
August ����

Using Many�Sorted Inference Rules

to Generate Semantic Analysis

Sabine Glesner and Wolf Zimmermann

Institut f�ur Programmstrukturen und Datenorganisation�
Universit�at Karlsruhe�

����� Karlsruhe� Germany
fglesnerjzimmerg�ipd�info�uni�karlsruhe�de

Abstract� We introduce a speci�cation language that can be used to specify
semantic analysis as well as intermediate code generation� This speci�cation language
de�nes semantic properties by means of many�sorted inference rules� Type inference
rules are just a one�sorted special case� We demonstrate that inference rules can also
be used to infer other semantic information such as de�nitions of identi�ers� scoping�
inheritance relations� etc� To distinguish the di�erent kinds of semantic information
described by the rules� we use a many�sorted language to formulate the inference
rules� We further show how to transform a set of inference rules algorithmically into
an attribute grammar� thus proving that semantic analysis and intermediate code
generation can be generated from such speci�cations�

Keywords� Inference rules� speci�cation language� semantic analysis� intermediate code represen�
tation� compiler generators



� Sabine Glesner and Wolf Zimmermann

�� Introduction

In the literature� there are usually two extreme ways to specify semantic analysis�

Either the speci�cation is rather operational� or the speci�cation is declarative� In
the �rst case� generators for the semantic analysis exist while in the second case�

the speci�cations are only used as a support for the manual implementation of the
semantic analysis� Attribute Grammars are an example of the former� type infer�
ence in functional programming languages is an example of the latter� Designing
attribute grammars requires a lot of experience because it is necessary to justify that
the specifying attribute grammar really de�nes the desired static semantics of the
programming language� However� when type inference rules specify the static se�
mantics� this justi�cation is almost straightforward� Despite these advantages� type
inference rules are mostly used to specify the static semantics of functional languages
which have a rich type system but rather simple scoping rules� Also� in functional
languages� each identi�er and each node in the abstract syntax tree has a type� These
properties do not hold for imperative and object�oriented languages� Their type sys�

tems are rather primitive compared to functional languages while their scoping rules
are much richer�� Moreover� most of these languages are typed so that instead of type
inference it is more type checking what needs to be done when performing semantic
analysis�

An inference style speci�cation has several advantages� First� it abstracts com�
pletely from particular traversals of the abstract syntax tree� It does not matter
whether these are derived from local traversal speci�cations 	as in ordered attribute
grammars
 or whether they are speci�ed explicitly 	as in LAG�grammars or syntax�

directed translations
� Secondly� a notion of consistency and completeness can be
de�ned formally� As usual� consistency means that no contradictory information can
be derived while completeness means that all information desired in a certain sense
is indeed speci�ed by the inference rules so that it could be derived in principle�

The speci�cation method presented in this paper combines the advantages of both
extreme approaches� It extends the idea of type inference rules so that other static
semantic information can be de�ned in the same framework of inference rules with�
out specifying the complete semantics of a programming language� Furthermore� we
show how to transform such inference rules into attribute grammars� Thus� the static
semantics of imperative and object�oriented languages can be speci�ed in the declar�
ative inference rule style while it is still possible to generate the semantic analysis
from such declarative speci�cations� General properties of semantic information that
do not depend on particular programs 	such as subtype relations in imperative lan�
guages� coercibility etc�
 are usually speci�ed outside of the heart of the speci�cation
language� Attribute grammars for example require to implement functions such as

coercions� balancing types etc� in the implementation language of the generated code

�It is speci�c to object�oriented languages that the programmer can specify the subtype relation�
In other languages� this relation is speci�ed in the language de�nition�



Using Many�Sorted Inference Rules to Generate Semantic Analysis �

for the semantic analysis� In contrast to this� our approach allows us to de�ne these
properties also in the style of inference rules� i�e�� there is no need to leave the formal
framework when specifying such information� At this �rst step� it is not our goal to
provide already an e�cient generator� We merely show that it is possible to generate
the semantic analysis from inference style speci�cations�

So there are the following requirements that we pose on our speci�cation method�
We want it to be declarative� It should be a closed framework in the sense that
all information can be speci�ed within the framework� It should be applicable for
realistic programming languages� A notion of consistency and completeness can be
de�ned� The semantic analysis can be generated from such speci�cations� And we
want that the transformation into the intermediate language can also be speci�ed in
the framework� 	This aspect is not in the major focus of this paper but we will argue
rather shortly that it is also possible�


The paper is organized as follows� In Section � we introduce the syntax and se�
mantics of our speci�cation language and demonstrate its use on small examples�
The speci�cation of a complete language which contains already typical properties of
realistic languages 
 a notion of inheritance and overloading similar to Java� a non�
trivial scoping rule� and automatic coercions from integers to �oating point numbers

 is given in the appendix� In Section � we show how to transform our speci�cations
into attribute grammars� In section � we point out which other aspects we want to
investigate in future work� Section � compares our approach with related work and
investigates in how far they satisfy the requirements stated above� We conclude in
section ��

�� Speci�cation Language

The speci�cation language is based on the context�free grammar which de�nes the
structure of the programming language� We assign a set of inference rules to each
production rule of the context�free grammar� These inference rules describe semantic
properties of the nodes in the AST� Since a node might have more than just one
particular semantic information as for example its type� we need to be able to describe
several semantic properties within the speci�cation language� This is the reason
why we decided to choose a many�sorted language to specify the static semantics of
programming languages� The sort of a semantic information indicates the kind of
property it describes� When carrying out the semantic analysis for a given program�
we try to �nd a rule cover of the abstract syntax tree� Thereby exactly one rule has
to be applicable for each node in the AST� If it is possible to �nd such a rule cover
of the tree� then the program is correct wrt� its static semantics�

First� we describe the syntax of the speci�cation language and show for small exam�
ples how it works� The complete speci�cation of an example language can be found
in the appendix� Then we proceed by de�ning the semantics of the speci�cation lan�



� Sabine Glesner and Wolf Zimmermann

guage� For that we show how to transform a speci�cation into a �rst�order language
so to achieve a standard representation whose semantics is well�known�

���� Syntax of the Speci�cation Language

Since� in general� it is necessary to describe various kinds of semantic properties
for nodes in the AST� we use a many�sorted speci�cation language to describe the
static semantics of programs� We assign a speci�c sort to each piece of semantic
information� There are already certain prede�ned sorts in the speci�cation language�
The sort String denotes all strings of �nite length� The sort Bool contains the truth
values true and false� To describe the most general property of nodes in the AST� we
use the sort GenInfo� This sort contains the three elements correct� incorrect and
don�t�know� For example� information that describes the properties of statements in a
program will have this sort� It indicates whether the statements under consideration
are correct� incorrect� or whether it is still unknown if they are correct or not� Further

prede�ned sorts are sets� lists� and cartesian products of already existing sorts� These
kinds of sorts are denoted as usual by fg� �� and �� In this sense� the three symbols
fg� �� and � as well as String� Bool� and GenInfo are sort constructor functions
and sort constructor constants� resp� The set of all prede�ned sorts are the ground
terms built from sort constructor symbols� i�e�� sort constructor terms containing no
variables� When specifying the static semantics of a programming language� it might
be helpful to de�ne new sorts� This is possible by stating that the new sort s is built
from already exisiting sorts s�� � � � � sn by applying the new sort constructor function
F of sort s to them� s �� F 	s�� � � � � sn
� For example� when describing object�
oriented programming languages� one needs to de�ne the type hierarchy speci�ed in
a particular program� Therefore it is necessary to de�ne the sort Subtyping which
basically contains tuples of strings� Subtyping �� fv 	String�String
g� If A is a
subtype of B� then v 	A�B
 holds�

Semantic properties are described with terms of one of the sorts� Terms are built
as usual from variable� constant� and function symbols� The constant symbols �� 	the
empty list
� � 	the empty set
� true� false� and correct� incorrect and don�t�know 	the
values of sort GenInfo
 as well as the function symbols �e j l� 	adding an element
e to a list l
� ��������� 	the operations for manipulating sets
� and 	�
�����

	the functions for describing truth values
 can be used for building terms�

The speci�cation of a programming language consists of three major parts� the
de�nition of new sorts� general inference rules� and special inference rules associ�
ated with particular production rules of the underlying context�free grammar� As
described above� it is possible to de�ne new sorts in a speci�cation by de�ning with
which new sort constructor symbols and from which already existing sorts this new
sort is derived� It might be necessary to de�ne the properties of such a new sort�
This can be done by stating general inference rules� They have a similar syntactic
structure as special inference rules�



Using Many�Sorted Inference Rules to Generate Semantic Analysis �

An inference rule is a triple consisting of a set of assumptions S�� � � � � Sm� a set of
consequences C�� � � � � Cn� and a condition �� The assumptions and consequences are
sequences� as de�ned below� whereas the condition � is a term of sort Bool� We
write an inference rule in the following form�

S�� � � � � Sm

C�� � � � � Cn

if �

A sequence is a triple� The �rst component is a context � which is a semantic infor�
mation� The second component is a syntactic construct p� and the third component
is a semantic information SemInfo� 	In general inference rules� sequences contain
only a semantic information�
 We write down such a sequence in the following form�

� � p � SemInfo

A semantic information is a tupel consisting of a term t and its sort S� denoted as
t � S�
The following two examples are intended to give an intuitive idea how a speci�cation

might look like� The complete speci�cation for an example language is given in the
appendix�

General Inference Rule� To de�ne Subtyping as a transitive relation� one would
specify the following rule whereby subtypes is assumed to be a free variable which
is implicitly existence�quanti�ed� This means that the rule can be applied when
a concrete value is substituted for subtypes�

subtypes � Subtyping� A v B � subtypes � Bool� B v C � subtypes � Bool

A v C � subtypes � Bool

Special Inference Rule� Consider the production

stat 		
 des �� expr

The associated special inference rule is de�ned as follows�

� � des � t� � Type
� � expr � t� � Type

� � des 		
 expr � correct � GenInfo

if v 	t�� t�


We call a speci�cation consistent wrt� sort S i�� for each program� each node in the
AST has at most one semantic information of sort S� We call a speci�cation consistent
i�� for each program� each node in the AST has at most one semantic information
for each sort� A speci�cation is complete wrt� sort S i�� for each program� each
node in the AST has at least one semantic information of sort S� In particular� a
speci�cation is complete wrt� the transformation into the intermediate representation
i�� for each program� each node in the AST has a semantic information specifying
how to translate the node into the intermediate representation� The speci�cations of
functional languages are typically complete wrt� the type information because each
node in the AST has a type in functional programming languages�



� Sabine Glesner and Wolf Zimmermann

���� Semantics of the Speci�cation Language

We can think of the sorts in the speci�cation language as unary functions de�ned on
the nodes of the abstract syntax tree� Each sort is a function that assigns a value� a
semantic information of this sort� to each node� The �rst�order meaning of a sequence

� � context � p � SemInfo � Sort

would then be de�ned as follows�

context	p
 � �� Sort	p
 � SemInfo�

�� Generating Algorithm

At �rst sight it might seem strange that there are two di�erent pieces of semantic
information in one sequence� One might think that they can be both combined in a
single piece of semantic information� But we have good reason to choose this kind
of information splitting� In nearly all programming languages� the AST nodes have
properties that can be inferred from their successors and properties which are derived
from other surrounding nodes� usually called the context information� SemInfo de�
scribes the semantic information which can be derived from the successors of a node�
The context information is captured in the context �� So the di�erence between the
two pieces of semantic information in a sequence is the direction in the AST in which
they are de�ned� Moreover� one can imagine that the semantic information SemInfo
can be inferred from the context� This is the reason why we call a sequence also a
semantic information judgement�
The basic idea is to convert the sorts of the speci�cation language into attributes�

Each node in the abstract syntax tree which gets a semantic information of some sort
assigned by one of the inference rules will have an attribute of the corresponding kind�
The information before � speci�es the value of the attributes� In particular� the con�
text which is a piece of semantic information with which every AST node is equipped
will be transformed into an environment attribute� Since we might have contexts of
di�erent sorts� we might also have di�erent kinds of environment attributes� Condi�
tions of inference rules lead to conditions in attribute grammars� Each inference rule
de�nes a set of attribution rules�

� The contexts of the assumptions are de�ned based on the contexts of the conse�
quences� The inference rule speci�es the operations to be used to construct the
contexts of the assumptions from the contexts of the consequences� The contexts
correspond with inherited attributes in attribute grammars due to the direction
in the AST in which they are de�ned�

� The other attributes are de�ned on the consequences based on the assumptions�
The information before � speci�es the values of the attributes� The inference rule
speci�es the operations to be used to construct the attributes in the consequences



Using Many�Sorted Inference Rules to Generate Semantic Analysis �

from the attributes of the assumptions� These attributes are synthesized because
they depend solely on the successors of a node�

� General inference rules specify properties of certain attributes� They can be com�
puted by hull algorithms as explained below�

Consider the following inference rule

f�	�� X���� � � � � X��n�
 � Contextf� � Y� � v��� � A���
���

f�	�� X���� � � � � X��n�
 � Contextf� � Y� � v��r� � A��r�

f�	�� X���� � � � � X��n�
 � Contextf� � Y� � v��� � A���
���

f�	�� X���� � � � � X��n�
 � Contextf� � Y� � v��r� � A��r�
���

fm	�� Xm��� � � � � X��nm
 � Contextfm � Ym � vm�� � Am��
���

fm	�� Xm��� � � � � X��nm
 � Contextfm � Ym � vm�rm � Am�rm

� � Contextj � Y� � g�	w���� � � � � w��s�
 � B�

� � Contextj � Y� � g�	w���� � � � � w��s�
 � B�
���

� � Contextj � Y� � gm	wm��� � � � � wm�sm
 � Bm

if h	u�� � � � � ul


associated with the production Y� ��� Y� � � �Ym� where each wi�j equals to one vi��j��
each ui and each Xi�j may be any other information occuring in this rule 	except the
condition
� Then�

� The grammar symbol Yi� i � �� � � � � m has the attributes Ai�j� j � �� � � � � rj and
the attribute env fi �

� The grammar symbol Y� has the attributes B�� � � � � Bk and the attribute env j �

� The attribution rules associated to the inference rule are�

Y��env f� �� f�	Y��env j �X� �� � � � � �X� �n� 

���

Ym�env fm �� fm	Y��env j �Xm�� � � � � �Xm�nm 


Y��B� �� g�	Z����C���� � � � � Z��s��C��s�

���

Y��Bm �� gm	Zm���Cm��� � � � � Zm�sm�Cm�sm


where Zi�j is one of the grammar symbols Y�� � � � � Ym and Ci�j is one of the sorts
occuring in the assumptions associated to symbol Zi�j� if for example �� � Zi�j �
wi�j � Ci�j were an assumption�



� Sabine Glesner and Wolf Zimmermann

� h	W��D�� � � � �Wl�Dl
 is the condition associated to the production Y� ��� Y� � � �Ym�
Here� there is a judgment �� � Wi � ui � Di in an assumption or consequence for
each i � �� � � � � l� or Wi�Di is an environment attribute of one of the production
symbols�

General inference rules describe properties of sorts or attributes� resp� which have
been de�ned in a given speci�cation� Sorts or attributes can be seen as relations� A
relation itself is a subset of the cartesian product built over the sets from which the
elements in a single tuple are taken� The general inference rules describe properties
of these subsets� If some elements are in the set� then also others have to be in
the set� We can think of the general inference rules as describing a hull algorithm�
As an example� think of the general inference rule describing the transitivity of a
relation� It speci�es how to augment a set such that the result is transitive� Since in
each computation of a semantic information or attribute value� resp�� there are only
�nitely many values� such a hull algorithm stops� When transforming a speci�cation
into an attribute grammar� for each attribute which has been introduced into the
attribute grammar because of a new�de�ned sort in the speci�cation� a function
update is de�ned which computes exactly the convex hull as described above� As
soon as an attribute has been computed� its �nal value needs to be determined by
application of update�

Most of the inference rules allow for pattern matching� For example� the compo�
nents of the context are enumerated in an inference rule so that the direct access

to them is easily possible without any other notational overhead� When transform�
ing a speci�cation into an attribute grammar� it is necessary to automatically derive
selector functions from the sort de�nitions and to transform the speci�cation into
one which does not incorporate any pattern�matching� Thereby it is not necessary
to formulate the selection operators within the speci�cation language� This is easily
possible and only a minor point here�

�� Future Work

���� Transformation into Attribute Grammars

In the above transformation of a speci�cation into an attribute grammar� we have
assumed that the context is speci�ed in the opposite direction than the semantic
information on the right�hand side of the inference rule� Therefore� it was secured
that the resulting attribute grammar is well�de�ned� In future work� we will try to
relax the above assumptions on the de�nitions in a speci�cation� Moreover� it is
necessary to �nd e�cient implementations of the sketched operations�



Using Many�Sorted Inference Rules to Generate Semantic Analysis �

���� Transformation in Intermediate Language

In the same way as we have speci�ed semantic information relevant for the semantic
analysis� it is possible to de�ne a new sort Intermediate Code and specify semantic
information of this sort� If we do this such that each node in the abstract syntax tree
gets a semantic information of sort Intermediate Code� then it is easily possible to
generate the transformation into the intermediate language from such a speci�cation�
Here it makes sense to de�ne that a speci�cation is complete wrt� the transformation
into the intermediate language� This is the case if� for each program� each node in
the abstract syntax tree has a semantic information describing how to translate it�
The thorough investigation of this topic is the subject of future work�

���� Static Type Safety

An important property of a programming language is its type safety� We will ex�
amine the question if we can prove� given an inference rule style speci�cation of a
language� whether this language is type�safe� Since many object�oriented languages
are not statically type�safe� it is an interesting question if dynamic type checks can
be generated automatically from a speci�cation�

�� Related Work

We have introduced a method for specifying the semantic analysis of programming
languages� Speci�cations written down in this formalism are declarative� We argued
that realistic languages can be described by this method� Furthermore� we de�ned
the notions of consistency and completeness� Due to the many�sortedness of our
speci�cation language� we can de�ne di�erent kinds of semantic information within
one closed framework� Thereby� the kind of a semantic information can be everything
from a type up to the 	intermediate
 code to which the program fragment will be
translated� This means that we can in particular de�ne the interaction of the pro�
gramming language with the intemediate representation� And last but not least� we
can generate the semantic analysis and also the transformation into the intermediate

language from these speci�cations�

Research on the speci�cation of semantic properties of programming languages and
the generation of their semantic analyses was pushed forward with attribute gram�
mars� A good survey of the obtained results can be found in ����� The actual algo�
rithms for the semantic analysis are simple but will fail on certain input programs
if the underlying attribute grammar is not well�de�ned� Testing if a grammar is
well�de�ned� however� requires exponential time ���� A su�cient condition for being
well�de�ned can be checked in polynomial time� This test de�nes the set of ordered
attribute grammars as being a subset of the well�de�ned grammars ���� However�
there is no constructive method to design such grammars� Hence� designing an or�



	
 Sabine Glesner and Wolf Zimmermann

dered attribute grammar remains a di�cult problem� For another class of attribute
grammars it is required that all attributes can be evaluated during a constant num�
ber of depth��rst� left�to�right traversals of the abstract syntax tree� These are the
left�ordered attribute grammars 	LAG
� ���� ���� Due to their �xed traversal order�
the speci�cation of context�sensitive syntax becomes very operational� i�e� dependent
on the analysis� However� because there are no alternative speci�cation and genera�
tion methodologies� most practical tools are based on attribute grammars� Attribute
grammars allow in particular that di�erent kinds of semantic information can be
speci�ed� in particular the transformation into the intermediate representation� A
notion of consistency and completeness can be de�ned�

A language for the speci�cation of context�sensitive syntax which is based solely
on the predicate calculus is de�ned in ���� Even though this method is completely
declarative� it is not intuitive due to the complexity of �rst�order formulas� Realistic
programming languages can be speci�ed in this framework as it is demonstrated at
the example speci�cation of Oberon� A notion of consistency and completeness is not
of interest in this approach and therefore not investigated� Di�erent kinds of semantic
information can be described by �rst�order predicates but the interaction with the
intermediate representation is not under consideration� The semantic analysis can
be generated but is much too ine�cient for the use in practical compilers�

In functional programming languages� type inference and checking is performed by
solving systems of type equations ���� During this computation it is necessary to
unify terms denoting types� The uni�cation method chosen is typically Robinson�s
����� Since we restrict ourselves to the checking of typed programming languages
and do not require type variables� this approach is more general than necessary in
our context� It cannot be used easily for non�functional programming languages�
A notion of consistency and completeness is not of interest in this approach and
therefore not developed� It is not possible to describe several kinds of semantic
information within this framework because it was designed with emphasis on type
inference� In particular� the interaction with the intermediate language cannot be
de�ned� The generation of the semantic analysis speci�ed with type inference rules
can be generated from such descriptions�

In ����� a speci�cation method for the semantic analysis in object�oriented languages
based on constraints is given� It is declarative in the sense that it allows for the spec�
i�cation of constraints which are propositinal formulas that de�ne the semantical
correctness of a given program� It is not possible to describe realistic programming
languages by this method because already the normal coercion in arithmetic opera�
tions which depends on both operands cannot be speci�ed� A notion of consistency
and completeness has not been further investigated� It is not possible to de�ne several
kinds of semantic information in this method since it only allows for the speci�cation
of type inference� In particular� the interaction with the intermediate language can�
not be described� The semantic analysis restricted to type inference can be generated
from such speci�cations and has time complexity O	n�
 where n is the program size�



Using Many�Sorted Inference Rules to Generate Semantic Analysis 		

Plotkin�s structured operational semantics 	SOS
 ��� describing the semantics of
programming languages is based on automata� Simple rules de�ne state transitions�
Since the thereby described con�guration changes happen only at the rewrite com�
ponent� this way of de�ning semantics is also called small steps semantics� It is a
declarative method but di�ers from ours in the sense that we do not have an under�
lying abstract machine whose operational semantics gives meaning to our inference
rules� SOS rules can be seen as state machines while deduction systems are proof pro�
cedures� In this sense� our inference rules describe a proof procedure 	and not a state
machine
 with which we can establish certain properties for a program 	fragment
�

A similar approach in�uenced by structured operational semantics and by Gentzen�s
Calculus for Natural Deduction Systems 	����
 is de�ned by natural semantics ����
In this method� semantic information can be described in a logic� Inference rules
describe a proof procedure with which certain semantic information can be inferred�
Di�erent logics need to be speci�ed when di�erent kinds of semantic information
should be described� It is possible to generate an e�cient semantic analysis from
natural semantics speci�cations as it is demonstrated in ����

Our approach is also of proof�theoretic nature� We want to prove that certain nodes
in the AST have values of a speci�c sort� The inference rules that we provide allow us
to do such reasoning within a formal system� The main di�erence to natural semantics
is the use of a many�sorted speci�cation language� We allow to specify di�erent kinds
of semantic values in a single speci�cation and distinguish them by their sort tag�
In natural semantics� only one kind of semantic information can be described in
one speci�cation� Di�erent logics are necessary to describe for example the type
system� the interpretation of the language by the intermediate or goal language�

and other properties of the programming language� In contrast� we can describe all
these di�erent aspects in one uni�ed framework by attaching sorts to the semantic
information to distinguish the di�erent kinds of them� The advantage of one single
many�sorted logic for the speci�cation of the semantic analysis is that information
of di�erent sorts can depend on each other and that these interdependencies can be
speci�ed�

�� Conclusion

We showed that semantic analysis can be speci�ed by means of many�sorted inference
rules� They generalize the type inference method commonly used to specify the type
systems of functional programming languages� Since it is necessary to also de�ne
other information than just types� we need to be able to indicate the kind of infor�
mation being described� This is realized by introducing a many�sorted speci�cation
language that assigns sorts to the semantic information which describes program
properties� In this sense� type inference rules are a one�sorted special case of our
speci�cation language� A speci�cation given in this speci�cation language consists
of three parts� 	i
 the de�nition of the kind of information by means of sorts� 	ii




	� Sabine Glesner and Wolf Zimmermann

the de�nition of general properties independent of particular programs by means of
general many�sorted inference rules� and 	iii
 the de�nition of properties associated
with productions by means of special many�sorted inference rules� We showed that it
is possible to generate the semantic analysis module in compilers from such speci��
cations� More precisely� it is possible to transform a speci�cation based on inference
rules into an attribute grammar� If we can ensure that this attribute grammar is
well�de�ned� we can generate the semantic analysis from inference rule style speci��
cations by using compiler generators for attribute grammars� We gave an easy suf�
�cient condition on the speci�cation to ensure that the resulting attribute grammar
is well�de�ned� This su�cient condition might be too restrictive� Its generalization
is subject of future work�

It was not our purpose to demonstrate already an e�cient generator or an e�cient
generated semantic analysis� However� if the attribute grammar is well�de�ned� it is
possible to implement semantic analysis as a kind of topological sorting of the at�
tribute dependencies� This implies that the semantic analysis itself will be e�cient as
long as supporting functions 	e�g� a data structure for the context
 are implemented
e�ciently� A library of typical data structures and functions used in semantic anal�
ysis may guarantee the e�cient implementation of supporting functions and data
structures� Thus� the main focus of future work will be on e�cient generation and
on identifying typical data structures to ensure e�cient semantic analysis�

Acknowledgement� The authors would like to thank Uwe A�mann for many valu�
able discussions and comments while working on this paper�

References

�� G� V� Bochmann� Semantic Evaluation from Left to Right� Communications of the ACM�
���	
���
�	� �����

	� M� Jazayeri� A Simpler Construction Showing the Intrinsically Exponential Complexity
of the Circularity Problem for Attribute Grammars� Journal of the ACM� 	���
����
�	��
�����

�� Simon L� Peyton Jones� The Implementation of Functional Programming Languages�
Prentice�Hall International Series in Computer Science� �����

�� Gilles Kahn� Natural Semantics� In Franz�Josef Brandenburg� Guy Vidal�Naquet� and
Martin Wirsing� editors� Proceedings of the �th Annual Symposium on Theoretical As�
pects of Computer Science �STACS����� pages 		
��� Passau� Germany� February �����
Springer� LNCS 	���

�� U� Kastens� Ordered Attribute Grammars� Acta Informatica� ����
�		�
	��� �����

�� P� M� Lewis� D� J� Rosenkrantz� and R� E� Stearns� Attributed Translations� Journal of
Computer and System Sciences� ���
�	��
���� �����

�� Martin Odersky� De�ning context�dependent syntax without using contexts� ACM Trans�
actions on Programming Languages and Systems� ����
����
��	� July �����

�� Mikael Pettersson� Compiling Natural Semantics� PhD thesis� Department of Computer
and Information Science� Link�oping University� S���� �� Link�oping� Sweden� �����

�� Gordon D� Plotkin� A structural approach to operational semantics� Report DAIMI FN����
Computer Science Department� Aarhus University� Denmark� September �����



Using Many�Sorted Inference Rules to Generate Semantic Analysis 	�

��� Dag Prawitz� Natural Deduction� Almqvist � Wiksell� Stockholm� �����

��� Jens Palsberg and Michael I� Schwartzbach� Object�Oriented Type Systems� Wiley Profes�
sional Computing� �����

�	� J�A� Robinson� A machine�oriented logic based on the resolution principle� Journal of the
ACM� �	��
�	�
��� �����

��� William M� Waite and Gerhard Goos� Compiler Construction� Springer Verlag� Berlin�
New York Inc�� �����

Appendix Example Speci�cation

Context	free Grammar

program 		
 classes ��

classes 		
 class � classes j � ����

class 		
 class id extends id � features end � ��


j class id � features end � ��

features 		
 feature � features j � ����

feature 		
 id � type ��


j method id parameters � type � block ��

parameters 		
 � j � pars � ������

pars 		
 id � type j id � type � pars ������

type 		
 INT j REAL j BOOL j id ������

block 		
 begin stats end ���

stats 		
 � stat j decl 
 � stats j � ������

decl 		
 id � type ���

stat 		
 des �� expr ���


j while expr do stats od ���

des 		
 des � id j id j result ������


j des � id � args � j this ������

args 		
 expr j expr � args ������

expr 		
 des j int literal j real literal j bool literal ������


j expr � expr j new id j null ������


Sort De�nitions

Type �� String

Types �� fStringg

Type List �� �Type�

Subtyping �� fv 	String�String
g

Class Env �� fmethod� attributeg �Type� Signature

Class Envs �� fClass Envg



	� Sabine Glesner and Wolf Zimmermann

Signature �� String� �Type��Type � String�Type

Overriding �� f�	Signature�Signature
g

List Equality �� f��� 	�Type�� �Type�
g

List Coercibility �� fv�� 	�Type�� �Type�
g

Local Def �� flocal� ret� inputg � String�Type

Local Defs �� fLocal Defg

Context� �� fTypesg � fSubtypingg � fClass Envsg

Context� �� Context� �Type

Context� �� Context� � Local Defs

General Inference Rules

subtypes � Subtyping
v 	A�B
 � subtypes � Bool
v 	B�C
 � subtypes � Bool

v 	A�C
 � subtypes � Bool

subtypes � Subtyping
t � Type
void � Type

v 	void� t
 � subtypes � Bool

subtypes � Subtyping

v 	A�A
 � subtypes � Bool

subtypes � Subtyping

v 	int� real
 � subtypes � Bool

hid�� type list�� res type�i � Signature
hid�� type list�� res type�i � Signature
subtypes � Subtyping
v 	res type�� res type�
 � subtypes

list equals � List Equality
��� 	type list�� type list�
 � list equals

overrides � Overriding

�	hid�� type list�� res type�i� hid�� type list�� res type�i
 � overrides

list equals � List Equality

��� 	��� ��
 � list equals

list equals � List Equality
��� 	l�� l�
 � list equals

��� 	�t j l��� �t j l��
 � list equals

list coercions � List Coercibility

v�� 	��� ��
 � list coercions

list coercions � List Coercibility
v�� 	l�� l�
 � list coercions

subtypes � Subtyping
v 	A�B
 � subtypes

v�� 	�A j l��� �B j l��
 � list coercions



Using Many�Sorted Inference Rules to Generate Semantic Analysis 	�

Special Inference Rules

Production 
���

hNames�TH� Infsi � Context� � classes � Names � Types
hNames�TH� Infsi � Context� � classes � TH � Subtyping
hNames�TH� Infsi � Context� � classes � Intfs � Class Envs

hNames�TH� Infsi � Context� � program � correct � Gen Info
if v 	A�B
 � TH 
 A �� B � � v 	B�A
 � TH

Production 
���

hNames�TH� Infsi � Context� � class � Name� � Type
hNames�TH� Infsi � Context� � class � TH� � Subtyping
hNames�TH� Infsi � Context� � class � Intfs� � Class Envs
hNames�TH� Infsi � Context� � classes � Names� � Types
hNames�TH� Infsi � Context� � classes � TH� � Subtyping
hNames�TH� Infsi � Context� � classes � Intfs� � Class Envs

hNames�TH� Infsi � Context� � class � classes � f Name�g � Names� � Types
hNames�TH� Infsi � Context� � class � classes � TH� � TH� � Subtyping
hNames�TH� Infsi � Context� � class � classes � Intfs� � Intfs� � Class Envs
if Name� �� Names�

Production 
���

� � Context� � � � � � Types
� � Context� � � � � � Subtyping
� � Context� � � � � � Class Env

if true

Production 
���

hNames�TH� Intfs�� id�i � Context� � features � Intfs� � Class Envs

hNames�TH� Intfs�i � Context� � class id� extends id� � features end � �
fv 	id�� id�
g � Subtyping

hNames�TH� Intfs�i � Context� � class id� extends id� � features end � �
fhmethod� id�� sigi � Class Env j hmethod� id�� sigi
� Intfs� 
 � sig� � Intfs� � � � 	sig�� sig
g
� Intfs� � Class Envs

if id� � Names 
 v 	id�� id�
 � TH 
 Intfs� � Intfs�

Production 
���



	� Sabine Glesner and Wolf Zimmermann

hNames�TH� Intfs�� idi � Context� � features � Intfs� � Class Envs

hNames�TH� Intfs�i � Context� � class id � features end � � id � Type
hNames�TH� Intfs�i � Context� � class id � features end � � Intfs� � Class Envs
hNames�TH� Intfs�i � Context� � class id � features end � �

fv 	id� Supertype
g � Subtyping
if id � Names 
 v 	id� Supertype
 � TH 
 Intfs� � Intfs�

Production 

��

� � Context� � feature � Intf � Class Env
� � Context� � features � Intfs � Class Envs

� � Context� � feature � features � fIntfg � Intfs � Class Envs
if � Intf� � Intfs � � � 	Intf� Intf�


Production 
���

� � Context� � � � � � Class Envs
if true

Production 
���

hNames�TH� Intfs�Ai � Context� � type � t � Type

hNames�TH� Intfs�Ai � Context� � id � type � hattribute�A� hid� tii � Class Env
if true

Production 
���

hNames�TH� Intfs�Ai � Context� � type � t � Type
hNames�TH� Intfs�Ai � Context� � parameters � types � Type List
hNames�TH� Intfs�Ai � Context� � parameters � locals� � Local Defs

hNames�TH� Intfs�A� locals� � locals�
�fhret� result� tigi � Context� � block � locals� � Local Defs

hNames�TH� Intfs�Ai � Context� � method id parameters � type � block �
locals� � locals� � fhret� result� tig � Local Defs

hNames�TH� Intfs�Ai � Context� � method id parameters � type � block �
hid� types� ti � Signature

hNames�TH� Intfs�Ai � Context� � method id parameters � type � block �
hmethod�A� hid� types� tii � Class Env

if locals� � locals� � �

Production 
����



Using Many�Sorted Inference Rules to Generate Semantic Analysis 	�

� � Context� � � � �� � Type List
� � Context� � � � � � Local Defs

if true

Production 
����

� � Context� � pars � types � Type List
� � Context� � pars � locals � Local Defs

� � Context� � � pars � � types � Type List
� � Context� � � pars � � locals � Local Defs

if true

Production 
����

� � Context� � type � t � Type

� � Context� � id � type � hinput� id� ti � Local Defs
if true

Production 
����

� � Context� � type � t � Type

� � Context� � pars � types � Type List
� � Context� � pars � locals � Local Defs

� � Context� � id � type � pars �
�t j types� � Type List

� � Context� � id � type � pars �
fhinput� id� tig � locals � Local Defs

if � x� y � �hx� id� yi � locals

Production 
����

� � Context� � INT � int � Type
if true

Production 
����

� � Context� � REAL � real � Type
if true

Production 
�
��

� � Context� � BOOL � bool � Type
if true

Production 
����

� � Context� � id � id � Type
if true

Production 
����



	� Sabine Glesner and Wolf Zimmermann

� � Context� � stats � locals � Local Defs

� � Context� � begin stats end � locals � Local Defs
if true

Production 
���a��

� � Context� � stats � locals � Local Defs

� � Context� � stat � stats � locals � Local Defs
if true

Production 
���b��

� � Context� � stats � locals � Local Defs
� � Context� � decl � local � Local Def

� � Context� � decl � stats � flocalg � locals � Local Defs
if � x� id� y � u� v � hx� id� yi � local 
 �hu� id� vi � locals

Production 
����

� � Context� � � � � � Local Defs
if true

Production 
����

� � Context� � type � t � Type

� � Context� � id � type � hlocal� id� ti � Local Def
if true

Production 
����

hNames�TH� Intfs�A� Localsi � Context� � des � t� � Type
hNames�TH� Intfs�A� Localsi � Context� � expr � t� � Type

hNames�TH� Intfs�A� Localsi � Context� � des �� expr � correct � GenInfo
if v 	t�� t�
 � TH

Production 
����

� � Context� � expr � bool � Type

� � Context� � stats � correct � GenInfo

� � Context� � while expr do stats od � correct � GenInfo

if true

Production 
����

hNames�TH� Intfs�A� Localsi � Context� � des � t� � Type

hNames�TH� Intfs�A� Localsi � Context� � des � id � t� � Type

if hattribute� t�� hid� t�ii � Intfs 
 �� t� � hmethod� t�� hid� ��� t�ii � Intfs

	�hattribute� t�� hid� t�ii � Intfs 
 hmethod� t�� hid� ��� t�ii � Intfs

Production 
����



Using Many�Sorted Inference Rules to Generate Semantic Analysis 	�

hNames�TH� Intfs�A� Localsi � Context� � id � t � Type

if � x � hx� id� ti � Locals 	
� x� t� � �hx� id� t�i � Locals 
 hattribute�A� hid� tii � Intfs 	
� x� t� � �hx� id� t�i � Locals 
 � t� � �hattribute�A� hid� t�ii � Intfs

hmethod�A� hid� ��� tii � Intfs

Production 
�
��

hNames�TH� Intfs�A� Localsi � Context� � result � t � Type
if hret� result� ti � Locals

Production 
����

hNames�TH� Intfs�A� Localsi � Context� � des � t� � Type
hNames�TH� Intfs�A� Localsi � Context� � args � types � Type List

hNames�TH� Intfs�A� Localsi � Context� � des � id � args � � t� � Type

if hmethod� t�� hid� par types� t�ii � Intfs

v�� 	types� par types
 � 	lists coercions � List Coercibility


Production 
����

hNames�TH� Intfs�A� Localsi � Context� � this � A � Type
if true

Production 
����

� � Context� � expr � t � Type

� � Context� � args � �t� � Type List
if true

Production 
����

� � Context� � expr � t � Type
� � Context� � args � types � Type List

� � Context� � expr � args � �t j types� � Type List

if true

Production 
����

� � Context� � des � t � Type

� � Context� � expr � t � Type
if true

Production 
����

� � Context� � int literal � int � Type
if true

Production 
����



�
 Sabine Glesner and Wolf Zimmermann

� � Context� � real literal � real � Type
if true

Production 
����

� � Context� � bool literal � bool � Type
if true

Production 
����

� � Context� � expr� � t� � Type
� � Context� � expr� � t� � Type

� � Context� � expr� � expr� � t� � Type

if t� � int 
 t� � int 
 t� � int 	
t� � int 
 t� � real 
 t� � real 	
t� � real 
 t� � int 
 t� � real 	
t� � real 
 t� � real 
 t� � real

Production 
�
��

hNames�TH� Intfs�A� Localsi � Context� � new id � id � Type
if id � Names

Production 
����

� � Context� � null � void � Type
if true


