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Abstract

 

.  

 

Problem solving methods

 

 (PSMs) are domain-independent rea-
soning components, which specify patterns of behaviour which can be reused
across applications.  While the availability of extensive PSM libraries and the
emerging consensus on PSM specification languages indicate the maturity of
the field, a number of important research issues are still open.  In particular,
very little progress has been achieved on foundational and methodological is-
sues.  Existing libraries of PSMs lack a clear theoretical basis and only pro-
vide weak support for the method development process, usually in the form
of informal guidelines.  In this paper we will address these issues by illustra-
ting a framework which characterizes PSMs in terms of 

 

problem commit-
ments

 

, 

 

problem-solving paradigms

 

 and 

 

domain assumptions

 

.  This
framework provides i) a theoretical foundation for situating PSM research
and individual PSMs, as well as ii) an organization which allows us to cha-
racterize method development and selection as a process of navigating throu-
gh a three-dimensional space (defined by the three components of our
framework).  Individual moves through this space are specified by means of

 

adapters

 

.  In the paper we will illustrate these ideas in detail, with examples
taken from parametric design problem solving.

 

Primary Keywords
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1. INTRODUCTION

 

Problem solving methods

 

 (PSMs) describe domain-independent reasoning components,
which specify patterns of behaviour which can be reused across applications.  For in-
stance, 

 

Propose&Revise

 

 (Marcus et al., 1988; Zdrahal and Motta, 1995) provides a gene-
ric reasoning pattern, characterized by iterative sequences of model 'extension' and
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'revision', which can be reused quite easily to solve scheduling (Stout et al., 1988) and design
(Marcus et al., 1988) problems.  PSMs provide an important technology for supporting struc-
tured development approaches in knowledge engineering: they can be used i) to provide
strong, model-based frameworks in which to carry out knowledge acquisition (Marcus,
1988; van Heijst et al., 1992) and ii) to support the rapid development of robust and main-
tainable applications through component reuse (Runkel et al., 1996; Motta, 1997; Motta and
Zdrahal, 1997).  More in general, the study of PSMs can be seen as a way to move beyond
the notion of knowledge engineering as an 'art' (Feigenbaum, 1977), to formulate a task-ori-
ented systematization of the field, which will make it possible to produce rigorous hand-
books similar to those available for other engineering fields.  From a philosophical
perspective, such a systematization could be used as the source for experimenting with
"functional theories of intelligence" (Chandrasekaran, 1987).

Thus, the study of PSMs is important for both practical and theoretical reasons.  So far, most
of the research effort has focused on identifying and specifying PSMs.  As a result, several
PSM libraries are now available (Marcus, 1988; Breuker et al., 1987; Benjamins, 1993;
O'Hara, 1995; Breuker and van de Velde, 1994; Motta, 1997) and a number of PSM specifi-
cation languages have been proposed, ranging from informal notations (Benjamins, 1993;
Schreiber at al., 1994) to formal modelling languages (Fensel and van Harmelen, 1994).  The
latter area of research is now well established, to such an extent that two projects, one in Eu-
rope, IBROW
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 (Benjamins et al., 1998), and one in the US, High Performance Knowledge
Bases (HPKB, 1997), have been set up with the aim (among other ones) of producing stan-
dard formalisms for PSM specification.  

While the availability of extensive PSM libraries and the emerging consensus on PSM spe-
cification languages indicate the maturity and the 'healthy state' of the field, a number of im-
portant research issues are still open.  In particular, very little progress has been achieved on
foundational and methodological issues.  Existing libraries of PSMs lack a clear theoretical
basis (typically, they are just associations of problem solving components to tasks) and only
provide weak support for the method development process, usually in the form of informal
guidelines (Benjamins, 1993; O'Hara, 1995).  As a result, practitioners have encountered
problems when trying to reuse these libraries.  An interesting case study is reported by Ors-
varn (1996), who discusses the problems he experienced when attempting to reuse Benja-
mins' library.  For example, he found that in some cases not all assumptions associated with
a method were made explicit in the method specification.  He also found "tacit dependencies"
between different parts of the library (more precisely, different branches of the 

 

task-method
structure 

 

- see section 2.1).  As a consequence of these problems, he had to modify the struc-
ture of the library quite extensively, despite the fact that his target application was relatively
straightforward.  

In our view these difficulties stem from three aspects of published libraries of problem sol-
ving methods: they lack a clear theoretical basis, the components are only informally speci-
fied and the method refinement operators are not explicitly represented.  As a result, i) it is
difficult to characterize the coverage of a particular library (i.e. what is the space of problem
solving behaviours covered by a library); ii) it is difficult to compare and contrast PSMs as-
sociated with different tasks; iii) it is difficult to understand how a PSM was developed (and
what alternative specifications are feasible); iv) it is difficult to support automatic method
selection and configuration, as envisaged in the IBROW
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 project; and v) it is difficult to ve-
rify the properties of a library formally.  For instance, it is impossible to check whether or
not a library satisfies the requirements of 

 

method correctness

 

 and 

 

method generality

 

 postu-
lated by Orsvarn.

In this paper we will address these issues by illustrating a framework which characterizes
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PSMs in terms of 

 

problem commitments

 

, 

 

problem-solving paradigms

 

 and 

 

domain assumpti-
ons

 

.  This framework provides i) a theoretical foundation for situating PSM research and in-
dividual PSMs, as well as ii) an organization which allows us to characterize method
development and selection as a process of navigating through a three-dimensional space (de-
fined by the three components of our framework).  Individual moves through this space are
formally specified by means of 

 

adapters

 

 (Fensel and Groenboom, 1997; Fensel, 1997).  In
the rest of the paper we will illustrate these ideas in detail, with examples taken from 

 

para-
metric design problem solving

 

 (Wielinga et al., 1995; Motta and Zdrahal, 1996).

 

2. FOUNDATIONS OF PROBLEM SOLVING METHODS

2.1 PROBLEMS WITH THE TASK-CENTRED PERSPECTIVE ON PROBLEM
SOLVING METHODS

 

PSMs are normally described informally as "ways to solve a task" (Benjamins, 1993).  This
informal 'method-solves-task' association is used as a structuring principle for organizing li-
braries of PSMs.  The resulting organization, which is shown in figure 1, has been used in
several approaches (Steels, 1990; Chandrasekaran et al., 1992; Benjamins, 1993; Puerta et
al., 1992) and is normally referred to as a 

 

task-method structure

 

.  

 

Figure 1

 

.  Generic structure of task-method hierarchies.

The root of a task-method structure is given by a high-level task, such as diagnosis or design.
These high-level tasks specify 

 

problem types

 

.  Tasks are either solved directly (by means of

 

primitive methods

 

), or are decomposed into subtasks (by means of 

 

decomposition methods

 

).
Thus, the resulting libraries are organized in a strong, task-oriented way.  This approach per-
meates most recent research not just on PSMs but on knowledge systems in general and its
origins can be found in the reaction to the so-called 

 

weak methods

 

 (Newell and Simon,
1972), which characterized early artificial intelligence research.  In a nutshell, researchers in
knowledge systems believe that intelligent (i.e. efficient) problem solving is not so much a
function of clever algorithms, as a function of the availability of task-specific and domain-
specific problem solving knowledge.  In the context of PSMs, this approach has been reali-
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zed by developing 

 

strong methods

 

 (McDermott, 1988), which embed strong commitments
to the available domain knowledge.  

While it is hard to imagine anybody in the knowledge engineering community objecting to
the knowledge-intensive stance characterizing research in this area, a number of researchers
have highlighted problems and limitations associated with task-oriented PSM specifications.
For instance Beys et al. (1996) have pointed out that task-specific formulations unnecessarily
restrict the reuse of PSMs across tasks and have proposed that PSMs be specified in a task-
independent style.  In (Fensel et al., 1997) we showed that this could be achieved with no
loss of functionality and no loss of abstraction (i.e. without resorting to a lower level of de-
scription).  In particular, we provided a task-independent specification of a Propose&Revise
problem solver, which replaces task-related commitments (e.g. valid design model) with
task-independent notions, such as correctness and consistency.  

Another problem with the use of task-specific conceptualizations is that, in some cases, these
can make it difficult to understand what a PSM actually does.  For instance, Motta and Zd-
rahal (1996) discuss the competence of a number of Propose&Revise problem solvers and
show that differences in their competence can be accounted for by formulating them as se-
arch algorithms and comparing their state-selection strategies

 

1

 

.  

In summary, while task-orientation has traditionally been the defining feature of PSM rese-
arch, there is growing awareness in the field that this feature is not just unnecessary but can
even be counter-productive.

 

2.2 PROBLEM SOLVING METHODS AS TASK-SPECIFIC FORMULATIONS
OF SEARCH ALGORITHMS

 

The work by Motta and Zdrahal (Motta and Zdrahal, 1996; 1997; Motta, 1997; Zdrahal and
Motta, 1995; 1996) attempts to provide a task-independent foundation to PSMs.  Their ap-
proach, which is based on the 

 

Task/Method/Domain/Application

 

 (TMDA) framework - see
figure 2, considers a PSM as a specialization of a task-specific, but PSM-independent, 

 

pro-
blem solving model,

 

 which is in turn constructed by instantiating a generic 

 

problem solving
paradigm

 

 (e.g. search) in terms of a 

 

task ontology

 

.  Motta and Zdrahal instantiated their ap-
proach in the area of parametric design and showed that several PSMs existing in the litera-
ture - e.g. 

 

Propose&Backtrack 

 

(Runkel et al., 1996), 

 

Propose&Exchange

 

 (Poeck and Puppe,
1992) and Propose and Revise - could be characterized as specializations of a common pro-
blem solving model, obtained by instantiated an ontology for parametric design tasks in
terms of a search model of problem solving.  In particular, all PSMs in the parametric design
library described in (Motta, 1997) subscribe to a common, generic control regime.  As dis-
cussed in (Motta, 1997; Motta and Zdrahal, 1997), this approach i) makes it possible to plug
and play functionally equivalent components with no change to the control structure and ii)
facilitates the comparative evaluation of alternative PSMs.

This work is important because it shows that i) it is possible to provide task-independent
foundations to PSMs, even within a task-oriented approach, and that ii) the reliance on a
common problem solving model facilitates the construction and the analysis of a library of
problem solving methods.  However the TMDA framework is limited insofar as it only al-
lows the analysis of PSMs tackling the same class of tasks - i.e. while the framework gene-
ralizes from a particular class of tasks, it is still task-centred.  Another limitation of the

 

1. Interestingly, this problem seems to be specular to the one reported by Clancey (1985), which complained
about the "blinding effect" of the implementation terminology used in rule-based systems, which made un-
derstanding the problem solving competence of these systems much more difficult.
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approach is that it only characterizes method development informally, as a relatively un-
structured specialization process.  The framework we propose in this paper, which is called

 

PPA

 

 

 

(Problems, Paradigms, Assumptions),

 

 addresses these problems by generalizing from
the TMDA approach and by proposing the notion of 

 

adapter

 

 as a construct for formalizing
PSM refinement steps. 

The 

 

adapter

 

 maps the different terminologies of task definition, problem-solving method,
and domain model. Moreover, it gives further requirements and assumptions that are needed
to relate the competence of a problem-solving method with the functionality given by the
task definition. The task, the problem-solving method, and the domain model can be de-
scribed independently and selected from libraries because adapters relate the three other
parts of a specification to each other and establish their relationship in a way that meets the
specific application problem. The consistent combination and adaptation of the three differ-
ent components to the specific aspects of the given application—since they should be reus-
able they need to abstract from specific aspects of application problems— are provided by
the adapter.

The explicit characterization of moves through the PSM space is important both to formalize
the method development process and also to ensure that not only problem solving compon-
ents but also the process of creating them becomes part of a library.  The importance of re-
cording the knowledge engineering experience in a library has been recognized for a number
of years (Stutt and Motta, 1995; van de Velde, 1994).  However, approaches to capturing de-
sign expertise in knowledge engineering have mostly centred on recording informal guideli-
nes.  In contrast with these approaches, adapters provide a formal way of capturing the
method development process, thus providing the basis for automatic method configuration.

The PPA framework is discussed in the next section.

Mapping 
Knowledge

Application-specifi c
Problem-Solving  

Knowledge

Generic Task
Specification

Generic Problem Solving Model

Multi-functional 
Domain Model

Application Configuration

Application Model

(def-instance Peter_S Lecturer
    ((courses_chaired dm862)...)

(def-instance Arthur_S Reader    
((courses_chaired dm871)...)

Problem Solving Method

Problem Solving Paradigm

Figure 2.  The TMDA modelling framework.
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3. A THREE-DIMENSIONAL CHARACTERIZATION OF THE SPACE OF
PROBLEM SOLVING METHODS

 

A problem-solving method in the PPA framework consists of three ingredients (see figure 3).

•

 

Problem-solving paradigm

 

.  This is a high-level description which specifies a type
of problem solving rather than an actual algorithm.  A problem-solving paradigm fixes
some basic data structures, provides an initial task-subtask decomposition and (optio-
nally) a generic control regime.  As in the TMDA framework, this generic control re-
gime is meant to be common to all PSMs which subscribe to the same problem solving
paradigm.  Examples of problem solving paradigms are: generate & test, local search,
problem reduction, etc. (Smith & Lowry, 1990).  An important hypothesis in AI is that
all intelligent problem solving can be characterized as a search process (Newell and
Simon, 1976).  If this hypothesis is adhered to, then PSMs can be characterized as spe-
cializations of the search paradigm.

•

 

Problem commitments

 

.  These specify ontological commitments to the type of pro-
blem that is solved by the problem-solving method.  These commitments are expres-
sed by subscribing to a particular 

 

task ontology

 

.  A task ontology specifies a task in
terms of initial and goal states in the universe of discourse and introduces the termi-
nology necessary to express task-specific commitments.  The ontological commit-
ments introduced by a task (in particular, by a problem type) can be used to refine the
competence of a PSM, the structure of its 

 

computational state

 

 and the nature of the

 

state transitions 

 

it can execute.  For instance, a generic search method can thus be
transformed into a more specific method for model-based diagnosis or parametric de-
sign.  A task-specific refinement of a method is still reusable because it is formulated
independently of any domain.  That is, the method may be applicable to technical or
medical diagnostic problems.  However, it is limited to a specific class of tasks.  The
advantage of refining PSMs in a task-specific way is that the resulting model provides
much stronger support for knowledge acquisition and application development than a
task-independent one.

 

•

 

Domain Assumptions

 

.  These are assumptions on the domain knowledge that is re-
quired to instantiate a PSM in a particular application.  These assumptions specify the
types and the properties of the knowledge structures which need to be provided by a
domain model, in addition to those required to instantiate a task ontology.  For in-
stance, when solving a design problem by means of Propose&Revise, a domain needs
to provide the knowledge required to express 

 

procedures

 

 and 

 

fixes

 

, in addition to the
knowledge needed to formulate the specific design problem - e.g. parts and cons-
traints.  Domain assumptions are necessary to enable efficient problem solving for
complex and intractable problems.  The reliance on such domain-specific knowledge
is the defining feature of knowledge-intensive approaches to problem solving.

While these three components cannot be said to specify truly orthogonal dimensions (the
choice of a problem solving paradigm may impose constraints on the domain knowledge),
they effectively provide alternative degrees of freedom for method specification and refine-
ment (although some points in the three-dimensional space may not be reachable).  For in-
stance, PSMs can be specified in a task-independent way - i.e. with no problem
commitments; they can be specified with no domain assumptions - i.e. by instantiating a pro-
blem solving paradigm with respect to a task ontology, without further commitments; and
they can be specified without introducing any control regime or task-subtask decomposition.
Such a specification won't necessarily be operational, but it would be good enough to support



 

Page 7

 

a PSM 

 

broker

 

, such as the one envisaged in the IBROW

 

3 

 

project (Benjamins et al., 1998).
The feasibility of this kind of PSM specifications was shown in an earlier paper of ours
(Fensel et al., 1997), where we illustrated a declarative specification of a Propose&Revise
problem solver, which abstracts from all procedural and control aspects associated with a
PSM.  Incidentally, this specification was also task-independent, thus showing that it is pos-
sible to characterize PSMs purely in terms of domain assumptions, with no commitments to
a task and only generic commitments to a problem solving paradigm.

Clearly identifying and separating the problem-solving paradigm, problem commitments,
and domain assumptions enables a principled way to developing a problem-solving method
and structuring libraries of problem-solving methods.  Current approaches to problem-sol-
ving methods usually merge these different aspects, thus limiting the possibilities for reuse,
obscuring the nature of the methods, and making it difficult to reconstruct the process which
led to a particular PSM specification.  In the PPA framework, the development and adapta-
tion of problem-solving methods is characterized as a navigation process in this three-dimen-
sional space.  The nature of the navigation process itself differs with respect to the
dimensions of the development process.  Moves through the dimension of problem solving
paradigms are not necessarily structure- preserving.  In fact, changing the problem-solving
paradigm is a revolutionary act that creates new structures in the problem-solving process.
In contrast with paradigm-shifting activities, moves which refine the problem type or the do-
main assumptions are structure-preserving.

Moves through the three-dimensional space can be represented by means of 

 

adapters

 

.  In
some cases these are needed to map the different terminologies associated with task, method

Figure 3.  The navigation space for developing problem-solving methods.
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and domain specifications.  For instance, figure 4 shows an adapter which specializes a task-
independent specification of a Propose&Revise problem solver for a parametric design task.

In more complex cases, adapters can introduce further commitments needed to relate the
competence of a problem-solving method with the goal associated with a task specification.
For example, let's consider the case in which we specialize a task-independent Propose&Re-
vise for an optimal parametric design task - see figure 5

 

2

 

. In general, optimality can only be
guaranteed by introducing strong assumptions on the available propose and fix knowledge.
Thus, the resulting adapter not only maps method-specific to task-specific terminology, but

 

2. This example is described in detail in (Fensel et al., 1997).

adapter propose & revise for parametric design tasks
import  propose&revise; paramteric design
export propose&revise for parametric design tasks
rename 

state → DesignModel, 
axioms

goal(output)
d < d ↔ cost(d) < cost(d´)
Partial completeness(d) := {p | p ∈ assigned(d)}

endadapter 

Figure 4.  Specializing Propose&Revise for parametric design tasks.

adapter propose & revise for optimal parametric design tasks
import  propose&revise for paramteric design
export propose & revise for optimal parametric design tasks
axioms

/* The output is a complete, correct and optimal design model. */
complete(output) ∧ correct(output) ∧ 
¬∃ d . (d ∈  ParametericDesignModel ∧  complete(d) ∧ correct(d) ∧ output < d)

/* The propose knowledge never fails and monotonically extends the design 
model. */

¬  complete(d) → Partial completeness(d) < Partial completeness(propose(d))
/* The application of a propose leads to an optimal design model. */

¬  complete(d) → 
¬∃ d  ́(d  ́∈  ParametericDesignModel ∧ correct(d )́ ∧ propose(d) < d  ́∧ 
Partial completeness(d )́ = Partial completeness(propose(d))

/* The revise knowledge never fails. */
¬  correct(d) → correct(revise(d))

/* The application of revise does not change the completeness of a design model. */
Partial completeness(revise(d)) = Partial completeness(d)

/* The application of revise leads to an optimal design model. */
¬  correct(d) → 

¬  ∃ d  ́(d  ́∈  ParametericDesignModel ∧ correct(d )́ ∧ 
Partial completeness(revise(d)) = Partial completeness(d )́ ∧
revise(d) < d  ́)

endadapter

Figure 5.  Specializing Propose&Revise for optimal parametric design tasks.
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also introduces additional commitments required by the optimality criterion.  For instance,
it introduces the requirement that propose and revise steps must be optimal.

Adapters can also be used to refine task or method specifications.  These cases are illustrated
in figures 6-8.  Figure 6 shows the definition of a generic design task - see section 4.1 for
more details on this problem type - and figure 7 shows an adapter specializing the definition
of the generic design task for parametric design.  Finally, figure 8 shows an adapter which
refines a generic hill climbing method to produce a set minimizer.

The adapters described here are similar to the adapter patterns discussed by (Gamma et al.,
1995), where adapters are given as patterns which make it possible to reuse object classes.
While this functionality is provided also by our notion of adapter, our characterization also
makes it possible to specify explicitly the commitments and assumptions which are necessa-
ry to 'bridge the gap' between a problem definition (task) and the competence of a problem-
solving method.  

Natural candidates for the formal definition of adapters are algebraic specifications. These
have been developed in software engineering to define the functionality of a software arte-
fact  (Bidoit et al., 1991; Wirsing, 1990).  Briefly, algebraic specifications comprise a signa-
ture (consisting of types, constants, functions, and predicates) and a set of axioms that define
the properties of these syntactical elements.  

In the next section we will illustrate these ideas by showing how the PPA approach can be
used to carry out a rationale reconstruction of part of the library for parametric design des-
cribed in (Motta, 1997)3.  The resulting structure teases out the various types of task-specific
and domain-specific commitments associated with different problem solving components
and makes explicit the model development process by means of the relevant adapters.

3.Henceforth, the 'Motta library'.

task Design
sorts

DesignModel, Constraint, Requirement, Cost, 
Constraints : set of Constraint, Requirements : set of Requirement;

functions
violated : DesignModel → Constraints;
fulfilled : DesignModel → Requirements;
cost : DesignModel → Cost;

predicates
consistent, optimal, suitable, valid , solution, goal : DesignModel; 

axioms
goal(x) ↔ solution(x)
solution(x) ↔ valid(x) ↔ consistent(x) ∧  suitable(x)
consistent(x) ↔ violated(x) = ∅
suitable(x) ↔ ∀  y (y ∈  fulfilled(x))
optimal(x) ↔ ¬  ∃  y (cost(y) < cost(x))

endtask

Figure 6.  Specification of problem type design.
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4. A CASE STUDY: PROBLEM SOLVING COMPONENTS FOR PARAME-
TRIC DESIGN

As indicated earlier, the library of problem solving components for parametric design de-
veloped by Motta (1997) characterizes each problem solving method as a specialization of a
generic problem solving model obtained by instantiating a generic search model of problem
solving by means of a parametric design task ontology.  Here we show how the various steps
in the process can be made explicit by means of the relevant adapters.  Because of limitations
in the available space, we will only show the steps necessary to formalize the high-level com-

adapter Problem Type Parametric Design
import

Problem Type Design;
export 

Problem Type Parametric Design;
terminology mapping

DesignModel → ParametricDesignModel;
sorts

Parameter = {p1,...,pn}, 
Parameters : set of Parameter,
ValueRange1, ..., ValueRangen;

functions
ParametricDesignModel : Parameter → ValueRange1 ∪  ... ∪  ValueRangen

where DesignModel(pi) ∈  ValueRangei for all i=1,..,n;
assigned : ParametricDesignModel → Parameters;

predicates
complete : ParametricDesignModel;

axioms
solutionExport(x) ↔ solutionImport(x) ∧  complete(x);
complete(x) ↔ ∀  y (y ∈  assigned(x));

endadapter

Figure 7.  Parametric design as a specialization of problem type design.

adapter set mimimizer
import  hill climbing
export set mimimizer
axioms 
/* The input set must be correct. */

correct(input)
/* select1 must select the input set. */

select1(x) = {x}
/* Successors are subsets that contain one less element .*/

successor(x,y) ↔ ∃ z . (z ∈  x ∧  y = x \ {z})
/* We prefer smaller sets if they are still correct. */

x < y ↔ correct(y) ∧  y ⊂  x
endadapter 

Figure 8.  Set minimization by adapting hill-climbing.
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ponents of the library.  However, these should be sufficient to illustrate the suitability of the
approach - more details can be found in (Fensel and Motta, 1998).

4.1 DEFINING THE PROBLEM TYPE

Design can be characterized in generic terms as the process of constructing artefacts. Usual-
ly, the target artefact should fulfil a number of requirements, should not violate the relevant
constraints and should follow the principle of economy - i.e. it should have minimal cost
(Motta and Zdrahal, 1996).  Figure 6 shows a possible characterization of the class of design
problems.  This definition can be specialized for parametric design problems by introducing
parameters and value ranges, as shown in figure 7.  Parametric design problems reduce the
complexity of the design task by assuming the existence of a parametrized solution template
for the target artefact.  Hence, as shown in figure 7, a design model can now be defined as a
partial function from parameters to value ranges and a solution can be defined as a valid and
complete design model.  This is a model in which all parameters are bound, all requirements
are satisfied and no constraint is violated.

4.2 INITIAL PSM SPECIFICATION

We start with the algorithmic scheme local search that defines the common pattern of all
problem-solving methods described in (Motta, 1997).  A generalized, task-independent ver-
sion of this control regime is shown in figure 9.  Basically, LocalSearch initializes the search
process and RecursiveSearch searches until a solution has been found.  At each cycle a node
is selected and its successors derived.  UpdateNodes takes as input the current search space
and the newly generated nodes and produce a new search space.  Different search strategies
can be modelled by defining alternative methods for this task.  For instance, best-first search
can be modelled by performing a simple union of Nodes and SuccessorNodes, while hill-
climbing can be modelled by ensuring that UpdateNodes returns only SuccessorNodes.

The local search model can be specialized for design tasks by means of the adapter shown in
figure 10.  Essentially, this adapter introduces the term design model into the method and
maps the notion of task solution to that of method solution.  The resulting PSM is still un-
specified, as it does not say how to select design models, how to derive successor designs,
and how to update the set of designs.  Because of space restrictions we are not able to discuss
these tasks here, which are described in detail in (Motta, 1997).

Refining the resulting model of design problem solving for parametric design is simply a
matter of importing the problem type Parametric Design and the PSM Local Search for De-
sign, to produce the PSM Local Search for Parametric Design.

4.3 CAPTURING A FAMILY OF PSM SPECIFICATIONS

A summary of parametric design problem solving in terms of its states and state transitions
is provided in Figure 11.  This style of specification results from the approach adopted here,
which consists of choosing an algorithmic scheme and applying several adapters that refine
its state descriptions and state transitions.  Such a specification is more abstract than what is
usually called a PSM in the literature.  For instance, let's consider Propose&Revise.  Propo-
se&Revise for parametric design instantiates the framework by distinguishing two contexts4

4. In the Motta library the notion of design context is used to characterize typical design scenarios, such as
fixing an inconsistency, reducing the cost of a design, extending the current model, etc.
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when deriving successor design models:

• Propose context.  Consistent design models are extended until they are complete or in-
consistent.

• Revise context.  Inconsistent design models are repaired until they are consistent.

That is, this PSM can be derived from our framework by simply refining some of its para-
meters.  An extensive discussion of how various PSMs for parametric design can be derived
as specializations of a generic search model is provided in (Motta, 1997).

Figure 11 also includes a slot for specifying the competence of a PSM. This describes its
functionality (and utility), abstracting from how it is achieved (Akkermans et al., 1993;
Fensel and Groenboom, 1997; ten Teije, 1997).  Such competence descriptions enable black-
box reuse.  The general problem of establishing competence descriptions of problem-solving
methods stems from the fact that they can only be established in terms of assumptions about
the required knowledge.  The termination, completeness and correctness of generic search

PSM Local Search

/* There are some simplifications to report: We ignore the case when SelectNode does not
deliver an output and when DeriveSuccessorNodes does not deliver an output. In
consequence we only terminate when we have found a solution and we do not terminate for
intermediate empty inputs. */

control flow

LocalSearch()
/* Initializes and starts the search. */
Nodes:= Initialize();
Output := RecursiveSearch(Nodes)

RecursiveSearch(Nodes)
/* Searches. */
Node := SelectNode(Nodes);
SuccessorNodes := DeriveSuccessorNodes(Node);
Nodes := UpdateNodes(Nodes, SuccessorNodes);
IF OptimalSolution(x) for a x ∈  Nodes

THEN RETURN these x´s
ELSE RecursiveSearch(Nodes)

ENDIF

sorts
Object, Objects : set of Object;

functions
Node : Object;
Nodes, Output, SuccessorNodes : Objects;

prediactes
OptimalSolution : Object;

elementary inferences
DeriveSuccessorNodes,
Initialize,
SelectNode,
UpdateNodes

Figure 9.  The local search problem solving method.
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methods like A* (or specialized ones, such as Propose&Revise) can only be guaranteed by
placing strong requirements on the knowledge that is used to guide the search process.  As a
consequence, the association of a competence specification to a PSM is not a bijective rela-
tion.  On the contrary, it depends on the assumptions associated with the PSM (Benjamins et
al., 1996).  

adapter Problem-Solving Local Seach forDesign;
import

Problem Type Design, Problem Solving Local Seach;
export 

Problem-Solving Local Seach forDesign;
rename

Object → DesignModel;
axioms

goal(Output)
endadapter

Figure 10.  Specializing local search for design.

Figure 11.  An abstract specification of parametric design problem solving.

Object information:
Set of parameter-value pairs

consistent
suitable
complete
cost

Quality 

History 

set of context,
focus, and 

Future 

feasibility

Search Control Information:
LocalSearch()

Initialize()
RecursiveSearch()

SelectNode()
DeriveSuccessorNodes()

UpdateNodes()

DecideOverContext()
DecideOverFocus()
DecideOverTransformation()
Bookmark()
ApplyTransformation()

information:

information: Information:

operator triples

State State Transitions

Problem-solving Parametric Design

Knowledge Requirements

a set of constraints 
a set of requirements 
a cost function
a set of parameters
a set of value ranges

a set of contexts
a set of foci
a set of transformations
feasibility knowledge

Competence
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5. CONCLUSIONS

In this paper we have presented a systematic approach enabling the structured development,
adaptation, and reuse of PSMs.  A large number of PSMs can be described by means of i) a
structured set of generic task and problem-solving patterns and ii) adapters formalizing the
relevant refinement steps.  These are explicitly modelled, thus allowing their reuse for new
problem types and different problem-solving schemas.  

Adapters introduce a new modelling element into existing modelling approaches, which
makes the method development process explicit and external to the model, i.e. separated
from problem solving components.  In most other approaches, adaptation is treated as a side
issue and adaptation via several levels is not considered at all.  As discussed in section 1, this
is especially a problem for libraries of PSMs.  In our view, by providing a clear foundation
for both PSM specification and specialization we can construct sound and reusable libraries.
While this is only an unproved claim as far as reuse is concerned, the experience reported by
Motta and Zdrahal (Motta, 1997; Motta and Zdrahal, 1997) shows that the reliance on clear
theoretical foundations allows a better understanding of PSMs and facilitates their evaluation
and comparison.

Still, our current adapter concept may be too general and we are currently working on a ty-
pology of adapters.  So far we have identified two basic dimensions for organizing adapters:
in terms of their purpose (teleological dimension) and in terms of the syntactical entity refi-
ned by an adapter (epistemological dimension).  The first dimension indicates whether an ad-
apter is used to refine a problem type, a domain dependency via assumptions, or a problem-
solving paradigm. The second dimension distinguishes whether an adapter refines, for in-
stance, a state definition, a state transition, or a declarative competence specification.  Wor-
king this out in more detail will help transforming the development process of PSMs into a
more structured engineering activity.
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