
Using many�sorted natural
semantics to specify and
generate semantic analysis

Sabine Glesner and Wolf Zimmermann
Institut f�ur Programmstrukturen und Datenorganisation
Universit�at Karlsruhe� ����� Karlsruhe� Germany

Tel	
 �� � ��� ��� f��j���g� Fax
 �� � ��� �����
E�mail
fglesnerjzimmerg�ipd	info	uni�karlsruhe	de

Chapman � Hall� 	

�

Abstract
We present an extension of natural semantics which can be used to describe the
static semantics of imperative and object�oriented programming languages
Furthermore we show that the semantic analysis can be generated from these
descriptions As a side e�ect� we get a precise de�nition of which properties
of a programming language are statically decidable and which properties can
only be checked dynamically during run�time As an example� we show how
a subset of the Java programming language incorporating the full notion of
inheritance can be speci�ed within our mechanism

Keywords
Natural Semantics� Semantic Analysis� Speci�cation� Generator� Imperative
and Object�Oriented Programming Languages

� INTRODUCTION

Natural semantics �Kah��� has been established as a declarative framework
to specify the static and dynamic semantics of functional programming lan�
guages Its applicability for imperative languages with simple block structure
has been shown �eg the speci�cations of simple while�languages� The rea�
son for the wide�spread use of natural semantics lies in its declarative self�
contained style which has been proved useful especially for the description of
functional languages For these languages� the implementation of the analysis
for the static properties is simply type inference Yet� as far as to the authors�
knowledge� no speci�cations of real imperative and object�oriented languages
exist
In this paper� we investigate which extensions of natural semantics are nec�

essary to apply the formalism to imperative and object�oriented programming
languages We are particularly interested in the description of the context�

c�IFIP ����� Published by Chapman � Hall

� Using many�sorted natural semantics to specify and generate semantic analysis

sensitive properties of these programming languages Moreover� we want that
the analysis of the described static semantics can be generated from the spec�
i�cation
Compared to the rather complicated scope rules of imperative and object�

oriented programming languages� their type systems are simple In contrast�
functional programming languages have fairly simple scope rules but rich type
systems An inference style speci�cation is well�suited to describe the prop�
erties of functional languages Moreover� it has several advantages since it
abstracts completely from particular traversals of the abstract syntax tree
Secondly� a notion of consistency and completeness can be de�ned formally
Our approach extends the framework of natural semantics so that many�

sorted inference rules can be used to specify the static semantics of imperative
and object�oriented programming languages In particular� we show how this
extension can be used to de�ne structured context information It is also
possible to de�ne a variety of semantic information for each point in a pro�
gram We demonstrate the applicability for imperative and object�oriented
languages by showing how a small example language incorporating the full
Java type system �without overloading� can be speci�ed Furthermore� we
de�ne static type safety Finally� we show that the semantic analysis can be
generated from many�sorted natural semantics speci�cations
This paper is organized as follows� Section � introduces natural semantics

and its many�sorted extension Section � introduces an algorithm to perform
semantic analysis using natural semantics Section � compares many�sorted
natural semantics with related approaches The appendix gives an example
speci�cation for a Java subset

� MANY�SORTED NATURAL SEMANTICS

Natural semantics is typically used as a framework to specify the static and
dynamic semantics of functional programming languages by means of infer�
ence rules In particular� the static semantics description consists usually of
type inference rules In this section� we �rst introduce natural semantics ac�
cording to �Kah��� and sketch its use in the description of the static semantics
of functional languages Then we proceed by extending natural semantics with
sort annotations so to be able to describe the static semantics of imperative
and object�oriented languages

��� Natural semantics

A natural semantics speci�cation consists of a set of axioms and inference
rules An inference rule has the form

�� � s� � t�� � � � ��n � sn � tn
� � f�s�� � � � � sn� � t

if �

MANY�SORTED NATURAL SEMANTICS �

�i � si � ti is a judgement The informal meaning is that under the assumptions
�i� it can be concluded that the term si has type ti Here si is a term which
may contain variables The assumptions are a set of sequences of pairs xj � ttj
where xj is a variable and ttj is a type In the case of programming languages�
the assumptions are called context xj � ttj � � means that xj is assumed to
have type ttj in the assumptions �or context� resp� � The judgements in the
nominator of the rule are called premises� the judgement in the denominator of
the rule is the consequence An axiom is a rule without premises An inference
rule is applicable only if the condition � is satis�ed Such a condition is a
�rst�order formula Only those variables may appear in the formula of a rule
that are contained in the judgements of the rule
Example� The following natural semantics rules de�ne the simple typed lambda
calculus �see eg �Mit
����

	Ax
 � � fx � �g � x � � 	�I

��fx��g�t��
���x� �t����

	�E
 ��t���� ���t���
������t t����

	CI
 ��t��
�����t��

For showing that a ��term s is well�typed� it is su�cient to prove that there
is a type t such that � � s � t using the above inference rules The proof is
analogous to Gentzen�s natural deduction �Gen�
�
The following picture shows the proof tree for � � �x� ��y��� ��yx� � � �

��� � �� � �� and the abstract syntax tree for the ��term

fx � �� y � � � �g � x � �

	Ax

fx � �� y � � � �g � y � � � �

	Ax

��
��

��

HH
HH

HH
fx � �� y � � � �g � 	yx
 � �

	�E

fx � �g � �y��� �	yx
 � 	� � �
� �

	�I

� �x���y��� �	yx
 � � � 		� � �
� �

	�I

Proof Tree Syntax Tree

x y

�
�
�

�
�
�

	� �

�y

�x

The proof structure is determined by the structure of the ��term Thus� ��
terms can be considered as proofs of their types �

This analogy can be generalized straightforwardly to functional languages
and simple imperative �while�� languages� programs are proofs of their types

 Using many�sorted natural semantics to specify and generate semantic analysis

��� Many�sorted extension

Imperative and object�oriented languages cannot be speci�ed directly by nat�
ural semantics for two reasons� First� due to the scope nesting in imperative
programs and the subtype relation in object�oriented programming languages�
the assumption needs to be more structured The kind of context information
often di�ers in di�erent parts of the program Secondly� it is necessary to de�
rive several semantic information for a program or fragments of it di�erent
from types
Our goal is to generalize natural semantics such that the above restric�

tions do not apply and the �programs as proofs��analogy is kept The basic
di�erence to natural semantics is that judgements are generalized such that
structured and also di�erently structured contexts and di�erent kinds of se�
mantic information are expressible A sort de�nes the structure of the contexts
and the kind of semantic information t � Sort denotes that the semantic in�
formation or context t has the sort Sort A judgement has the form�

�� � Sort�� � � � ��k � Sortk � s � t� � Sortk��� � � � � tn � Sortk�n

Sorts are de�ned by extended context�free grammars �ie using additionally
sets and lists on the right�hand side of productions� The meaning of terminal
symbols used to de�ne a new sort can be speci�ed by axioms and inference
rules as well The only di�erence to the inference rules above is that these
rules are applicable under each assumption Therefore� we omit the context
information here and call these inference rules general inference rules The
other kind of inference rules containing speci�c context information are called
special inference rules We associate a set of special inference rules with each
production of the abstract syntax All special inference rules must use only
symbols of the right hand side of their production in its premises and the
symbol on the left hand side in their consequence
Example� Consider the speci�cation of Mini�Java de�ned in the appendix
There is a sort GenInfo that distinguishes correct programs �correct� from
incorrect ones wrt the static semantics The sort Subtyping is a directed
graph� expressed by the relation v The sort Cl Env contains a function
Thru The appendix contains the inference rules for v and Thru The relation
v is de�ned by �� the function Thru by the equality � �

The informal meaning of a judgement is generalized in the straightforward
way� Assume that the context information speci�ed in the assumption of the
judgement is valid Then we can conclude that the syntactic construct �ie
the program fragment� has the semantic information of the speci�ed sorts
A proof in the many�sorted natural semantics is de�ned as in natural se�

mantics with the addition that the sorts have to be respected Again� for
the special inference rules� the structure of the proof is the same as the ab�

MANY�SORTED NATURAL SEMANTICS �

stract syntax tree for the program However� the proof tree is larger if general
inference rules are applied

��� De�nition of language properties

There are three important properties of languages and language speci�cations
that we de�ne in this section First� we state a de�nition for consistency of
speci�cations Then we de�ne under which circumstances a speci�cation is
called well�de�ned Thirdly� we give a de�nition for statical checkability wrt a
natural semantics speci�cation Thereby� we distinguish between checkability
of a program and checkability of a whole language Furthermore� we show
how to retrieve the necessary run�time checks whenever a single program or
a programming language is not statically checkable
Whenever di�erent rules can be applied which do not infer the same judge�

ment� di�erent information for the particular program point can be derived
In this case� the speci�cation is not consistent This leads to the following def�
inition� A speci�cation is consistent i� there exists no program whose abstract
syntax tree contains a node for which more than one rule is applicable
With the notion of well�de�nedness� we make sure that everything that is

supposed to be statically computable can indeed be determined statically from
the speci�cation� A speci�cation is well�de�ned i� there is a special inference
rule for each production and the judgements for each nonterminal have the
same sorting The �rst requirement makes sure that� in principle� a proof exists
for each program The second requirement means that each special inference
rule describing the same production has a context of the same sort and that the
sorts of the speci�ed semantic information are equal Speaking in the language
of attribute grammars� with the second requirement we guarantee that each
nonterminal symbol has been assigned the same inherited and synthesized
attributes by each judgement describing it
We can think of semantic analysis as proof checking and proof completion

The structure of the proof tree is partly known a priori because it contains the
structure of the abstract syntax tree When checking the static semantics of
a program� we need to �nd a rule cover for the abstract syntax tree such that
the semantic information of the nodes can be computed and such that the
conditions of the applied rules can be veri�ed When verifying the conditions
and computing the semantic information� it might be necessary to extend
the proof tree beyond the abstract syntax tree because general inference rules
need to be applied Thus� semantic analysis means proof checking �Does there
exist a rule cover for the abstract syntax tree�� and proof completion �How
can the speci�ed semantic information be computed� And are the conditions
true��
In a statically checkable language� we require that� for each program� all

conditions can be checked at compile�time This is not true in general It

� Using many�sorted natural semantics to specify and generate semantic analysis

might be the case that for some programs some conditions are neither true
nor false but just satis�able These conditions remain as run�time checks
Thus� a program is statically checkable i� a rule cover �ie� for each node
there is an applicable rule� for its abstract syntax tree exists� the context and
semantic information of all of its nodes can be computed� and all conditions
stemming from inference rule applications are valid A programming language
is statically checkable i� all programs contained in it are statically checkable
The dynamic checks necessary to perform at run�time are exactly those

conditions in the abstract syntax proof tree which are satis�able but not valid
at compile�time

� GENERATING SEMANTIC ANALYSIS

In Section �� we demonstrated already the correspondence between proofs of
static correctness and programs In particular� we showed that there is an
embedding of the abstract syntax tree into the proof tree if general inference
rules need to be applied The basic idea of a generator is therefore �rst to
construct the proof tree corresponding to the abstract syntax tree of the
program and then computing the necessary semantic information and checking
the conditions� both by applying general inference rules For the following
discussion� we consider only consistent speci�cations
After checking the conditions� the following three situations might happen

for any applied inference rule r� First� the condition of r is true Secondly� the
condition of r is false Thirdly� the condition of r is satis�able� but not true
For the �rst case� everything is �ne For the second case� if there is another
applicable inference rule� then there might be another correctness proof For
the third case� the speci�cation is not statically checkable These conditions
must be checked at runtime
For simplicity� we assume that there is a sort GenInfo � fcorrectg and

static semantic correctness is equivalent to proving � prog � correct � GenInfo
The basis is a recursive algorithm prove�� � t � seminfos� which constructs

a proof tree according to the abstract syntax tree of the program fragment t
Algorithm prove requires the de�nition of judgement uni�cation and substi�
tution The uni�cations and substitutions are many�sorted The variables of
the judgements which need to be considered are in contexts on the left of �
and the semantic information on the right of � For simplicity� we assume that
there is a total order on the sorts� and the contexts and semantic information
in the judgements are ordered according to their sorts �usually� these are not
sequences but sets� The most general uni�er of two judgments � � t � seminfo

and �� � t � seminfo
� is a substitution � respecting the sorting of the terms

�ie� variables are replaced with terms of the same sort� with the following
properties�

�i� �� � ���

GENERATING SEMANTIC ANALYSIS �

�ii� �seminfo � �seminfo
�

�iii� For every substitution �� respecting the sorting and satisfying �i� and
�ii�� there is a substition � respecting the sorting such that �� � � � �

In order to prove a judgment � � t � seminfos� it has to be uni�ed with a
consequence �or axiom� of a special inference rule These may contain func�
tion symbols �eg Thru� Therefore� an inference rule or axiom may not be
applicable although it should be applied To solve this problem� a uni�cation
�Algorithm unify� returns a substitution and a set of equalities to be proved
in order to unify the consequence of the selected inference rule with the goal
to be proved
Algorithm check checks whether a condition is true This algorithm extends

the abstract syntax tree with the proof tree for �� and the equalities to
be proved using general inference rules We assume for simplicity that all
conditions and functions can be computed when the inference rule is applied
Algorithm prove	� � t � seminfos

	�
 suppose the abstract syntax tree t is constructed according X� ��� X� � � � Xn�
	�
 while there is an unused special inference rule

	�

�� � Xi� � sem�� � � � ��k � Xik � semk

�� � X� � sem�
if � at the root of t

� � Xi� � � � � �Xik � fX�� � � � �Xng
	
 	��Eq
 �� unify	�� � X� � sem��� � t � seminfos

	�
 do
	�
 mark this inference rule as used at the root of t
	�
 let ti be the subtree of t with root Xi� i � �� � � � � n
	�
 for j � �� � � � � k do
	�
 prove�	�j � tij � semj

	��
 � �� �� � � where �� is the substitution associated with the root of tij �
	��
 end�
	��
 if none of these proofs failed� check	�Eq
� and check	��

	��
 then
	�
 associate � with the root of t�
	��
 exit while loop successfully�
	��
 else for j � �� � � � � k do
	��
 unmark all special inference rules used in tj
	��
 end�
	��
 end�
	��
 if the while loop is not exited successfully then fail�

Basically� Algorithm prove is a backtracking algorithm which tries to apply
all possible special inference rules After applying a special inference rule
�line ����� the judgements in the premises have to be proved These are proved
recursively according to the production rule �line �����		�� Observe that such
a proof may substitute more variables �line �	��� If all proofs are successful�
then the condition of the inference rule and the equations are checked �line
�	��� The substitution associated with the root of t instantiates the contexts
and semantic information of the judgement to be proved Thus� Algorithm
prove�� � t � seminfo� constructs a proof of the judgement �� � t � �seminfo

if it successfully terminates This is one part of the correctness

� Using many�sorted natural semantics to specify and generate semantic analysis

Theorem � prove�� � t � seminfo� constructs a proof of the judgement �� �
t � �seminfo i� there exists one� where � is the substitution associated with the
root of t�

Proof� We �rst show by induction that if prove�� � t � seminfo� terminates
successfully� then there is a proof of �� � t � �seminfo Consider the last it�
eration of the while loop By induction hypothesis� this iteration constructs
proofs for the judgements ��j � tij � �seminfoj � j � 	� � � � � k since it is nec�
essary for successful termination that there are proofs of these judgements�
and by line �	�� there is a substitution � such that � � � � �ij where �ij is
the substitution associated with the root of tij Applying the inference rule
chosen in the last iteration leads to the desired proof� since the condition is
also satis�ed by line �	�� and successful termination
Now� suppose Algorithm prove�� � t � seminfo� fails to construct a proof of

�� � t � �seminfo For correctness� it is su�cient and necessary that there is
no proof of � � t � seminfo Suppose there would be a proof and let r be the
last applied inference rule �this is applied at the root of t� Then� there is an
iteration of the while loop where r is considered By induction hypothesis� the
recursive calls in line �����		� cannot fail Thus� the only reason for failure
would be that the condition � is not satis�ed or the equalities Eq cannot be
proved However� then r cannot be the last inference rule applied in the proof
of �� � t � �seminfo �

In general� Algorithm prove is ine�cient and may lead to exponential exe�
cution time However� it seems that there are not many special inference rules
per production �eg� see the Appendix� It is even not necessary to require
that every production has exactly one inference rule to ensure at most O�n�
recursive calls of prove� where n is the number of nodes in the abstract syntax
tree of the program Instead� it is su�cient to require that every �direct or in�
direct� recursive production has exactly one inference rule In this case� when
Algorithm prove backtracks� then it does not backtrack in the recursive calls
of prove which ensures at most O�n� calls of prove The other performance
bottleneck is the proof completion with general inference rules in line �	��
These rules are used to prove equalities on functions and relations on sorts
A practical implementation would avoid the proof completion and implement
these sorts and functions by data structures �eg environments by de�nition
tables� type hierarchies by directed acyclic graphs using adjacency lists�
Algorithm prove assumes that the conditions and equalities can be checked

at the node where an inference rule is applied If this assumption is dropped�
then the condition or equality can be marked as open and associated with
the node If it cannot be proved or disproved� then the check is postponed�
ie moved to the parent of the node After termination of Algorithm prove all
conditions must be true If there remain conditions which are not true but sat�
is�able� these conditions have to be checked at runtime and the speci�cation
cannot be checked statically

RELATED WORK �

� RELATED WORK

Attribute grammars are a well�known speci�cation and generation method
for static semantics �WG��� Each attribute grammar can be transformed
into a many�sorted natural semantics speci�cation The attributes in the at�
tribute grammar correspond to the sorts in the judgements of a many�sorted
natural semantics speci�cation The attribute values correspond with the se�
mantic information in the judgements Each inherited attribute becomes part
of the context information while synthesized attributes are mapped to pieces
of semantic information Conditions of the attribute rules are transformed
directly into conditions of the corresponding special inference rules Func�
tions on attributes are transformed into general inference rules The inverse
transformation� natural semantics into attribute grammars� is discussed in
�Att��� AP
�� GZ
�� These works show that this transformation requires
structural conditions on the inference rules Therefore� many�sorted natural
semantics speci�cations are at least as powerful as attribute grammars
TYPOL is a speci�cation language for common �one�sorted� natural se�

mantics� implemented in the CENTAUR system �BCD���� Des��� The CEN�
TAUR system searches for a proof using a Prolog implementation Our search
algorithm is a generalization of their search algorithm �Pet
�� Pet
�� intro�
duces an alternative approach to implement natural semantics The main goal
is to improve the performance of the CENTAUR system
An alternative approach to specify and generate type analysis in object�

oriented programming languages is type inference by constraint�solving �PS
��
However� the speci�cation mechanism is very restricted and would not su�ce
for the speci�cation of languages like eg Mini�Java and Pascal

� CONCLUSION

We have shown that natural semantics can be extended such that it is applica�
ble for imperative and object�oriented programming languages This extension
is achieved by de�ning a many�sorted version of natural semantics In partic�
ular� this allows us to de�ne structured context information We are also able
to specify di�erent semantic information for each node in a program This ex�
tension allows us to de�ne arbitrary semantic information instead of only type
information as it is the case in functional programming languages and their
speci�cations It turns out that the program is part of the proof of its static
correctness We presented an algorithm that checks whether the program can
be completed to a proof or not
Our speci�cation language is designed such that each speci�cation consists

of three parts� The �rst contains all sort de�nitions that are valid for the
particular speci�cation The second part comprises general inference rules that
de�ne the properties of the introduced new sorts In the third part� we de�ne
the context�sensitive properties of nodes in a program by specifying special

�� Using many�sorted natural semantics to specify and generate semantic analysis

inference rules that are associated with production rules of the underlying
context�free grammar Furthermore� we have identi�ed which properties of a
programming language or a single program are static and which can only be
checked dynamically during run time We showed that many�sorted natural
semantics is at least as expressive as attribute grammars
There remain some open problems with which we want to deal in future

work� The question is how we can recognize which properties in a speci�cation
can be checked statically and which properties we can only check during run
time Up to now we have implemented the semantic analysis as a search
algorithm The question here is how we can cut down the search space to
make the analysis more e�cient One source of ine�ciency is the proof search
arising from the application of general inference rules These specify standard
functions typically used in compilers �eg symbol table� subtype relations�
etc� Therefore replacing the search by an explicit implementation of these
functions would improve the e�ciency of the semantic analysis

Acknowledgments�We thank the anonymous referees for their valuable comments� This
work is partially supported by DFG project Veri�x and by the Graduiertenkolleg Be�
herrschbarkeit komplexer Systeme�

REFERENCES

�AP
�� Isabelle Attali and Didier Parigot Integrating Natural Semantics
and Attribute Grammars� the Minotaur System Technical Re�
port ���
� Institut National de Recherche en Informatique et en
Automatique �INRIA�� September 	

�

�Att��� Isabelle Attali Compiling Typol with Attribute Grammars In
Pierre Deransart� Bernard Lorho� and Jan Maluszynski� edi�
tors� Programming Language Implementation and Logic Pro�
gramming� �st International Workshop PLILP�		� pages ����
���� Orl�eans� France� May 	��	� 	
�� Springer� Lecture Notes
in Computer Science� Vol ���

�BCD���� P Borras� D Cl�ement� Th Despeyroux� J Incerpi� G Kahn�
B Lang� and V Pascual CENTAUR� the system In Pro�
ceedings of the Third Symposium on Software Development En�
vironments
SDE��� ACM Sigsoft �		� Boston� December 	
��
also appears as INRIA research report no ���� Dec 	
��

�Des��� T Despeyroux Typol� a formalism to implement Natural Seman�
tics INRIA research report
�� INRIA� 	
��

�Gen�
� G Gentzen Investigation into Logical Deduction �Thesis 	
���
Reprinted in �The collected papers of Gerhard Gentzen� E Sz�
abo� North�Holland� Amsterdam� 	
�

�GZ
�� Sabine Glesner and Wolf Zimmermann Using Many�Sorted
Inference Rules to Generate Semantic Analysis In Otto

SPECIFICATION OF THE STATIC SEMANTICS OF MINI�JAVA ��

Spaniol� editor� Proceedings des Workshops der Informatik�
Graduiertenkollegs Promotion tut not� Innovationsmotor
Graduiertenkolleg� im Rahmen der GI�Jahrestagung ���� Ver�
lag der Augustinus Buchhandlung �Aachener Beitrge zur Infor�
matik� Band �	�� 	

�

�Kah��� Gilles Kahn Natural Semantics In Franz�Josef Brandenburg�
Guy Vidal�Naquet� and Martin Wirsing� editors� Proceedings of
the �th Annual Symposium on Theoretical Aspects of Computer
Science
STACS�	��� pages ����
� Passau� Germany� February
	
�� Springer� LNCS ���

�Mit
�� John C Mitchell Type Systems for Programming Languages� vol�
ume B of Handbook of Theoretical Computer Science� chapter ��
pages ������� MIT Press Elsevier Science Publishers BV�
	

�

�Pet
�� Mikael Pettersson Compiling Natural Semantics PhD thesis�
Department of Computer and Information Science� Link!oping
University� S���	 �� Link!oping� Sweden� 	

�

�Pet
�� Mikael Pettersson A Compiler for Natural Semantics In Proceed�
ings of the �th International Conference on Compiler Construc�
tion�� CC���� Link!oping� Sweden� April 	

� Springer� Lecture
Notes in Computer Science� Vol 	���

�PS
�� Jens Palsberg and Michael I Schwartzbach Object�Oriented Type
Systems Wiley Professional Computing� 	

�

�WG��� William M Waite and Gerhard Goos Compiler Construction
Springer Verlag� Berlin� New York Inc� 	
��

APPENDIX � SPECIFICATION OF THE STATIC SEMANTICS

OF MINI�JAVA

Mini�Java is a Java subset taking into account inheritance� subclassing� and
polymorphism of Java �overloading is not included� This appendix gives a
de�nition of the static semantics by many�sorted natural semantics First we
show the sorts used in the speci�cation In particular� there are sorts for
subtyping� class environments� overriding of methods� and local de�nitions
The sort Cl Env is partly de�ned by the function Thru which is used to
override class environments by another class environment Furthermore� there
are the prede�ned sorts GenInfo � fcorrectg� sets� lists� and strings which
are lists of characters

Type � String

Types � fTypeg

Subtyping � fv 	Type�Type
g

Cl Env Item � fmeth� attrg � Sig

�� Using many�sorted natural semantics to specify and generate semantic analysis

Cl Env � fCl Env Itemg 	 Thru	Subtyping�Cl Env�Cl Env

Env � fType�Cl Envg

Sig � String�Type�Type 	 String�Type

Overriding � f�	Subtyping�Sig�Sig
g

Local � floc� ret� inpg � String�Type

Locals � fLocalg

For compactness reasons� we introduce the three sorts

Context� �� Types� Subtyping� Env

Context� �� Context� �Type

Context� �� Context� � Locals

The general inference rules de�ne the transitivity of subtyping and overrid�
ing of signatures �determined by the result type�

subtypes � Subtyping� A v B � subtypes � BOOL� B v C � subtypes � BOOL

A v C � subtypes � BOOL

subtypes � Subtyping

A v A � subtypes � BOOL

hid� type� res type�i � Sig� hid� type� res type�i � Sig
subtypes � Subtyping� res type� v res type� � subtypes � Bool

overrides � Overriding

�	subtypes� hid� type� res type�i� hid� type� res type�i
 � overrides � Bool

subtypes � Subtyping� X � Sig

Thru	subtypes�
� X
 �
 � Bool

subtypes � Subtyping� X � Sig

Thru	subtypes�X�

 � X � Bool

subs � Subtyping� Intf � Sig� Intf� � Sig
Cl Env � Cl Env� X � Cl Env

� � 	subs� Intf� Intf�
 � Bool

Thru	subs�Cl Env 	 fIntfg� X 	 fIntf �g
 � Thru	subs�Cl Env 	 fIntfg� X
 � Bool

if �Intf�� � Cl Env � � � 	subs� Intf��� Intf�

subs � Subtyping� Intf � Sig� Intf� � Sig�
Cl Env � Cl Env� X � Cl Env

�	subs� Intf� Intf�
 � Bool

Thru	subs�Cl Env 	 fIntfg�X 	 fIntf�g
 � Thru	subs�Cl Env�X
 � Bool

All other inference rules are special inference rules

Production ���� prog ��� classes
hNames�TH� Intfsi � Context� � classes � Names � Types�TH � Subtyping� Intfs � Env

� prog � correct � GenInfo

if �A v B � TH � A � B �B v A �� TH

Production ���� classes� ��� class� classes�
	 � Context� � class � Name � Type�TH� � Subtyping� Intfs� � Env

	 � Context� � classes� � Names � Types�TH� � Subtyping� Intfs� � Env

	 � Context� � classes� � Names	 fNameg � Types�TH� 	 TH� � Subtyping�
Intfs� 	 Intfs� � Env

if Name �� Names

SPECIFICATION OF THE STATIC SEMANTICS OF MINI�JAVA ��

Production �
�� classes ���� 	 � Context� � classes �
 � Types�
 � Subtyping�
 � Env

Production ���� class ��� class id� extends id�� features end

hNames�TH� Intfs � fhid��Cl Intfs�ig� id�i � Context� � features � Cl Intfs� � Cl Env

hNames�TH� Intfs � fhid��Cl Intfs�igi � Context� � class � id� � Type�
fid� v id�g � Subtyping� fhid��Thru�TH�Cl Intfs��Cl Intfs�� 	 Cl Intfs�ig � Env

Production ���� class ��� class id� features end

hNames�TH� Intfs� idi � Context� � features � Cl Intfs � Cl Env

hNames�TH� Intfsi � Context� � class � id � Type� fhid�Cl Intfsig � Env�

 � Subtyping

Production ��� features
�
��� feature� features

�

	 � Context� � feature � Intf � Cl Env Item

	 � Context� � features
�
� Cl Intfs � Cl Env

	 � Context� � features
�
� fIntfg 	 Cl Intfs � Cl Env

if ��string � String� t�� t� � Type � Intf � hmeth� hstring� t�� t�ii �
�hmeth� hstring �� t�

�
� t�

�
ii � Cl Intfs � string �� string ��

��string � String� t � Type � Intf � hattr� hstring � tii �
�hattr� hstring �� t�ii � Cl Intfs � string �� string ��

Production ���� features ���� 	 � Context� � features �
 � Cl Env

Production ��� � feature ��� id � type
	 � Context� � type � t � Type

	 � Context� � feature � hattr� hid� tii � Cl Env Item

Production ��� � feature ��� method id��id� � type
�
� � type

�
� block

hNames�TH� Intfs�Ai � Context� � type
�
� t� � Type

hNames�TH� Intfs�Ai � Context� � type
�
� t� � Type

hNames�TH� Intfs�A� locals 	 fhinp� id�� t�i� hret� result� t�igi � Context�
� block � locals � Locals

hNames�TH� Intfs�Ai � Context� � feature � hmeth� hid�� t�� t�ii � Cl Env Item

if id� �� fyj�x� z � hx� y� zi � localsg 	 fresultg

Production ���� � type ��� id

hNames� fidg�TH� Intfs�Ai � Context� � type � id � Type
hNames� fidg�TH� Intfs�A� localsi � Context� � type � id � Type

Production ���� � block ��� begin decls stats end
	 � Context� � decls � locals � Locals� 	 � Context� � stats � correct � GenInfo

	 � Context� � block � locals � Locals

Production ���� � stats� ��� stat � stats�
	 � Context� � stat � correct � GenInfo� 	 � Context� � stats� � correct � GenInfo

	 � Context� � stats� � correct � GenInfo

Production ��
�� stats ���� 	 � Context� � stats � correct � GenInfo

Production ����� decls� ��� id � type� decls�
	 � Context� � type � t � Type� 	 � Context� � decls� � locals � Locals

	 � Context� � decls� � fhloc� id� tig 	 locals � Locals

if id �� fyj�x� z � hx� y� zi � localsg 	 fresultg

Production ����� decls ���� 	 � Context� � decls �
 � Locals

Production ���� stat ��� des �� expr

hNames�TH� Intfs�A� localsi � Context� � des � t� � Type
hNames�TH� Intfs�A� localsi � Context� � expr � t� � Type

hNames�TH� Intfs�A� localsi � Context� � stat � correct � GenInfo

if t� v t� � TH

� Using many�sorted natural semantics to specify and generate semantic analysis

Production ���� des� ��� des��id

hNames�TH� Intfs � fht��Cl Intfs � fhattr� hid� t�iigg�A� localsi � Context�
� des� � t� � Type

hNames�TH� Intfs � fht��Cl Intfs � fhattr� hid� t�iigg�A� localsi � Context�
� des� � t� � Type

Production ���� des ��� id

hNames�TH� Intfs � fhA�Cl Intfs � fhattr� hid� tiigg�A� localsi � Context� � des � t � Type

if id �� fyj�x� z � hx� y� zi � localsg

hNames�TH� Intfs�A� locals � fhx� id� tigi � Context� � des � t � Type

Production ���� des ��� result

hNames�TH� Intfs�A� locals � fhx� result� tigi � Context� � des � t � Type

Production ���� des� ��� des��id�expr�
hNames�TH� Intfs � fht��Cl Intfs � fhmeth� hid� t� retiigig�A� localsi � Context�

� des� � t� � Type
hNames�TH� Intfs � fht��Cl Intfs � fhmeth� hid� t� retiigig�A� localsi � Context�

� expr � t� � Type

hNames�TH� Intfs � fht��Cl Intfs � fhmeth� hid� t� retiigig�A� localsi � Context�
� des� � ret � Type

if t� v t � TH

Production ���� des ��� id�expr�
hNames�TH� Intfs � fhA�Cl Intfs � fhmeth� hid� t� retiigig�A� localsi � Context�

� expr � t� � Type

hNames�TH� Intfs � fhA�Cl Intfs � fhmeth� hid� t� retiigig�A� localsi � Context�
� des � ret � Type

if t� v t � TH id �� fy j �x� z � hx� y� zi � localsg

Production ���� expr ��� des
	 � Context� � des � t � Type

	 � Context� � expr � t � Type

Production ��
� expr ��� new id

hNames� fidg�TH� Intfs�A� localsi � Context� � expr � id � Type

About the authors�

Sabine Glesner is a PhD student in the Computer Science Department at the University
of Karlsruhe in Prof� Goos� research group� Currently� she is working on semantic analysis�
Under a Fulbright grant� she received her M�S� in Computer Science from the University
of California� Berkeley� in ���� Her master�s thesis is about representation and inference
of uncertain knowledge� In ����� she received an Informatik�Diplom from the University
of Darmstadt� Her diploma thesis deals with automated theorem proving� From ���� to
����� she was a member of the Studienstiftung des deutschen Volkes� the German National
Scholarship Foundation�

Wolf Zimmermann studied computer science at the University of Karlsruhe from ����
to ���� where he received his diploma� From ���� to ���� he was sta� member at GMD
Forschungsstelle at Karlsruhe� He joined the University of Karlsruhe as a sta� member from
���� to ���� where he received the PhD in ���� awarded by the �Preis des F�ordervereins
des Forschungszentrum Informatik�� From ���� to ����� he was postdoctoral fellow at the
International Computer Science Institute in Berkeley� Since ���� he is senior scientist at
the University of Karlsruhe� His main research �elds are parallel computing� construction
of correct compilers� software libraries� and foundations of object�oriented computing�

