
A Strategy for the Modularization of Courseware1

Khaldoun Ateyeh Michael Klein Birgitta König-Ries
Jutta Mülle

{ateyeh | kleinm | koenig | muelle}@ipd.uni-karlsruhe.de

December 23, 2003

Technical Report Nr. 2003-3

University of Karlsruhe
Faculty of Informatics

Institute for Program Structures and Data Organization
D-76128 Karlsruhe, Germany

1This work was partially funded by the ViKar-Project [12] within the program
Virtual University by the state of Baden-Württemberg.

Abstract

In order to enable courseware reuse, learning platforms nowadays require the
materials to be decomposed into small independent learning units. When
trying to fulfill this need, authors face the problem of not knowing how to
determine suitable learning objects in their content. What is the appropriate
size of one such object? The rather general and abstract definitions for
learning objects found in the literature are not very helpful for answering
this question. What authors need is an operational definition, which can be
directly applied to the learning materials. This paper proposes such a set
of formal yet practical definitions by describing learning objects along their
contents and resource type and shows how these definitions are used by our
platform, SCORE.

1 Introduction

In order to enable courseware reuse, it is necessary to decompose learning
materials into manageable learning objects. Most scientific projects and
organizations that are concerned with courseware reuse and exchange like
Ariadne [2], IMS Global Learning Consortium [4], Educause [3], the IEEE
Learning Technologies Standards Committee [8] with its Learning Object
Metadata (LOM) [7], and the German Competence Center ”Learning Lab
Lower Saxony” (L3S) [6] recognize the importance of modularization for
courseware reuse and exchange, but very few address the problem of how
to split (existing) learning materials into reusable learning objects. Thus,
Authors face the problem of not knowing how to determine suitable reusable
learning objects in their content. Most of the time they are confronted with
the following questions: What is the appropriate size of one such an object?
Which characteristics must such an object have in order to be described
as reusable? Existing approaches do not offer answers to these questions
or at most give a theoretical definition of learning object, which authors
cannot concretely apply to their content. A typical example is the often
cited definition by Wiley:

[A learning object is] any digital resource that can be reused to
support learning. [13]

It excellently describes what a learning object is, but does not offer any
practical instructions or guidance by which authors could determine well-
sized reusable learning objects in their material. The definition used in LOM
(Learning Objects Metadata) suffers from the same problem:

Learning Objects are defined as any entity, digital or non-digital,
which can be used, re-used or referenced during technology sup-
ported learning. [7]

What is missing is an operationalization of the learning object definition
offering authors an advice on how to decompose the learning materials into
reusable learning objects. A proposal for such a definition is given in this
paper. It is based on the idea of describing learning materials along two
dimensions: their contents and their resource types. We also show how these
definitions are used by our system for courseware reuse (SCORE) to support
authors in finding appropriate learning objects and to support instructors
in putting courses together.

3

2 Scenario

Before introducing formal definitions in the next section, we will give in this
section an overview of the process of exchanging and reusing courseware.
Thereby we will introduce different types of learning units and will show
how they are used.

A group of teachers at neighboring universities, among them Anna and
Chuck, has noticed that the topics they teach in their database classes over-
lap to a certain extent. They decide that it would be more economical to
collect their teaching materials into one big pool and to allow all of the
teachers to access these materials. The resulting repository should contain
materials that exist already, but should also allow for new material to be in-
troduced. In order to make the material collected in the pool (re-)usable, it
needs to be appropriately structured and described. In the following we will
describe two phases: The first one is the creation and filling of the repos-
itory. In this phase, our teachers act as authors. In a second phase, the
repository is used to develop and teach courses. In this phase, the teachers
act as instructors. The phases do not occur in sequential order, but can
interleave and overlap.

Creating and filling the repository. In this step, the teachers act as
authors. They agree on a collection of terms that describe their subject. In
our example, some of these terms could be database systems, relational alge-
bra, join operator, relational model, normalization, functional dependency.
In the next step, relationships between these terms are established: A term
may be more generic than another one, e.g. relational algebra is more generic
than join operator. Certain knowledge, e.g., on functional dependencies may
be a prerequisite to understand something else, e.g., normalization. In our
example, knowledge about functional dependencies is needed before tackling
normalization. The result of this step is a domain specific ontology of the
topic area modeling two types of relationships: The isSubtopicOf relation
and the isPrerequisiteFor relation.

The second task for the authors is to agree on the resource types that
should be placed in the repository. Resource types describe in what function
or for what purpose material can be used. Examples for these types are
introduction, theorem, example, definition. The result of this step should
be a complete list of admissible resource types.

We envision the following logical structure for the repository: For each
term in the ontology, there exists a corresponding container in the repository
which holds all materials described by that term. Containers for the upper

4

terms of the ontology, as relational database systems also hold ”smaller”
containers for the less generic terms, as relational algebra. In our example,
there will be a container called database systems containing among others
another container relational database systems which in turn holds materials
about the relational algebra and so on. In the following, these containers
will be called modules. Modules do not only contain other modules, but also
pieces of learning material called atoms described by exactly one term of
the ontology and typically one resource type. An atom is a piece of learning
material that is described by exactly one term of the ontology and one (or in
some special cases, see below, several) resource types. Each part of learning
material is associated with the one term in the ontology that describes it
best. For instance, an introduction to the relational algebra or an exercise
requiring the usage of several algebraic operators would be included in the
relational algebra module, a definition of the join would be part of the join
operator module. Given this logical structure, the next task for the authors
is to fill the repository with material. In our example, the authors first have
to decompose their existing materials according to the ontology. Consider,
e.g., Anna who teaches a class on relational databases. She finds that the
most precise description of her entire course is relational database systems.
Now, she tries to find parts of the course like the chapter described by
the term relational algebra and an enclosed section on the join operator.
The latter is a leaf term of the ontology, thus, no more precise term is
available. Anna now looks at her material on the join operator and splits it
up according to the resource types. This results in learning atoms, e.g. an
example for the usage of the join operator, that she can then store in the
repository. There will be material that is not described by a leaf term, but
by an inner node of the graph like an exercise requiring different algebraic
operators. In this case, this material is stored in the appropriate higher-level
module. Also, it may happen, that materials need to be described by more
than one resource type. E.g., an explanation and an example may be so
interleaved that it is not possible to divide the material up.

Instead of relying on existing material, it is also possible to create new
material and store it in the repository. Adding material to the repository
should not be considered a one time activity, but can and should go on
throughout the lifetime of the repository.

Using the repository. Teachers, now act as instructors. Assume, Chuck
(in the role of instructor) has agreed to teach a new course on SQL. Thus, the
system will display the contents of the SQL module: atoms containing ma-

5

terial relevant to SQL as a whole, but also modules dealing with subtopics,
e.g. projection, selection, embedded SQL. From these, he chooses the ones
he wants to use in his course and the system allows him to pick from the
contents of this module: suitable examples, definitions and so on. After hav-
ing this material, Chuck needs to determine the order in which he wants to
present it. Again, the system helps him by displaying the prerequisites laid
down in the ontology. For some subtopics, Chuck may not find appropriate
material in the repository. In this case, he will switch back into his role as
author, develop the appropriate material, and add it to the repository for
future use.

The following sections will deal in more detail with the material pre-
sented here: Section 3 contains formal definitions of all concepts used while
section 4 introduces our implementation.

3 A Formal Model

This section introduces a formal model defining the basic concepts needed in
the process of courseware modularization and reuse. Special emphasis lies on
how to operationalize the introduced concepts in order to help authors and
instructors to construct reusable, extensible, and maintainable repositories
for their learning objects.

An overview of the concepts and their relationships is given in Figure 1
and Figure 2. While Figure 1 describes the process of building a repository,
Figure 2 describes the process of using it.

3.1 Defining and Filling the Repository

As described in Section 2, in order to modularize teaching and learning
material on a subject, the authors have to agree on a collection of terms
that describe the subject and on relationships between these terms [9]:

Definition 3.1 (Domain Specific Ontology) A domain specific ontol-
ogy is a directed graph with domain specific terms as nodes. The edges
between the terms are typed. There exist two types of edges:

• isSubtopicOf: An edge from term t1 to term t2 is of type isSubtopicOf
iff. t2 deals with a more generic topic than t1. Edges of this type are
unique and mandatory for inner terms, i.e. each term (except for the
root of the graph) is subtopic of exactly one other term. Therefore, the
terms form a tree when regarding the isSuptopicOf edges only.

6

Term

Learning Resource
Type

"Example""Theorem""Proof" "Exercise"

Atom Type Atom Type
"Type"
abstract

Term

Term Term

isSubtopicOf

isPrere-
quisiteFor

domain-specific
ontology

x

Module Module Module

Module

"Instance"
concrete

Repository

Fill
Repository

Atom Atom

Figure 1: Concepts and relationships of the formal model to organize learning
objects

• isPrerequisiteFor: An edge from term t1 to term t2 is of type isPrereq-
uisiteFor, iff. t1 needs to be understood by a learner before he is able
to learn t2. The isPrequisiteFor relationship builds an acyclic graph.

In the following, we will sometimes talk about layers or leaves of the ontology.
In these cases, we are always referring to the graph with respect to the
isSubtopicOf edges.

Learning objects are characterized by their content (described by the
terms of the ontology) and by their intended usage. For instance, a certain
learning object can be used as introduction, as definition, etc. Therefore,
we introduce the concept of learning resource types:

Definition 3.2 (Learning Resource Type) A learning resource type
describes the intended usage of content of learning objects.

7

(1) Course Module

(1.3) Atom

=

U
I "Course"

adapted

isPrere-
quisiteFor

Use
Repository U

I

(1.2) Course Module

Module Module Module

Module Repository

Atom Atom

(1.1) Course Module

Figure 2: Concepts and relationships of the formal model to organize learning
objects

A learning object is classified by one or more learning resource
types. This can be ”Example”, ”Definition”, ”Explanation”, ”Theorem”,
”Proof”, ”Exercise”, ”Motivation”, ”Conclusion”, ”Test/Quiz”, ”Introduc-
tion”, ”Simulation”, or ”Scenario” [11]1.

Based on these definitions, we can now introduce the atom type as an
abstract description of learning objects, more precisely of atoms.

Definition 3.3 (Atom Type) An atom type is a 2-tuple of exactly one
term of the domain specific ontology and a set of learning resource types.

Examples of atom types are (SQL, {”Exercise”}), (3rd normal form,
{”Exercise”, ”Example”}), with the terms SQL and 3rd normal form and
the learning resource types ”Exercise” and ”Example”. The latter atom
type may, e.g., be used for learning objects that contain material about the
3rd normal form and may be used as example and as exercise. Atom types
may belong to arbitrary terms on any level of the domain specific ontology.

Until now, the concepts of the upper part of Figure 1 have been defined.
In the following, we will introduce the concepts of the second part of Figure
1, i.e. concrete instances of learning objects and the resulting repository.

1In the metadata standard LOM [7] the term ”learning resource type” is used slightly
differently: LOM mixes the content-based types introduced in our definition, with techni-
cal types like ”figure”, ”graph”, or ”table”.

8

Let us first introduce the atom, the smallest unit of learning objects that
we consider:

Definition 3.4 (Atom) An atom is an instance of an atom type.

An example is a set of powerpoint slides containing examples of SQL
queries, therefore resulting in the type (SQL, {”Example”}). Another ex-
ample is a Postscript file with an exercise about the 3rd normal form, that
may also be used as example, so it is of type (3rd normal form, {”Exercise”,
”Example”}).

As described in Section 2, the stepwise decomposition of teaching mate-
rial results in the creation of atoms. Starting with the material for an entire
course, in a first step, an author will divide it into ever smaller parts de-
scribed by exactly one term of the ontology. For as long as it seems practical,
he then chooses parts of parts that are described by a more specific term. In
a second step, the author will divide each part along the learning resource
types into atoms. The general goal one should observe is to assign each
resulting part the most specific term applicable and the smallest possible
set of learning resource types. Atoms that belong to the same term in the
domain specific ontology, belong to the same learning object, which we call
module. To each term in the ontology there exists exactly one corresponding
module, which contains all learning objects related to that term.

Definition 3.5 (Module) A module is a collection of materials belonging
to exactly one term in the domain specific ontology. It comprises all learning
objects which are related to that term, i.e. atoms and other (sub-)modules.

Remember that there exists a module for each term in the ontology.
This implies that authors do not need to actively define modules and do
not need to sort material into modules. The modules are implicitly defined
during the creation of the ontology. By instantiating an atom from a certain
atom type it automatically becomes part of the appropriate module (and
implicitly also of the modules this module is part of through the isSubtopicOf
relationship).

3.2 Using the Repository

So far, we analyzed the process of defining and filling a reusable courseware
repository and we defined the concepts needed to allow conducting them
effectively. In this section we will define another concept needed in the pro-
cess of using the repository to build context specific courses. For every term

9

in the ontology there exist one module in the repository. The module con-
tains all types of material from all participants that can be associated with
the correspondent term in the ontology. By all means, it is not conceiv-
able that these kind of modules can be directly re(used). Considering our
scenario from section 2 we have shown that in order to be able to (re)use
the learning modules in the repository, instructors have to be able to adapt
them to their own needs such as learning form, target group and pedagogical
strategy. This reflection leads to the concept of the Course Module.

Definition 3.6 (Course Module) A course module is a special module
type which evolves from a module by selecting (sub-)modules and atoms from
it according to the specific course context, and bringing them into a total
order which is compatible with the partial order of the isPrerequisiteFor re-
lation.

Thus, a course module covers a specific view of an author on a learning
module according to its use in a specific context. Atoms, modules and course
modules are stored in a repository:

Definition 3.7 (Repository) A repository is a collection of modules and
atoms.

Each learning object in a repository belongs to one or more subjects and
for each exists a domain specific ontology on which the author group or the
community has agreed. Moreover, each term of the ontology there exists a
related module in the repository. A repository may also contain modules
related to different domain specific ontologies.

3.3 Extending the Repository

To keep our scenario simple, we have assumed that a course module always
corresponds to one specific term in a common and fixed ontology. However,
in practice authors or instructors when build new courses, they often need to
add new terms. The reason why these terms are not found in the ontology
is: These terms are context specific and when defining a common domain
specific ontology, generic terms are normally chosen so that the ontology can
serve a wide variety of interests and situations. Or, these terms represent
new development in the domain area and they are not yet integrated in the
ontology. One way to deal with this situation is to allow course specific
views on the ontology. This means, for every course there exist a course
view on the ontology. A course view can consist of a mixture of ontology

10

terms and course specific terms. Modules cover course specific terms will
be treated as course modules. Views provide an effective instrument to deal
with the dynamic aspects of the domain specific ontology such as extensi-
bility, adaptability and flexibility. It also allows to define different levels of
access right to the learning materials. This way, authors and instructors can
choose whether they want to share their specific modules with others or not.

4 Metadata

In the SCORE of courseware reuse metadata are used to describe the dif-
ferent aspects of a learning object such as technical, pedagogical and legal
aspects. This will enhance the access and reuse of courseware by allowing
effective and intelligent search mechanisms. In this section we will briefly de-
scribe the SCORE metadata standard. SCORE metadata standard is based
on the LOM metadata standard. It defines a subset of the LOM Standard
and it extends it on SCORE specific elements.

When defining the SCORE metadata standard we paid attention to keep
the metadata set as small as possible. We believe that this will motivate
authors and content provider to mark their content with metadata.

The LOM standard is divided into 9 sections. SCORE uses the sections
1,2,4,7,8 and 9. In the following we will describe each of the section used in
SCORE. For a complete description of the meta data see [11].

1. general (section 1): this section contains general characteristics of the
learning object such as the title, the language and a general description
of the learning object. The information in this section is used to
provide a simple search functionality in the SCORE system.

2. life cycle (section 2): this section is very important for the management
of the learning object especially in cooperative development environ-
ment such SCORE. It contains information about the life cycle of the
learning object such as version status and the persons contribute to
the learning object.

3. technical (section 4): this section capture all technical requirements
and characteristics of the learning object such as format and size.
This kind of information is very important in the process of choosing
learning objects that fit technically together and that suitable for the
technical environment of the user

11

4. educational (section 5): this section describes a suitable educational
context where the learning object can effectively be used. Examples
for educational characteristics are target group and interactivity type.

5. relation (section 7): this section covers the structural relations of the
learning object to other learning objects. To define multiple relation-
ships, there may be multiple instances of this category. If there is
more than one target learning object, then each target shall have a
new relationship instance. Examples for structural relationships are:
is bart of, is based on and requires. This information is very valuable
in a (semi)automatic generation process of course modules

6. annotation (section 8): this section is used to store user remarks on
the learning object. Within SCORE, these remarks can be added only
form authors and instructors to share their assessments of learning
objects, suggestions for use, etc.

7. classification (section 9): this section captures the relationship of a
learning object to the domain specific ontology.

5 Implementation

In this section we will briefly describe the SCORE [10] platform “System
for Courseware Reuse”. SCORE implements the modularization concept
described in Section 3 and supports the scenario for courseware produc-
tion and (re)use described in Section 2. Therefore, the SCORE platform
provides tools to support the processes of defining, filling and (re)using a
shared courseware repository. Figure 3 gives an overview of the system ar-
chitecture of SCORE, Figure 4 shows a screen shot of the system. As you can
see, SCORE is a complete learning platform with components for authoring,
learning, and teaching. SCORE system architecture is a typical three tier
architecture. Layer 1 is the data management layer. It manages learning
object repositories as well as all SCORE users. It also manages learning and
or teaching process information such as information produced in the learn-
ing process and the different communication and cooperation facilities such
as user annotations, chats, forums and instructor virtual meetings rooms.
In order to allow a transparent and database technology independent access
to the data, score offers an EJB interface to the database. Layer 2 provides
common services that can be shared from the different user environments.
Finally, Layer 3 offers user specific environments. Altogether score distin-
guishes between three main roles: student, instructor and author and thus

12

Author

Environment

Instructor

Environment

Search
OntoBrowser

Atom
Builder

Module
Builder

Course
Builder

Metadata

(XML)

Learning Objects

(binär)

Managmement

Data

(relational)

Student

Environment

Mind
Mapper

Metadata Content User/Profile Forum

JSP/Servlet

(Tomcat)

EJB

(JBoss)

JSP/Servlet

(Tomcat)

Datenbank

(Oracle)

XPath XPath SQL
SQL

Interface Interface Interface Interface

Layer 1

Layer 2

Layer 3

Figure 3: Layered system architecture of our learning platform SCORE.

provides three different environments for student, author and instructor. In
the following, we will discuss some components of SCORE that are relevant
for conducting of the tasks described in this paper from an author’s and
instructor’s perspective.

Defining a shared repository: As mentioned in Section 2, in a first
step, cooperating authors agree on a collection of terms that describe their
subject or domain. In a second step, they set relationships between these
terms and build a domain ontology. The SCORE OntoBrowser tool sup-
ports the authors by conducting these steps. OntoBrowser provides a graph
drawing tool helping authors to easily define their ontology. OntoBrowser
will then generate an RDF based ontology file. The second classification
schema is the resource type classification schema. This sort of classification
is part of the SCORE metadata standard2. The SCORE metadata standard
[11] is a subset of LOM guaranteeing the possibility of courseware exchange
with other learning systems.

2When defining the SCORE metadata standard we paid attention to keep the metadata
set as small as possible. We believe that this will motivate authors and content provider
to mark the content with metadata

13

Figure 4: Screenshot of SCORE’s AtomBuilder.

Filling the repository: To fill the repository with content, the SCORE
AtomBuilder tool is used. The AtomBuilder allows authors to mark their
learning atoms with SCORE metadata, match them to the right term and
to insert them in the SCORE repository. The process of marking learning
atoms is very fatiguing and time consuming, therefore the AtomBuilder has
been designed to minimize the amount of metadata to be filled in manually
by the author. Instead, the AtomBuilder fills in most of the metadata about
the learning atom such as technical and author information automatically.

Using the repository: SCORE provides different tools that facilitate
the reusability of the courseware stored in the SCORE repository. To explain
how SCORE supports instructors to combine their courses out of existing
learning modules let us go back to our scenario in Section 2 where Chuck
decided to build a course on SQL. To achieve this he could have used the
SCORE OntoBrowser to navigate through the ontology in order to get a
picture of the terms and their relationship as well as the materials existing
for each term. After that, he might have used the CourseBuilder to specify

14

his course by selecting the most appropriate terms and if needed adding new
ones. With the help of the ModuleBuilder, he could process the modules,
that is select, add, and arrange the learning atoms and sub modules to meet
his pedagogical strategy and target group.

6 Conclusions and Future Work

In this paper, we have presented an approach that practically guides au-
thors through the difficult process of dividing existing learning material into
reusable learning modules. The approach is based on formal definitions for
learning atoms and modules, which on the one hand distinguish between
abstract types and concrete instances, and on the other hand differentiate
between domain specific terms and domain independent learning resource
types. Furthermore, we have briefly described how the shown concepts are
supported form our learning platform SCORE. An example on how this ap-
proach can be applied in the praxis is described in [5]. In the meanwhile we
are implementing the SCORE platform.

15

Bibliography

[1] Ateyeh, K.; Klein, M.; König-Ries, B.; Mülle, J.: A Strategy for the
Modularization of Courseware. Techn. Report No. 2003-3, Dept. of
Informatics, Universität Karlsruhe, 2003.

[2] Alliance of Remote Instructional Authoring and Distributing Network
for Europe (ARIADNE). http://ariadne.unil.ch

[3] Educause. http://www.educause.edu

[4] IMS Global Learning Consortium. http://www.imsproject.org

[5] Klein, M.; Ateyeh, K., König-Ries, B.; Mülle, J.: Creating, Filling,
and Using a Repository of Reusable Learning Objects for Database
Courses. BTW-Workshop Datenbanken und E-Learning, Leipzig,
Februar 2003.

[6] Learning Lab Lower Saxony (L3S). http://www.learninglab.de

[7] LOM working draft v5. http://ltsc.ieee.org/doc/wg12/LOM WD5.doc

[8] IEEE Learning Technology Standards Committee (LTSC).
http://grouper.ieee.org/groups/ltsc/

[9] What is an Ontology? http://www-ksl.stanford.edu/kst/what-is-an-
ontology.html

[10] SCORE project. http://www.ipd.uka.de/SCORE/en/index.html

[11] Metadata catalog of the SCORE project.
http://www.ipd.uka.de/SCORE/xsd/score v1.xsd

[12] Virtueller Hochschulverbund Karlsruhe (ViKar). http://www.vikar.de

[13] Wiley, D.A.: Learning objects need instructional design theory. In
A. Rossett (Ed.) The 2001/2002 ASTD Distance Learning Yearbook.
McGraw-Hill, New York. 2002.

16

