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Abstract. We introduce a specification language that can be used to specify
semantic analysis as well as intermediate code generation. This specification language
defines semantic properties by means of many-sorted inference rules. Type inference
rules are just a one-sorted special case. We demonstrate that inference rules can also
be used to infer other semantic information such as definitions of identifiers, scoping,
inheritance relations, etc. To distinguish the different kinds of semantic information
described by the rules, we use a many-sorted language to formulate the inference
rules. We further show how to transform a set of inference rules algorithmically into
an attribute grammar, thus proving that semantic analysis and intermediate code
generation can be generated from such specifications.
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1. Introduction

In the literature, there are usually two extreme ways to specify semantic analysis:
Either the specification is rather operational, or the specification is declarative. In
the first case, generators for the semantic analysis exist while in the second case,
the specifications are only used as a support for the manual implementation of the
semantic analysis. Attribute Grammars are an example of the former, type infer-
ence in functional programming languages is an example of the latter. Designing
attribute grammars requires a lot of experience because it is necessary to justify that
the specifying attribute grammar really defines the desired static semantics of the
programming language. However, when type inference rules specify the static se-
mantics, this justification is almost straightforward. Despite these advantages, type
inference rules are mostly used to specify the static semantics of functional languages
which have a rich type system but rather simple scoping rules. Also, in functional
languages, each identifier and each node in the abstract syntax tree has a type. These
properties do not hold for imperative and object-oriented languages: Their type sys-
tems are rather primitive compared to functional languages while their scoping rules
are much richer.! Moreover, most of these languages are typed so that instead of type
inference it is more type checking what needs to be done when performing semantic
analysis.

An inference style specification has several advantages. First, it abstracts com-
pletely from particular traversals of the abstract syntax tree. It does not matter
whether these are derived from local traversal specifications (as in ordered attribute
grammars) or whether they are specified explicitly (as in LAG-grammars or syntax-
directed translations). Secondly, a notion of consistency and completeness can be
defined formally. As usual, consistency means that no contradictory information can
be derived while completeness means that all information desired in a certain sense
is indeed specified by the inference rules so that it could be derived in principle.

The specification method presented in this paper combines the advantages of both
extreme approaches. It extends the idea of type inference rules so that other static
semantic information can be defined in the same framework of inference rules with-
out specifying the complete semantics of a programming language. Furthermore, we
show how to transform such inference rules into attribute grammars. Thus, the static
semantics of imperative and object-oriented languages can be specified in the declar-
ative inference rule style while it is still possible to generate the semantic analysis
from such declarative specifications. General properties of semantic information that
do not depend on particular programs (such as subtype relations in imperative lan-
guages, coercibility etc.) are usually specified outside of the heart of the specification
language. Attribute grammars for example require to implement functions such as
coercions, balancing types etc. in the implementation language of the generated code

Tt is specific to object-oriented languages that the programmer can specify the subtype relation.
In other languages, this relation is specified in the language definition.
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for the semantic analysis. In contrast to this, our approach allows us to define these
properties also in the style of inference rules, i.e., there is no need to leave the formal
framework when specifying such information. At this first step, it is not our goal to
provide already an efficient generator. We merely show that it is possible to generate
the semantic analysis from inference style specifications.

So there are the following requirements that we pose on our specification method:
We want it to be declarative. It should be a closed framework in the sense that
all information can be specified within the framework. It should be applicable for
realistic programming languages. A notion of consistency and completeness can be
defined. The semantic analysis can be generated from such specifications. And we
want that the transformation into the intermediate language can also be specified in
the framework. (This aspect is not in the major focus of this paper but we will argue
rather shortly that it is also possible.)

The paper is organized as follows: In Section 2 we introduce the syntax and se-
mantics of our specification language and demonstrate its use on small examples.
The specification of a complete language which contains already typical properties of
realistic languages — a notion of inheritance and overloading similar to Java, a non-
trivial scoping rule, and automatic coercions from integers to floating point numbers
— is given in the appendix. In Section 3 we show how to transform our specifications
into attribute grammars. In section 4 we point out which other aspects we want to
investigate in future work. Section 5 compares our approach with related work and
investigates in how far they satisfy the requirements stated above. We conclude in
section 6.

2. Specification Language

The specification language is based on the context-free grammar which defines the
structure of the programming language. We assign a set of inference rules to each
production rule of the context-free grammar. These inference rules describe semantic
properties of the nodes in the AST. Since a node might have more than just one
particular semantic information as for example its type, we need to be able to describe
several semantic properties within the specification language. This is the reason
why we decided to choose a many-sorted language to specify the static semantics of
programming languages. The sort of a semantic information indicates the kind of
property it describes. When carrying out the semantic analysis for a given program,
we try to find a rule cover of the abstract syntax tree. Thereby exactly one rule has
to be applicable for each node in the AST. If it is possible to find such a rule cover
of the tree, then the program is correct wrt. its static semantics.

First, we describe the syntax of the specification language and show for small exam-

ples how it works. The complete specification of an example language can be found
in the appendix. Then we proceed by defining the semantics of the specification lan-



4 Sabine Glesner and Wolf Zimmermann

guage. For that we show how to transform a specification into a first-order language
so to achieve a standard representation whose semantics is well-known.

2.1. Syntax of the Specification Language

Since, in general, it is necessary to describe various kinds of semantic properties
for nodes in the AST, we use a many-sorted specification language to describe the
static semantics of programs. We assign a specific sort to each piece of semantic
information. There are already certain predefined sorts in the specification language:
The sort String denotes all strings of finite length. The sort Bool contains the truth
values true and false. To describe the most general property of nodes in the AST, we
use the sort GenlInfo. This sort contains the three elements correct, incorrect and
don’t-know. For example, information that describes the properties of statements in a
program will have this sort. It indicates whether the statements under consideration
are correct, incorrect, or whether it is still unknown if they are correct or not. Further
predefined sorts are sets, lists, and cartesian products of already existing sorts. These
kinds of sorts are denoted as usual by {}, x, and x. In this sense, the three symbols
{}, *, and x as well as String, Bool, and GenInfo are sort constructor functions
and sort constructor constants, resp. The set of all predefined sorts are the ground
terms built from sort constructor symbols, i.e., sort constructor terms containing no
variables. When specifying the static semantics of a programming language, it might
be helpful to define new sorts. This is possible by stating that the new sort s is built
from already exisiting sorts si, ..., s, by applying the new sort constructor function
F of sort s to them: s := F(sy,...,s,). For example, when describing object-
oriented programming languages, one needs to define the type hierarchy specified in
a particular program. Therefore it is necessary to define the sort Subtyping which
basically contains tuples of strings: Subtyping := {C (String, String)}. If A is a
subtype of B, then C (A, B) holds.

Semantic properties are described with terms of one of the sorts. Terms are built
as usual from variable, constant, and function symbols. The constant symbols [| (the
empty list), () (the empty set), true, false, and correct, incorrect and don’t-know (the
values of sort GenInfo) as well as the function symbols [e | [] (adding an element
e to alist 1), U,N, €, C, = (the operations for manipulating sets), and V, A, =, —, <>
(the functions for describing truth values) can be used for building terms.

The specification of a programming language consists of three major parts: the
definition of new sorts, general inference rules, and special inference rules associ-
ated with particular production rules of the underlying context-free grammar. As
described above, it is possible to define new sorts in a specification by defining with
which new sort constructor symbols and from which already existing sorts this new
sort is derived. It might be necessary to define the properties of such a new sort.
This can be done by stating general inference rules. They have a similar syntactic
structure as special inference rules.
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An inference rule is a triple consisting of a set of assumptions Si,...,S,,, a set of
consequences C',...,C,, and a condition ¢. The assumptions and consequences are
sequences, as defined below, whereas the condition ¢ is a term of sort Bool. We
write an inference rule in the following form:

Sty 9m
Cy,...,Ch

A sequence is a triple. The first component is a context I which is a semantic infor-
mation. The second component is a syntactic construct p, and the third component
is a semantic information SemlInfo. (In general inference rules, sequences contain
only a semantic information.) We write down such a sequence in the following form:

' = p : SemlInfo
A semantic information is a tupel consisting of a term t and its sort S, denoted as
t .. S.
The following two examples are intended to give an intuitive idea how a specification

might look like. The complete specification for an example language is given in the
appendix.

if

General Inference Rule: To define Subtyping as a transitive relation, one would
specify the following rule whereby subtypes is assumed to be a free variable which
is implicitly existence-quantified. This means that the rule can be applied when
a concrete value is substituted for subtypes.

subtypes .. Subtyping, A C B € subtypes .. Bool, B C C € subtypes .". Bool
A C C € subtypes .". Bool

Special Inference Rule: Consider the production
stat  ::= des := expr
The associated special inference rule is defined as follows:

I' - des:t, .. Type
I' b expr:ty, ... Type if C (g, 1)
I' - des ::= expr: correct . GenInfo

We call a specification consistent wrt. sort S iff, for each program, each node in the
AST has at most one semantic information of sort S. We call a specification consistent
iff, for each program, each node in the AST has at most one semantic information
for each sort. A specification is complete wrt. sort S iff, for each program, each
node in the AST has at least one semantic information of sort S. In particular, a
specification is complete wrt. the transformation into the intermediate representation
iff, for each program, each node in the AST has a semantic information specifying
how to translate the node into the intermediate representation. The specifications of
functional languages are typically complete wrt. the type information because each
node in the AST has a type in functional programming languages.
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2.2. Semantics of the Specification Language

We can think of the sorts in the specification language as unary functions defined on
the nodes of the abstract syntax tree. Each sort is a function that assigns a value, a
semantic information of this sort, to each node. The first-order meaning of a sequence

I' . context - p : SemlInfo .. Sort
would then be defined as follows:

context(p) =I' — Sort(p) = SemInfo.

3. Generating Algorithm

At first sight it might seem strange that there are two different pieces of semantic
information in one sequence. One might think that they can be both combined in a
single piece of semantic information. But we have good reason to choose this kind
of information splitting: In nearly all programming languages, the AST nodes have
properties that can be inferred from their successors and properties which are derived
from other surrounding nodes, usually called the context information. SemInfo de-
scribes the semantic information which can be derived from the successors of a node.
The context information is captured in the context I'. So the difference between the
two pieces of semantic information in a sequence is the direction in the AST in which
they are defined. Moreover, one can imagine that the semantic information SemlInfo
can be inferred from the context. This is the reason why we call a sequence also a
semantic information judgement.

The basic idea is to convert the sorts of the specification language into attributes.
Each node in the abstract syntax tree which gets a semantic information of some sort
assigned by one of the inference rules will have an attribute of the corresponding kind.
The information before .". specifies the value of the attributes. In particular, the con-
text which is a piece of semantic information with which every AST node is equipped
will be transformed into an environment attribute. Since we might have contexts of
different sorts, we might also have different kinds of environment attributes. Condi-
tions of inference rules lead to conditions in attribute grammars. Each inference rule
defines a set of attribution rules:

e The contexts of the assumptions are defined based on the contexts of the conse-
quences. The inference rule specifies the operations to be used to construct the
contexts of the assumptions from the contexts of the consequences. The contexts
correspond with inherited attributes in attribute grammars due to the direction
in the AST in which they are defined.

e The other attributes are defined on the consequences based on the assumptions.
The information before .°. specifies the values of the attributes. The inference rule
specifies the operations to be used to construct the attributes in the consequences
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from the attributes of the assumptions. These attributes are synthesized because

they depend solely on the successors of a node.

e General inference rules specify properties of certain attributes. They can be com-

puted by hull algorithms as explained below.

Consider the following inference rule

f1 (F, Xl,l; e 7X1,n1) COHtethl F Yi U1 A1,1
f1 (F, Xl,l; e 7X1,n1) COHtethl F Yi Uy L Al,rl
fg(l—‘, Xg’l, ce 7X2,Tl1) Contexth F ng V21 Ag,l
fQ(F, X2,1, e JXZ,nl) COHteth2 F }/2 U2, A27T2
: if h(uy, ..., w)
fm(F; Xm,l; Ce ,ngnm) COHtethm F Ym ‘Uma . Am,l
(T, X, .o, Xop,,) . Contexty, = Yo i vp,,. o Apy
r.. COHteth F Yb . gl(wl,l, Ceey wlysl) B1
r.. COHteth F Yb . gg(U)Q,l, Ceey w2752) B2
I' -. Context; = Yy : gm(Wmi, ..., Wnys,) .. Bnm
associated with the production Yy ::=Y; ---Y,, where each w;; equals to one vy j/,

each u; and each X;; may be any other information occuring in this rule (except the

condition). Then:

e The grammar symbol Y;, ¢ = 1,...,m has the attributes 4,;, j = 1,.

the attribute envy,.
e The grammar symbol Y{ has the attributes By, ..

e The attribution rules associated to the inference rule are:

Yi.envy, = fi(Yo.envj, Xy 4,..., X1 0,)
Yi.envy, = fo(Yo.envj, Xp 1y, Xonn)
Yo0.B) = 91(21,1-01,1, ) Zl,sl-Cl,sl)
}/E)Bm = gm(Zm,l-Cm,la SR Zm,sm-Cm,sm)

where Z; ; is one of the grammar symbols Y7, ..

..,rj and

., By, and the attribute env;.

., Yy, and C;; is one of the sorts

occuring in the assumptions associated to symbol Z; ;, if for example I'" - Z; ; :

w; ;.. C; j were an assumption.
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e h(Wi.Dq,...,W,.D,)is the condition associated to the production Yy ::= Y7 - - - Y7,.
Here, there is a judgment I'' - W; : w; .. D; in an assumption or consequence for
each i = 1,...,1, or W;.D; is an environment attribute of one of the production
symbols.

General inference rules describe properties of sorts or attributes, resp. which have
been defined in a given specification. Sorts or attributes can be seen as relations. A
relation itself is a subset of the cartesian product built over the sets from which the
elements in a single tuple are taken. The general inference rules describe properties
of these subsets. If some elements are in the set, then also others have to be in
the set. We can think of the general inference rules as describing a hull algorithm.
As an example, think of the general inference rule describing the transitivity of a
relation. It specifies how to augment a set such that the result is transitive. Since in
each computation of a semantic information or attribute value, resp., there are only
finitely many values, such a hull algorithm stops. When transforming a specification
into an attribute grammar, for each attribute which has been introduced into the
attribute grammar because of a new-defined sort in the specification, a function
update is defined which computes exactly the convex hull as described above. As
soon as an attribute has been computed, its final value needs to be determined by
application of update.

Most of the inference rules allow for pattern matching. For example, the compo-
nents of the context are enumerated in an inference rule so that the direct access
to them is easily possible without any other notational overhead. When transform-
ing a specification into an attribute grammar, it is necessary to automatically derive
selector functions from the sort definitions and to transform the specification into
one which does not incorporate any pattern-matching. Thereby it is not necessary
to formulate the selection operators within the specification language. This is easily
possible and only a minor point here.

4. Future Work

4.1. Transformation into Attribute Grammars

In the above transformation of a specification into an attribute grammar, we have
assumed that the context is specified in the opposite direction than the semantic
information on the right-hand side of the inference rule. Therefore, it was secured
that the resulting attribute grammar is well-defined. In future work, we will try to
relax the above assumptions on the definitions in a specification. Moreover, it is
necessary to find efficient implementations of the sketched operations.
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4.2. Transformation in Intermediate Language

In the same way as we have specified semantic information relevant for the semantic
analysis, it is possible to define a new sort Intermediate_Code and specify semantic
information of this sort. If we do this such that each node in the abstract syntax tree
gets a semantic information of sort Intermediate_Code, then it is easily possible to
generate the transformation into the intermediate language from such a specification.
Here it makes sense to define that a specification is complete wrt. the transformation
into the intermediate language. This is the case if, for each program, each node in
the abstract syntax tree has a semantic information describing how to translate it.
The thorough investigation of this topic is the subject of future work.

4.3. Static Type Safety

An important property of a programming language is its type safety. We will ex-
amine the question if we can prove, given an inference rule style specification of a
language, whether this language is type-safe. Since many object-oriented languages
are not statically type-safe, it is an interesting question if dynamic type checks can
be generated automatically from a specification.

5. Related Work

We have introduced a method for specifying the semantic analysis of programming
languages. Specifications written down in this formalism are declarative. We argued
that realistic languages can be described by this method. Furthermore, we defined
the notions of consistency and completeness. Due to the many-sortedness of our
specification language, we can define different kinds of semantic information within
one closed framework. Thereby, the kind of a semantic information can be everything
from a type up to the (intermediate) code to which the program fragment will be
translated. This means that we can in particular define the interaction of the pro-
gramming language with the intemediate representation. And last but not least, we
can generate the semantic analysis and also the transformation into the intermediate
language from these specifications.

Research on the specification of semantic properties of programming languages and
the generation of their semantic analyses was pushed forward with attribute gram-
mars. A good survey of the obtained results can be found in [13]. The actual algo-
rithms for the semantic analysis are simple but will fail on certain input programs
if the underlying attribute grammar is not well-defined. Testing if a grammar is
well-defined, however, requires exponential time [2]. A sufficient condition for being
well-defined can be checked in polynomial time. This test defines the set of ordered
attribute grammars as being a subset of the well-defined grammars [5]. However,
there is no constructive method to design such grammars. Hence, designing an or-
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dered attribute grammar remains a difficult problem. For another class of attribute
grammars it is required that all attributes can be evaluated during a constant num-
ber of depth-first, left-to-right traversals of the abstract syntax tree. These are the
left-ordered attribute grammars (LAG), [6], [1]. Due to their fixed traversal order,
the specification of context-sensitive syntax becomes very operational, i.e. dependent
on the analysis. However, because there are no alternative specification and genera-
tion methodologies, most practical tools are based on attribute grammars. Attribute
grammars allow in particular that different kinds of semantic information can be
specified, in particular the transformation into the intermediate representation. A
notion of consistency and completeness can be defined.

A language for the specification of context-sensitive syntax which is based solely
on the predicate calculus is defined in [7]. Even though this method is completely
declarative, it is not intuitive due to the complexity of first-order formulas. Realistic
programming languages can be specified in this framework as it is demonstrated at
the example specification of Oberon. A notion of consistency and completeness is not
of interest in this approach and therefore not investigated. Different kinds of semantic
information can be described by first-order predicates but the interaction with the
intermediate representation is not under consideration. The semantic analysis can
be generated but is much too inefficient for the use in practical compilers.

In functional programming languages, type inference and checking is performed by
solving systems of type equations [3]. During this computation it is necessary to
unify terms denoting types. The unification method chosen is typically Robinson’s
[12]. Since we restrict ourselves to the checking of typed programming languages
and do not require type variables, this approach is more general than necessary in
our context. It cannot be used easily for non-functional programming languages.
A notion of consistency and completeness is not of interest in this approach and
therefore not developed. It is not possible to describe several kinds of semantic
information within this framework because it was designed with emphasis on type
inference. In particular, the interaction with the intermediate language cannot be
defined. The generation of the semantic analysis specified with type inference rules
can be generated from such descriptions.

In [11], a specification method for the semantic analysis in object-oriented languages
based on constraints is given. It is declarative in the sense that it allows for the spec-
ification of constraints which are propositinal formulas that define the semantical
correctness of a given program. It is not possible to describe realistic programming
languages by this method because already the normal coercion in arithmetic opera-
tions which depends on both operands cannot be specified. A notion of consistency
and completeness has not been further investigated. It is not possible to define several
kinds of semantic information in this method since it only allows for the specification
of type inference. In particular, the interaction with the intermediate language can-
not be described. The semantic analysis restricted to type inference can be generated
from such specifications and has time complexity O(n?) where n is the program size.
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Plotkin’s structured operational semantics (SOS) [9] describing the semantics of
programming languages is based on automata. Simple rules define state transitions.
Since the thereby described configuration changes happen only at the rewrite com-
ponent, this way of defining semantics is also called small steps semantics. It is a
declarative method but differs from ours in the sense that we do not have an under-
lying abstract machine whose operational semantics gives meaning to our inference
rules. SOS rules can be seen as state machines while deduction systems are proof pro-
cedures. In this sense, our inference rules describe a proof procedure (and not a state
machine) with which we can establish certain properties for a program (fragment).

A similar approach influenced by structured operational semantics and by Gentzen’s
Calculus for Natural Deduction Systems ([10]) is defined by natural semantics [4].
In this method, semantic information can be described in a logic. Inference rules
describe a proof procedure with which certain semantic information can be inferred.
Different logics need to be specified when different kinds of semantic information
should be described. It is possible to generate an efficient semantic analysis from
natural semantics specifications as it is demonstrated in [8].

Our approach is also of proof-theoretic nature: We want to prove that certain nodes
in the AST have values of a specific sort. The inference rules that we provide allow us
to do such reasoning within a formal system. The main difference to natural semantics
is the use of a many-sorted specification language: We allow to specify different kinds
of semantic values in a single specification and distinguish them by their sort tag.
In natural semantics, only one kind of semantic information can be described in
one specification. Different logics are necessary to describe for example the type
system, the interpretation of the language by the intermediate or goal language,
and other properties of the programming language. In contrast, we can describe all
these different aspects in one unified framework by attaching sorts to the semantic
information to distinguish the different kinds of them. The advantage of one single
many-sorted logic for the specification of the semantic analysis is that information
of different sorts can depend on each other and that these interdependencies can be
specified.

6. Conclusion

We showed that semantic analysis can be specified by means of many-sorted inference
rules. They generalize the type inference method commonly used to specify the type
systems of functional programming languages. Since it is necessary to also define
other information than just types, we need to be able to indicate the kind of infor-
mation being described. This is realized by introducing a many-sorted specification
language that assigns sorts to the semantic information which describes program
properties. In this sense, type inference rules are a one-sorted special case of our
specification language. A specification given in this specification language consists
of three parts: (i) the definition of the kind of information by means of sorts, (ii)
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the definition of general properties independent of particular programs by means of
general many-sorted inference rules, and (iii) the definition of properties associated
with productions by means of special many-sorted inference rules. We showed that it
is possible to generate the semantic analysis module in compilers from such specifi-
cations. More precisely, it is possible to transform a specification based on inference
rules into an attribute grammar. If we can ensure that this attribute grammar is
well-defined, we can generate the semantic analysis from inference rule style specifi-
cations by using compiler generators for attribute grammars. We gave an easy suf-
ficient condition on the specification to ensure that the resulting attribute grammar
is well-defined. This sufficient condition might be too restrictive. Its generalization
is subject of future work.

It was not our purpose to demonstrate already an efficient generator or an efficient
generated semantic analysis. However, if the attribute grammar is well-defined, it is
possible to implement semantic analysis as a kind of topological sorting of the at-
tribute dependencies. This implies that the semantic analysis itself will be efficient as
long as supporting functions (e.g. a data structure for the context) are implemented
efficiently. A library of typical data structures and functions used in semantic anal-
ysis may guarantee the efficient implementation of supporting functions and data
structures. Thus, the main focus of future work will be on efficient generation and
on identifying typical data structures to ensure efficient semantic analysis.
Acknowledgement: The authors would like to thank Uwe Afimann for many valu-
able discussions and comments while working on this paper.
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Appendix Example Specification

Context-free Grammar

program ;= classes (1)
classes = class ; classes | ; (2,3)
class ;= class id extends id ; features end ; (4)

| class id ; features end ; (5)
features ;= feature ; features | ; (6,7)
feature o= id : type (8)

| method id parameters : type ; block (9)
parameters = ¢ | ( pars) (10,11)
pars = id : type | id : type , pars (12,13)
type = INT | REAL | BOOL | id (14-17)
block = begin stats end (18)
stats = (stat | decl ) ; stats | ; (19,20)
decl = id : type (21)
stat = des 1= expr (22)

|  while expr do stats od (23)
des = des . id | id | result (24-26)

| des . id Cargs) | this (27,28)
args ;= expr | expr , args (29,30)
expr = des | int.literal | real_literal | boolliteral — (31-34)

| expr+ erpr | new id | null (35-37)

Sort Definitions

Type := String
Types := {String}
Type_List := [Type]
Subtyping := {C (String, String)}
Class_Env := {method, attribute} x Type x Signature
Class_Envs := {Class_Env}
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Signature := String x [Type| x Type U String x Type
Overriding := {o(Signature, Signature)}
List_Equality := {=p ([Type], [Type|)}
List_Coercibility := {Tj ([Type], [Type])}
Local Def := {local, ret, input} x String x Type
Local Defs := {Local_Def}
Context, := {Types} x {Subtyping} x {Class_Envs}
Context, := Context,; x Type
Context; := Context, x Local_Defs

General Inference Rules

subtypes .. Subtyping subtypes .". Subtyping
C (A, B) € subtypes .. Bool t.. Type
C (B, (C) € subtypes .". Bool void .". Type

C (A, C) € subtypes .". Bool C (void, t) € subtypes .. Bool

subtypes .. Subtyping subtypes .. Subtyping
C (A, A) € subtypes .. Bool C (int, real) € subtypes .. Bool

(idy, type_list, res_type, ) .". Signature
(ido, type_list,, res_type,) .". Signature
subtypes .. Subtyping
C (res_type,, res_type,) € subtypes
list_equals .". List_Equality
=7 (typelist,, type_list,) € list_equals
overrides .. Overriding
o((idy, type_list,, res_type, ), (ids, type_list,, res_type,)) € overrides

list_equals .". List_Equality
= (I1,15) € list_equals
=1 ([t | ], [t | I2]) € list_equals

list_equals .". List_Equality
=g ([, ) € list_equals

list_coercions .. List _Coercibility
Cy (I1,12) € list_coercions

subtypes .". Subtyping

C (A, B) € subtypes

Cp ([A] 1], [B | 1y]) € list_coercions

list_coercions .. List_Coercibility
Cy (1, 1) € list_coercions
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Special Inference Rules

Production (1):

(Names, TH, Infs) .-. Context; + classes: Names ... Types
(Names, TH, Infs) . Context; - classes: TH .. Subtyping
(Names, TH, Infs) .. Context; F classes: Intfs ‘. Class_Envs

(Names, TH, Infs) .. Context;  program : correct .. Gen_Info
if C (A, B) e THAA#£B — ~C (B,A) € TH

Production (2):

(Names, TH, Infs) .. Context;

(Names, TH, Infs) .-. Context,

(Names, TH, Infs) ... Context,

(Names, TH, Infs) .©. Context; F classes: Names, .". Types

(Names, TH, Infs) .-, Context, F classes: TH, .. Subtyping

(Names, TH, Infs) -. Context; F classes : Intfsy -, Class_Envs
(Names, TH, Infs) .-. Context; F class ; classes: { Name, } U Names, .". Types
(Names, TH, Infs) .. Context; + class ; classes: TH; U THy .-. Subtyping
(Names, TH, Infs) .. Context, F class ; classes: Intfs; U Intfs, -, Class_Envs

if Name; ¢ Names,

class: Name; .. Type
class: THy .. Subtyping
class : Intfs; .-. Class_Envs

T T T T T

Production (3):

I' -. Context; - ;:0 .. Types
I' .. Context, ~ ; :0 .. Subtyping
I . Context; F ; : 0 .. Class_Env

if true

Production (4):
(Names, TH, Intfs,id;) .. Context, F features : Intfsy -, Class_Envs

(Names, TH, Intfs;) .. Context, - class id; extends idy ; features end ; :
{C (idy,id)} .. Subtyping
(Names, TH, Intfs;) .. Context; - class id; extends idy ; features end ; :
{(method, id,, sig) .. Class_Env | (method, idy, sig)
€ Intfs; AV sig’ € Intfsy : — o (sig’,sig)}
U Intfsy .-, Class_Envs
if id; € Names A C (idy,ids) € TH A Intfsy C Intfs,

Production (5):
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(Names, TH, Intfs;, id) .. Contexty, b features : Intfsy -. Class_Envs

(Names, TH, Intfs;) .. Context; - class id ; features end ; :id .. Type
(Names, TH, Intfs;) .. Context;  class id ; features end ; : Intfs, .. Class_Envs
(Names, TH, Intfs,) .-, Context, F class id ; features end ; :
{C (id, Supertype)} ... Subtyping
if id € Names A LC (id, Supertype) € TH A Intfsy C Intfs;

Production (6):

[' .. Contexty F feature : Intf . Class_Env
[' . Contexty, F features : Intfs -, Class_Envs
I' . Contexty = feature ; features: {Intf} UIntfs -. Class_Envs
if V Intf" € Intfs : = o (Intf, Intf")

Production (7):

if
I . Contexty F ; :0 ... Class_Envs i true
Production (8):

(Names, TH, Intfs, A) .. Context, F type:t.. Type
(Names, TH, Intfs, A) .. Context, + id : type: (attribute, A, (id, t)) .. Class_Env
if true

Production (9):

(Names, TH, Intfs, A) .. Context, + type:t.. Type
(Names, TH, Intfs, A) -. Context,  parameters : types ... Type_List
(Names, TH, Intfs, A) -. Context, t parameters : locals; .. Local_Defs
(Names, TH, Intfs, A, locals; U localsy
U{(ret, result,t)}) .. Contexts F block : locals, ... Local_Defs

(Names, TH, Intfs, A) . Context, - method id parameters : type ; block :
locals; U localsy U {(ret, result, t)} .-. Local Defs
(Names, TH, Intfs, A) -. Context, - method id parameters : type ; block :
(id, types, t) .. Signature
(Names, TH, Intfs, A) . Context, - method id parameters : type ; block :
(method, A, (id, types, t)) .". Class_Env
if locals; N localsy = ()

Production (10):
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I' -. Contexty - ¢: [ .. Type_List if true
[' . Contexts - ¢:0 ... Local_Defs
Production (11):

[' -. Contexty, - pars: types ... Type_List
[' -. Contexty - pars: locals .-. Local_Defs

I' .. Contexty F ( pars) : types .. Type_List
I' ... Context, - ( pars) : locals .". Local_Defs

Production (12):
[' . Contexty, + type:t.. Type

17

if true

if true

[' . Contexty, - id : type: (input,id,t) .-. Local_Defs

Production (13):

[' .. Contexty + type:t.. Type
[' .. Contexty, - pars: types .. Type_List
[' . Contexty, - pars: locals .". Local_Defs

[' .. Contexty - id : type , pars:
t | types] .. Type_List
[' .. Contexty - id : type , pars:

{(input, id, t) } U locals .". Local_Defs

ifVa,y:—(x,id,y) € locals

Production (14):

T - Context, - INT :int.. Type if true
Production (15):
I' . Context, — REAL :real .. Type if true
Production (16):
if true

[' .. Context; - BOOL : bool .. Type
Production (17):

if true

[' .. Contexty F id :id .. Type

Production (18):
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[' .. Context; b stats: locals ... Local_Defs

if t
I' -. Context; - begin stats end : locals .". Local_Defs e
Production (19.a):
[' .. Contexts; b stats: locals .". Local_Defs )
if true

I' . Contexty + stat ; stats: locals .. Local_Defs

Production (19.b):

[' . Context;  stats: locals .. Local_Defs

[ . Context; - decl: local .-. Local_Def
[' .. Contexts F decl ; stats: {local} U locals .. Local_Defs
if 3x,id,y V u,v: (z,id,y) = local A =(u, id, v) € locals

Production (20):

if true

I -. Context; F ;:0 .. Local_Defs

Production (21):

[' ... Contexts — type:t.. Type

. if
[' .. Contexts  id : type: (local,id,t) .". Local_Def thtrue

Production (22):

(Names, TH, Intfs, A, Locals) .. Contexts

(Names, TH, Intfs, A, Locals) .. Contexts
(Names, TH, Intfs, A, Locals) .. Contexts; + des :
if C (t9,t) € TH

des: t; .. Type
expr: ty ... Type
expr : correct ', GenInfo

T T

Production (23):

[' .. Contexts; ~ expr: bool . Type
[' ... Contexts; — stats: correct .. GenInfo if true
[' .. Context; - while expr do stats od : correct .. GenInfo

Production (24):

(Names, TH, Intfs, A, Locals) .. Contexts + des:t; .. Type
(Names, TH, Intfs, A, Locals) ... Contexts + des . id:ty .. Type
if (attribute, t;, (id, ty)) € Intfs A =3 ¢’ : (method, t, (id, [],t")) € Intfs
V—(attribute, ty, (id, t2)) € Intfs A (method, ty, (id, [, t2)) € Intfs

Production (25):
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(Names, TH, Intfs, A Locals) .. Context; + id:t .. Type

if Jaz:(zr,id,t) € Locals Vv
V x,t': =(x,id, ') € Locals A (attribute, A, (id, t)) € Intfs Vv
V x,t': =(x,id,t') € Locals AV t' : —(attribute, A, (id, t')) € IntfsA
(method, A, (id, [], t)) € Intfs

Production (26):

(Names, TH, Intfs, A, Locals) .. Context;  result :t.. Type
if (ret, result, t) € Locals

Production (27):
(Names, TH, Intfs, A, Locals) .. Contexts - des:t; .. Type
(Names, TH, Intfs, A, Locals) .. Contexts  args: types .. Type_List
(Names, TH, Intfs, A Locals) .. Contexts;  des . id ( args ) : ty .. Type
if (method, ty, (id, par_types, t5)) € IntfsA
T (types, par_types) € (lists_coercions .". List_Coercibility)

Production (28):

if
(Names, TH, Intfs, A Locals) .. Context;  this:A .. Type Htrue

Production (29):

[' -. Context; F ezpr:t.. Type

if t
[' .. Contexts  args: [t] ... Type_List e

Production (30):

[' .. Contexts - expr:t.. Type
[' .. Contexts F args: types .. Type_List if true
[ . Contexts = expr, args: [t |types] .. Type_List

Production (31):

[' -. Context; F des:t.. Type
[' .. Contexts F ezpr:t.. Type

if true

Production (32):

— . if t
[' .. Contexts F int_literal : int . Type He

Production (33):
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if true

[' .. Contexts F real_literal : real .. Type
Production (34):

if true

[' .. Contexts F bool literal : bool ... Type

Production (35):
[' . Contexts ~ expr; : t; .. Type
I' - Contexts F expr, :ty.". Type
[' .. Contexts F expr + expry:ts .. Type
if tp=intAty=IintAt3=1intV
ty = int Aty = real At3 = real VvV
t; =real Aty = int At =real VvV
t; = real Aty = real A t3 = real

Production (36):

(Names, TH, Intfs, A, Locals) .. Context;  new id:id .. Type
if id € Names

Production (37):

if true

[' -. Context; F null:void .. Type



