
Counter-Constrained Finite State Machines:

Modelling Component Protocols with

Resource-Dependencies�

Ralf Reussner

Distributed Systems Technology Center (DSTC) Pty Ltd

Monash University, Melbourne, Australia

rreussner@dstc.monash.edu.au

Abstract

This report deals with the speci�cation of software component pro-

tocols (i.e., the set of service call sequences). The contribution of this

report is twofold: (a) We discuss speci�c requirements of real-world

protocols, especially in the presence of components wich make use of

limited resources. (b) We de�ne counter-constrained �nite state ma-

chines (CC-FSMs), a novel extension of �nite state machines, specif-

ically created to model protocols having dependencies between ser-

vices due to their access to shared resources. We provide a theoretical

framework for reasoning and analysing CC-FSMs. Opposed to �nite

state machines and other approaches, CC-FSMs combine two valuable

properties: (a) CC-FSMs are powerful enough to model realistic com-

ponent protocols with resource allocation, usage, and de-allocation de-

pendencies between methods (as occurring in common abstract data-

types such as stacks or queues) and (b) CC-FSMs have a decidabile

equivalence- and inclusion problem as proved in this report by provid-

ing algorithms for eÆcient checking equivalence and inclusion. These

algorithms directly lead to eÆcient checks for component interoper-

ability and substitutability.

Keywords: software component protocols, �nite state machine ex-

tension, decidable inclusion check, interoperability, substitutability.

�This research was undertaken while the author was with the Universit�at Karlsruhe

(TH), Germany. It was supported by the National German Science Foundation (Deutsche

Forschungsgemeinschaft (DFG), Graduiertenkolleg No. 209).

1

Contents

1 Introduction 3

2 Requirements for Component Protocol Models 4

2.1 Component Protocols . 4

2.2 Requirements for Component Protocol Models 5

2.2.1 Interoperability and Substitutability Checks 5

2.2.2 Expressive Power . 6

2.2.3 Other Requirements 7

3 Specifying Protocols with State-Machines 7

3.1 Using Finite State Machines for Protocols Speci�cation 7

3.2 Counter-Constrained Finite State Machines 9

3.3 Finite State Machines . 9

3.4 Equivalence Check and Minimisation of Finite State Machines 12

3.5 Counter-Constrained Finite State Machines 14

3.6 Decidability of Equivalence and Inclusion 15

3.7 Cross-Product-Automaton and Shu�e-Automaton 27

3.8 Characterisation of the Languages Recognised by CC-FSMs . 29

3.8.1 Relationship to the Chomsky Hierarchy 30

3.8.2 Recognition of Dyck-languages 30

3.9 Modelling with Counter-Constraints 31

3.10 Limitations . 32

4 Related Work 33

4.1 Other Models of Component Protocol Speci�cation 33

4.2 Other Extensions of State Machines with a Decidable Inclusion

or Equivalence Problem . 34

5 Conclusions 35

2

1 INTRODUCTION 3

1 Introduction

The strict organisational and personnel separation of component develop-

ment and component deployment is seen as a prerequisite for an independent

component market [46]. As a consequence of that separation, information on

the proper deployment of the component must be transported from the com-

ponent developer to the component user. It is of practical relevance that

information on the proper deployment of a component is not only part of its

documentation but is also part of the component's interface to make proper

deployment checkable by the middleware. Unfortunately, current commercial

middleware component models do not provide enough semantical informa-

tion on the proper component usage, hence, proper component deployment

is impossible to check statically. As a result, assembling systems or recon-

�guring systems still introduce many errors which remain undetected during

composition time (that is, when you actually expect errors), but are detected

later by the system's user, often causing system-breakdowns, unavailability

and �nancial loss. Usually, it is hard to back-trace which construction or re-

con�guration step caused the later occurring error. (This situation is similar

to debugging code: the location where the e�ects of a bug occur is often not

the location where the bug actually resides. Tracing down the exact location

of the bug often constitutes the major e�ort while debugging.)

Because current commercial component models fail to provide suÆcient

component models supporting con�guration-time interoperability and substi-

tutability checks, research was undertaken into richer interface speci�cations.

Contracts [27] can also be considered as a richer interface speci�cation, hence

as an early anticipation of problems arising because of insuÆcient interface

information.

Like in this paper, the primary emphasis of research in enriched inter-

face models was laid on including component protocol speci�cation within

component interfaces (e.g., [1, 23, 32, 35, 37, 50, 53]). Mostly, the term com-

ponent protocol denotes the set of sequences of calls to services supported

by a component (i.e., the provides protocol as part of the provides interface)

[23, 32]. Besides this, also the necessity of specifying the sequences of calls to

external services (i.e., the requires protocol as part of the requires interface)

is pointed out (e.g., [53] or more explicitly and generally in [6]).

To be useful, component protocol models have to ful�l certain practical

requirements, such as powerful expressiveness (to model practically relevant

protocols). Furtheron, protocol models must have formal properties, e.g.,

providing eÆcient algorithms for checking interoperability. Unfortunately,

none of the existing interface models ful�ls these practical and formal re-

quirements. Generally, the dilemma is to de�ne a model, which, on the one

2 REQUIREMENTS FOR COMPONENT PROTOCOL MODELS 4

hand, is powerful enough to model realistic, widely used protocols, like the

provides protocol of a stack, and, on the other hand, is simple enough to

possess a decidable inclusion problem. For example, �nite state machines

(FSMs) have an eÆcient algorithm to check inclusion, but they are not ca-

pable of modelling the provides protocol of a stack. The same is true for

linear timed logic (LTL). Opposed to that, push-down automata obviously

can model a stack, but the inclusion is not decidable for this automata class

(e.g., [16]). (Other examples are given in sections 2 and 4.)

In this report we present counter-constrained �nite state machines (CC-

FSMs), a new extension of �nite state machines which ful�ls the above men-

tioned requirements. Our model is mainly in
uenced by state machines and

algorithms for their analysis and Kr�amer's work on synchronising interfaces

[23, 20]. The theoretical framework presented in section 3 originates mainly

from the author's German dissertation [39]. A slightly simpli�ed version (but

without proofs) is given in [40].

CC-FSMs allow to model relevant component protocols (as speci�ed in

section 2), and to perform eÆcient checks for interoperability and substi-

tutability. The state machine model itself is de�ned in section 3. This sec-

tion also contains a theoretical framework which is used to derive an eÆcient

algorithm for testing the inclusion of protocols. Furtheron, the languages

recognised by the state machine model are characterised brie
y. Section 4

discusses related work in the area of interface models in general, and of state

machine based approaches in particular. Section 5 concludes and presents

limitations and issues for future work in the area of interface models. We

will use the term automaton and state machine interchangeably.

2 Requirements for Component Protocol Mod-

els

2.1 Component Protocols

Nowadays, all industrial middleware-platforms use so-called signature-list-

based interface models, i.e., interface models like CORBA IDL [33] or JAVA

interfaces [21] which contain the list of services (methods, functions) provided

or required by the component. (Note that JAVA does not model requires

interfaces.)

The result of a successful interoperability or substitutability check with

these signature-list-based interface models is that one can exclude run-time

errors like \invoked method not existing". These checks assume that all

methods of a component are available in all states of the component (i.e.,

2 REQUIREMENTS FOR COMPONENT PROTOCOL MODELS 5

are always callable). Practice shows that this is rarely the case. Most often,

some services are only callable after the successful completion of others. E.g.,

a �le most be opened before one can read or write its content. Finally, it

must be closed. As a result, not all sequences of calls are valid.

The set of valid call sequences is the provides protocol. The set of all

required call sequences is the requires protocol. The bene�t of including these

protocols within component interfaces is that by a successful interoperability

or substitutability check with protocol-modelling interfaces run-time errors

like \invoked method not supported in this state" are excluded.

Note that this de�nition of component protocol is not concerned with the

network protocol used to invoke services (e.g., TCP/IP used by a CORBA

remote procedure call).

In the following, let's identify the provides interface and the provides pro-

tocol and, likewise, the requires interface and the requires protocol, because

the statements on substitutability and interoperability checks hold for arbi-

trary interface models, not only for protocols. Let denote provC the provides

protocol of a component C and reqC the requires protocol of a component C.

2.2 Requirements for Component Protocol Models

2.2.1 Interoperability and Substitutability Checks

During the construction of new component based software architectures, one

usually connects components (which are supposed to interact). As a re-

sult, their interoperability have to be checked. (Dealing systematically with

component adaptation is another concern for interface models, see subsec-

tion on \Other Requirements".) During system recon�guration (including

re-engineering legacy software into a component based architectures), com-

ponents are substituted by other (i.e., when updating with newer versions, or

replacing one component by an assembly of others, etc). To detect common

errors during these system (re-)con�guration steps, a component interface

model must have the following speci�c properties:

� it must model the provided functionality and the required functionality

of the component (i.e., the provides interface and the requires interface

must be modelled). If the requires protocol is not modelled, one cannot

check whether a used component o�ers the functionality and protocol

required by components using it.

� interoperability of components must be checkable: Assuming com-

ponent A uses services of component B, one has to check whether

reqA � provB.

2 REQUIREMENTS FOR COMPONENT PROTOCOL MODELS 6

� substitutability of components must be checkable: Assuming compo-

nent A is to be substituted for component B, one has to check whether

provB � provA ^ reqB � reqA.

These last two requirements for protocol analysis boil down to the need

of an eÆcient inclusion test. (We can reduce the inclusion test to an equiva-

lence check and the construction of the intersection, because we can use (for

arbitrary sets A;B) A � B , A \ B = A.)

For practical purposes an interface model should provide an eÆcient al-

gorithm for inclusion test. As a consequence, Turing-universal models (such

as Turing-machines, �-calculus, etc.) are ruled out, since equivalence and

inclusion are not decidable for turing-universal models [47, 16]. A further

discussion on suitable and unsuitable models is given in section 4.

2.2.2 Expressive Power

Besides these formal requirements, an interface model should (because of

obvious practical reasons) be able to model real-world component interfaces.

For example, when modelling a stack it is important to specify that the pop-

operation has never been called more often than the push-operation has been

called before. Hence, the stack protocol has to model resource-dependencies

between its services push and pop.

In general, these kinds of constraints exist between operations which allo-

cate, de-allocate or use a shared resource piecewise. In the following, the term

resources is used for items which have to allocated before, and de-allocated

after use. A resource is piecewise allocable, deallocable and usable if it can

be accessed in speci�c (resource-speci�c) units. A not piecewise accessable

resource can only be allocated, deallocated or used as a whole.

Examples for piecewise accessable resources are: memory, network con-

nections, �les (however, it depends on the access control of the �le if it is

piecewise accessable or not: If access by records is allowed, the individual

�le is piecewise accessable, if not, the �le is usable only as a whole). Not

piecewise usable resources are: sound output or individual printers, but also

memory content, like in container data-structures, such as stacks or queues.

(In this case the allocation is done by push or insert, the usage and deallo-

cation with pop.)

The following resource-dependencies between services occur in practice

[19]:

1. All allocated resources must be de-allocated (but only the allocated

resources).

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 7

2. Only allocated resources can be used.

3. Every allocation implies a de-allocation (in contrast to the �rst case it

is valid to de-allocate a non-allocated resource).

In section 3.9 we show how to model these resource-dependencies with counter-

constraints (as introduced below).

Note that the requirement of expressive power somewhat con
icts with

the requirements of eÆcient algorithms for checking the inclusion: if we use

an universal model, of course, we could easily model all kinds of resource-

dependencies, but like mentioned above, we cannot perform interoperability

or substitutability checks.

2.2.3 Other Requirements

As a consequence of the separation of component development and compo-

nent deployment, in practice components usually have to be adapted to �t

in a new deployment context. This means that interoperability checks usu-

ally will fail and component adaptation mechanisms are actually of higher

practical importance [37, 38, 43, 53] (and more recently [5]).

Most current approaches (except [23, 12]) are not easy to understand

by non-mathematically trained people. This suggests that probably not one

single model will have the desired mathematical properties and is easy to

use. One solution is the use of di�erent models: one for easy speci�cation,

and one as an input in analysis algorithms, primarily the inclusion check.

Hence, algorithms for translating between di�erent models are an important

area of research. For the state machine model developed in this report an

alternative way of speci�cation by using a kind of temporal logic constraints

given in source-code with a JavaDoc-like syntax is de�ned by Hunzelmann

[19], together with tools for translating these speci�cations into CC-FSMs.

3 Specifying Protocols with a State Machine

based Interface Model

3.1 Using Finite State Machines for Protocols Speci�-

cation

Finite state machines (FSMs) [22] are a well-known notation for protocol

speci�cation [7, 15, 32, 53]. Most relevant communication protocols (e.g.,

TCP/IP [45]) are modelled by FSMs, which enable formal analysis and checks

[15]. FSMs comprise a �nite set of states. When modelling call sequences,

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 8

we model for each state which methods are callable in this state. In many

cases, a method call changes the state of the state machine, i.e., some other

methods are callable after the call, while others, callable in the old state, are

not callable in the new state. A change of states (from an \old" state to a

\new" state) is called (state) transition. The Uni�ed Modelling Language

(UML) [41] includes the standard notion of FSMs. In the state transition

diagram in �gure 1 states are denoted by circles, transitions by arrows. There

is one designated state in which the component is after its creation (i.e., the

start-state). From this start-state all call sequences start.

P-FSM
File

open

close

read,write

Figure 1: P-FSM of the File

A call sequence is only valid if it leads the FSM into a so-called �nal-state.

These �nal-states are denoted by black cycles within the states. Hence, some

of the call sequences described by the example FSM are open-read-write-

close, while one cannot use a command sequence like open-close-read.

All state machine based models model a protocol by specifying valid call

sequences as accepted words. Therefore, the input alphabet (as speci�ed in

the following) is the set of all service names of a component.

Usually the state-space ZPC of the state machine modelling the protocol

is di�erent from the space of all internal states ZIC of the component C (as

modelled, for example, with statecharts [13] in the statechart-diagrams of

UML [41]). The states of ZPC can be regarded as the equivalence classes of

a partitioning of ZIC . Let denote �C a total function which maps each state

z 2 ZIC to the set of methods of C callable in state z. Then ZPC
�= ZIC=�C .

The work presented in this report di�ers from work with communica-

tion protocols in two ways: (a) we are interested in properties of component

con�guration steps (i.e., testing for interoperability or substitutability), while

communication protocols are tested for interoperability, liveness, and absence

of deadlock [26, 15]. (b) FSMs proved to be suÆcient to model relevant prop-

erties of communication protocols. Opposed to that, FSMs are not capable

to model provides interfaces of common software components. For example,

it is easy to prove that the relevant semamtic property of a stack { never

more push operations than pop operations, see �gure 7 { cannot be modelled

by a FSM accurately. Note that the problem mainly arises when modelling

the provides interface: it is important that the provides protocol must not

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 9

model call sequences which are not supported by the component. Opposed

to that, modelling sequences in the requires interface which are never emitted

by the component does not a�ect the validity of the interoperability check

(although it can be a nuisance for the user of the component).

3.2 Counter-Constrained Finite State Machines

In the following we de�ne the model of counter-constrained �nite state ma-

chines (CC-FSMs), and we present the constructions of the so-called cross-

product-CC-FSM and the shu�e-CC-FSM.

3.3 Finite State Machines

Finite state machines (FSMs) were motivated by the description of nerve cells

[22]. The control unit of the previously introduced turing machine is a FSM

as well [47]. The theory of FSMs was later extended (e.g., [11, 30]). Besides

many other areas of application in informatics, FSMs are used successfully

in protocol speci�cation and protocol veri�cation [15], but also for software

speci�cation in general (see for example [2]). There are various de�nitions of

FSMs. The following de�nition is suitable for our purposes.

De�nition 3.1 (Finite State Machine)

A deterministic �nite state machine D is a tuple D = (I; Z; Æ; F; z0), with

� the �nite set I being the input alphabet,

� the �nite set Z being the state set,

� the total function Æ : Z � I ! Z being called state transition function,

� the subset F � Z being the set of accepting states (�nal states), and

� the state z0 2 Z being the start state.

A FSM is in only one state at all times. At the beginning, this is the

start state. In every step, one symbol of the input is read, and the state is

changed in accordance with the transition function. The changing from one

state to another is called transition. If the FSM is in one of the accepted

states, the sequence of the so far read input symbols is called accepted word .

The set of all accepted words is called the language recognised by the FSM

LD � I
� .

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 10

Remark 3.2

Di�erent to other de�nitions, in our model it is possible to leave accepting

states. There is no such restriction of Æ.

Remark 3.3

Automata working in the way described above (state transition when reading

an input symbol) are also called real-time automata, since the processing is

e�ectively done in \real time"; the automaton can read an input symbol only

once. (In contrast to other automata models regarding the input as being

located on a tape that can be used by the read-head several times in both

directions.) Furthermore, there are no state transitions without reading an

input symbol (no so-called �-transitions).

De�nition 3.4 (Projection of a word)

A projection of a word w = c1 � � � cn with regard to a set of symbols � is the

word P�(w) where all letters c of the word w were replaced by the empty

word �, if c 62 �.

De�nition 3.5 (Projection of a set of words)

The projection of a set of words L with regard to a set of symbols � is the

set of words L� := fP�(w)jw 2 Lg

Remark 3.6

The function Æ is a total function. Words not recognised by the FSM lead

the FSM to a state that is not an accepting state. It is helpful to construct Æ

in such a way that all pre�xes which can no longer result in an accepted word

lead the FSM to an error-state err. This error-state err is a non-accepting

state which cannot be left anymore (thus, 8i 2 I:Æ(err; i) = err). It is

suÆcient to establish one single common error-state for all these pre�xes.

Remark 3.7

The states together with Æ can be considered a directed graph with Z forming

the set of nodes, hz1; z2i being connected by an edge, if an input e 2 I exists,

so that Æ(z1; e) = z2. Usually, the edge is annotated with the input e. It

is now possible to apply commonly used terms from graph theory (such as

reachability of nodes, cycles, etc.). The nodes corresponding to �nal states

are marked by black circle. The node corresponding with the start state is

marked by an arrow.

Convention 3.8 (Path)

Since the transition function of a FSM can be represented as a graph, we also

speak of paths of the FSM, meaning a path in the graph-theoretical sense

in the transition function as a directed graph. A path p is indicated by the

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 11

sequence of nodes received: p = [k1 � � �kn]. If one would like to take into

account the input symbols located on the path as well, the path can also be

indicated as p = [(k1 = Æ(k0; e1)); (k2 = Æ(k1; e2)) � � � (kn = Æ(kn�1; en))] or

simpler as p = [(k1; e1) � � � (kn; en)], with ki 2 Z; 0 � i � n and ei 2 I; 1 �

i � n. The set Ep := fei; 1 � i � ng is also called input symbols of the path

p. The set of all paths of an FSM A is called PA.

De�nition 3.9 (Final path in a �nite state machine)

Final paths of the FSM are those paths in the graph that run from the start

state to an accepting state. It is required from the �nal path not to have any

cycles. The �nal paths of a FSM D are abbreviated FPD.

Remark 3.10

Since Z is �nite, every �nal path is of �nite length. Due to the absence of

cycles, there is only a �nite number of �nal paths in a FSM.

De�nition 3.11 (Cycle)

A cycle z is a path in a FSM that has identical �rst and last nodes, therefore

z = [k1 � � �kn = k1]. The set of all cycles of a FSM A is called CyclA.

Convention 3.12 (Connected paths)

Two paths p1; p2 are called directly connected (p1 ! p2) if they have at least

one common node. They are called indirectly connected if there is at least one

path in the FSM that is directly connected with them. If p1; p2 are connected

it also applies that p2 can be reached by p1.

Convention 3.13 (Connected cycles)

Two cycles y1; y2 are called directly connected (y1 $ y2) if they have at

least one common node. They are called indirectly connected if there are

cycles in the FSM that are directly connected with y1, y2 as well as mutually

connected. Note that the connection is not de�ned through a path that is

not a cycle.

Convention 3.14 (Connected path and cycle)

A path p is directly connected (p $ z) with a cycle y if they have at least

one common node. They are called indirectly connected if there are cycles in

the FSM that are directly connected with p and z as well as mutually. Note

that the connection is not de�ned through a path that is not a cycle.

De�nition 3.15 (Reachable cycles)

The set of all cycles reachable by a cycle y is called (y)�. It is useful to

generalise to a set Y of cycles: (Y) := [y2Y (y)
�.

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 12

De�nition 3.16 (Sequence of cycles)

A cycle y1 is located behind another cycle y2 with respect to a �nal path p

(y1 �p y2) if y1 and y2 are connected with p, and y2 cannot be reached by p

without reaching y1.

De�nition 3.17 (Sub-FSM)

The sub-FSM TA(D; s) of a FSMD = (I; Z; Æ; F; z0) is the FSM (I; Z; Æ; F; s)

whose start state is the state s. (Informally: The sub-FSM is the FSM in D

that follows the state s.)

De�nition 3.18

Equivalence and Isomorphism of Finite State Machines

Two FSMs

A = (IA; ZA; ÆA; FA; z0A)

and

B = (IB; ZB; ÆB; FB; z0B)

are considered equivalent if LA = LB. A and B are called isomorphic(A �= B)

if the states of A can be mapped injectively onto the states of B, and if this

mapping ful�ls the following homomorphism constraint with respect to the

transition function:

9� : ZA ! ZB:8z 2 ZA:8e 2 I:�(ÆA(za; e)) = ÆB(�(z); e) ^

�(z0A) = z0B ^

�(FA) = FB

(In the last line, the extension of � to sets is being used.) If A �= B applies,

one also writes ÆA �= ÆB if the transition function is being examined.

3.4 Equivalence Check andMinimisation of Finite State

Machines

For our application of state machines in an interface model for components,

the question of equivalence of two components is important. This question is

dealt with in the section on the decidability of the equivalence of CC-FSMs

3.5. Since CC-FSMs machines are based on FSMs (section 3.6), we also

require a procedure to check the equivalence of two FSMs. Luckily, for every

FSM with a total transition function there is an equivalent minimal FSM,

which is unique modulo isomorphic state renamings. In the following, the

term minimality will be de�ned, and an algorithm for minimising FSMs will

be introduced.

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 13

De�nition 3.19 (Minimal Finite State Machine)

A FSM A is minimal if LA = LB) jZBj � jZAj applies to all equivalent

FSMs B.

The algorithm for minimising FSMs introduced here was developed by D.

Hu�man and E. Moore [18, 8] and makes use of the idea that equivalent

states can be combined.

De�nition 3.20 (Equivalence of states)

Two states z1; z2 2 Z are equivalent if the transition function executes, for

every input, a transition into the same state (which depends only on the

input, but not on the state), thus

z1
�= z2 :, 8e 2 I:Æ(z1; e) = Æ(z2; e) (1)

This corresponds to TA(D; z1) �= TA(D; z2).

The search for equivalent states starts with a partition P = (F; (ZnF)) of

the stateset Z which contains exactly two elements: the �rst element of the

partition is the set of accepting states, the second element is the set of non-

accepting states. The algorithm continues to re�ne this partitioning until a

�xpoint has been reached. For reasons of completeness and to demonstrate

its low complexity, this algorithm will be given here.

Algorithm 3.21 (Minimisation of Finite State Machines)

Input: a FSM A

Output: a minimal FSM A
0 equivalent to A.

for each set p 2 P do

new ;;

�rst �rst state in partition p;

next next state in partition p or

null if no next state in p exists;

for each state z 2 pnf�rstg do

hseparate non-equivalent states in pi

for each input symbol e 2 I do

if Æ(z; e) is in another partition than Æ(�rst; e)) then

add z to new;

fi

od

od

add new to P ;

od

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 14

This algorithm combines all equivalent states in sets, which means it

factorises ZA according to the equivalence relation 1. The resulting FSM A
0

of the algorithm is de�ned as follows:

IA0 := IA

ZA0 := P hstates of A0 are thus sets os states of A.i

ÆA0(z; e) := ÆA(x; e); with x 2 z arbitrary

z 2 FA0 :, 9f 2 z:f 2 FA

z0
A0

:= z 2 ZA0:z0A 2 z

To test the equivalence of two states, O(jIAj) steps are required, so that

we obtain the time complexity O(jZAj � jIAj) for the test of all states. This is

called a pass. A pass needs to be repeated if the partition has been changed

during the pass. At worst, there are no equivalent states (if A is already

minimal), and we obtain O(jZj) sets in the partition, which means the parti-

tioning is changed exactly jZj�1 times, which means at worst jZj�1 passes

are required and one more to establish that the partitioning is not changing

anymore. The following lemma results from this.

Lemma 3.22 (Time complexity of the minimisation)

The time complexity of algorithm 3.21 to minimise a FSM lies inO(jZj2 �jEj).

In [17], an algorithm for the minimisation of FSMs with a total transition

function is introduced, whose time complexity lies in O(jZj � log(jZj)).

3.5 Counter-Constrained Finite State Machines

According to section 3.1, the power of FSMs is not suÆcient for the intended

interface description of software components. Therefore, the expressiveness

of FSMs is extended by counters, which leads to the de�nition of the counter-

constrained �nite state machine (CC-FSM).

De�nition 3.23 (Counter)

Every input symbol e 2 E has a counter #e counting the number of occur-

rences of the input symbol e in a (partial) word. To indicate the word w, in

which the counting was carried out, we write #we.

As input symbols are mapped injectively onto counters, counters are identi-

�ed with input symbols if the context is clear.

De�nition 3.24 (Counter constraints)

A counter constraint is a triple (A;B; k) with two disjunct sets A and B of

input symbols and a natural number k. Four types of counter constraints are

de�ned:

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 15

Dist(A;B; k) := for a word w and all pre�xes of w applies
P

a2A#a �P
b2B #b + k.

DistEq(A;B; k) := for all pre�xes of a word w applies
P

a2A#a �
P

b2B #b+

k and for the word w applies
P

a2A#a =
P

b2B #b + k.

ReversedDist(A;B; k) := for a word w and all post�xes of w applies
P

a2A#a �P
b2B #b + k.

ReversedDistEq(A;B; k) := for all post�xes of a word w applies
P

a2A#a �P
b2B #b + k and for the word w applies

P
a2A#a =

P
b2B #b + k.

The sets A and B of a counter constraint c are also called cA and cB. It is

now possible to de�ne the CC-FSM.

De�nition 3.25 (Counter-constrained State Machines)

A counter-constrained �nite state machine (CC-FSM) is a tuple (E;Z; Æ; F; z0; C),

with D = (E;Z; Æ; F; z0) describing a deterministic FSM and C being a set

of counter constraints. The language recognised by the CC-FSM exactly

contains those words from LD for which all constraints in C are true.

Since every CC-FSM contains a FSM, the conventions and de�nitions regard-

ing path, �nal path, cycle, direct and indirect connectedness are transferable

to counter-constrained �nite state machines, as counters are not of impor-

tance for these path-related terms.

Convention 3.26 (Usability of a path)

A path p of a counter-constrained �nite state machine Z is usable if there

is a word w 2 LZ that is accepted through the path p. Formally: If p =

[(z1; e1); � � � ; (zn; en)], then there is at least one pre�x u and at least one

post�x v, to which applies w = ue1 � � � env 2 LZ . u and v may be empty.

Convention 3.27 (Usability of a cycle)

A cycle z of a counter-constrained �nite state machine Z is called usable if

there is an unlimited number of words w 2 LZ that are accepted through

the cycle z. Formally: If z = [(z1; e1); � � � ; (zn; en)], then there is at least one

pre�x u and at least one post�x v, to which applies jfnjw = u(e1 � � � en)
n
v 2

LZgj =1. u and v may be empty.

3.6 Decidability of Equivalence and Inclusion

The eÆcient decidability of the equivalence and the inclusion of interfaces is

important for the subsequent application of counter-constrained �nite state

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 16

machines in an interface model. For a practically relevant subset of counter-

constrained �nite state machines, eÆcient algorithms for checking equiva-

lence and inclusion will be given here.

De�nition 3.28 (Leftcycles, Rightcycles)

The leftcycles of a counter constraint z are the subset LC of the cycles of a

counter-constrained �nite state machine K, which is de�ned as follows:

LCz := fy is cycle in KjEy \ zA 6= ;g

The rightcycles RC are de�ned analogously:

RCz := fy is cycle in KjEy \ zB 6= ;g

(Ey designates the set of input symbols of the cycle y, see convention 3.8.)

Informally, a cycle is a leftcycle of a counter constraint z if at least one of

its input symbols occurs on the left side of the counter constraint (thus, zA).

This applies analogously to the rightcycles and the right side (thus, zB) of

the counter constraint.

Remark 3.29

Left- and rightcycles of a counter constraint z do not necessarily have to be

disjunct. (Since cycles may contain di�erent input symbols, input symbols

from zA and zB may occur in a cycle.)

At �rst, it is required from counter constraints not to destroy the usability

of paths.

De�nition 3.30 (Valid counter constraint)

A counter constraint z is valid for a FSM Z if there does not exist any cycle

or path in Z whose usability is destroyed by z.

Remark 3.31

If all non-usable cycles of a counter-constrained �nite state machine Z are

removed by changing the transition function, one obtains a new counter-

constrained �nite state machine Z 0 which recognises the same language (LZ =

LZ0). Thus, the precondition to use only valid counter constraints is not

really a restriction. In the following, only valid counter constraints will be

examined.

The following requirement, in contrast, represents a restriction from the theo-

retical point of view, but has no e�ects on the practical use (compare remark

3.33).

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 17

De�nition 3.32 (Uniform counter constraint)

A counter constraint z 2 CZ is uniform with respect to a counter-constrained

�nite state machine Z, if

8y1; y2 2 CyclZ:8p 2 P (y1; y2):�a2z:A#pa = �b2z:B#pb (2)

applies, with P (y1; y2) being de�ned as the set of all paths leading from the

start state to a �nal state, thereby touching the cycles y1 and y2 (in that

order), and not containing any cycles themselves (not containing y1 and y2

either).

Remark 3.33 (Uniform counter constraints are suÆcient)

For the provides interface, counter-constrained �nite state machines with

uniform counter constraints can always be used. A FSM with a non-uniform

counter constraint would prescribe an use of a resource for at least n-times

(with a statically determined, �xed n) in a path; the thus required n-times

release of the resource, however, would be modelled only by a counter con-

straint. Since the number of calls of the release-operation is statically de-

termined as well, the same behaviour can always be modelled so that the

n-times use and release of the resource via the path are prescribed and only

other (for example, more frequent) uses and releases by counter constraints

are checked.

For the equivalence check, the relations between cycles created by counter

constraints are important. A uniform counter constraint z establishes a set

Expz � N2 for two cycles y1; y2:

Expz(y1; y2) := f(n1; n2)jn1�(�a2z:A#y1a)�n2�(�b2z:B#y2b)�z:k relz:t0g (3)

relz:t \=" means, if the type of z is DistEq or ReversedDistEq. If the type

of z is Dist or ReversedDist, relz:t means \�". The relation between cycles

of a counter-constrained �nite state machine and the language recognised by

it is examined in the following considerations.

Convention 3.34

We agree on the set TZ(y1; y2) � N2 for two cycles y1; y2 of the counter-

constrained �nite state machine Z as

TZ(y1; y2) := f(n1; n2)j9�; �;
 2 (IZ)
�
:�y1

n1�y2
n2
 2 LZg (4)

Convention 3.35

Based on the above convention, for a counter-constrained �nite state machine

Z and two of its cycles y1; y2, we agree on the set WZ(y1; y2) � LZ as

WZ(y1; y2) := fwjw = �y1
n1�y2

n2
 2 LZ ; (n1; n2) 2 TZ(y1; y2)g (5)

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 18

WZ(y1; y2) � LZ clearly depends on the relation between the cycles y1
and y2. It is also possible that more than one counter constraint a�ects the

cycles y1 and y2. Thus, we de�ne

RZ(y1; y2) := \z2CZExpz(y1; y2) (6)

When checking the equivalence of two counter-constrained �nite state ma-

chines A;B one needs to test whether all sets TA(y1; y2) and TB(y1; y2) of

two counter-constrained �nite state machines are equal for all pairs of cycles

y1; y2 (given that ÆA = ÆB).

Since these sets are not �nite, this procedure cannot be directly executed.

In the following, it will be described how it is possible to test equality or

inclusion of the sets Expz(y1; y2) without explicitly calculating them.

De�nition 3.36 (Relations between cycles)

A counter constraint z is provided. Furthermore, y1 2 LC(z) and y2 2 RC(z)

shall apply. The tuple rz := (t; k; l; r) is designated as the relation between

y1; y2 induced by z. The type t of the relation equals the type of the counter

constraint z (meaning, Dist, DistEq, ReversedDist or ReversedDistEq.

Also, k := z:k, and l; r are counter variables: l shall indicate the number of

occurrences of the symbols from z:A in y1, l := �a2z:A#y1a, r the number of

occurrences of the symbols from z:B in y2, thus r := �b2z:B#y2b.
1

Since Z can have several counter constraints, several relations may exist

between y1 and y2. The possible connections between these relations will be

de�ned now.

De�nition 3.37 (Compliant and excluding relations)

Two relations rz1 = (t1; k1; l1; r1) and rz2 = (t2; k2; l2; r2) between two cycles

y1; y2 can be related in the following ways.

rz2 strengthens rz1 if

Expz2 � Expz1 (7)

rz1 is compliant with rz2 if

Expz1 = Expz2 (8)

rz1 and rz2 exclude each other in all other cases. (This is actually merely

a necessary constraint. When explicitly constructing the sets Expz1 ; Expz2 ,

one would be able to establish whether Expz1\Expz2 = ;, which is the exact

exclusion criterion.)

1For sake of simplicity and brevity a di�erent de�nition of a relation is given in [40].

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 19

In the following, it will be demonstrated how one can determine with the

help of the relations rz1; rz2 if strengthening, compliance or exclusion exist,

without explicitly calculating the sets Expz1 ; Expz2 .

If both t1 and t2 are DistEq or ReversedDistEq, it applies to (n1; n2) 2

Expz1

n1 � (�a2z1:A#y1a)� n2 � (�b2z1:B#y2b)� z1:k = 0 (9)

which may be expressed by the use of li := zi:l =
P

a2zi:A
#y1a, ri := zi:r =P

b2zi:B
#y2b and ki := �zi:k=ri as n1 � l1�n2 �r1+k1 = 0. (These de�nitions

merely serve to prepare the geometrical interpretation which will be given

subsequently.) If (n1; n2) 2 Expz2(y1; y2), too, n1 � l2�n2 �r2+k2 = 0 applies.

This can be written as

n2(n1) =
l1

r1
� n1 + k1 ^ (10)

n
0

2(n
0

1) =
l2

r2
� n

0

1 + k2 (11)

If this is understood as functions n2; n
0

2 : R ! R, two straight lines are

described by the equations (10) and (11). Thus, compliance exists always

when the straight lines are identical; rz2 strengthens rz1, if n
0

2(n
0

1) � n2(n1)

always applies.

Example 3.38

In �gure 2, two relations are visualised as straight lines. The relation rel2 =

(Dist; 3; 1; 1) strengthens the relation rel1 = (Dist; 2; 1; 2). The points en-

tered correspond to the tuples (n1; n2), which are suÆcient for both relations.

n
1

n
2

Dist(b,c,0)

DistEq(a,b,0)

Figure 2: Visualisation of relations as lines in a plane

Conclusion:

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 20

Lemma 3.39

If t1 and t2 both are either DistEq or ReversedDistEq, strengthening already

implies compliance, since only identical straight lines may be subsets of each

other. Equation 7 is ful�lled if applies:

l1 = l2 ^ r1 = r2 ^ k1 = k2 (12)

If t1 and t2 both are either Dist or ReversedDist, equation (12) has to

apply to the compliance as well, for the strengthening (r2 strengthens r1)

l2

r2
�

l1

r1
^ k2 � k1 (13)

is suÆcient.

Remark 3.40

To ful�l (7), the precondition (12) is necessary. The weaker condition l2
r2
=

l1
r1
^ k2 � k1 is not suÆcient for (12). If l1 6= l2 and r1 6= r2, with

l2
r2

= l1
r1
,

n
0

2(n
0

1) = n2(n1) only applies if n2; n
0

2 are considered real or rational functions.

However, since n2; n
0

2 are functions of N ! N, only the stronger constraint

(12) ensures that n02(n
0

1) = n2(n1).

Remark 3.41

Note that ki = ki(zi; ri). According to the de�nition of ki, in order to test

k2 � k1, it needs to be examined whether k2 � r2 � k1 � r1 applies.

De�nition 3.42 (Cycle relation table)

A cycle relation table (CRT) of a counter-constrained �nite state machine Z

is a two-dimensional table into which the relations between all pairs of cycles

(y1; y2) 2 LC(z)�RC(z) for all z 2 CZ have been entered. y1 is agreed upon

as the row index, y2 be the column index. Each entry CRT (y1; y2) represents

a set of tuples.

Example 3.43 (Cycle relation table)

In �gure 3(a), a counter-constrained �nite state machine with the counter

constraints DistEq(a,b), Dist(b,c) is shown. (b) depicts its CRT.

Remark 3.44 (Entering data into the CRT)

If one �nds an already occupied �eld when entering a relation into the CRT,

this may lead (a) to no change of the entry (in the case of compliant rela-

tions) or (b) to a strengthening of the entry or (c) to an error in the case of

mutually excluding relations. For �nding out, which counter constraints are

contradictory for which cycles, one has to store for each entry in the CRT

the counter constraints which led to this entry.

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 21

1 2
d

ca

b
3

1 2 3

1

2

3

(a) (b)

(DistEq,0,1,1)

(Dist,0,1,1)

- -

-

-

- -

-

Figure 3: Counter-constrained �nite state machine with its CRT

Convention 3.45 (Non-con
icting counter constraints)

If no mutually excluding relations occur when �lling in the CRT of a counter-

constrained �nite state machine Z, CZ is called non-con
icting.

Remark 3.46

The relations "strengthening" and "compliance" between relations serve to

calculate the set RZ(y1; y2), thus, the intersection of the sets Expz(y1; y2).

The procedure introduced here to test these relations leads to a very simple

computation of the intersections: identity in the case of compliance or the

smaller (contained) set is the intersection in the case of strengthening. In-

stead of using this simple calculation of the intersection, other procedures to

describe the strengthening can be applied as well. (Generally, it is possible to

indicate the strengthening by a set of segments of straight lines. As a result,

fewer con
icts occur when �lling in the CRT, and thus also those counter-

constrained �nite state machines could be dealt with that have con
icting

sets of counter constraints when applying the procedure applied here. But

the eÆcient procedure introduced here is suÆcient for the use of counter-

constrained �nite state machines to model the provides interface of software

components.)

Lemma 3.47

If no con
ict occurs when �lling in the CRT of a counter-constrained �nite

state machine Z, and if CZ has only uniform counter constraints, to all cycles

y1; y2 2 CyclZ applies:

RZ(y1; y2) = CRTZ(y1; y2) (14)

Proof 3.48

In the case of two non-con
icting counter constraints z1; z2 2 CZ, regarding

two cycles y1; y2 2 CyclZ it applies either

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 22

� they strengthen each other: thus for exampleExpz1(y1; y2) � Expz2(y1; y2)

(the proof is symmetric for the case of Expz1(y1; y2) � Expz2(y1; y2)),

or

� they are compliant: thus, Expz1(y1; y2) = Expz2(y1; y2)

Since merely those two cases occur for non-con
icting and uniform counter

constraints when constructing the CRT, it applies that the set of those tuples

described by the entry into CRT (y1; y2) is equal to Expzi(y1; y2), with the

following applying to zi 2 C: 8z 2 C:Expzi(y1; y2) � Expz(y1; y2). Thus,

Expzi(y1; y2) = \z2CExpz(y1; y2) = RZ(y1; y2).

In this case, the sets RZ(y1; y2) de�nitely depend on the CRTZ .

Due to the above-mentioned, it is possible to prove the following lemma.

Lemma 3.49

If two counter-constrained �nite state machines A and B have only valid,

uniform and non-con
icting counter constraints, the following applies:

ÆA
�= ÆB ^ CRTA

�= CRTB) LA = LB (15)

Proof 3.50

For a proof by contradiction it is assumed that LA 6= LB. Therefore, 9w 2

LA:w 62 LB. (The proof is symmetric for the case w 2 LB ^ w 62 LA.) The

word w has at least two cycles �y1; �y2 that are related. (Otherwise, this would

immediately result in a contradiction to ÆA
�= ÆB.) Thus, w may also be

written as:

w = ��y�n11 ��y�n22

(with �; �;
 suitable). Conclusion: (�n1; �n2) 2 RA(�y1; �y2). On the other

hand, however, w 62 LB is ÆA �= ÆB, thus 6 9y1; y2 2 CyclB:9(n1; n2):w =

�y1
n1�y2

n2
, and thus

9y1; y2 2 CyclB:RB(y1; y2) 6= RA(�y1; �y2) (16)

Lemma 3.47 states that the sets RA(y1; y2) clearly depend on CRTA, and the

sets RB(y1; y2) de�nitely on CRTB. Since it is provided that CRTA �= CRTB,

it applies that

8y1; y2 2 CyclA = CyclB:RA(y1; y2) = RB(y1; y2)

This represents a contradiction to equation (16).

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 23

Lemma 3.51 (Usability of cycles)

If a counter-constrained �nite state machine has only valid and non-con
icting

counter constraints, all its cycles are usable.

Proof 3.52

A valid counter constraint receives the usability of all cycles according to

de�nition. Thus, for each counter constraint zi and for each pair of cycles

(y1; y2)) there is at least one word w = �(y1)
n1�(y2)

n2
, with �; �;
 suit-

able and (n1; n2) 2 Expzi(y1; y2). If a cycle should not be usable, this may

occur only with more than one (valid) counter constraint. These counter

constraints za; � � � ; zb thus exclude the word w (a; b 2 N; b > a). Therefore,

Expza(y1; y2)\� � �\Expzb(y1; y2) = ;. This represents a contradiction to the

absence of con
icts of the counter constraints.

To demonstrate that two counter-constrained �nite state machines are

equivalent (accept the same language) exactly when their transition functions

and their cycle relation tables are equivalent, speci�c requirements have to

be made to the counter constraints.

De�nition 3.53 (Simple counter constraint)

A simple counter constraint is a counter constraint (A;B; k) where jAj =

jBj = 1. Instead of (A;B; k), we also write (a; b; k), with a being the only

element of A, b the only element of B.

De�nition 3.54 (Chain of counter constraints)

A sequence of simple counter constraints (ai; bi; ki); 0 � i � n; n > forms a

chain if bi = ai+1; 0 � i < n applies. A set of counter constraints is called

chained if a chain exists which its entire counter constraints are part of. A

chain is called cyclic if a0 = bn applies.

Remark 3.55

A cyclic chain needs to contain at least one ReversedDist(Eq)- constraint

and at least one Dist(Eq)-constraint. If the chain consisted merely of

Dist(Eq)-constraints (or merely of ReversedDist(Eq)-constraints), the con-

ditions with respect to the pre�xes (or post�xes, as the case may be) could

not be ful�lled.

Remark 3.56

The cyclic dependencies of the counter constraints can be ful�lled only by

counters having the same value at the end of the input. This applies no

matter if all constraints test the equality at the end of the input or not

(meaning, if Dist-constraints or DistEq-constraints, or, as the case may

be, ReversedDist-constraints or ReversedDistEq-constraints exist). That

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 24

is why many di�erent cyclic chains describe the same facts - that all counters

need to have the same value.

The following de�nitions are meant to exclude the case that di�erent sets of

counter constraints describe the same restriction.

De�nition 3.57 (Normalised set of counter constraints)

A cyclic chain is normalised if all counter constraints contained within the

chain test the equality at the end of the word. (Which means, contain only

DistEq-constraints or ReversedDistEq- constraints.) A set of counter con-

straints is normalised if all chains within the set are normalised.

With this knowledge, it is now possible to transfer the term of minimality

from FSMs (de�nition 3.19) to counter-constrained �nite state machines.

De�nition 3.58 (Minimal counter-constrained �nite state machine)

A counter-constrained �nite state machine (E;Z; Æ; F; z0; C) is minimal if

� (E;Z; Æ; F; z0) is minimal and

� C is normalised.

With these de�nitions, it is possible to prove the following theorem:

Theorem 3.59

The following applies to two minimal counter-constrained �nite state ma-

chines A = (IA; ZA; ÆA; FA; z0A ; CA) and B = (IB; ZB; ÆB; FB; z0B ; CB), both

having only valid, uniform, non-con
icting and simple counter constraints:

LA = LB , ÆA
�= ÆB ^ CRTA

�= CRTB (17)

Note that ÆA �= ÆB requires ZA
�= ZB, FA

�= FB and z0A
�= z0B to apply.

Proof 3.60

� "(" is lemma 3.49.

� ")" will be proven in two steps.

1. First, we will demonstrate that LA = LB) ÆA
�= ÆB. We will

use an arbitrarily chosen f 2 FPA. The word wf 2 LA, which

has been accepted through the path f , is being examined. Since,

according to the precondition, LA = LB, wf 2 LB applies. The

path through which B accepts the word wf be f
0. To show that f 0

is a �nal path in B, it needs to be excluded that f 0 contains cycles.

We assume that f 0 contains at least one cycle. Thus, w can be

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 25

written as ��n
, with �; �;
 2 IB
� suitable. Since B contains only

valid and non-con
icting counter constraints, all cycles are usable

(according to lemma 3.51). We conclude that there is an unlimited

number of words wi in LB with wi = ��
ni
. In particular, there is

the word w0 := �
 2 LB. Since LA = LB, wi 2 LA applies to all

i � 0. Thus, there is a cycle in f as well, since all wi = ��
ni
 have

at least the pre�x � in common with f . As A is deterministic,

A has to use the pre�x � of f when accepting the wi. The fact

that f contains a cycle is contradictory to the choice of f as �nal

path. Thus, f 0 �= f and f
0 is a �nal path in B, too. The same

argumentation applies to all paths in FPB. Thus, FPA
�= FPB.

Furthermore, we need to demonstrate that CyclA �= CyclB ap-

plies. We therefore assume for a proof by contradiction that

CyclA 6
�= CyclB applies. Thus, there is a cycle y 2 CyclA to

which applies 6 9y0 2 CyclB:y
�= y

0. (Otherwise, we
ip A and B.)

There is no word in LB which is accepted through the y (since

y
0
62 CyclB). Since LA = LB applies, there is no word in LA which

is accepted through the cycle y. We conclude that y is not usable

in A. This represents a contradiction to the precondition that

A, according to lemma 3.51, has only valid and non-con
icting

counter constraints.

2. In the second step, we will show that LA = LB ^ ÆA
�= ÆB)

CRTA = CRTB. We assume for a proof by contradiction that

9y1; y2 2 CyclA:CRTA(y1; y2) 6= CRTB(y1; y2)

Two cases may cause this inequality.

First case: Inequality due to a reversed-relation and a non-rever-

sed-relation. (For example, ReversedDist vs. Dist.) Since all

counter constraints are non-con
icting in accordance with the

precondition, the entry with the reversed-relation has been cre-

ated only by reversed-counter-constraints. Analogously, the non-

reversed-relation has been created by non-reversed counter con-

straints only. Thus, ifRA(y1; y2) 6= ;; RB(y1; y2) 6= ;, thenRA(y1; y2) 6=

RB(y1; y2). This represents a contradiction to LA = LB. Thus, it

has to apply that RA(y1; y2) = RB(y1; y2) = ;. This is a contra-

diction to the precondition of y1 and y2 being usable.

Second case: Inequality due to an Eq-relation and a non-Eq-

relation. (For example, DistEq vs. Dist.) We assume, with-

out restricting the universality, that CRTA(y1; y2)=DistEq and

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 26

CRTB(y1; y2) = Dist. (Analogous argumentation for the reversed-

variant.) Since the counter constraints are normalised, the Dist-

relation is not based upon a Dist-counter constraint that is lo-

cated in a cyclic chain. Thus, the Dist- relation is strictly weaker

than the DistEq-relation. Therefore,

(�n1; �n2) 2 TB(y1; y2):(�n1; �n2) 62 TA(y1; y2)

exists. Conclusion:

9w 2 WB(y1; y2):w 62 WA(y1; y2) (18)

with w = �y1
�n1�y2

�n2
 suitable for �; �;
 from IB
�. Since (�n1; �n2) 62

TA(y1; y2), w 62 LA applies. On the other hand, due to WB � LB,

w 2 LB. This represents a contradiction to LA = LB.

Corollary 3.61

(Complexity of the equivalence check of counter-constrained �nite

state machines)

The construction of cycle relation tables and their equality check requires

many steps in jCAj � jCyclAj
2. (Note that CA = CB as well as CyclA �= CyclB

can be considered as preconditions, since they are necessary prerequisites for

equivalence anyway.) jCyclAj can be estimated by the number of transitions

(which, in the case of a deterministic FSM, cannot be larger than jZj2 � jIj,

thus jCyclAj < 2jZj
2�jIj). In the subsequent application of the interface mod-

elling, however, the number of cycles will be noticeably smaller. Since the

counter-constrained �nite state machines must be minimised, one can con-

clude from lemma 3.22 that the complexity of the equivalence check for

counter-constrained �nite state machines isO(max(jZj2 �jEj; jCAj�jCyclAj
2)).

Lemma 3.62 (Inclusion of counter-constrained �nite state machines)

As described in section 3.7, the intersection of two languages recognised

by counter-constrained �nite state machines can be recognised by counter-

constrained �nite state machines. That is why the inclusion check for counter-

constrained �nite state machines meeting the requirements given in theorem

3.59 is successful. To arbitrarily chosen A;B applies: A � B , A \B = A.

Remark 3.63

If the counter constraints fail to meet the requirements of theorem 3.59 (in

particular, non-simple counter constraints), one may, instead of carrying out

the equivalence check through the cycle relation table, execute a conservative

equivalence check between two counter-constrained �nite state machines A

and B, which tests whether

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 27

1. ÆA �= ÆB and

2. CA = CB

applies. This check recognises two non-equivalent counter-constrained �nite

state machines as such, since the above-mentioned preconditions are suÆcient

for the equivalence. However, the above-mentioned preconditions are not

necessary, as the following counter-example will prove. Picture two counter-

c

1 2

a b
c

Figure 4: Example of the conservatism of the above-mentioned simple equiv-

alence check (counter constraints in the text). This example would be treated

correctly by an equivalence check over the CRT.

constrained �nite state machines A and B, which have the same transition

function shown in �gure 4. The counter-constrained �nite state machine

A has the set of counter constraints CA := fDistEq(a; c)g, the counter-

constrained �nite state machine B has the set of counter constraints CB :=

fDistEq(b; c)g. Both state machines recognise the same language LA = LB =

f(ajb)ncng, which means they are equivalent although they have di�erent sets

of counter constraints.

3.7 Cross-Product-Automaton and Shu�e-Automaton

The languages recognised by FSMs are closed under the intersection (for

example, [16]). There is also a procedure to construct one automaton from

two FSMs A and B, which describes the intersection of the languages LA

and LB. This FSM is called cross-product-FSM.

De�nition 3.64

(Cross-product of Counter-Constrained Finite State Machines)

The cross-product-CC-FSM K = (IA�B; ZA�B; ÆA�B; FA�B; z0A�B ; CA�B) of

two counter-constrained �nite state machines A = (IA; ZA; ÆA; FA; z0A ; CA)

and B = (IB; ZB; ÆB; FB;

z0B ; CB) is de�ned as follows:

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 28

� IA�B := IA \ IB

� ZA�B := ZA � ZB

� ÆA�B((za; zb); e) := (ÆA(za; e); ÆB(zb; e)), with za 2 ZA, zb 2 ZB und

e 2 IA \ IB

� (za; zb) 2 FA�B :, za 2 FA ^ zb 2 FB

� z0A�B := (z0A ; z0B)

� CA�B := CA [CB

Remark 3.65

The above de�nition of Æ generally leads to a set of non-accepting states that

cannot be left anymore. These states are thus equivalent and may therefore

always be combined to one single error-state of A� B. (If the states of this

set are considered as tuples, at least one component contains the error-state

of A or B.)

Remark 3.66

The sets of counter constraints are joined CA�B := CA[CB, since words from

the intersection of the languages LA; LB have to ful�l all counter constraints.

It needs to be considered here that the properties of non-con
icting sets

of counter constraints or merely of valid counter constraints of the single

automata do not necessarily have to be transferred to the cross-product-

automaton. If necessary, those properties can be obtained by adapting ÆA�B.

The de�nition of the cross-product-automaton represents the parallel ex-

ecution of the two single automata. The word is accepted if both automata

reach an accepting state. Therefore, the input alphabet may be restricted

to the intersection of the input alphabets of both single automata (symbols

not located within the intersection lead to an error-state in one of the au-

tomata). A similar construction for automata with disjunct input alphabets

is the so-called shu�e-FSM, which recognises the so-called shu�e-languages

(or the so-called shu�e-product) of LA and LB [44]. The shu�e-product of

two languages is a \mixture" of the languages. A word w, which may contain

symbols of both input alphabets IA and IB, belongs to the shu�e-language if

the word being created when all symbols in w that belong to IA are deleted

belongs to LB and when all symbols belonging to IB are deleted, the thus

created word belongs to LA. The de�nition of the shu�e-automaton is iden-

tical with that of the cross-product-automaton except for the de�nition of

the input alphabet and of the transition function.

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 29

De�nition 3.67 (Shu�e Counter-Constrained Finite State Machine)

The shu�e-CC-FSM S = (IA�B; ZA�B; ÆA�B; FA�B; z0A�B ; CA�B) of two CC-

FSMs A = (IA; ZA; ÆA; FA; z0A ; CA) and B = (IB; ZB; ÆB; FB; z0B ; CB) with

IA \ IB = ; is de�ned as follows.

� IA�B := IA [IB

� ZA�B := ZA � ZB

� For the transition function, it is required that IA and IB are disjunct:

ÆA�B((za; zb); e) :=

�
(ÆA(za; e); zb) if e 2 IA

(za; ÆB(zb; e)) if e 2 IB
(19)

� (za; zb) 2 FA�B :, za 2 FA ^ zb 2 FB

� z0A�B := (z0A ; z0B)

� CA�B := CA [CB

The remark regarding the �nal state that is applicable to the cross-product-

CC-FSMs (3.65) applies here as well.

Remark 3.68

The complexity of the cross-product- and shu�e-automata construction is

primarily founded in the placing of the transitions (which lies in O(jZAj �

jZBj � (jIAj + jIBj))). The complexity can thus be estimated by O(S2
� I),

with S := max(jZAj; jZBj), I := max(jIAj; jIBj).

Since the de�nitions for the construction of the cross-product-automaton

and the shu�e-automaton are based on counter-constrained �nite state ma-

chines, the following lemma can be formulated.

Lemma 3.69

(CC-FSMs closed under the intersection and shu�e-operation)

The languages recognised by counter-constrained �nite state machines are

closed under the intersection and the shu�e-operation.

3.8 Characterisation of the Languages Recognised by

CC-FSMs

The counter-constrained �nite state machines discussed above are motivated

by the application, i.e., to describe components which use piecewise alloca-

ble resources. Thus, the classi�cation of languages recognised by counter-

constrained �nite state machines is not the focus of this report. Some state-

ments, however, are of interest.

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 30

3.8.1 Relationship to the Chomsky Hierarchy

The �rst two examples given below demonstrate that the set of languages

recognised by counter-constrained �nite state machines is located "somewhat

orthogonal" to the Chomsky-hierarchy.

It is possible to prove that the counter-constrained �nite state machines

de�ned in 3.25 are unable to recognise the proper context-free language

Lpal-marked := fw$w
R
g (i.e., the language of palindrome words with a marked

centre). This is emphasised by the following plausibility consideration. The

reason for this is that the counter- constrained �nite state machines have no

stack where w could be stored; they would merely be able to check with their

counters whether di�erent input symbols occurred with the same frequency,

which, however, is neither suÆcient nor necessary. This language, however,

is even recognised by deterministic push-down-automata (thus, in a sense,

is located \close" to the regular languages), and moreover, even in real-time

(which also corresponds to the processing in the case of counter-constrained

�nite state machines).

The counter-constrained �nite state machines de�ned in 3.25 recognise

the proper context-sensitive language Ltripel-n := fa
n
b
n
c
n
g. This is achieved

by the CC-FSM having the transition function depicted in �gure 5 and the

(normalised) set C := fDistEq(a; b; 0);DistEq(b; c; 0)g.

b

1 2

c

c

3

ba

Figure 5: Transition function of a counter-constrained �nite automaton able

to recognise Ltripel-n.

3.8.2 Recognition of Dyck-languages

The language family of the Dyck-languages (for example, see [42]) which will

now be brie
y introduced, is interesting because it is suitable to model al-

location and release of resources. A Dyck-language Dn over an alphabet of

n di�erent pairs of brackets is the language of all words correctly bracketed.

For an arbitrary but �xed n 2 N, a counter-constrained �nite state machine

in accordance with de�nition 3.25 recognising Dn can be constructed. (Note,

however, that for every n a di�erent transition function needs to be indi-

cated.) The transition function of a counter-constrained �nite state machine

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 31

recognising D2 is pictured in �gure 6. The set of counter constraints is

C := fDistEq((;); 0);DistEq([;]; 0)g

This transition function has a \sub-automaton" for every sequence of open

[

(

(

[

)

) []

),]

(

[

[

(

]

]()

Figure 6: Transition function of a counter-constrained �nite state machine

recognising D2.

brackets; to the left of the start state in the diagram is the sub-automaton for

the sequence \[(", to the right the one for \([". These sub-automata ensure

the exclusion of sequences starting with the closing of a pair of brackets

although another pair of brackets has not been closed yet. The counter

constraints make sure that, for each type of brackets, there are never more

close brackets than open brackets and that there is a close bracket for every

open bracket at the end of the input. This construction scheme can be

transferred to Dn; n > 2.

3.9 Modelling with Counter-Constraints

According to the list of resource dependencies given in section 2.2 counter-

constraints can be used in the following way. In the sequel, a denotes a

component's service allocating a resource, d a service de-allocating a resource,

and u a service using this resource.

1. All allocated resources must be de-allocated: DistEq(a,d,0)

2. Only allocated resources can be used: Dist(a,u,0)

3. Every allocation implies a de-allocation (in contrast to the �rst case it is

valid to de-allocate a non-allocated resource): ReversedDist(dr,ar,0)

The classical example (as given in the motivation) is, of course, the ab-

stract datatype of a stack. A stack [3] can be seen as one of the most

fundamental and widely used abstract datatypes. The relevant property of a

3 SPECIFYING PROTOCOLS WITH STATE-MACHINES 32

stack's provides interface is that one can push elements on it (push-operation)

and can retrieve the most recently pushed element (top-operation). The

pop-operation retrieves and removes the most recent pushed element. As a

consequence, one never can call pop more often than one has called push

before.

The transition function of the stack's provides interface automaton is ex-

tremely simple. The above mentioned restriction is expressed in the counter-

constraint. Dist(push; pop; 0) expresses, that pop can be called more often

than push. Likewise, the annotational speci�cation only consists of this one

P-FSM
Stack

push, pop, top

C={Dist(push,pop,0)}

Figure 7: The provides interface of a stack

constraint: Dist(push; pop; 0).

3.10 Limitations

As argued in section 2.2, a universal model is of limited use when modelling

component interfaces. Choosing a non-universal model means that one only

can model some (but not all) aspects of the component behaviour. Of prac-

tical relevance for component based software engineering is the aspect of the

component's provides and requires protocols. Although our model is capable

of modelling most relevant protocols, our model fails to specify the complete

behavioural semantics of components. As an example, the di�erent semantics

of the abstract datatypes stack and queue are not re
ected in our interface

model. Both abstract datatypes have the same protocol (neglecting di�erent

naming conventions), especially the same counter-constraint that one never

can remove more items than available. But, of course, the semantic di�erence

of a stack and a queue (FIFO versus LIFO) is not re
ected in our model.

4 RELATED WORK 33

4 Related Work

4.1 Other Models of Component Protocol Speci�ca-

tion

Component models of wide use de�ned within current industrial middleware

platforms (i.e., the Common Object Request Broker Architecture (CORBA)

from the Object Management Group [33], Enterprise Java Beans (EJB) from

Sun Microsystems [9] and the Common Object Model (COM) with many

variants or di�erent namings (e.g., DCOM, COM+,.NET) from Microsoft

Corp. [31]). The interfaces of components from these platforms include only

signature lists. Except for CORBA, requires interfaces are not speci�ed.

None of these models gives rules for specifying valid call sequences. As argued

in this paper missing requires interfaces hinder interoperability checks. Miss-

ing rules decrease the bene�t of interoperability and substitutability checks

substantially, because many common errors remain undetected. The draw-

backs of commercial component models and their precursors in research labs

as mentioned in the introduction gave rise to interface de�nitions includ-

ing rules for behavioural speci�cations. These rules have been expressed in

di�erent notations, each having speci�c advantages and drawbacks.

Predicate based approaches for specifying protocols [25, 54] can describe

protocols of arbitrary complexity. Unfortunately, this universality makes

checking protocol compatibility uncomputable. Restrictions in the univer-

sality enable at least complex checks. For example, restricted logic based

calculi, especially variants of temporal logics have been investigated to model

protocols [12, 26]. Similarly, approaches using process calculi [28] to provide

more interface information are able to specify real-world protocols, but do

not provide eÆcient algorithms for checking protocol compatibility [50].

Petri-nets [34] are a powerful modelling technique for concurrent pro-

cesses. Many variants and algorithms for checking various properties exist

(e.g., [36]). In [52] Petri-nets are used for modelling components within soft-

ware architectures. While eÆcient algorithms exist for some Petri-net models

to check global properties (such as liveness, absence of deadlocks, etc.) other

properties which are important for architectural system con�guration (like

interoperability and substitutability checks) cannot be checked in general.

So-called bounded Petri-nets can be translated into FSMs, and, hence, can

make use of the FSM's bene�ts. Of course, the bene�cial properties of Petri-

nets, such as a neat representation of even large state-spaces are lost when

translating them into FSMs.

The use of �nite state machines to model protocols and to check their

compatibility is well known from the telecommunication and distributed sys-

4 RELATED WORK 34

tems communities, e.g., [15, 24]. Finite state machines are also deployed

successfully for modelling object behaviour and specifying and automating

test sequences [4]. Nierstrasz proposes their use to model the type of an

object [32]. In his approach �nite state machines only describe the provides

interface.

4.2 Other Extensions of State Machines with a Decid-

able Inclusion or Equivalence Problem

A useful overview of the context-free language classes relevant in our context

is given in [10]. Unfortunately, little is known about the decidability of

counter-constrained �nite state machines working in real-time. On the one

hand, the works of Higuchi et al. [14] show that the equivalence problem for

DROCAS (deterministic restricted one-counter automata) working in real-

time is decidable. These automata have a �nite automaton serving as control

unit and a stack serving as counter. The term restricted means that no

symbol exists to designate the end of the stack. Thus, it is not possible to

determine during the processing of the input that the stack is empty (the

empty stack is used merely as a precondition for acceptance at the end of

the input). In the case of DROCAS, the requirement of real-time processing

does not in
uence the decidability of the equivalence and inclusion. If one

allows a stack-end-symbol and does not use real-time processing, the result

is a DOCA (deterministic one-counter automaton), of which it is known that

only the equivalence remains decidable [48, 49]. If more than one counter is

permitted, already with two counters one obtains a universal machine, which

means neither equivalence nor inclusion are decidable [29].

On the other hand, the requirement of real-time processing really restricts

the power of a turing machine [16].

Unfortunately, it is not determined whether equivalence and inclusion

are decidable in the case of a model that has more than one counter but

works in real-time. Also, counter-constrained �nite state machines (such as

the one described here) with many counters, which, however, merely have to

ful�l counter constraints and cannot be taken into account in the transition

function, have yet not been theoretically examined.

Kr�amer's work on synchronising interfaces [23, 20] heavily in
uenced the

here presented extension of FSMs. No statements on the decidability of the

equivalence are given for his model with (simple) counter constraints. The

above de�nition of a subset of �nite automata with simple counter constraints

can be applied to his model, too.

5 CONCLUSIONS 35

5 Conclusions

We discussed general requirements for calculi modelling software component

protocols. Especially, we concentrated on the requirements of modelling pro-

tocols of services sharing resources (like stacks, queues, etc.) and checking

interoperability and substitutability statically at con�guration-time. We pre-

sented the model of counter-constrained �nite state machines, an extension

of �nite state machines. Our new model has the amendable properties of

being able to model those protocols with resource-dependencies and having

a decidable inclusion and equivalence problem.

Future work is suggested in the area of automata theory as well as prac-

tical computer science, namely component meta models. As discussed in the

related work section, it is an open problem whether equivalence and inclu-

sion are decidable in the case of a model that has more than one counter

but works in real-time. Also, it is not clear whether the decidability results

remain if one extends the here proposed model by constraints dealing with

sums of counters instead of single counters.

Although the area of component interoperability checking is of practical

relevance, future work should concentrate on (a) the systematic treatise of

interoperability problems (i.e., component adaptation) and (b) the analyses

of more powerful interface models specifying extra-functional properties, such

as performance and reliability.

Acknowledgements

The author would like to acknowledge the insights and help given in many

fruitful discussions with Gerhard Goos, Jun Han, Gunnar Hunzelmann, Bernd

Kr�amer, WolframMenzel, Kathrin Paschen, Heinz Schmidt, Roland Vollmar,

and Thomas Worsch.

References

[1] Robert Allen and David Garlan. A formal basis for architectural con-

nection. ACM Transactions on Software Engineering and Methodology,

6(3):213{249, July 1997.

[2] Helmut Balzert. Lehrbuch der Software-Technik: Teil 1: Software-

Entwicklung. Spektrum Akademischer Verlag, Heidelberg, Germany,

1996.

REFERENCES 36

[3] F. L. Bauer. The cellar principle of state transition and storage alloca-

tion. Annals of the History of Computing, 12(1):41{49, 1990.

[4] G. V. Bochmann, E. Cerny, M. Gagn�e, C. Jarda, A. L�eveill�e, C. Lacaille,

M. Maksud, K. S. Raghunathan, and B. Sarikaya. Experience with

formal speci�cations using and extended state transition model. IEEE

Trans. Communications, 30(12):2506{2511, December 1982.

[5] Andrea Bracciali, Antonio Brogi, and Carlos Canal. Dynamically Adapt-

ing the Behaviour of Software Components. In Coordination, volume

2315 of Lecture Notes in Computer Science, pages 88{95. Springer-

Verlag, Berlin, Germany, 2002.

[6] P�remysl Brada. Towards automated component compatibility assess-

ment. In Wolfgang Weck, Jan Bosch, and Clemens Szyperski, edi-

tors, Proceedings of the Sixth International Workshop on Component-

Oriented Programming (WCOP'01), June 2001.

[7] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Volker

Gruhn, editor, Proceedings of the Joint 8th European Software Engeneer-

ing Conference and 9th ACM SIGSOFT Symposium on the Foundation

of Software Engeneering (ESEC/FSE-01), volume 26, 5 of SOFTWARE

ENGINEERING NOTES, pages 109{120, New York, September 10{14

2001. ACM Press.

[8] E.F. Moore. Gedanken-experiments on sequential machines. In C.E.

Shannon and J. MacCarthy, editors, Automata Studies, pages 129{153,

Princeton, New Jersey, 1956. Princeton University Press.

[9] Sun Microsystems Corp., The Enterprise Java Beans homepage.

http://java.sun.com/products/ejb/.

[10] J�urgen Freudig. Konformit�atspr�ufung jenseits von Typanalyse. Diplo-

marbeit, Fakult�at f�ur Informatik, Universit�at Karlsruhe (TH), Germany,

September 1998.

[11] Victor M. Gluschkov. Theorie der abstrakten Automaten. Number XIX

in Mathematische Forschungsberichte. VEB Deutscher Verlag der Wis-

senschaften, Berlin (Ost), Germany, 1963.

[12] Jun Han. Temporal logic based speci�cation of component interaction

protocols. In Proccedings of the 2nd Workshop of Object Interoperability

at ECOOP 2000, Cannes, France, June 12.{16. 2000.

REFERENCES 37

[13] D. Harel. Statecharts: a visuel approach to complex systems. Science

of Computer Programming, 8(3):231{274, 1987.

[14] Ken Higuchi, Mitsuo Wakatsuki, and Etsuji Tomita. A polynomial-

time algorithm for checking the inclusion for real-time deterministic re-

stricted one-counter automata which accept by accept mode. TIEICE:

IEICE Transactions on Communications/Electronics/Information and

Systems, E81(1), 1998.

[15] Gerald J. Holzmann. Design and Validation of Computer Protocols.

Prentice Hall, Englewood Cli�s, NJ, USA, 1991.

[16] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley, Reading, MA, USA, 1979.

[17] J. E. Hopcroft. An n logn algorithm for minimizing the states in a

�nite-automaton. In Z. Kohavi, editor, Theory of Machines and Com-

putations, pages 189{196. Academic Press, New York, NY , USA, 1971.

[18] D. A. Hu�man. The synthesis of sequential switching circuits. In Edward

F. Moore (Ed.), Sequential Machines: Selected Papers. Addison-Wesley,

Reading, MA, USA, 1964.

[19] Gunnar Hunzelmann. Generierung von Protokollinformation f�ur Soft-

warekomponentenschnittstellen aus annotiertem Java-Code. Diplomar-

beit, Fakult�at f�ur Informatik, Universit�at Karlsruhe (TH), Germany,

April 2001.

[20] H.-A. Jacobsen and Bernd J. Kr�amer. Modeling interface de�nition lan-

guage extensions. In IEEE Proceedings of TOOLS Paci�c '00, Sydney,

pages 242{252. IEEE Computer Society Press, 2000.

[21] Sun Microsystems Corp., The JAVA homepage. http://java.sun.com/.

[22] S. C. Kleene. Representation of events in nerve nets and �nite automata.

In C. Shannon and J. McCarthy, editors, Automata Studies, Annals of

Math. Studies 34, pages 3{40. Princeton, New Jersey, 1956.

[23] Bernd Kr�amer. Synchronization constraints in object interfaces. In

Bernd Kr�amer, Michael P. Papazoglou, and Heinz W. Schnmidt, editors,

Information Systems Interoperability, pages 111{141. Research Studies

Press, Taunton, England, 1998.

REFERENCES 38

[24] Bernd Kr�amer and Heinz W. Schnmidt. Types and modules for net spec-

i�cations. In K. Voss, H. J. Genrich, and G. Rozenberg, editors, Con-

currency and Nets, pages 269{286. Springer-Verlag, Berlin, Germany,

1987.

[25] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of

subtyping. ACM Transactions on Programming Languages and Systems,

16(6):1811{1841, November 1994.

[26] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and

Concurrent Systems. Springer-Verlag, New York, USA, 1992.

[27] Bertrand Meyer. Applying \design by contract". IEEE Computer,

25(10):40{51, October 1992.

[28] R. Milner. A calculus of communicating systems. Lecture Notes in

Computer Science, 92, 1980.

[29] Marvin Minsky. Computation: Finite and in�nite machines. Prentice

Hall, Englewood Cli�s, NJ, USA, 1972.

[30] R. J. Nelson. Introduction to Automata. Wiley & Sons, New York, NY,

USA, 1968.

[31] Microsoft Corp., The .NET homepage.

http://www.microsoft.com/net/default.asp.

[32] Oscar Nierstrasz. Regular types for active objects. In Proceedings of the

8th ACM Conference on Object-Oriented Programming Systems, Lan-

guages and Applications (OOPSLA-93), volume 28, 10 of ACM SIG-

PLAN Notices, pages 1{15, October 1993.

[33] Object Management Group (OMG). The CORBA homepage.

http://www.corba.org.

[34] C. A. Petri. Fundamentals of a theory of asynchronous information

ow. In Information Processing 62, pages 386{391. IFIP, North-Holland,

1962.

[35] F. Plasil, S. Visnovsky, and M. Besta. Bounding component behavior

via protocols. In Proceedings of TOOLS USA '99, pages 387{398. IEEE,

August 1999.

[36] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theo-

retical Computer Science. Springer-Verlag, Berlin, Germany, 1985.

REFERENCES 39

[37] Ralf H. Reussner. Dynamic types for software components. In Compan-

ion of the Conference on Object-Oriented Programming Systems, Lan-

guages, and Applications (OOPSLA '99), November 5{10 1999. ex-

tended abstract.

[38] Ralf H. Reussner. Enhanced component interfaces to support dynamic

adaption and extension. In 34th Hawaiin International Conference on

System Sciences. IEEE, January 3{5 2001.

[39] Ralf H. Reussner. Parametrisierte Vertr�age zur Protokolladaption bei

Software-Komponenten. Logos Verlag, Berlin, 2001.

[40] Ralf H. Reussner. Counter-contraint �nite state machines: A new model

for resource-bounded component protocols. In Bill Grosky, Frantisek

Plasil, and Ales Krenek, editors, Proceedings of the 29th Annual Con-

ference in Current Trends in Theory and Practice of Informatics (SOF-

SEM 2002), Milovy, Tschechische Republik, Lecture Notes in Computer

Science. Springer-Verlag, Berlin, Germany, November 2002.

[41] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Uni�ed Mod-

eling Language Reference Manual. Addison-Wesley, Reading, MA, USA,

1999.

[42] Arto Salomaa. Formal Languages. Academic Press, New York, NY ,

USA, 1973.

[43] Heinz W. Schmidt and Ralf H. Reussner. Generating Adapters for

Concurrent Component Protocol Synchronisation. In Proceedings of

the Fifth IFIP International conference on Formal Methods for Open

Object-based Distributed Systems, March 2002.

[44] Alan C. Shaw. Software descriptions with
ow expressions. IEEE Trans-

actions on Software Engineering, 4(3):242{254, May 1978.

[45] W. R. Stevens. TCP/IP Illustrated, Volume 1; The Protocols. Addison-

Wesley, Reading, MA, USA, 1994.

[46] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-

gramming. ACM Press, Addison-Wesley, Reading, MA, USA, 1998.

[47] Alan M. Turing. On computable numbers, with an application to the

Entscheidungsproblem. Proc. London Math. Soc., 2(42):230{265, 1936.

REFERENCES 40

[48] Leslie G. Valiant. Decision procedures for families of deterministic push-

down automata. Research Report CS-RR-001, Department of Computer

Science, University of Warwick, Coventry, UK, August 1973.

[49] Leslie G. Valiant. Regularity and related problems for deterministic

pushdown automata. Journal of the ACM, 22(1):1{10, January 1975.

[50] A. Vallecillo, J. Hern�andez, and J.M. Troya. Object interoperability. In

A. Moreira and S. Demeyer, editors, ECOOP '99 Reader, number 1743

in LNCS, pages 1{21. Springer-Verlag, Berlin, Germany, 1999.

[51] A. Vallecillo, J. Hern�andez, and J.M. Troya. Object interoperability. In

ECOOP '00 Reader, number 1964 in LNCS, pages 256{269. Springer-

Verlag, Berlin, Germany, 2000.

[52] W.M.P. van der Aalst, K.M. van Hee, and R.A. van der Toorn.

Component-based software architectures: A framework based on inher-

itance of behavior. BETA Working Paper Series WP 45, Eindhoven

University of Technology, 2000.

[53] D. Yellin and R. Strom. Protocol Speci�cations and Component Adap-

tors. ACM Transactions on Programming Languages and Systems,

19(2):292{333, 1997.

[54] Amy Moormann Zaremski and Jeannette M. Wing. Speci�cation match-

ing of software components. ACM Transactions on Software Engineering

and Methodology, 6(4):333{369, October 1997.

