

The Technical Core of Ontobroker

Stefan Decker, Dieter Fensel, Michael Erdmann, and Rudi Studer
University of Karlsruhe, Institute AIFB, 76128 Karlsruhe, Germany

Email: {decker, fensel, erdmann, studer}@aifb.uni-karlsruhe.de,
http://www.aifb.uni-karlsruhe.de/WBS/broker

Abstract.

The World Wide Web can be viewed as the largest knowledge base
that has ever existed. However, its support in query answering and automated
inference is very limited. Therefore we developed

Ontobroker

 that uses fornal
ontologies to enhance query access and inference service of the WWW. The
paper describes its technical core that consists of formalisms and tools for
formulating queries, for defining ontologies, and for annotating HTML
documents with ontological information.

1 Introduction

The World Wide Web (WWW) contains huge amounts of knowledge about most subjects one
can think of. HTML documents enriched by multi-media applications provide knowledge in
different representations (i.e., text, graphics, animated pictures, video, sound, virtual reality,
etc.). Hypertext links between web documents represent relationships between different
knowledge entities. Based on the HTML standard, browsers are available that present the
material to users and that use the HTML-links to browse through distributed information and
knowledge units. However, taking

 the metaphor of a knowledge base

as a way to look at the
WWW brings the bottleneck of the web into mind. Its support of automated inference is very
limited. Deriving new knowledge from existing knowledge is hardly supported. Actually, the
main inference services the web provides are keyword-based search facilities carried out by
different search engines, web crawlers, web indices, man-made web catalogues etc. Given a
keyword, such an engine collects a set of knowledge portions from the web that use this
keyword. This limited inference access to existing knowledge stems from the fact that there
are only two main types of standardization for knowledge representation on the web. The
HTML standard is used to represent knowledge in a (browser and) man-readable way and to
define links between different knowledge units. Furthermore, mainly the English language is
used to represent the knowledge units. [Luke et al., 1997] propose

ontologies

to improve the
automatic inference support of the knowledge base WWW. An ontology provides “an explicit
specification of a conceptualization“ [Gruber, 1993]. Ontologies are discussed in the
literature as means to support knowledge sharing and reuse ([Farquhar et al., 1997], [Fridman
Noy & Hafner, 1997]). This approach to reuse is based on the assumption that if a modelling
scheme

—

i.e. an

ontology

—

is explicitly specified and agreed upon by a number of agents, it is
then possible for them to share and reuse knowledge.

We designed and implemented a couple of tools necessary to enable the use of ontologies for
enhancing the web. We developed a broker architecture called

Ontobroker

 [Ontobroker] with
three core elements: A query interface for formulating queries, an inference engine used to
derive answers, and a webcrawler used to collect the required knowledge from the web. We

- 2 -

provide a

representation

 language for formulating ontologies. A subset of it is used to
formulate queries, i.e. to define the

query language

. A formal semantics is defined to enable
automatic reasoning by the inference engine. An

annotation

 language is offered to enable
knowledge providers to enrich web documents with ontological information. The strength of
our approach is the tight coupling of informal, semiformal and formal information and
knowledge. This support their maintenance and provide a service that can be used more
general for the purpose of knowledge management and for integrating knowledge-based
reasoning and semiformal representation of documents (cf. [Skuce,1997]).

The general architecture of the ontology-based brokering service

Ontobroker

 consists of three
main elements: a

query interface,

an

inference engine,

 and a

webcrawler

 (called

Ontocrawler

).
Each of these elements is accompanied with a formalization language: the query language for
formulating queries, the representation language for specifying ontologies, and the annotation
language for annotating web documents with ontological information. In this paper, we
foccus on the technical core of

Ontobroker

. A more complete description can be found in
[Fensel et al., 1998] and a more detailed discussion of the

use

 of the query and inference
support of

Ontobroker

 is provided by [Fensel et al., submitted].

The contents of the paper is organised as follows. The languages used to represent ontologies,
to formulate queries, and to annotate web documents with ontological information are
discussed in section 2. In section 3 we discuss the three main tools of

Ontobroker

: its graphical
and logic-based query interface, its inference engine, and its webcrawler. Related work and
conclusions are given in section 4.

2 The Languages of Ontobroker

In the following, we discuss the formalisms used by

Ontobroker

. First, we describe the
representation formalism used to define ontologies. Second, we discuss the query formalism
that is used by a client asking for information. Finally we discuss the annotation formalism
that is used by the knowledge provider to annotate web documents with ontological
information.

2.1 The Representation Formalisms for Ontologies

The basic support we want to provide is query answering over instances of an ontology. The
ontology may be described by taxonomies and rules. Since there are effective and efficient
query evaluation procedures for Horn-logic like languages we based our inference engine on
horn logic.

1

 However, simple horn logic is not appropriate from an epistemological point of
view for two reasons:

• First, the epistemological primitives of simple predicate logic (which Horn logic is a
subset of) are not rich enough to support adequate representations of ontologies.

• Second, often it is very artificial to express logical relationships via Horn clauses.

We will subsequently discuss how we bypassed both shortcomings.

1.

However, to support interchancability a translator from Ontobroker to Ontolingua is described in [Fensel et al., 1998].

- 3 -

2.1.1 Elementary Expressions

Usually, ontologies are defined via concepts or classes, is-a relationships, attributes, further
relationships, and axioms. Therefore an adequate language for defining the ontology has to
provide modeling primitives for these concepts. Frame-Logic [Kifer et al., 1995] provides
such modeling primitives and integrates them into a logical framework providing a Horn
logic subset. Furthermore, in contrast to most Description Logics, expressing the ontology in
Frame-Logic allows for queries, that directly use parts of the ontology as first class citizens.
That is, not only instances and their values but also concept and attribute names can be
provided as answers via variable substitutions.

We use a slightly modified variant of Frame-Logic, which suits our needs. Mainly the
following elementary modeling primitives are used:

• Subclassing:

C

1

 ::

C

2

, meaning that class

C

1

 is a subclass of

C

2

.

• Instance of:

O

 :

C

, meaning that

O

 is an instance of class

C

.

• Attribute Declaration:

C

1

[

A

=>>

C

2

], meaning that for the instances of class

C

1

 an
attribute

A

 is defined, whose value must be an instance of

C

2

.

• Attribute Value:

O

[

A

->>

V

], meaning that the instance

O

 has an attribute with value

V

.

• Part-of:

O

1

 <:

O

2

, meaning that

O

1

 is a part of

O

2

.

• Relations: predicate expressions like

p

(

a

1

,...,

a

2

) can be used as in usual logic based
representation formalisms, except that not only terms can be used as arguments, but also
object expressions.

2.1.2 Complex Expressions

From the elementary expressions more complex ones can be built. We distinguish between
the following complex expressions: facts, rules, double rules, and queries. Facts are ground
elementary expressions. A rule consists of a head, the implication sign

 <-

, and the body. The
head is just a conjunction of elementary expressions (connected using

AND

). The body is a
complex formula built from elementary expressions and the usual predicate logic connectives
(implies:

->

, implied by:

<-

, equivalent:

<->

,

AND

,

OR

, and

NOT

. Variables can be
introduced in front of the head (with an

FORALL

-quantifier) or anywhere in the body (using

EXISTS

 and

FORALL

-quantifiers). A double rules is an expression of the form:

head

<->

body

,

where the

head

 and

body

 are just conjunctions of elementary expressions. Examples of
double rules are given in Table 1. An EBNF syntax description of the complete representation
language is given in [Fensel et al., 1998].

2.1.3 An Illustration

Ontologies defined with this language consist mainly of two resp. three parts:

• The concept hierarchy, which defines the subclass relationship between different classes,
together with the attribute definitions. These two parts can be split for readability
reasons.

- 4 -

• A set of rules defining relationships between different concepts and attributes.

A part of an example ontology (see [Ontobroker] for the entire ontology) defining a small
concept hierarchy, some attributes and two rules relating different concepts are provided in
Table 1.

The concept hierarchy consists of elementary expressions declaring subclass relationships.
The attribute definitions declare attributes of concepts and the valid types, that a value of an
attribute must have. The first rule ensures symmetry of cooperation and the second rule
specifies, that whenever a person is known to have a publication, then also the publication has
an author, who is the particular person, and vice versa. This kind of rules complete the
knowledge and frees a knowledge provider to provide the same information at different
places reducing development as well as maintenance efforts.

2.2 The Query Formalism

The query formalism is oriented towards Frame-Logic syntax, that defines the notion of
instances, classes, attributes and values. The generic schema for this is

O

:

C

[

A

->>

V

]

meaning that the object

O

 is an instance of the class

C

 with an attribute

A

 that has a certain
value

V

. At each position in the above scheme variables, constants or arbitrary expressions
can be used. Furthermore because the ontology is part of the knowledge base itself, the
ontology definitions can be used to validate the knowledge base. In the following we will
provide some example queries to illustrate our approach.

If

 we are interested in information

Table 1. Some Ontology Definitions

Concept Hierarchy Attribute Definitions Rules

Object[].

Person :: Object.

Employee :: Person.

AcademicStaff :: Employee.

Researcher :: AcademicStaff.

Publication::Object.

Person[

firstName =>> STRING;

lastName =>> STRING;

eMail =>> STRING;

...

publication =>> Publication].

Employee[

affiliation =>> Organization;

...].

Researcher[

researchInterest =>> ResearchTopic;

memberOf =>> ResearchGroup;

cooperatesWith =>> Researcher].

Publication[

author =>> Person;

title =>> STRING;

year =>> NUMBER;

abstract =>> STRING].

FORALL Person1, Person2

Person1:Researcher

[cooperatesWith ->>

Person2]

<-

Person2:Researcher

[cooperatesWith ->>

Person1].

FORALL Person1,

Publication1

Publication1:Publication

[author ->> Person1]

<->

Person1:Person

[publication ->>

Publication1].

- 5 -

about researchers with certain properties. e.g. we want to know the homepage, the last name
and the email address of all researchers with first name

Richard, we

achieve this with the
following query:

FORALL

Obj

,

LN

, EM <-
Obj:Researcher[firstName->>Richard;lastName->>LN;email->>EM].

In our example scenario the Ontobroker gives the following answer (actually, there is only one
researcher with first name Richard in the knowledge base.

Obj = http://www.iiia.csic.es/~richard/index.html

LN = Benjamins

EM = mailto:richard@iiia.csic.es

Another example is:

FORALL Obj,CP <-
Obj:Researcher[lastName ->>“Motta“ ;cooperatesWith->>CP].

The interesting point with this query is, that the ontology contains a rule specifying the
symmetry of cooperating. That means, even if the researcher with last name Motta has not
specified a cooperation with another researcher, Ontobroker would derive such a cooperation,
if a second researcher has specified the cooperation. Another possibility is to query the
knowledge base for information about the ontology itself, e.g. the query

FORALL Att, T <- Researcher[Att=>>T]

asks for all attributes of the class Researcher and their associated classes.

2.3 The Provider Side: Annotating Web-Pages with Ontological Information

Mainly knowledge contained in the WWW is formulated using the Hyper-Text Mark-up
Language (HTML). Therefore, we developed an extension to the HTML syntax to enable
ontological annotation of web pages.2 We will only provide the general idea (see [Fensel et
al., 1998] for more details). An extract from an example page is given in Figure 1.

The idea behind our approach is to take HTML as a starting point and to add only few
ontologically relevant tags. By these few changes to the original HTML pages the knowledge
contained in the page is annotated and made accessible as facts to the Ontobroker. This
approach allows the knowledge providers to annotate their web pages gradually, i.e. they do
not have to completely formalize the knowledge contained therein. Further the pages remain
readable by standard browsers like Netscape Navigator or MS Explorer. Thus there is no need
to keep several different sources up-to-date and consistent reducing development as well as
maintenance efforts considerable. All factual ontological information is contained in the
HTML page itself.

We provide three different epistemological primitives to annotate ontological information in
web documents:

2. We did not make use of the extensible Markup Language (XML) [XML] to define our annotation language as an extension
of HTML because many existing HTML pages are not well-formed XML documents, i.e., the document type HTML defined
in XML is more restrictive than HTML as it is widely used now. Compare also section 4.

- 6 -

1) An object identified by an URL (Uniform Resource Locator) can be defined as an
instance of a certain class.

2) The value of an object‘s attribute can be set.

3) A relationship between two or more objects may be established.

All three kinds are expressed by using an extended version of a frequent HTML tag, i.e. the
anchor tag:

<a ...> ...

Typically a provider of information first defines an object. This is done by stating which class
of the ontology it is an instance of. For example, if Richard Benjamins would like to define
himself as an object, he would say he is an instance-of the class Researcher. To express this
in our HTML extension he would use the following line on his home page.

This line states that the object denoted by the handle ‘http://www.iiia.csic.es/~richard‘ is an
instance of class Researcher. Actually the handle given above is the URL of Richard
Benjamins home page, thus, from now on he as a researcher is denoted by the URL of his
home page.

Each class is possibly associated with a set of attributes. Each instance of a class can define
values for these attributes. To define an attribute value on a web page the knowledge provider
has to name the object he wants to define the value for, he has to name the attribute and
associate it with a value. For example, the ontology contains an attribute email for each object
of class Researcher. If Richard Benjamins would like to provide his email address, he would
use this line on his home page.

<html>
<head><TITLE> Richard Benjamins </TITLE>

</head>

<H1>

<a onto=“page[photo=href]“
HREF=“http://www.iiia.csic.es/~richard/pictures/richard.gif“ >

Richard
Benjamins
</h1> <p>

Artificial Intelligence Research Institute (IIIA) -
CSIC, Barcelona, Spain

and

Dept. of Social Science Informatics (SWI)
-
UvA,
Amsterdam, the Netherlands

<HR>

Fig. 1 An example HTML page.

- 7 -

This line states that the object denoted by the handle ‘http://www.iiia.csic.es/~richard‘ has the
value ‘mailto:richard@iiia.csic.es‘ for the attribute email.

Several objects and attributes can be defined on a single web page, and several objects can be
related to each other explicitly. Given the name of a relation REL and the object handles Obj1
to Objn this definition looks like this:

 ...

The listed examples look rather clumsy, esp. because of their long object handles and the
redundancy, due to writing information twice, once for the browser and second for
Ontobroker. So the annotation language provides some means to ease annotating web pages
and get rid of a big portion of the clumsiness and redundancy (cf. [Fensel et al., 1998]). For
example, to define on a web page that an object is an instance of a class, e.g. that Richard
Benjamins is a Researcher, one can use the following kind of annotation:

The following annotation defines the affiliation attribute of the object denoted by the URL of
the current page and takes the value from the anchor-tag‘s href-attribute.

IIIA - Artificial Intelligence Institute.

Finally, the annotation

Richard

defines Richard (contained between <a ...> and) as the value of the attribute firstName of
the object which is denoted by page. Through this convention the annotation of web pages
becomes more concise and redundancy can be nearly avoided.

3 The Tool Set of Ontobroker

Ontobroker mediates between clients and knowledge providers with three tools. The query
interface is used by clients to formulate queries and to receive answers. The inference engine
derives answers based on the ontology and the facts that have been found at the web. The
webcrawler (called Ontocrawler) collects annotations from the web and translates them into
facts that can be processed by the inference engine.

3.1 The Query Interface

Ontobroker provides two query interfaces: a text based interface for expert users and a
graphical interface for naive users. The text based interface allows the direct formulation of
queries in the above described query language. However, the direct formulation of the query
string has two drawbacks: (1) The user has to know the syntax of the query language and (2)
the user also has to know the ontology, when formulating a query.

To remedy the first drawback, the structure of the query language can be exploited: the

- 8 -

general structure of an elementary expression is:

Object:Class[Attribute->>Value]

This provides the guidance when designing a query interface. Each part of the above depicted
elementary expression can be related to an entry fields. Possible values of the entry field can
then be selected from a menu (e.g. variable names). This frees users from typing and
understanding logical expressions as much as possible. The simple expressions can then be
combined by logical connectives as shown in Figure 2 which asks for the researchers with last
name Benjamins and their email addresses.

This does not resolve the second drawback: one also need support for selecting classes and
attributes from the ontology. To allow the selection of classes, the ontology has to be
presented in an appropriate manner. Usually a ontology can be represented as a large
hierarchy of concepts. Concerning the handling of this hierarchy a user has at least two
requirements: first he wants to scan the vicinity of a certain class, looking for classes better
suitable to formulate a certain query. Second a user needs an overview over the whole
hierarchy to allow an easy and quick navigation from one class in the hierarchy to another
class. These requirements are met by a presentation scheme based on Hyperbolic Geometry
[Lamping et al., 1995]: classes in the center are depicted with a large circle, whereas classes
at the border of the surrounding circle are only marked with a small circle (see Figure 3). The
visualisation techniques allows an quick navigation to classes far away from the center as
well as the close examination of classes and their vicinity. When a user selects a class from
the hyperbolic ontology view, the class name appears in the class field, and the user can select
one of the attributes from the attribute choice menu, because the preselected class determines
the possible attributes. The interface is programmed in Java as an applet, thus it is executable
on all major platforms where a Web-browser with Java support exists.3 Based on these
interfaces Ontobroker derives automatically the query in textual form and present the result of
the query.

3. The hyperbolic ontology view is based on a Java-profiler written by Vladimir Bulatov and available on http://
www.physics.orst.edu/~bulatov/HyperProf/index.html.

Fig. 2. The advanced query interface.

- 9 -

3.2 The Inference Engine of the Ontobroker

The inference engine of Ontobroker has two key components: the translation (and
retranslation) process from the rich modelling language to a restricted one, and the evaluation
of expressions in the restricted language. In the following, we describe both processes.

The input of the inference engine consists of the ontology, collected facts from the web and
queries formulated in Frame-Logic. We have decided against direct evaluation of expressions
of the rich modelling language. Due to the conceptual richness of the language evaluation
techniques would be rather complicated and difficult to build. There are techniques known
for evaluating Frame-Logic, see [Frohn et al, 1997], but they do not support the whole
language and semantics we need (e.g. full first order rule bodies). Furthermore a direct
evaluation approach would be very inflexible, a small change in the input language would
result in changes of the whole system. The situation is very similar to compiler construction:
usually a language is not compiled directly to a target language, but through several
intermediate states and languages. This helps bridging the conceptual gap between the
language and the target language. We adopted that approach: the input is processed and
translated in several stages: The first step (besides the necessary parser) is the Frame-Logic-
translator, that translates the Frame-Logic expressions to first-order logic expressions. Table
2 gives an idea of how this translation is performed, but it does not catch the complete
translation: e.g. more complex Frame-logic expressions like

O[A->>V:C[AA->>VV]]

Fig. 3. The hyperbolic ontology view.

- 10 -

can also be translated. The output of this stage are generalized logic programs. After this
translation the output has to be translated further to normal logic programs via a Lloyd-Topor
transformation [Lloyd & Topor, 1984].

As a result we obtain a normal logic program. Standard techniques from deductive databases
are applicable to implement the last stage: the bottom-up fixpoint evaluation procedure.
Because we allow negation in the clause body we have to carefully select an appropriate
semantics and evaluation procedure. If the resulting program is stratified, we use simple
stratified semantics and evaluate it with a technique called dynamic filtering (cf. [Kifer &
Lozinskii, 1986], [Angele, 1993]). But the translation of Frame Logic usually results in a
logic program with only a limited number of predicates, so the resulting program is often not
stratified. To deal with non stratified negation we have adopted the well-founded model
semantics [Van Gelder et al., 1991] and compute this semantics with dynamic filtering and
the alternating fixpoint approach [Van Gelder, 1993].

3.3 The Ontocrawler

Ontocrawler is a simple cgi-script that periodically caches the annotated pages from the web.
For finding the pages it consults the index pages of each provider. For this purpose, the
providers need to register.

4 Conclusions and Related Work

Up to now, the inference capabilities of the World Wide Web are very limited. In essence,
they are restricted to keyword-based search facilities which are offered by the various Web
search engines. In the paper we introduced methods and tools for enhancing the Web to a
knowledge-based WWW. We proposed ontologies as a means to annotate WWW documents
with semantic information and used the metaphor of a newsgroup to define a collection of
people which share a common view on a subject and thus a common ontology. To define
various subnets in the WWW different ontologies can be used to annotate Web documents.
We use Frame logic for defining ontologies and an appropriate subset for specifying
(semantic) queries to the Web. An annotation language for attaching ontological information
with Web documents is offered as well avoiding redundancy as far as possible. Our

Table 2. Principle of Translating Frame Logic to Predicate Logic

Frame Logic Meaning Predicate Logic

C1 :: C2 class C1 is a subclass of C2 sub(C1, C2)

O : C O is an instance of class C isa(O,C)

C1[A=>>C2] for the instances of C1 an attribute A is defined,
the value must be an instance of C2

att_type(C1,A,C2)

O[A->>V] the instance O has an attribute A, the value is V att_val(O,A,V)

O1 <: O2 O1 is a part of O2 part_of(O1,O2)

- 11 -

Ontobroker tool includes a query interface for formulating queries, an inference engine for
deriving answers to the posed queries, and a web crawler for searching through the various
subnets and translating the ontological annotations into facts for the inference engine.
Ontobroker is the basis for realizing the Knowledge Acquisition Initiative (KA)2 [Benjamins
& Fensel, 1998] and for developing a knowledge management system for industrial designers
concerning ergonomic questions. In the latter project, the same knowledge may be used by
humans and for inferences of the system. This twofold use of the same piece of knowledge is
enabled through the tight coupling of semiformal and formal knowledge in Ontobroker.

One can situate Ontobroker in the general context of approaches that support the integration of
distributed and heterogeneous information sources like e.g. Infomaster [Genesereth et al.,
1997], Information Manifold [Levy et al., 1996], and SIMS [Arens et al., 1993]. Instead of
assuming a global data scheme such systems have a mediator [Wiederhold, 1992] that
translates user queries into sub-queries on the different information sources and integrates the
sub-answers. Wrappers and content descriptions of information sources provide the
connection of an information source to the mediator. However, these approaches assume that
the information sources have a stable syntactical structure that a wrapper can use to extract
semantic informations. Given the heterogeneity of any large collection of web pages this
assumptions seems hardly be fulfilled in our application area. Therefore, we delegated the
semantical enrichment of the information sources to the provider and make no assumptions
about the format of the information source and its changes. However, wrapper and
annotation-based approaches are complementary. [Ashish & Knoblock, 1997] distinguish
three types of information sources at the web: multiple-instance sources, single-instance
sources, and loosely-structured sources. The former two types have a stable format that can
be used by a wrapper to extract information (cf. [Ashish & Knoblock, 1997]). The latter type
covers home pages of persons etc. where the layout is neither standard nor stable over time.
Writing wrappers for this type of sources would be a time-consuming activity which is soon
out of date, too. However, writing wrappers for stable information sources that automatically
generate factual knowledge processable by Ontobroker enables to broaden our approach to
structured information sources that do not make use of our annotation language.

The approach closed to ours is SHOE [Luke et al., 1997] that introduced the idea of using
ontologies to annotate information in the WWW. HTML pages are annotated via ontologies
to support information retrieval based on semantic information. However, there exist main
differences in the underlying philosophy: In SHOE providers of information can introduce
arbitrary extensions to a given ontology. Furthermore, no central provider index is defined.
As a consequence, when specifying a query the client may not know all the ontological terms
which have been used to annotate the HTML pages and the web crawler may miss knowledge
fragments because it cannot parse the entire WWW. Thus the answer may miss important
information. and the web crawler may miss knowledge portions because it cannot parse the
entire WWW.

In contrast, Ontobroker relies on the notion of an ontogroup [Fensel et al., 1997] defining a
group of Web users that agree on an ontology for a given subject. Therefore, both the
informations providers and the clients have complete knowledge of the available ontological
terms. In addition, the provider index of the Ontocrawler provides a complete collection of all
annotated HTML pages. Thus, Ontobroker can deliver complete answers to the posed queries.
The philosophy of Ontobroker is also tailored to homogeneous intranet applications, e.g. in the

- 12 -

context of knowledge management within an enterprise.

SHOE and Ontobroker also differ with respect to their inferencing capabilities. SHOE uses
description logic as its basic formalism and currently offers rather limited inferencing
capabilities. Ontobroker relies on Frame-Logic and supports rather complex inferencing for
query answering (see [Kandzia & Schlepphorst, 1997], [Fensel et al., to appear] for
comparisons of both representation and reasoning paradigms).

Finally, we decided to design our annotation language as a small extension of HTML because
most documents on the web use this formalism. However, there are some new trends which
we have to be aware. The W3C the international World Wide Web Consortium for
developing and promoting standards for the web currently develops the resource
description framework (RDF) [RDF]. This format can be used to add meta information to
documents, i.e. to include semantical information about documents. This approach shows a
number of similarities with Ontobroker, however there are profound differences. The
annotation information is tightly integrated into HTML in Ontobroker. This reduces
redundancy of information on a web page to a minimum. Meta data defined in RDF have to
be provided on an extra page or en-block inside of a web-page. Therefore, elements from a
web page like text fragments or links cannot directly be annotated with semantics. These
elements must be repeated for enriching them with meta-information. This design decision
may cause significant problems for maintaining web documents due to the redundancy of the
information. However, when a final version of RDF will be recommended by the W3C it will
be an easy task to implement a wrapper that automatically generates RDF definitions from
annotation in Ontobroker. In that sense the annotation language of Ontobroker can be seen as a
maintenance tool for RDF description because it allows the direct annotations of elements of
a web page and their separate content description will be generated automatically. Using
automatically generated RDF descriptions makes the annotated knowledge available to
agents and brokering services that searches the web for information.

Acknowledgements. We thank Richard Benjamins and Rainer Perkuhn for their
helpful comments and Asun Gomez-Perez for providing the Ontolingua translation.
Special thanks to Jürgen Angele who developed the inference engine for L-KARL
that is used by Ontobroker.

References

[Angele, 1993] J. Angele: Operationalisierung des Models der Expertise mit KARL, Ph.D. thesis,
Infix, St. Augustin, 1993.

[Arens et al., 1993] Y. Arens, C. Y. Chee, C.-N. Hsu and C. Knoblock: Retrieving and Integrating
Data From Multiple Information Sources, International Journal of Intelligent Cooperative
Information Systems, 2(2):127 158, 1993

[Ashish & Knoblock, 1997] N. Ashish and C. Knoblock: Semi-automatic Wrapper Generation for
Internet Information Sources. In Proceedings of the IFCIS Conference on Cooperative
Information Systems (CoopIS), Charlston, South Carolina, 1997.

[Benjamins & Fensel, 1998] R. Benjamins and D. Fensel: Community is Knowledge! in (KA)2. In
Proceedings of the 11th Banff Knowledge Acquisition for Knowledge-Based System Workshop
(KAW´98), Banff, Canada, April 18-23, 1998.

- 13 -

[Farquhar et al., 1997] A. Farquhar, R. Fikes, and J. Rice: The Ontolingua Server: a Tool for
Collaborative Ontology Construction, International Journal of Human-Computer Studies
(IJHCS), 46(6):707 728, 1997.

[Fensel et al., 1997] D. Fensel, M. Erdmann, and R. Studer: Ontology Groups: Semantically Enriched
Subnets of the WWW. In Proceedings of the 1st International Workshop Intelligent Information
Integration during the 21st German Annual Conference on Artificial Intelligence, Freiburg,
Germany, September 9-12, 1997.

[Fensel et al., 1998] D. Fensel, S. Decker, M. Erdmann, and R. Studer: Ontobroker: How to make the
WWW Intelligent, research report, Institute AIFB, 1998. http://www.aifb.uni-karlsruhe.de/WBS/
broker.

[Fensel et al., to appear] D. Fensel, M.-C. Rousset, and S. Decker: Workshop on Comparing
Description and Frame Logics, to appear in Data and Knowledge Engineering.

[Fensel et al., submitted] D. Fensel, S. Decker, M. Erdmann, and R. Studer: Ontology-based Query
and Inference Service for the WWW, submitted to IEEE Expert, Special Issue on the Use of
Ontologies, available via http://www.aifb.uni-karlsruhe.de/WBS/broker.

[Fridman Noy & Hafner, 1997] N. Fridman Noy and C. D. Hafner: The State of the Art in Ontology
Design, AI Magazine, 18(3):53—74, 1997.

[Frohn et al, 1997] J. Frohn, R. Himmeröder, P.-Th. Kandzia, G. Lausen, and C. Schlepphorst:
FLORID - A Prototype for F-Logic, In: Proceedings of the International Conference on Data
Engineering (ICDE, Exhibition Program), Birmingham, 1997.

[Genesereth et al., 1997] M. R. Genesereth, A. M. Keller, and O. M. Duschka: Infomaster: An
Information Integration System. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, Tucson, AZ, May 1997.

[Gruber, 1993] T. R. Gruber: A Translation Approach to Portable Ontology Specifications,
Knowledge Acquisition, 5(2), 1993.

[Kandzia & Schlepphorst, 1997] P.-T. Kandzia and C. Schlepphorst: DOOD and DL - Do We Need an
Integration. In Proceedings of the 4th KRDB Workshop, Athens, Greece, August 30, 1997.

[Kifer et al., 1995] M. Kifer, G. Lausen, and J. Wu: Logical Foundations of Object-Oriented and
Frame-Based Languages, Journal of the ACM, 42, 1995.

[Kifer & Lozinskii, 1986] M. Kifer, E. Lozinskii: A Framework for an Efficient Implementation of
Deductive Databases. In Proceedings of the 6th Advanced Database Symposium, Tokyo, 1986.

[Lamping et al., 1995] L. Lamping, R. Rao, and Peter Pirolli.: A Focus+Context Technique Based on
Hyperbolic Geometry for Visualizing Large Hierarchies. In Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems, 1995

[Levy et al., 1996] A. Y. Levy, A. Rajaraman, and J. J. Ordille: Query-Answering Algorithms for
Information Agents. In Proceedings of the AAAI-96, Portland, Oregon, August 4-8, 1996.

[Lloyd & Topor, 1984] J. W. Lloyd and R. W: Topor: Making Prolog more Expressive, Journal of
Logic Programming, 3:225- 240, 1984.

[Luke et al., 1997] S. Luke, L. Spector, D. Rager, and J. Hendler: Ontology-based Web Agents. In
Proceedings of First International Conference on Autonomous Agents, 1997.

[Ontobroker] http://www.aifb.uni-karlsruhe.de/WBS/broker

[RDF] Resource Description Framework, http://www.w3.org/Metadata/RDF/Group/WD-rdf-syntax

[Skuce,1997] D. Skuce: Hybrid KM: Integrating Documents, Knowledge Bases, Databases, and the
Web. In: Proceedings of AAAI Spring Symposium on Artificial Intelligence in Knowledge
Management, 1997. URL: http://ksi.cpsc.ucalgary.ca/AIKM97/AIKM97Proc.html

[Van Gelder, 1993] A. Van Gelder: The Alternating Fixpoint of Logic Programs with Negation,

- 14 -

Journal of Computer and System Sciences, 47(1):185 221, 1993.

[Van Gelder et al., 1991] A. Van Gelder, K. Ross, J. S. Schlipf: The Well-Founded Semantics for
General Logic Programs, Journal of the ACM, 38(3): 620 650, 1991.

[Wiederhold, 1992] G. Wiederhold: Mediators in the Architecture of Future Information Systems,
IEEE Computer, 25(3):38 49, 1992.

[XML] Extensible Markup Language, http://www.w3.org/TR/PR-xml-971208.

