂ B∞ for some renaming of variables θ, and such that τ ′L = σθL. As θL
carries no constraint, this makes τ ′L a variable-irreducible instance of θL, so R∗ |= τ ′L
and accordingly R∗ |= τ ′C. ut

7.4.2 Termination

The completeness proof just given is simpler than that of Degtyarev and Voronkov
although our calculus is more restrictive. In contrast, our proof of the relative termination
property is simpler than theirs, because our calculus is more restrictive. Indeed, we
can prove this property with the histories alone, without needing arguments about the
ordering restrictions expressed in the constraints.

Theorem 7.23 Starting from a finite tableau T , only a finite number of sup-rule appli-
cations is possible without intervening applications of the ext-rule.

Proof. As the sup-rules do not introduce new branches, it suffices to show this property
for each of the finitely many branches of T . The sup-rules combine the disjoint history
sets of used literals, so the size of the history of the resulting literal is the sum of the
sizes of the used literals’ histories. Only ext-literals have a history of size one.

We show by induction on n that only finitely many literals with a history of at most
n literals can be derived. For n = 1, this is the case, since we start out with only finitely
many ext-literals, and we do not get any new ones. For n > 1, a literal must be the
result of a sup-application between literals of history size less than n. By induction

119

7 Equality Handling

hypothesis, there can be only finitely many of those. Also, there are only finitely many
ways to apply a sup-rule between two given literals, because the rule applications are
determined by the position p at which the terms are overlapped.

No history can get larger than the number of ext-literals on the branch, so one can
only derive a finite number of new literals altogether. ut

It should be remarked that the history restriction employed is rather strong. In a
backtracking setting, this would correspond to discarding both used literals in every
superposition step. The calculus of Voronkov and Degtyarev discards only the rewritten
one, i.e. the first premise in our notation. As we have already mentioned, we choose the
given variant because it is more restrictive, meaning that we have a stronger completeness
result, without making the completeness proof more complicated.

On the other hand, our restriction to disjoint histories is so strong, that it prompts
the question whether it is useful in practice. But of course, that question has to be
asked of any restriction. We introduced the history restriction to get a calculus which
enjoys the relative termination property just proven. Only experimentation can show
which restriction is useful to ensure termination in practice. In fact, it is not even clear
whether the termination property is of any practical value at all:

• At first sight, the termination property makes it easier to implement a fair proof
procedure: One can apply the sup-rules exhaustively before resorting to further
ext -expansions. However, one still needs a fair strategy to choose the next extension
clause on a branch. If one can implement an intelligent procedure to do this, one
should also be able to choose between extension and superposition. Or, vice versa,
if it is sufficient to just put pending ext -expansions in a FIFO queue, why should
it not be good enough to use the same queue for superposition steps?

• As Beckert has pointed out [Bec93, Bec94], it is crucial for the efficiency of equal-
ity reasoning to take universal variables into account (see Sect. 5.7). The reason
for this is that many application domains naturally lead to universal unit equality
axioms, like commutativity, associativity, idempotency, inverse function relation-
ships (∀x.fgx = x), etc. Introducing a new copy with rigid variables for every
application of such axioms leads to similar redundancies as were shown for the
simplification rules in Sect. 6.6. If universal variables are used, only one copy of
these axioms ever needs to be introduced on a branch.

It turns out that the superposition rules with universal variables correspond to a
variant of unfailing Knuth-Bendix completion [BDP89], which does not terminate
in general. UKBA behaves very well in practice, so it is probably not sensible to
restrict it artificially only to enforce termination.

• The regularity restriction (see Sect. 5.8 and 6.8) requires literals introduced by rule
applications to be new to their branches under the closing substitution. This is a
very common and successful restriction to eliminate redundancy in proof search.
The calculus with histories is not complete if we require regularity, see Sect. 7.4.3.
It is not clear whether the calculus of Degtyarev and Voronkov is compatible with

120

7.4 A Calculus with Histories

regularity. On the other hand, the simple calculus of Sect. 7.3 obviously is, since
only one copy of each ground instance is needed.

To summarize, it seems that in an efficient implementation of a tableau calculus with
superposition, the termination property is not really important, and maybe cannot even
be sensibly maintained at all.

Of course, the termination property can be bestowed on any calculus by a simple trick:
One takes an arbitrary fair strategy and codes it into the calculus. As every possible rule
application gets scheduled at some point by a fair procedure, and extension with a clause
is always possible, it follows that only finitely many sup-applications are performed in
between.

Admittedly, it is nonsense to code the whole proof procedure into the calculus. But
only experimentation can show how far one should go.

7.4.3 Regularity

In this section, we are going to consider the problems with the regularity restriction
mentioned in the previous section in a little more detail. For this discussion, we do not
need the technique for subsuming regularity presented in Sect. 6.8, because we are dealing
only with clausal tableaux. We shall simply require that first, closing instantiations σ
which lead to two equal literals on a branch under σ are not considered, and second, rule
applications that lead to a repetition of literals under every instantiation are forbidden.
How this should be implemented shall not be an issue here.

The most important effect of the regularity restriction in a first order calculus is that
it prevents expanding the same clause twice with the same instantiation on one branch.
We shall call this the ‘economic instantiation’ property.

One can easily check that the rigid basic superposition calculus without histories of
Sect. 7.3 is compatible with the regularity restriction. Indeed, the completeness proof
only requires one literal of every ground instance of each clause to be on a branch.

The situation is different for the calculus with histories. Regularity can still be re-
quired, if instances of literals with different histories are regarded as different in the
regularity condition. But the condition would then be very weak, because the ext -rule
introduces new literals with new histories each time, so we would not have the economic
instantiation property. In other words, a sensible definition of regularity should not take
histories into account. On the other hand, if we disregard histories in the regularity
condition, we regain the economic instantiation property, but one can easily see that the
calculus is no longer complete. This is reflected by the requirement of having infinitely
many copies of literals on a branch in the completeness proof.

To summarize, if we take a useful definition of regularity, the calculus without histories
is compatible with regularity, but does not have the relative termination property, while
the calculus with histories has the relative termination property, but is incompatible
with regularity.

As we remarked earlier, the history restriction used in our calculus is rather strong.
This suggests the question, whether there is a restriction of our calculus which has the

121

7 Equality Handling

termination property and is compatible with a reasonably defined regularity restriction.
The answer is yes, because the simple calculus is compatible with regularity and the trick
mentioned at the end of the previous section allows us to endow it with the termination
property. Of course, this is no interesting answer, as the restriction produced by coding
the proof procedure into the calculus is not very natural. We thus reformulate our
question:

Is there a natural restriction of our calculus which has the termination prop-
erty and is compatible with a reasonably defined regularity restriction?

A natural restriction would be one, for instance, that somehow reflects discarding rewrit-
ten or otherwise redundant literals. A reasonable regularity restriction should at least
entail the economic instantiation property.

It is not stated in [DV98] whether the calculus of Degtyarev and Voronkov is com-
patible with regularity. One should remember that their calculus is destructive, so a
suitable regularity condition should demand not only that instances of literals present
on a branch are not duplicated by rule applications, but also that instances of literals
that were present but have since been discarded are not duplicated. Otherwise, we would
not get the economic instantiation property.

Reconsider the initial attempt at a calculus with histories mentioned at the beginning
of Sect. 7.4 on page 114. We tried to find a completeness proof for that calculus (which
corresponds closely to the one of [DV98]) that would be compatible with regularity. In
particular, we considered a ground version of that calculus that does not need constraints
and works only on ground literals with histories. We were able to show completeness of
that ground calculus by the model generation technique without requiring infinitely many
copies of literals. This means that the ground calculus is compatible with regularity.
We shall not spell out the proof here, as it is similar to the ones already given. The
main differences are as follows: The variable irreducibility restriction is obviously not
needed for the ground case, instead we restrict model generation to literals with maximal
histories. The model generation proof is adapted to generate a model in which all literals
with maximal history are valid. From the validity of these in an open goal, we can then
inductively infer the validity of all other literals.

Unfortunately, we have not succeeded in lifting this ground proof to a version with free
variables. The restriction to literals with maximal history conflicts with the restriction
to variable-irreducible instances which we need to cope with the non-variable-position
restriction, leading to very tangled interdependencies which we were not able to resolve.

The conclusion is that we currently have no answer to the question posed above.

7.5 Using Dis-Unification Constraints for Superposition

In Sect. 7.4, we used history lists to emulate the deletion of literals from a branch in
a non-destructive way that eliminates the need to backtrack over sup-rule applications.
Another possibility to model deletion of literals is to use dis-unification (DU) constraints
as in Sect. 6.5.1. We shall briefly discuss this possibility in this section.

122

7.5 Using Dis-Unification Constraints for Superposition

Assume that the following rule application is possible between two literals:

sup-p

s
.
= t� A

l
.
= r � B

s[r]p
.
= t� A&B & C

Where C = (s|p ≡ l&s � t& l � r) is the new constraint introduced by the rule applica-
tion. One could now model the deletion of the rewritten literal s

.
= t� A by modifying

the constraint of that literal to A & !(B & C):5 this implies that for instantiations σ
under which the superposition is possible, namely if σ satisfies A&B&C, the constraint
of the deleted literal is no longer valid.

This method leads to a destructive calculus, since the constraints of literals are changed
as the proof is expanded. Accordingly, more complicated techniques are required for a
completeness proof. Such techniques are given by Nieuwenhuis and Rubio [NR95b, NR01]
for resolution saturation calculi. Amongst other modifications, one needs to consider the
persistent literals on a branch, instead of just the union of all goals as we did until now.
A literal is called persistent, if it is introduced in some goal and never discarded by rule
applications below that goal.

Also, one needs a rather complicated fairness condition: It is not sufficient to require
(as in resolution saturation procedures) that all superpositions between persistent literals
of a branch are eventually executed: Assume for instance that a superposition with
K is applicable on some literal L, and that this superposition is needed to close the
proof. There are situations where successive superposition steps with other literals can
be applied on L, leading to a sequence of constrained literals L′, L′′, . . . with constraints
getting more and more restrictive, but without becoming unsatisfiable. Neither the
literal L or any of its descendants is then persistent on the branch, so superposition with
K might never take place.

We have tried to fix the fairness condition (or rather the notion of persistency) to
take account of this difficulty. But we still did not succeed in showing completeness of
the resulting procedure. To give an intuition for the problem, let us mention that one
still has to restrict model generation to variable-irreducible literals in order to cope with
the non-variable-position restriction, while literals on the branch might be rewritten by
superposition with literals which later turn out not to be variable irreducible.

This state of affairs is rather unsatisfying. One can easily construct a ground calculus
which closely corresponds to the calculus with DU constraints. In this calculus, the ext
rule introduces (guessed) ground instances of clauses instead of free variables, no con-
straints are needed, and the first premise of the superposition rules is actually deleted.
We have been able to show completeness (without backtracking over superposition ap-
plications) of this destructive ground calculus. The proof even shows compatibility with
regularity. But like for the ground calculus with histories mentioned in the previous
section, we have not been able to lift this proof due to the afore-mentioned problems
with the non-variable-position restriction.

5Remember that we use ‘!’ to designate negation in constraints.

123

7 Equality Handling

7.6 Tableaux with Basic Ordered Paramodulation

At the beginning of this chapter, we claimed that the model generation completeness
proof can easily be adapted to variants of the calculus. In this section, we shall try to
demonstrate how variations of calculi and completeness proofs can be carried over from
known results for resolution-based calculi.

There is a more restrictive form of equality handling known in the resolution commu-
nity as basic ordered paramodulation [BGLS95]. In comparison to basic superposition,
the basicness restriction is strengthened: One forbids paramodulation below a position
where a previous paramodulation step has taken place. The price to pay is that equa-
tions have to be applied on both sides of literals and not only the maximal side as for
basic superposition. Still, basic ordered paramodulation seems to be very effective in
practice [McC97].

Using constrained literals, one can easily enforce this stronger basicness restriction by
introducing a new free variable in the equality handling rules. The sup-p rule becomes:6

par-p

s
.
= t� A

l
.
= r � B

s[X]p
.
= t� X ≡ r & s|p ≡ l & l � r &A &B

where p is a position in s, s|p is not a variable,
and X is a new (free) variable.

Note how the constraint forces X to be instantiated with r, and that the restriction
s � t is gone.7 The par-n-rule is exactly analogous. This modification is a straight-
forward adaptation of the formulation of basic ordered paramodulation using constraint
inheritance given by Nieuwenhuis and Rubio in [NR01].

How do we show completeness of our modified calculus? We cite [NR01]:

The completeness proof is an easy extension of the previous results by the
model generation method. It suffices to modify the rule generation by re-
quiring, when a rule l ⇒ r is generated, that both l and r are irreducible
by RC , instead of only l as before, and to adapt the proof of Theorem 5.6
accordingly, which is straightforward.

All we need is a little ‘signature mapping’ to apply this to our situation: their The-
orem 5.6 corresponds closely to our Lemma 7.15. They have RC instead of our RL
because they have to work with ground clauses, where we can use literals. Otherwise,
this statement applies exactly to our case.

In the definition of the model generation process (Def. 7.12 on page 109), let us replace
condition 5 by

6We do not use the disjoint history restriction here in order to make things simpler to read. It should
however be no problem to use that restriction with basic ordered paramodulation.

7It might seem that introducing a new free variable is not a good idea. But these ones are harmless,
as there is no need to search for their instantiation. It is determined by the instantiations of the free
variables in r. In fact, these new variables are universal as they are restricted to a fixed instantiation
by the constraint.

124

7.7 Related Work

5. l and r are irreducible w.r.t. RL.

A close scrutiny of the proofs of Lemmas 7.13 and 7.14 satisfies us that they are still
valid after this modification. And it is indeed quite straightforward to adapt the proof
of Lemma 7.15 on page 110 ff.: for case 1, we drop the assumption that s � t, and infer
that condition 5 must be violated as before. As we take a symmetric view of equations,
we can now assume that it is s that is reducible by some rule in RL. One then shows
as before that a sup-p application is possible. Showing that L′ is a variable-irreducible
instance of some L′

0 is even simpler than before, because we do not need to account for
variables in r0. To show that σX is irreducible, note that σX = r, and as l

.
= r generates

a rule, condition 5 guarantees that r is irreducible. Similar modifications apply for case
2. All this corresponds exactly to what needs to be done for resolution.

The only new and tableau-specific part is that σ has to provide an instantiation for
the free variables X introduced in the paramodulation steps in such a way that the new
constraints are satisfied. But fortunately, this is also easily done: in an induction over
the superposition steps leading to the deduction of a literal, let σX := σr0 for a free
variable X introduced by a superposition with l0

.
= r0 � B.

We think that this example is strong evidence in support of our claim that model gen-
eration completeness proofs are a good basis for adapting known results from resolution
with superposition or paramodulation to a tableau setting.

7.7 Related Work

Using techniques based on ordered rewriting is not the only way to add efficient equality
handling to a tableau prover. We believe that it is the most powerful way because of the
success of such techniques in resolution provers like SPASS [Wei01] or Vampire [RV01].

The other commonly employed technique is to transform problems in a way that makes
equality axioms redundant [Bra75, MS97, BGV97]. These transformation techniques
analyze the problem, in order to find possible instances of paramodulation steps, and
code the results of these paramodulations into the problem before the actual proof search
starts. Classically, term orderings are not used, although [BGV97] introduce ordering
constraints in some cases. The great advantage of transformation techniques is that one
can add equality handling to a prover by a pre-processing step, instead of changing the
actual prover. On the other hand, we expect a direct integration of equality handling
into the calculus to be more efficient.

Another technique for equality handling in sequent based calculi has been proposed
by Gallier and Snyder [GS89] under the name of lazy paramodulation. In this approach,
equations are only applied on top level terms, but term orderings cannot be used. We
have not investigated how this approach could be used in an incremental closure prover,
but it is to be expected that syntactic unification constraints could be used again. Of
course, one would not use the model generation technique to show completeness for such
a calculus.

Letz and Stenz [LS02] have published an overview on the integration of equality han-
dling into Billon’s disconnection calculus [Bil96]. It is interesting to see that they also

125

7 Equality Handling

encounter problems with the regularity restriction.

7.8 Summary

In this chapter, we have shown how equality handling may be integrated into an incre-
mental closure prover using ordered superposition/paramodulation rules with constraint
propagation. We demonstrated how the completeness of such calculi can be shown using
model generation techniques known from resolution calculi with only few additional
tableau-specific ingredients. Though completeness of a similar calculus had previously
been established in [DV97], using a different approach, our proof is much shorter, and
we have demonstrated in Sect. 7.6 that it is easily adapted to related calculi.

In Sect. 7.4, we have shown how a termination property can be enforced for such
calculi using a disjoint history restriction, and how completeness may be proved in
presence of such a restriction. We have also briefly discussed the practical usefulness
of the termination property in such calculi. In Sect. 7.4.3, we have pointed out certain
problems in combining the termination property with a suitable regularity restriction.

The techniques described in this chapter have not yet been implemented. A good
implementation of equality handling based on ordered rewriting is by no means a sim-
ple task: efficient satisfiability checks have to be implemented for ordering constraints,
and these are significantly more complex than those for unification or dis-unification
constraints. For fully automated use, a suitable term ordering has to be chosen heuristi-
cally. And maybe most importantly, new indexing structures are needed to quickly find
possible superposition steps between the literals on a branch. The implementation and
evaluation of the techniques proposed in this chapter is thus future work.

126

8 Future Work

In this short chapter, we shall identify some possible areas for future research. Con-
cerning the basic framework of incremental closure presented in Chapters 4 and 5, some
topics have already been suggested.

• Depending on the nature of the problems to be solved, the instantiation buffers in
MergerSinks can become large. In that case, suitable indexing structures have to be
developed, see Sect. 5.5. In particular, an adaptation of Graf’s substitution trees
[Gra96, Gra94] would seem to be a promising approach.

• Heuristics need to be developed for the two main indeterminisms in the incremen-
tal closure procedure, namely goal selection and formula selection, see Sect. 5.2
and 5.3. In a prover without backtracking, one can afford to spend more time on
such heuristics than would be acceptable in a backtracking prover, because rule
applications are not repeated.

• We mentioned the possibility of a multi processor implementation of the incremen-
tal closure approach at the end of Sect. 4.8. For problem domains were proof trees
typically become large, but only few instantiations reach the top Merger objects,
such an implementation might be worthwhile.

A possibility we have not yet mentioned is to include some sort of global redundancy
notion into the proof procedure. As the whole tableau is always present, it might be
possible to detect rule applications which are redundant with respect to a tableau, and
not only with respect to a branch or goal. In some cases, such redundancy criteria might
lead to termination of the proof procedure for satisfiable input formulae. In other words,
one would obtain a decision procedure for some subclass of first order logic.

For the simplification rules of Chapter 6, the nost interesting open question is which
simplification strategy to use. In particular, although the NNF hyper tableau strategy
works quite well for many problems, a more goal-oriented strategy would be useful in
some cases. It is also not clear how the potential cyclicity of simplification rules with
universal variables is best dealt with, see Sect. 6.6. Weight functions and other term
orderings should be investigated to find a good solution.

Concering the superposition based equality handling of Chapter 7, the next step is
of course to experiment with an implementation. In particular, it would be interest-
ing to see what impact various restrictions ensuring the relative termination property
of Theorem 7.23 have both on performance of the prover and on implementation com-
plexity. Maybe fairness can be achieved with a uniform approach for simplification and
superposition rules.

127

8 Future Work

An obvious extension of our results would be a version of the calculus that permits
predicates other than equality and that does not require problems to be in clausal form.
We expect this to be quite straight-forward.

Universal variables are known to be important for efficiency. It is expected that the
given calculi and proofs can easily be adapted to incorporate universal variables, but of
course this has to be checked in detail. We also plan to investigate how superposition-
based equality handling can be incorporated into hyper tableaux [Bau98].

Another important field for research is building in associativity and commutativity or
other common equational theories. We expect that this can be done in the same way as
for resolution, see e.g. [NR97].

Finally, it would be (at least theoretically) interesting to find an answer to the question
of Sect. 7.4.3, namely whether there is a natural restriction that ensures the termination
property but is compatible with regularity.

In the introduction, we mentioned that the context of our work is formal program
verification. This means that we are not only interested in fully automated theorem
proving, but rather in an integration on automated and interactive deduction. The
concepts for such an integration have already been developed [Gie98], and the prover of
the KeY project [ABB+00, ABB+02] has reached a state where properties of programs
in the JavaCard language can be proven interactively. It remains to build automated
proof search for first order goals into the KeY prover, using the incremental closure
technique.

128

9 Conclusion

We have described the incremental closure technique, which can be used to define a proof
procedure for free variable tableaux without backtracking. The central idea is to incre-
mentally compute instantiations that close sub-tableaux until one global instantiation is
found that closes the whole tableau.

The practicality of this approach has been shown by experimentally comparing a
prototypical implementation of the technique to a backtracking prover. The results
showed that the incremental closure technique significantly shortens the time required
for proof search in many cases.

It was shown that the incremental closure technique is compatible with many of the
standard refinements known for backtracking proof procedures. We also introduced a
family of powerful simplification rules which can be used to subsume some of the most
successful techniques employed in state-of-the-art theorem provers.

We also showed how to integrate equality handling into the incremental closure frame-
work, using rules based on ordered rewriting. We presented a method of proving com-
pleteness of such calculi which is simpler than previous approaches, and which permits
the adaptation of results from resolution saturation procedures.

We hope to have convinced the reader that the incremental closure technique is an
interesting alternative to the usual backtracking iterative deepening proof procedures for
free variable tableaux, in that it is both efficient and open to refinements and modifica-
tions.

129

9 Conclusion

130

Bibliography

[ABB+00] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese, Elmar
Habermalz, Reiner Hähnle, Wolfram Menzel, and Peter H. Schmitt. The
KeY approach: Integrating object oriented design and formal verification. In
Manuel Ojeda-Aciego, Inma P. de Guzmán, Gerhard Brewka, and Lúıs Moniz
Pereira, editors, Proc. 8th European Workshop on Logics in AI (JELIA),
Malaga, Spain, volume 1919 of LNCS, pages 21–36. Springer-Verlag, October
2000.

[ABB+02] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese, Reiner
Hähnle, Wolfram Menzel, Wojciech Mostowski, and Peter H. Schmitt. The
KeY system: Integrating object-oriented design and formal methods. In
Ralf-Detlef Kutsche and Herbert Weber, editors, Fundamental Approaches
to Software Engineering. 5th International Conference, FASE 2002 Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2002 Grenoble, France, April 2002, Proceedings, volume 2306 of
LNCS, pages 327–330. Springer-Verlag, 2002.

[ABH+98] Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle, Wolfram Menzel,
Wolfgang Reif, Gerhard Schellhorn, and Peter H. Schmitt. Integration of
automated and interactive theorem proving. In W. Bibel and P. Schmitt,
editors, Automated Deduction: A Basis for Applications, volume II, chap-
ter 4, pages 97–116. Kluwer, 1998.

[Ahr01] Wolfgang Ahrendt. Deduktive Fehlersuche in Abstrakten Datentypen, 2001.
Dissertation (preversion, in German), University of Karlsruhe, available un-
der http://www.cs.chalmers.se/~ahrendt/cade02/diss.ps.gz.

[Ahr02] Wolfgang Ahrendt. Deductive search for errors in free data type specifica-
tions using model generation. In Andrei Voronkov, editor, Proc. 18th CADE,
Copenhagen, Denmark, volume 2392 of LNCS. Springer-Verlag, to appear
2002.

[And81] Peter B. Andrews. Theorem proving through general matings. Journal of
the ACM, 28:193–214, 1981.

[Bau98] Peter Baumgartner. Hyper Tableaux — The Next Generation. In Harrie
de Swart, editor, Proc. International Conference on Automated Reasoning

131

Bibliography

with Analytic Tableaux and Related Methods, Oosterwijk, The Netherlands,
number 1397 in LNCS, pages 60–76. Springer-Verlag, 1998.

[Bau00] Peter Baumgartner. FDPLL – a First-Order Davis-Putnam-Logemann-
Loveland Procedure. In David McAllester, editor, Automated Deduction,
CADE-17, LNAI. Springer-Verlag, 2000.

[BDP89] Leo Bachmair, Nachum Dershowitz, and David A. Plaisted. Completion
without failure. In Hassan Aı̈t-Kaci and Maurice Nivat, editors, Resolution
of Equations in Algebraic Structures, volume 2: Rewriting Techniques, pages
1–30. Academic Press, New York, 1989.

[Bec93] Bernhard Beckert. Ein vervollständigungsbasiertes Verfahren zur Behand-
lung von Gleichheit im Tableaukalkül mit freien Variablen. Diplomarbeit,
Fakultät für Informatik, Universität Karlsruhe, July 1993.

[Bec94] Bernhard Beckert. A completion-based method for mixed universal and
rigid E-unification. In Alan Bundy, editor, Proc. 12th Conference on Auto-
mated Deduction CADE, Nancy/France, LNAI 814, pages 678–692. Springer-
Verlag, 1994.

[Bec98] Bernhard Beckert. Integration und Uniformierung von Methoden des tableau-
basierten Theorembeweisens. PhD thesis, Universität Karlsruhe, Fakultät für
Informatik, 1998.

[Bec01] Bernhard Beckert. A dynamic logic for the formal verification of Java Card
programs. In Isabelle Attali and Thomas P. Jensen, editors, Java on Smart
Cards: Programming and Security. Revised Papers, Java Card 2000, In-
ternational Workshop, Cannes, France, volume 2041 of LNCS, pages 6–24.
Springer-Verlag, 2001.

[Bec03] Bernhard Beckert. Depth-first proof search without backtracking for free-
variable clausal tableaux. Journal of Symbolic Computation, 36:117–138,
2003.

[BEF99] Peter Baumgartner, Norbert Eisinger, and Ulrich Furbach. A confluent con-
nection calculus. In Harald Ganzinger, editor, Proc. 16th International Con-
ference on Automated Deduction, CADE-16, Trento, Italy, volume 1632 of
LNCS, pages 329–343. Springer-Verlag, 1999.

[BEF00] Peter Baumgartner, Norbert Eisinger, and Ulrich Furbach. A confluent con-
nection calculus. In Steffen Hölldobler, editor, Intellectics and Computa-
tional Logic — Papers in Honor of Wolfgang Bibel, volume 19 of Applied
Logic Series. Kluwer, 2000.

[BF95] Matthias Baaz and Christian G. Fermüller. Non-elementary speedups be-
tween different versions of tableaux. In Peter Baumgartner, Reiner Hähnle,

132

Bibliography

and Joachim Posegga, editors, Proc. 4th International Workshop, TAB-
LEAUX’95, St. Goar, Germany, volume 918 of LNCS, pages 217–230.
Springer-Verlag, 1995.

[BFN96a] Peter Baumgartner, Ulrich Furbach, and Ilkka Niemelä. Hyper tableaux.
In José Júlio Alferes, Lúıs Moniz Pereira, and Ewa Or lowska, editors, Proc.
European Workshop: Logics in Artificial Intelligence, JELIA, volume 1126
of LNCS, pages 1–17. Springer-Verlag, 1996.

[BFN96b] Peter Baumgartner, Ulrich Furbach, and Ilkka Niemelä. Hyper tab-
leaux. Technical Report 8/96, Institute for Computer Science, University
of Koblenz, Germany, 1996.

[BG90] Leo Bachmair and Harald Ganzinger. On restrictions of ordered paramodula-
tion with simplication. In Mark E. Stickel, editor, Proceedings of CADE-10,
Kaiserslautern, Germany, volume 449 of LNCS, pages 427–441. Springer-
Verlag, 1990.

[BG94] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem
proving with selection and simplification. Journal of Logic and Computation,
4(3):217–247, 1994.

[BG01] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning,
volume I, chapter 2, pages 19–99. Elsevier Science, 2001.

[BGLS95] Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Snyder.
Basic paramodulation. Information and Computation, 121(2):172–192, 1995.

[BGV97] Leo Bachmair, Harald Ganzinger, and Andrei Voronkov. Elimination of
equality via transformation with ordering constraints. Research Report MPI-
I-97-2-012, Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saar-
brücken, Germany, December 1997.

[BH98] Bernhard Beckert and Reiner Hähnle. Analytic tableaux. In W. Bibel and
P. Schmitt, editors, Automated Deduction: A Basis for Applications, vol-
ume I, chapter 1, pages 11–41. Kluwer, 1998.

[BHRM94] Bernhard Beckert, Reiner Hähnle, Anavai Ramesh, and Neil Murray. On
anti-links. In Frank Pfenning, editor, Proc. 5th International Conference on
Logic Programming and Automated Reasoning, Kiev, Ukraine, volume 822
of LNCS, pages 275–289. Springer-Verlag, 1994.

[BHS93] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. The even more lib-
eralized δ-rule in free variable semantic tableaux. In Georg Gottlob, Alexan-
der Leitsch, and Daniele Mundici, editors, Proceedings of the third Kurt
Gödel Colloquium KGC’93, Brno, Czech Republic, volume 713 of LNCS,
pages 108–119. Springer-Verlag, August 1993.

133

Bibliography

[Bib87] Wolfgang Bibel. Automated Theorem Proving. Vieweg, Braunschweig, second
revised edition, 1987.

[Bic84] Lubomir Bic. Execution of logic programs on a dataflow architecture. In
Proceedings of the 11th Annual Symposium on Computer Architecture, Ann
Arbor, USA, pages 290–296, 1984.

[Bil96] Jean-Paul Billon. The disconnection method: a confluent integration of uni-
fication in the analytic framework. In Pierangelo Miglioli, Ugo Moscato,
Daniele Mundici, and Mario Ornaghi, editors, Theorem Proving with Tab-
leaux and Related Methods, 5th International Workshop, TABLEAUX’96,
Terrasini, Palermo, Italy, volume 1071 of LNCS, pages 110–126. Springer-
Verlag, 1996.

[BP94] Bernhard Beckert and Joachim Posegga. leanTAP : Lean tableau-based the-
orem proving. extended abstract. In Alan Bundy, editor, Proceedings, 12th
International Conference on Automated Deduction (CADE), Nancy, France,
volume 814 of LNCS 814, pages 793–797. Springer-Verlag, 1994.

[Bra75] D. Brand. Proving theorems with the modification method. SIAM Journal
on Computing, 4(4):412–430, 1975.

[BT03] Peter Baumgartner and Cesare Tinelli. The model evolution calculus. In
F. Baader, editor, Proceedings of the 19th International Conference on Au-
tomated Deduction, CADE-19 (Miami, Florida, USA), Lecture Notes in Ar-
tificial Intelligence, pages 350–364. Springer, 2003.

[CK85] John S. Conery and Dennis F. Kibler. AND parallelism and nondeterminism
in logic programs. New Generation Computing, 3(1):43–70, 1985.

[Clo87] William F. Clocksin. Principles of the DelPhi parallel inference machine.
The Computer Journal, 30(5), 1987.

[Clo92] William F. Clocksin. The DelPhi multiprocessor inference machine.
URL: ftp://clip.dia.fi.upm.es/pub/papers/IJCSLP92-WS6/SessionA

/William.Clocksin.paper.ps.Z, 1992.

[CNA98] Domenico Cantone and Marianna Nicolosi Asmundo. A further and effec-
tive liberalization of the delta-rule in free variable semantic tableaux. In
Maria Paola Bonacina and Ulrich Furbach, editors, Second Int. Workshop on
First-Order Theorem Proving, FTP’98. Technische Universität, Wien (Aus-
tria), 1998.

[Com91] Hubert Comon. Disunification: a survey. In Jean-Louis Lassez and Gordon
Plotkin, editors, Computational Logic: Essays in Honor of Alan Robinson,
chapter 9, pages 322–359. MIT Press, Cambridge, MA, USA, 1991.

134

Bibliography

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394–397, 1962.

[DM94] Marcello D’Agostino and Marco Mondadori. The taming of the cut. Journal
of Logic and Computation, 4(3):285–319, 1994.

[DV94] Anatoli Degtyarev and Andrei Voronkov. Equality elimination for semantic
tableaux. Technical Report 90, Comp. Science Dept., Uppsala University,
1994.

[DV96] Anatoli Degtyarev and Andrei Voronkov. The undecidability of simulta-
neous rigid E-unification. Theoretical Computer Science, 166(1-2):291–300,
October 1996.

[DV97] Anatoli Degtyarev and Andrei Voronkov. What you always wanted to know
about rigid E-unification. Technical Report 143, Comp. Science Dept., Up-
psala University, 1997.

[DV98] Anatoli Degtyarev and Andrei Voronkov. What you always wanted to know
about rigid E-unification. Journal of Automated Reasoning, 20(1):47–80,
1998.

[DV01] Anatoli Degtyarev and Andrei Voronkov. Equality reasoning in sequent-
based calculi. In Alan Robinson and Andrei Voronkov, editors, Handbook of
Automated Reasoning, volume I, chapter 10, pages 611–706. Elsevier Science,
2001.

[Fit96] Melvin C. Fitting. First-Order Logic and Automated Theorem Proving.
Springer-Verlag, New York, second edition, 1996.

[GA99] Martin Giese and Wolfgang Ahrendt. Hilbert’s ε-terms in automated theo-
rem proving. In Neil V. Murray, editor, Proc. International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods, Saratoga
Springs/NY, USA, number 1617 in LNCS, pages 171–185. Springer-Verlag,
1999.

[GH03] Martin Giese and Reiner Hähnle. Tableaux + constraints. Also as Tech.
Report RT-DIA-80-2003, Dipt. di Informatica e Automazione, Università
degli Studi di Roma Tre, 2003.

[Gie98] Martin Giese. Integriertes automatisches und interaktives Beweisen: Die
Kalkülebene. Diploma Thesis, Fakultät für Informatik, Universität Karl-
sruhe, June 1998.

[Gie00a] Martin Giese. A first-order simplification rule with constraints. In Pe-
ter Baumgartner and Hantao Zhang, editors, 3rd Int. Workshop on First-
Order Theorem Proving (FTP), St. Andrews, Scotland, TR 5/2000 Univ. of
Koblenz, pages 113–121, 2000.

135

Bibliography

[Gie00b] Martin Giese. Proof search without backtracking using instance streams,
position paper. In Peter Baumgartner and Hantao Zhang, editors, 3rd Int.
Workshop on First-Order Theorem Proving (FTP), St. Andrews, Scotland,
TR 5/2000 Univ. of Koblenz, pages 227–228, 2000.

[Gie01] Martin Giese. Incremental closure of free variable tableaux. In Rajeev Goré,
Alexander Leitsch, and Tobias Nipkow, editors, Proc. Intl. Joint Conf. on
Automated Reasoning, Siena, Italy, volume 2083 of LNCS, pages 545–560.
Springer-Verlag, 2001.

[Gie02] Martin Giese. A model generation style completeness proof for constraint
tableaux with superposition. In Uwe Egly and Christian G. Fermüller, edi-
tors, Proc. Intl. Conf. on Automated Reasoning with Analytic Tableaux and
Related Methods, Copenhagen, Denmark, volume 2381 of LNCS, pages 130–
144. Springer-Verlag, 2002.

[Gie03] Martin Giese. Simplification rules for constrained formula tableaux. In
Marta Cialdea Mayer and Fiora Pirri, editors, Proc. Intl. Conf. on Automated
Reasoning with Analytic Tableaux and Related Methods, Rome, Italy, LNCS,
pages 65–80. Springer, 2003.

[GJS97] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison Wesley, 1997.

[Gra94] Peter Graf. Substitution tree indexing. Technical Report MPI-I-94-251,
Universität Saarbrücken, 1994.

[Gra96] Peter Graf. Term Indexing, volume 1053 of LNCS. Springer-Verlag, 1996.

[GRS87] Jean H. Gallier, Stan Raatz, and Wayne Snyder. Theorem proving using
rigid E-unification: Equational matings. In Proc. IEEE Symp. on Logic in
Computer Science, pages 338–346. IEEE Computer Society Press, 1987.

[GS89] Jean H. Gallier and Wayne Snyder. Complete sets of transformations for
general E-unification. Theoretical Computer Science, 67:203–260, 1989.

[Häh01] Reiner Hähnle. Tableaux and related methods. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 3,
pages 100–178. Elsevier Science, 2001.

[Hal86] Zahran Halim. A data-driven machine for OR-parallel evaluation of logic
programs. New Generation Computing, 4(1):5–33, 1986.

[HS94] Reiner Hähnle and Peter H. Schmitt. The liberalized δ-rule in free variable
semantic tableaux. Journal of Automated Reasoning, 13(2):211–222, October
1994.

136

Bibliography

[HS03] Reiner Hähnle and Niklas Sörensson. Fair constraint merging tableaux in
lazy functional programming style. In Marta Cialdea Mayer and Fiora Pirri,
editors, Proc. Intl. Conf. on Automated Reasoning with Analytic Tableaux
and Related Methods, Rome, Italy, LNCS, pages 252–256. Springer, 2003.

[Kan63] Stig Kanger. A simplified proof method for elementary logic. Computer
Programming and Formal Systems, pages 87–94, 1963. Reprinted as [Kan83].

[Kan83] Stig Kanger. A simplified proof method for elementary logic. In Jörg H. Siek-
mann and Graham Wrightson, editors, Automation of Reasoning 1: Classical
Papers on Computational Logic 1957–1966, pages 364–371. Springer-Verlag,
Berlin, Heidelberg, 1983.

[KB70] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal
algebras. In J. Leech, editor, Computational Problems in Abstract Algebra,
pages 263–297. Pergamon Press, Oxford, 1970. Reprinted as [KB83].

[KB83] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal
algebras. In Jörg H. Siekmann and Graham Wrightson, editors, Automation
of Reasoning 2: Classical Papers on Computational Logic 1967–1970, pages
342–376. Springer-Verlag, Berlin, Heidelberg, 1983.

[KJ00] Boris Konev and Tudor Jebelean. Using meta-variables for natural deduction
in Theorema. In Michael Kohlhase and Manfred Kerber, editors, Proceedings
of Calculemus-2000 Conference. Electronic Notes in Computer Science, 2000.

[Kow74] Robert A. Kowalski. Predicate logic as programming language. In Jack L.
Rosenfeld, editor, Proceedings of 6th IFIP Congress, Stockholm, Sweden,
pages 569–574. North-Holland, 1974.

[Küh97] Michael Kühn. Rigid hypertableaux. In Proc. of KI ’97: Advances in Artifi-
cial Intelligence, volume 1303 of LNAI, pages 87–98. Springer-Verlag, 1997.

[KV01] Konstantin Korovin and Andrei Voronkov. Knuth-Bendix constraint solving
is NP-complete. In Proc. Intl. Conf. on Automata, Languages and Program-
ming (ICALP), volume 2076 of LNCS, pages 979–992, 2001.

[Let99] Reinhold Letz. First-order tableau methods. In Marcello D’Agostino, Dov
Gabbay, Reiner Hähnle, and Joachim Posegga, editors, Handbook of Tableau
Methods, pages 125–196. Kluwer, Dordrecht, 1999.

[LS01a] Reinhold Letz and Gernot Stenz. DCTP: A Disconnection Calculus Theorem
Prover. In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors,
Proceedings of the International Joint Conference on Automated Reasoning
(IJCAR-2001), Siena, Italy, volume 2083 of LNAI, pages 381–385. Springer,
Berlin, June 2001.

137

Bibliography

[LS01b] Reinhold Letz and Gernot Stenz. Model elimination and connection tab-
leau procedures. In Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning, volume II, chapter 28, pages 2015–2114. Elsevier
Science, 2001.

[LS02] Reinhold Letz and Gernot Stenz. Integration of equality reasoning into the
disconnection calculus. In Uwe Egly and Christian G. Fermüller, editors,
Proceedings of the International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods (TABLEAUX-2002), Copenhagen,
Denmark, LNAI, pages 176–190. Springer, Berlin, July 2002.

[LSBB92] Reinhold Letz, Johann Schumann, Stephan Bayerl, and Wolfgang Bibel.
SETHEO: A high-perfomance theorem prover. Journal of Automated Rea-
soning, 8(2):183–212, 1992.

[Mas97] Fabio Massacci. Simplification with renaming: A general proof technique
for tableau and sequent-based provers. Technical Report 424, Computer
Laboratory, Univ. of Cambridge (UK), 1997.

[Mas98] Fabio Massacci. Simplification: A general constraint propagation technique
for propositional and modal tableaux. In Harrie de Swart, editor, Proc.
International Conference on Automated Reasoning with Analytic Tableaux
and Related Methods, Oosterwijk, The Netherlands, volume 1397 of LNCS,
pages 217–232. Springer-Verlag, 1998.

[McC97] William McCune. Solution of the Robbins problem. Journal of Automated
Reasoning, 19(3):263–276, December 1997.

[MR93] Neil V. Murray and Erik Rosenthal. Dissolution: Making paths vanish.
Journal of the ACM, 40(3):504–535, 1993.

[MS97] Max Moser and Joachim Steinbach. STE-modification revisited. AR-Report
AR-97-03, Institut für Informatik, München (Germany), 1997.

[NHRV01] Robert Nieuwenhuis, Thomas Hillenbrand, Alexandre Riazanov, and Andrei
Voronkov. On the evaluation of indexing techniques for theorem proving. In
Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, International
Joint Conference on Automated Reasoning, Siena, Italy, volume 2083 of
LNCS, pages 257–271. Springer-Verlag, 2001.

[NR95a] Robert Nieuwenhuis and Albert Rubio. Theorem proving with ordering and
equality constrained clauses. Journal of Symbolic Computation, 19(4):321–
352, 1995.

[NR95b] Robert Nieuwenhuis and Albert Rubio. Theorem proving with ordering and
equality constrained clauses. Journal of Symbolic Computation, 19(4):321–
351, 1995.

138

Bibliography

[NR97] Robert Nieuwenhuis and Albert Rubio. Paramodulation with built-in
AC-theories and symbolic constraints. Journal of Symbolic Computation,
23(1):1–21, January 1997.

[NR99] Robert Nieuwenhuis and José Miguel Rivero. Solved forms for path order-
ing constraints. In Paliath Narendran and Michaël Rusinowitch, editors,
Proc. 10th International Conference on Rewriting Techniques and Applica-
tions (RTA), Trento, Italy, volume 1631 of LNCS, pages 1–15. Springer-
Verlag, 1999.

[NR01] Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem
proving. In Alan Robinson and Andrei Voronkov, editors, Handbook of Au-
tomated Reasoning, volume I, chapter 7, pages 371–443. Elsevier Science,
2001.

[ON02] Breanndán Ó Nualláin. Constraint tableaux. In Position Papers presented at
International Conference on Analytic Tableaux and Related Methods, Copen-
hagen, Denmark, 2002.

[Pel86] Francis Jeffry Pelletier. Seventy-five problems for testing automatic theorem
provers. Journal of Automated Reasoning, 2:191–216, 1986.

[Pel97] Nicolas Peltier. Simplifying and generalizing formulae in tableaux: pruning
the search space and building models. In Didier Galmiche, editor, Proc.
International Conference on Automated Reasoning with Analytic Tableaux
and Related Methods, Pont-à-Mousson, France, volume 1227 of LNCS, pages
313–327. Springer-Verlag, 1997.

[Pel99] Nicolas Peltier. Pruning the search space and extracting more models in
tableaux. Logic Journal of the IGPL, 7(2):217–251, 1999. Available online
at http://www3.oup.co.uk/igpl/Volume 07/Issue 02/.

[Pet94] Uwe Petermann. A complete connection calculus with rigid e-unification.
In Craig MacNish, David Pearce, and Lúıs Moniz Pereira, editors, Logics in
Artificial Intelligence(JELIA), pages 152–166. Springer-Verlag, Berlin, Hei-
delberg, 1994.

[PW78] Mike Paterson and Mark N. Wegman. Linear unification. Journal of Com-
puter and System Sciences, 16(2):158–167, April 1978.

[Rei92] Wolfgang Reif. The KIV system: Systematic construction of verified soft-
ware. In D. Kapur, editor, Proc. 11th Conference on Automated Deduction,
Albany/NY, LNAI 607, pages 753–760. Springer-Verlag, 1992.

[RSV01] I.V. Ramakrishnan, R. Sekar, and A. Voronkov. Term indexing. In Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning,
volume II, chapter 26, pages 1853–1964. Elsevier Science, 2001.

139

http://www3.oup.co.uk/igpl/Volume_07/Issue_02/

Bibliography

[Rub94] Albert Rubio. Automated deduction with ordering and equality constrained
clauses. PhD thesis, Technical University of Catalonia, Barcelona, Spain,
1994.

[RV01] Alexandre Riazanov and Andrei Voronkov. Vampire 1.1 (System descrip-
tion). In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors,
Proc. Intl. Joint Conf. on Automated Reasoning, Siena, Italy, volume 2083
of LNCS, pages 376–380. Springer-Verlag, 2001.

[RW69] G. Robinson and L. Wos. Paramodulation and theorem-proving in first-order
theories with equality. In Bernard Meltzer and Donald Michie, editors, Ma-
chine Intelligence 4, pages 135–150. Edinburgh University Press, Edinburgh,
Scotland, 1969.

[Smu68] Raymond M. Smullyan. First-Order Logic, volume 43 of Ergebnisse der
Mathematik und ihrer Grenzgebiete. Springer-Verlag, New York, 1968.

[SS97] Christian B. Suttner and Geoff Sutcliffe. The TPTP problem library —
v2.1.0. Technical Report JCU-CS-97/8, Department of Computer Science,
James Cook University, 15 December 1997.

[SS98] Mary Sheeran and Gunnar St̊almarck. A tutorial on St̊almarck’s proof pro-
cedure for propositional logic. In Ganesh Gopalakrishnan and Phillip J.
Windley, editors, Proc. Formal Methods in Computer-Aided Design, Second
International Conference, FMCAD’98, Palo Alto/CA, USA, volume 1522 of
LNCS, pages 82–99, 1998.

[Ste02] Gernot Stenz. DCTP 1.2 – system abstract. In Uwe Egly and Christian G.
Fermüller, editors, Proceedings of the International Conference on Auto-
mated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX-
2002), Copenhagen, Denmark, LNAI, pages 335–339. Springer, Berlin, July
2002.

[Sti86] Mark E. Stickel. Schubert’s steamroller problem: Formulations and solu-
tions. Journal of Automated Reasoning, 2:89–101, 1986.

[UML01] Object Modeling Group. Unified Modelling Language Specification, version
1.4, September 2001.

[vE00] Jan van Eijck. LazyTAP — a lazy tableau theorem prover for FOL.
Manuscript, Available online at: http://www.cwi.nl/~jve/dynamo/

papers/lazyTAP.ps.gz, December 2000.

[vE01] Jan van Eijck. Constrained hyper tableaux. In Laurent Fribourg, editor,
Computer Science Logic, 15th International Workshop, CSL 2001. 10th An-
nual Conference of the EACSL, Paris, France, September 10-13, 2001, Pro-
ceedings, volume 2142 of LNCS, pages 232–246. Springer-Verlag, 2001.

140

Bibliography

[Wei01] Christoph Weidenbach. Combining superposition, sorts and splitting. In
Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Rea-
soning, volume II, chapter 27, pages 1965–2013. Elsevier Science, 2001.

[Wel47] B. L. Welch. The generalization of ‘Student’s’ problem when several different
populations are involved. Biometrika, 34:28–35, 1947.

[Wre90] Karen L. Wrench. A distributed AND-OR parallel Prolog network. PhD the-
sis, University of Cambridge, 1990. Summary as Tech. Report 212, Computer
Lab., University of Cambridge.

141

Bibliography

142

Index

Mathematical Notations

Ḡ 57
.
= 101

� 102

�l 102

λ 102

l ⇒ r 102

s|p 102

s[r]p 102

[x/t] 12

Gen(L) 109

RB,σ 109

RL 109

[X]φ 80

2 23

ψ[φ] 66

C &D 33

C |D 33

!C 33, 74

[X]C 33

> 33

⊥ 33

φ� C 68

cl 24

cl0 22

cl(n)new 26

cl(n)old 26

δ 26

dom 12

dp 87

eval 66

ext 104

ext, with histories 115

Fml 11
Fun 11
fv 24
I 17
I(V) 23
irredR(σ,B) 109
lg 22
par-p 124
Prd 11
Sat 68
simpc0 69
simpc1 70
simpc2 75
simpc2u 81
sup-n 104
sup-n, with histories 115
sup-p 104
sup-p, with histories 115
Trm 11
unif 22
uv 57
Var 11

A

α-expansion 17
ancestry of a formula 54
arity 11

B

backtracking
and simplification 67, 73
and superposition 107–108

basic ordered paramodulation 124
β-expansion 17

143

Index

block tableau 17

C

calculus
backtracking

with simplification 73
with superposition 107–108

confluent connection 14
disconnection 13

CCC 14
clause 102
closable

propositionally 49
tableau 18

with constraints 69
with equality handling 105

closed
formula 11
goal 18
goal for equality handling 105
goal with constraints 69

closer set 22
restricted 24

complementary pair 18
conjuctive DU constraint 76

satisfiability 78
constant symbol 11
constrained formula 68
constraint

conjunctive DU 76
satisfiability 78

dis-unification 74
DU 74
DU for superposition 122–123
equivalence 68
for avoiding instantiation 68
for δ propagation 33
for equality handling 103
ordering 103
propagation 69
satisfiable 68
subsumption 34, 68
unification 68

copies 116

D

d-path 87
dataflow machines 47
delayed closure 15, 17, 20
δ propagation 26
disjunctive path 87

E

equivalent constraints 68
expansion 17
experiments 40–44, 55–56, 89–92

F

fair proof procedure 112
focussed leaf 26
formula 11

closed 11
constrained 68
simplifiable 67
variant 72

formula selection 50–51
function symbol 11

G

γ-expansion 17
goal 17

with constraints 68
goal selection 49–50
ground

substitution 12
term 11

ground rewrite rule 102

H

heuristic
formula selection 50–51, 127
goal selection 49–50, 127
simplification strategy 82–83, 127

history 114
hyper tableaux 83

I

idempotent 12
φ-implied 71

144

Index

incremental algorithm 25
indexing 52

for buffers 54
for formulae 53

induced interpretation 102
instance stream 45
instantiation 17

closing 22, 24

empty 23
for a set of variables 23
restriction 23

interpretation, induced 102

L

leaf 17
focussed 26

leaf goal 17
for limit tableau 112

lexicographic path ordering 103

lifting 67
limit of tableau sequence 112
literals

constrained 103
copies 116
rich set 116
variants 116

LPO 103

M

Merger 31
MergerSink 31
model generation 109

N

negation normal form 12
NNF 12
NNF hyper tableau strategy 87
normal form

clause 102

negation 12
skolemized negation 12

O

object

Merger 31
MergerSink 31
Restrictor 31
RootSink 30
Sink 29

ordering
lexicographic path 103
literal 102
total ground reduction 102

P

parallel Prolog 47
paramodulation, basic ordered 124
position 102
predicate symbol 11
Prolog, parallel 47
proof procedure (for equality handling)

112
propagation

δ 26
of constraints 69

propositional
constant 11
logic 49

propositionally closable 49
pruning 54–55
put method 29

R

regularity 60–61
implementation 92–94
problem for equality handling 121–

122
relative termination

for simplification 72
for superposition 119
problems 120

restriction 23
Restrictor 31
rewrite rule 102
rich set of literals 116
rigid E-unification 98
RootSink 30
rule

145

Index

ext 104
ext, with histories 115
par-p 124
simpc0 69
simpc1 70
simpc2 75
simpc2u 81
sup-n 104
sup-n, with histories 115
sup-p 104
sup-p, with histories 115

S

signature 11
for equality handling 101

simplifiable subformula 67
simplification

with global instantiation 67
simultaneous rigid E-unification 98
Sink 29
skolemized negation normal form 12
SNNF 12
strategy, NNF hyper tableau 87
substitution 12

ground 12
idempotent 12
on goal with constraints 68

substitution trees 54
subsumption

backward 52
forward 35, 51
of constraints 34, 68

subterm property 103

T

tableau 17
block 17
closable 18
closable, with constraints 69
disconnection 13
Fitting 21
hyper 83
initial 17
limit 112

procedure of
Beckert 14
Fitting 15
Konev & Jebelean 15, 46
Smullyan 13

with constrained formulae 69
with universal variables 58

term 11
ground 11

termination, relative
for simplification 72
for superposition 119
problems 120

total ground reduction ordering 102

U

universal variable 56–60
for constrained formulae 81
with simplification 80
with superposition 120

V

variable 11
universal 56–60

for constrained formulae 81
with simplification 80
with superposition 120

variable assignment 19
variable irreducible 109
variants 72, 116
view

functional 45
object-oriented 29

146

Curriculum Vitae – Martin Giese

Persönliche Daten Geboren am 14/06/1970
in Berlin (West)

Familienstand: verheiratet seit dem 02/02/2002
mit Simone Giese, geb. John

Nationalität Deutsch

Schule 09/81 – 07/84 Thomas-Mann-Gymnasium Stutensee
09/84 – 07/85 Collège Campra, Aix-en-Provence
09/85 – 07/86 Lycée Cézanne, Aix-en-Provence
08/86 – 06/90 Thomas-Mann-Gymnasium Stutensee

16/05/90 Abitur mit Abschlußnote 1,0

Zivildienst 07/90 – 09/91 Zivildienstleistender bei der Firma
ISB Bruchsal-Bretten

Studium 10/91 – 06/98 Studium der Informatik an der
Universität Karlsruhe (TH)

07/93 Vordiplom mit Gesamtnote
”
sehr gut“

30/06/98 Abschluß der Diplomprüfung zum Thema

”
Integriertes automatisches und

interaktives Beweisen: die Kalkülebene“
mit Gesamtnote 1,0

08/98 – 08/00 Stipendiat im Graduiertenkolleg

”
Beherrschbarkeit komplexer Systeme“

der Univ. Karlsruhe (TH)

Auslandsaufenthalte 01/78 – 11/79 Weymouth, England
07/84 – 07/86 Aix-en-Provence, Frankreich

Wettbewerbe 1990 Bundeswettbewerb Mathematik
1. Preis in der ersten Runde

1997 ACM Southwestern European
Programming Contest, Platz 7

Arbeitsverhältnisse 11/89 – 06/91 Freier Mitarbeiter der Software-Firma
Advanced Applications Viczena GmbH

04/92 – 06/95 Wissenschaftliche Hilfskraft am Institut für
Telematik bei Herrn Prof. Dr. Krüger.

02/95 – 06/98 Wissenschaftliche Hilfskraft am Institut für
Logik, Komplexität und Deduktionssysteme
bei Herrn Prof. Dr. Menzel

seit 09/00 Wissenschaftlicher Mitarbeiter am Institut
für Logik, Komplexität und Deduktions-
systeme bei Herrn Prof. Dr. Menzel

	Introduction
	Scientific Contributions
	Structure

	Preliminaries
	Existing Approaches
	Smullyan Style Tableaux
	Disconnection and Related Calculi
	Strong Fairness Conditions
	Delayed Closure Approaches

	The Incremental Closure Approach
	Block Tableaux with Delayed Closure
	A Proof Procedure for Delayed Closure
	Abstract View
	Implementation Issues
	Infrastructure of an Implementation
	Representation of Instantiation Sets

	Combination of Restrictors
	Experimental Results
	The Functional View
	Related Work
	Summary

	Refinements
	The Propositional Case
	Goal Selection
	Formula Selection
	Subsumption in Buffers
	Indexing
	Pruning
	Universal Variables
	Regularity
	k-ary Branching
	Summary

	Simplification Rules
	Simplification Rules for Tableaux
	Simplification with Global Instantiation
	Constrained Formulae
	Constrained Formulae and Incremental Closure
	Dis-Unification Constraints
	Simplification with Dis-unification constraints
	Conjunctive DU Constraints
	Checking Satisfiability of Conjunctive DU Constraints

	Simplification with Universal Variables
	Emulating Hyper Tableaux
	Implementation of Regularity
	Development of Refinements
	Related Work
	Summary

	Equality Handling
	Ordering-Based Equality Handling in Tableaux
	Preliminaries
	A Simple Calculus
	The Calculus
	Completeness

	A Calculus with Histories
	Completeness of the Calculus with Histories
	Termination
	Regularity

	Using Dis-Unification Constraints for Superposition
	Tableaux with Basic Ordered Paramodulation
	Related Work
	Summary

	Future Work
	Conclusion

