
libFIRM

A Library for Compiler Optimization Research

Implementing Firm.

Götz Lindenmaier
goetz@ipd.info.uni-karlsruhe.de

Technical Report Nr. 2002-5
ISSN 1432-7864

Institut für Programmstrukturen und Datenorganisation
Prof. Dr. G. Goos

Fakultät für Informatik
Universität Karlsruhe

September 18, 2002

Contents

1 Introduction 5

2 Using libFIRM 6

3 Program Representation 7
3.1 Representation of Types . 7

3.1.1 Atomic and Compound Types 8
3.1.2 The Basic Representation of a Type 8
3.1.3 Primitive Types . 9
3.1.4 Pointer Types . 9
3.1.5 Method Types . 10
3.1.6 Type Kinds Requiring a Layout 11
3.1.7 Enumeration Types 11
3.1.8 Array Types . 12
3.1.9 Structure Types . 14
3.1.10 Union Types . 15
3.1.11 Class Types . 15

3.2 Representation of Entities . 17
3.2.1 Allocation of Entities 19
3.2.2 External Visible Entities 20
3.2.3 Peculiarity of Method Entities 20
3.2.4 Volatile Entities . 20
3.2.5 Atomic and Compound Entities 21
3.2.6 Constant Entities . 22
3.2.7 Entities of Classes . 25
3.2.8 Representation of Entities 25

1

CONTENTS 2

3.3 Representation of Program Code 27
3.3.1 The Program . 27
3.3.2 A Method . 28
3.3.3 The Code of a Method 29
3.3.4 An Operation in the Code 30
3.3.5 The Mode of an Operation 33

3.4 Other . 34
3.4.1 Target Values . 34
3.4.2 Identifiers . 35

4 Connecting to a Front End 36
4.1 General Approach . 36
4.2 Constructing Types . 38
4.3 Constructing Entities . 38

4.3.1 Construction of Constant Entities 39
4.4 Constructing Firm Graphs . 39

4.4.1 Support by libFIRM 39
4.4.2 The Comfortable Interface 39
4.4.3 Procedure Initialization 42
4.4.4 Constructing a Simple Node 44
4.4.5 Statements . 47

5 The Interprocedural Representation 51

6 Optimizations and Transformations 52
6.1 Constant Evaluation, Algebraic Simplification and Others . . 52
6.2 Unreachable Code and Dead Code Elimination 56
6.3 Control Flow Optimizations 57
6.4 Reassociation . 57
6.5 Common Subexpression Elimination 58

6.5.1 Common Subexpression Condition 58
6.5.2 Pinned Nodes . 59

6.6 Code Placement and Partial Redundancy Elimination 59
6.7 Inlineing . 60

7 Existing Analyses 61
7.1 Def-Use Edges . 61
7.2 Dominator Information . 62
7.3 Back Edges and Strongly Connected Regions 62
7.4 Call Graph Analysis . 63

CONTENTS 3

8 Manipulating the intermediate representation 64
8.1 Support for Traversing the intermediate representation 64

8.1.1 Flag for Firm Nodes 64
8.1.2 Flag for Firm Block-Nodes 65
8.1.3 Flag for Types and Entities 65

8.2 Existing Traversal Functions 65
8.3 Support for Transformations 66

8.3.1 Transformation of Firm Graphs 66
8.3.2 Transformation of Type Information 68

9 Firm and Debug Support 69
9.1 Rational . 69
9.2 Interface for Debugging Support 69

List of Figures

3.1 Use of pointer type. 10
3.2 A three dimensional array. 13
3.3 Use of sub/superclass and overwrites relation. 16
3.4 Example for multiple inheritance. 17
3.5 Indirect reference to volatile entity. 20
3.6 Optimization and volatile entities. 21
3.7 Simple constant entities. 22
3.8 Compound constant entities. 23
3.9 Constant array entities. 24
3.10 A dense Cond node. 31

4.1 Initial graph built by new ir graph(). 42
4.2 A while statement. 46
4.3 Intended control flow for while statement. 47
4.4 Implementation for while statement. 48
4.5 Implementation for break statement. 49

8.1 Use of Id node. 65
8.2 Use of Tuple node. 66
8.3 The effect of part block(). 67

4

Chapter 1

Introduction

This tutorial describes the Firm library and how to use it. The Firm li-
brary implements the Firm intermediate representation (ir) as described in
[TLB99]. In addition it supplies data structures to represent the type struc-
ture of the source program, a constant table and other modules necessary
to represent a complete source program. Further it contains interfaces for
construction of intermediate code from the front end and to access the ir.
Some basic optimizations are included.

This tutorial explains how the library supports constructing intermedi-
ate code from a front end and describes the constructs expected to represent
object oriented and imperative constructs and languages. Two chapters deal
with existing standard optimizations and existing analyses. Another chapter
explains how to transform the ir to implement additional optimizations. Fi-
nally the tutorial explains how to handle debug information for the compiled
program.

Basically the Firm library supplies data structures to represent most of
the information available in a program. It contains modules to represent
type information, all entities specified by a program and, of course, program
code. To represent this program code the library implements a representa-
tion according to the intermediate language Firm. Firm and the employed
data structure allow to efficiently perform optimizations that rely on SSA
form.

In addition the library supplies an interface for the attachment of a
front end that automatically constructs the SSA representation and some
standard optimizations.

This tutorial assumes that the reader is familiar with the operations,
modes and basic structure of Firm [TLB99].

5

Chapter 2

Using libFIRM

libFIRM is written in C and all its interfaces are C function calls. It is not
necessary to access any data structures directly. Nevertheless this is possible
by including additional headers (those ending in t). These headers do not
belong to the distribution and are subject of change.

To program with libFIRM only one header needs to be included: firm.h.
This makes all the functionality to construct intermediate representation
available. For debugging and testing purposes irdump.h and irvrfy.h are
useful. These headers needs to be included additionally.

To compile with the library you must pass your compiler the name of
the library, the path to the library and the path to the header files. In
addition you need the Gnu multi precision library gmp and gmp.h.

The comments in the library are in autodoc format. You can generate
documentation in HTML by calling configure with --enable-autodoc and
then make autodoc. You need to have robodoc.

6

Chapter 3

Representation of a Program
with the Firm Library.

libFIRM supports representing most of the information available in a pro-
gram as well as structures defined by the translated programming language.
It contains modules to represent type information, all entities specified by a
program and, of course, program code.

Entities represent all program known objects that occupy some memory
as, e.g., procedures, global variables, constants, dynamically allocated data
structures or stack frames. A type is a description of the size and content
of an entity.

3.1 Representation of Types

The type module supplies functionality to represent source language types.
These include language defined, programmer defined and implicitly defined
types, as in C the basic type int, a type defined with a typedef and the
type of a method. These types serve two purposes within Firm:

They are used to hide access functionality (field access, polymorphy, in-
heritance). To generate this functionality the type information is necessary.
Further full type information allows certain analysis techniques.

Different concepts in programming languages, the memory layout of a
type and the associated functionality allow to distinguish different kinds
(or classes) of types. The representation of a type in libFIRM depends on
the kind of type. libFIRM distinguishes the following kinds of type: class
types, structure types, method types, union types, array types, enumeration
types, pointer types and primitive types. These kinds of types are explained

7

CHAPTER 3. PROGRAM REPRESENTATION 8

in more detail below.
libFIRM associates with the type kinds a basic notion of a memory

model, e.g., when a certain set of memory locations are to be treated together
as a larger structure. It does not specify a full memory model or calling
conventions. These must be modeled explicitly, e.g., by creating a data type
and entity representing a dispatch table.

Functionality for the representation of types is supplied in the header
type.h. Functionality to distinguish the kinds of types is to be found in
header tpop.h.

3.1.1 Atomic and Compound Types

Often it is necessary to know whether an entity represents a value that can
be handled directly by the target code – in this case Firm nodes – or whether
first parts of the entity must be selected. Atomic entities map directly to
a Firm mode. Compound entities can not be manipulated as such, only
parts of compound entities can be handled by the processor. This property
of entities basically depends on the type of the entity. Therefore we also
distinguish atomic and compound types.

Atomic types are primitive, pointer and enumeration types. Compound
types are class, union, structure and array types. Method types are none of
both, as they can not be accessed at all. See also 3.2.5.

3.1.2 The Basic Representation of a Type

A libFIRM type is a data structure used to describe the types in the pro-
gram. It contains some attributes common to all types, a flag indicating the
kind of type and a set of attributes specific for a certain kind of type.

The common attributes are:

kind A type tag always set to k type.
tpop An opcode representing the kind of type. This opcode is readable,

but not writable. libFIRM types can only be allocated with a certain
type opcode.

name The name used for this type in the source program. For types that
are not explicitly named (e.g., method types) the front end must come
up with some name. This name should differ from the name of entities
of this type. The name is useful for debugging the compiler, for debug
support and to implement functionality as reflection.

CHAPTER 3. PROGRAM REPRESENTATION 9

state The state of the type. The state represents whether the layout
of the type is undefined or fixed (values: layout undefined or
layout fixed). Compound types can have an undefined layout. The
layout of the basic types primitive and pointer is always layout fixed.
If the layout of compound types is fixed all entities of the type must
have an offset and the size of the type must be set. A fixed layout for
enumeration types means that each enumeration is associated with an
implementation value. See also Section 3.1.6.

mode The mode to be used to represent this type. For an explanation of
modes see Section 3.3.5. Only atomic types have this attribute. For
these it also describes the size of the type. The mode must be set in
atomic types if their layout is fixed.

size The size of an entity of this type in memory. This number is given
in bytes. The size is determined when fixing the layout of compound
types or can be computed depending on the mode. This attribute is
only set if the type is in the state for fixed memory layout.

visited This attribute can be used for traversing the type information. For
a description how to traverse the type information see Chapter 8.

link A field to refer to additional information about the type, e.g., to be
used by analyses to store temporary information.

The following sub chapters describe the semantics of the different kinds
of types and the attributes private to these types.

3.1.3 Primitive Types

Basic values as integer values, floating point values or characters are values
of a primitive type. The primitive type represents a program language type
for such values. Each primitive type must be associated with a mode that
specifies how the type will be represented on the target machine. The mode
automatically specifies the parameters of the representation as size or align-
ment. The size attribute of primitive types is set when setting the mode of
the primitive type and can not be changed individually. Primitive types are
always in state layout fixed. Only integer, floating point and character
modes are allowed for primitive types.

Primitive types have no private attributes.

3.1.4 Pointer Types

Pointer types allow to carry information about pointers from the source pro-
gram to the ir. This information is carried by the attribute points to that

CHAPTER 3. PROGRAM REPRESENTATION 10

refers to the type of entities the pointer can point to. (For an introduction
to libFIRM entities see Section 3.2.) Values of a pointer type are always rep-
resented with mode p on the target machine. Therefore the mode and size
of a pointer type are fixed. Pointer types are always in state layout fixed.

Attributes of pointer types:

points to Refers to the type of the entity this pointer points to.

Figure 3.1 gives an example of the use of pointer types.

class A { ... }
class B {

a A;
}

class_tp
(A)

pointer_tp
(A_ptr)

entity
(a)

class_tp
(B)

points_to

type

owner

Figure 3.1: Use of pointer type.

3.1.5 Method Types

Method types represent the types of methods, functions and procedures.
They contain a list of the parameter and result types, as these are part
of the type description. Programming languages sometimes define implicit
parameters and results of methods. These must be represented explicitly in
the libFIRM method types.

Method types do not require a layout. The layout is by default
layout fixed. Further methods do not require a mode or a size as their
memory is neither readable nor writable by Firm operations. But as entities
of type method represent a pointer to the method the mode of method types
is set to mode p, and the size is set corresponding to the size of the mode.
Setting the layout or size of a method completes without error but has no
effect.

CHAPTER 3. PROGRAM REPRESENTATION 11

Attributes of method types:

n params Number of parameters to the procedure.
param type A list with the types of parameters. This list is ordered. The

nth type in this list corresponds to the nth element in the parame-
ter tuple that is a result of the start node. (See ircons.h for more
information.)

n ress The number of results of the method. In general, procedures have
zero results, functions one.

res type A list with the types of results. This list is ordered. The nth type
in this list corresponds to the nth element in the result tuple returned
by a Call node. (See ircons.h for more information.)

3.1.6 Type Kinds Requiring a Layout

Compound data types as arrays, structures, unions and class types require a
layout. In programming languages as Java the layout of such data structures
is not specified by the source program. Instead it can be determined by the
compiler and be subject of optimization. Further enumeration types need
not be completely specified by the source language. The mode to implement
the enumeration and the mapping of the enumerators to the values of this
mode can be specified by the compiler.

To represent this, two states exist for types. In the first state the layout
is unspecified, in the second it is fixed. If the layout of a type is unspecified
this requires access by Sel and SymConst nodes. Optimizations of the type
as removing unnecessary entities and determining the layout are possible.
The size of entities must be represented by symbolic constants.

If the type has a fixed layout the offset attribute in the entities of the
type must be set. The entity access by Sel nodes can be replaced by explicit
pointer arithmetic. The size attribute of the type must be set. Symbolic
constants representing the size of the type can be replaced by explicit con-
stants. Specifying the final layout for all data types is a part of lowering.

3.1.7 Enumeration Types

Enumeration types allow to delay mapping the verbose names of enumera-
tors to target values. If the source language does not specify this mapping,
then unnecessary enumerators can be removed by an analysis to achieve a
more compact representation.

Undefined layout of an enumerator means that the mapping of the enu-
merators to target values is not yet established. If the layout is fixed the

CHAPTER 3. PROGRAM REPRESENTATION 12

mode of the type must be set and all enumerators must be mapped to a
target value of this mode. The mode of an enumerator must be an integer
mode.

Attributes of enumeration types:

n enums The number of enumerators in this enumeration.
nameid A list of source program names for the enumerators. An enumer-

ator can be referenced by a SymConst using this name.
enum A list of target values representing an enumerator. This list must be

filled if the type is in state layout fixed. A target value at position
n represents the enumerator referenced with the name at position n
in the nameid list. SymConst nodes can be replaced by Const nodes
with the corresponding target value.

3.1.8 Array Types

An array type describes a set of entities of equal type. A single Firm en-
tity data structure that represents all these entities is associated with the
array type. We call the entities of arrays ‘elements of the array’ instead of
‘members of the array’. Elements can be of all types except method types.

Elements of an array are accessed hierarchically. We call the steps in the
hierarchy dimensions. Each dimension defines a set of virtual addresses of
either sub-arrays or elements. These sub-arrays have exactly one dimension
less. These sets of virtual addresses are indexed by a contiguous set of
integers. This set is either an interval or increasing or decreasing from a
starting point.

Sel nodes used for selecting elements from an array must specify the
indexes of the element to select. The order of the bounds in the array type
as well as the order of the index operands of the Sel node are fixed. They
correspond by their position.

The indexes are resolved by a fixed order. This order is specified explic-
itly in the array type. To compute the address of an element the address
operand of the Sel node and the first index (first in the order specified) is
taken to compute the address of the first sub array. This address with the
second index delivers the address of the third sub array and so forth.

Figure 3.2 shows an example of a Sel node that accesses a three dimen-
sional array. Index value 2 corresponds to dimension 0..5, index value 3
to dimension 3..10 and so forth. The order attribute in the type specifies
that the Sel node dereferences the pointer passed using the second index to
get an array of size [0..5, 0..7]. Within this array it uses the first index

CHAPTER 3. PROGRAM REPRESENTATION 13

int intfield [0..5, 3..10, 0..7]

... = intfield[2,3,6];

2 3 6

primitive_tp
(int)

pointer to array

pointer to array element

memory

Sel
(intfield_t_elt_ent)

entity

type

(intfield_t)

array_tp owner

order

0

7

0

5

3

10

01 2

lower_bnd

upper_bnd

Figure 3.2: A three dimensional array.

to get an array of size [0..7]. Now it accesses the element specified by the
third index to get the array element.

This allows to represent a rich variety of different array semantics. In-
creasing and decreasing index sets allow to represent arrays with a dynamic
size. (The size of the array is determined during run-time, but then con-
stant. The array type can not represent growing arrays.) If both bounds of
an array are unknown at compile time, one of the bounds must be used as
an offset to normalize the index to a static starting point of the array. This
representation of arrays also abstracts from the implementation of the array.
It does not determine whether multidimensional arrays must be represented
by one dimensional arrays where each dimension points to an array of the
lower dimension, or whether the dimensions can be resolved by pure address
computation.

The virtual address spaces are represented by intervals [lower bound,
upper bound[. If the array has a dynamic size one of the bound is un-
specified. One of the bounds must always be specified. The bounds are
represented by Firm nodes allocated as constant code, see Section 3.2.6.

If the layout of an array is undefined the dimensions of the array can be
changed. Here all possible changes are allowed, as reordering the dimensions,
linearizing the array or changing the entity type. If the layout is fixed, C
integers ordering the dimensions must be assigned to the order fields and no
further change of the type is allowed.

CHAPTER 3. PROGRAM REPRESENTATION 14

Attributes of array types:

n dimensions The number of array dimensions.
lower bound A list of lower bounds of each array dimension.
upper bound A list of upper bounds of each array dimension.
order The order of the array dimensions. This must be integers starting

at 0. The index of dimension 0 is resolved first, the index with the
highest order number accesses the array elements.

element type The type of the array elements.
element ent The entity representing the array elements. This entity is

automatically allocated with the array type.

3.1.9 Structure Types

A structure type is a collection of named components which are entities
themselves. These components are called members. An entity of a structure
type occupies a piece of memory which contains disjunct memory regions
for the members. A member can be of a type of any kind except method
types (type method). Nevertheless a member can be a pointer to a method.
A member is represented by an entity whose owner is the structure type.

The representation for a structure has two states. The first does not
specify the layout of the members within the memory region of the structure
nor the size of the structure. It is not specified how members can be accessed
within the structure. This is only possible by utilizing Sel nodes that return
a pointer to a member entity given a pointer to a structure entity. This
state allows optimizations as removing members, reordering members or
even splitting the structure.

The second state fixes the memory layout. All member entities are an-
notated with an offset. The members can still be accessed with Sel nodes,
but also by explicit pointer arithmetics adding the offset to a pointer to the
structure entity. Further the total size in Bytes of the structure is set in the
size attribute. Optimizations of the layout are forbidden.

If the layout is fixed the entities of the structure type may not be of
dynamic or static allocation. They are allocated automatically.

Attributes of structure types:

n members The number of members of the structure.
member A list of the member entities. The owner of these entities must

be the structure type.

CHAPTER 3. PROGRAM REPRESENTATION 15

3.1.10 Union Types

A union type describes a memory region that is big enough to hold any of
its members. It contains only one of its members at a time – depending on
the interpretation of its content.

If the layout of a union type is fixed the size is set.
Attributes of union types:

n members The number of members of the union.
member A list of the member entities. The owner of these entities must

be the union type.

3.1.11 Class Types

A class type is a collection of named components which are entities. These
components are called members. An entity of a class type occupies a piece
of memory which contains disjunct memory regions for the members. In
this it resembles structure types. But there are two differences to structure
types:

Class types allow to specify inheritance. For this they can refer to a list
of super- and subclasses. Further class types can contain method members.
These method members must be static entities, see 3.2.1.

A class type does not specify all members it contains. It inherits all
members of its super classes that are not overwritten by a member of this
class. Entities representing the members of a class can specify the members
of super classes they overwrite. In some cases this straight forward repre-
sentation of inheritance is not appropriate for the compiled source language.
Then it is necessary to construct additional entities in the subclasses that
specify this inheritance explicitly, see also the example in Figure 3.4.

If the entity specified in a Sel node is overwritten by entities in a subclass
the Sel will select the proper entity in the subclass if it gets a pointer to the
subclass as argument. There are no members that are neither inherited nor
overwritten. Members must be at least inherited to guarantee proper access
and to reserve memory.

The libFIRM representation of inheritance is very general. It is designed
to represent the type structure of a variety of programming languages. Low-
ering the full functionality of the type concept requires to foresee situations
that are irrelevant for specific programming languages. Therefore the low-
ering phase should exploit additional knowledge about the programming
language or establish certain properties (as, e.g., single inheritance) by sim-
ple analyses.

CHAPTER 3. PROGRAM REPRESENTATION 16

class A { class B extends A {
int a; int b;
void f() { } void f() { }
void g() { } void h() { }

} }

class_tp
(A)

class_tp
(B)

entity
(b)

entity
(f)

entity
(h)

primitive_tp
(int)

method_tp
(void_void)

over−
written
by

over−

writes

entity
(a)

entity
(f)

entity
(g)

owner

owner

owner

owner

owner

owner

type type type

typetypetype

super−
class

sub−
class

Figure 3.3: Use of sub/superclass and overwrites relation.

The representation of class types has the same two states as structure
types, see Section 3.1.9.

Fixing the layout of classes must respect the specified inheritance rela-
tions. If a class inherits or overwrites members from a superclass this must
be respected by the offsets used for the member entities if the layout is
fixed. The size of a class must include the space for members of the super
classes. In some cases as multiple inheritance it can be necessary to in-
troduce complex functionality to assure correct access. It can be necessary
to change Sel nodes to reflect this functionality. The super/subtype and
overwrites/overwritten relations are oblivious after fixing the class layout.

Further libFIRM distinguishes two peculiarities of class types. The pe-
culiarity describes the purpose of the type. The standard class type is of
peculiarity existent. This means the type describes entities that can ac-
tually appear at runtime. A class type that is never allocated during the
runtime of the program is of peculiarity description. It is only used to
describe certain properties of class types as, e.g., Java Interfaces do. This
information can be used for analyses or directly for optimizations.

Figure 3.3 gives an example of the use of class types.

CHAPTER 3. PROGRAM REPRESENTATION 17

class A { class B1 extends A {}
int a; class B2 extends A {}

} class C extends B1, B2 {}

entity
(a)

class_tp
(A) owner

class_tp
(B1)

class_tp
(B2)

class_tp
(C)

super−
class

super−
class

super−
class

super−
class

entity
(a)

class_tp
(A) owner

class_tp
(B2)

class_tp
(C)

super−
class

super−
class

super−
class

super−
class

class_tp
(B1)

over−
writes

over−
writes

over−
writes

over−
writes

entity
(a)

class_tp
(A) owner

class_tp
(B2)

class_tp
(C)

super−
class

super−
class

super−
class

super−
class

class_tp
(B1)

over−
writes

over−
writes

over−
writes

over−
writes

(a) (b)

(c)

owner owner

ownerowner

entity
(a)

entity
(a)

entity
(a)

owner owner

ownerowner

entity

entity
(a)

entity

entity
(a)

(B1_a) (B2_a)

Figure 3.4: Example for multiple inheritance.
Representations (a) and (b) are equivalent in Firm. (b) can be generated
from (a) in a later compiler phase. If a source language requires a represen-
tation according to (c) for the program example, this representation must
be built directly by the front end.

CHAPTER 3. PROGRAM REPRESENTATION 18

Attributes of class types:

n members The number of members listed in this class type. Does not
include inherited members except if these are represented explicitly.

member A list of the member entities. The owner of these entities must
be this class type.

n supertypes The number of super types of this class type.
supertype A list of the super types of this class type.
n subtypes The number of subtypes of this class type.
subtype A list of the subtypes of this class type.
peculiarity A flag indicating the peculiarity of the type. Possible val-

ues are description and existent (default value). The peculiarity
inherited can only be used with entities, see 3.2.3.

3.2 Representation of Entities

The entity module is implemented in the header entity.h. An entity rep-
resents any program known object that occupies some memory. The size
and content of this memory is specified by a type (except method types,
here the size depends on the code size of the method.) The entity has the
task to represent this memory and the address that identifies this memory.
The address of an entity is the lowest address of an addressable unit of the
memory occupied by the entity, i.e., parts of the entity can not be accessed
by negative offsets to this address.

3.2.1 Allocation of Entities

Further entities have the task to specify how, when and where this memory
is allocated.

There are three cases how and when entities are allocated:

• The entity is statically allocated, i.e., during compile time. This is
the case for global variables and method entities. To represent a
statically allocated entity a special flag in the entity needs to be set
(static allocated).

• The entity is dynamically allocated. This is the case for entities that
are allocated by explicit allocation with the Alloc node. These entities
are not explicitly represented as they are not statically known. This
is also the case for stack frames of methods which are dynamically
allocated with the entry of a method. (dynamic allocated)

CHAPTER 3. PROGRAM REPRESENTATION 19

• The entity is automatically allocated. This is the case for members
of compound objects. They are allocated whenever an entity of the
compound object is allocated. (automatic allocated)

Where an entity is allocated is specified by the owner of the entity. If
entities are members of compound types (class, structure, union, array) this
type is the owner of the entity. Entities representing parameters, results or
local variables of methods are owned by a method.

Local and Global Variables as Entities

Local and global variables are a special case as no natural owner exists for
them in the representation.

Global variables are statically allocated in a dedicated memory region.
libFIRM models this region as a dedicated class type called Global Type.
Per definition exists exactly one entity of this type which roughly corre-
sponds to the data segment of the program. This class type is automatically
generated when initializing the Firm library. Entities for global variables and
for methods that are not owned by a class of the program have this type as
owner.

To get a pointer to a global entity it can be selected from the global
pointer that is supplied by the Start node.

Local variables of a method are allocated with every entry to the method,
typically by using a stack frame. The stack frame is modeled explicitly by a
class type in Firm. Methods in this class type are “inner” methods as, e.g.,
in Pascal1. Members of the frame type will be newly allocated with every
execution of the method.

To get a pointer to a local entity it can be selected from the frame pointer
that is supplied by the Start node.

3.2.2 External Visible Entities

We need a special marking in case of partial compilation. In this case entities
differ in their visibility to program parts not compiled with the current
compilation run. We call the part not included in the current compilation
the external part of the program. There exist three cases:

1Rational: We must model these local variables as entities. The matter is the owner
of this entity. The method type is inappropriate as owner as there can be several method
entities for one method type with different local variables. The entity representing the
method would be suitable as owner as it would be a one to one relation. Unfortunately
only types are allowed as owners. So we need to model a separate type for the stack frame.

CHAPTER 3. PROGRAM REPRESENTATION 20

local The entity is not visible to the external part.
external visible The entity is visible to the external part. This is only

possible for static entities. The memory for the entity is allocated
within the currently translated part of the program.

external allocated The current part of the program uses the entity, but it
is defined and allocated in the external part. This also is only possible
for static entities.

External visible entities may not be optimized away.

3.2.3 Peculiarity of Method Entities

libFIRM distinguishes three peculiarities of method entities. The standard
method entity is of peculiarity existent. A method entity that is never
called during runtime is of peculiarity description. Such an entity is only
used to describe the method that can be called at a certain call cite. Method
entities that are inserted by the front end to describe special inheritance
features of the source language have peculiarity inherited.

This information can be used for analyses or directly for optimizations.

3.2.4 Volatile Entities

The value of a volatile entity can be accessed and changed from outside the
program. A local volatile entity can not be resolved to data flow edges.
Further volatility has consequences for the optimization of Load and Store
operations to that entity. Two subsequent Loads can produce different re-
sults, two subsequent Stores must be executed. A Load after a Store does
not necessarily return the stored value.

A volatile entity is marked by a special flag in the entity.
libFIRM does not perform optimizations for volatile entities if they are

accessed directly. If the address of a volatile entity is used indirectly, e.g.,
by first storing it to another variable, the indirect access is optimized.

volatile int a;
int *b = &a;

x := *b;
x := *b;

volatile int a;
int *b = &a;

x := *b;

Figure 3.5: Indirect reference to volatile entity.

CHAPTER 3. PROGRAM REPRESENTATION 21

A volatile entity does not restrict code motion, i.e., it can not be used
to implement a lock. Transformation in both directions between the two
program fragments in Figures 3.5 and 3.6 is legal on Firm.

volatile int a;
B b = new B();

a := 1;
while (a) { };
x = b.f;

volatile int a;
B b = new B();

a := 1;
x = b.f;
while (a) { };

Figure 3.6: Optimization and volatile entities. b is a pointer to an object
of type B, f a field of b. The optimizer finds out that b never points to a.
Therefore it can move the access to the field of b before the loop.

3.2.5 Atomic and Compound Entities

Often it is necessary to know whether an entity represents a value that can
be handled directly by the target code or whether first parts of the entity
must be selected. Atomic entities map directly to a Firm mode. On first
sight these are entities of primitive and pointer types. Here the mode of the
value of the entity is given. Further enumeration entities are atomic. These
must be mapped to a mode at some point of the compilation. Finally method
entities are atomic. They are represented by a pointer to the method.

Compound entities are entities of compound types.
We can define the compound graph. The nodes of this graph are types

and entities. The edges are the member relations of compound types (in-
cluding the array type – element entity relation) and the edges from entities
to their types. This graph is acyclic. All its leaves are atomic types. See
also 3.1.1.

3.2.6 Constant Entities

An entity primarily contains information about a piece of memory as allo-
cation, visibility or method of access. It also specifies the possible content
of this piece of memory: It specifies a type. Further it allows to specify
the variability of the content. We can distinguish uninitialized, initialized,
partially constant and constant entities. An uninitialized entity has random
content after allocation. An initialized entity has the content given in this

CHAPTER 3. PROGRAM REPRESENTATION 22

entity after allocation. 2 A constant entity has the content given in this
entity for its whole lifetime. A compound entity can be partially constant:
only some of it’s members are constant.

If an entity is constant it means that each run time instance of the
entity has the same constant value. E.g., if the entity is a member of a class
type every instance of the class has the same content associated with this
member. Especially the member is never written. It obviously makes no
sense to keep many constant members in an entity of a compound type – a
compiler phase should move these fields to a constant part that is reachable
from all instances of this type.

If an entity is initialized or constant we must represent the value of the
entity. This is simple if the entity is atomic. We associate a Firm node
that represents the value with the entity. For methods we do not explicitly
represent the constant value: this is a symbolic constant referring to the
entity – the final value can only be determined by the linker. Figure 3.7
illustrates this case.

const int a = 13;

primitive_tp
(int)

13

owner
type

Constant Value

...

entity
(a)

constant

Figure 3.7: Simple constant entities.

For compound types that contain only atomic entities we could represent
the value as a list of Firm nodes that correspond to the entities of the type.
The correspondence can be established by the order within the list of values
and the list of the members. But if the type is optimized the order of entities
can change, entities can be removed or new ones added. When optimizing
the type we do not want to change the constant value information, too.
Anyways this information is not easy reachable. Therefore we represent
the correspondence of values to entities explicitly. We keep two lists in

2It is planned to change the semantics of the Alloc node accordingly: If a graph is
in state phase high the Alloc initializes the memory according to the information in the
type, if it is in state phase low the initialization must be made explicit.

CHAPTER 3. PROGRAM REPRESENTATION 23

constant compound entities, one containing the values as Firm nodes, the
other referencing the corresponding entities.

struct A { struct B {
int a; int b;
B s; }

} const A constA = (1, (7))

(A)
struct_tp

primitive_tp
(int)

entity
(a)

(B)
struct_tp

entity
(b)

owner

owner

owner type

type

type

entity
(s)

1 7

...

owner type

Constant Values

Corresponding Entities1 2

21

entity
(constA)
constant

Figure 3.8: Compound constant entities.

It is more complicated if the entity is of a compound type that itself con-
sists of members of compound types. As we can not represent the compound
member of the type by a single value we need a nested representation. We
need constant values for all leaves of the compound graph reachable from
the type of the constant compound entity.

This representation is illustrated for a small example in Figure 3.8.
For constant arrays only one entity is available to associate the constant

value with. A constant entity of type array contains the values as Firm
nodes in the list of values and the element entity of the array in each corre-
sponding position of the entity list. The number of entries in the list must
match the array bounds (the first entry is lower bound + 0). If the array
has a dynamic bound the given bound must be matched, the other can be
computed. Entities of type array can not be partially constant.

Figure 3.9 shows a constant array and nested compounds.

CHAPTER 3. PROGRAM REPRESENTATION 24

struct A {
int a;
int[0..1] b;

}
const A constA = (1, (7, 5))

(A)
struct_tp

primitive_tp
(int)

entity
(a)

owner

owner

owner type

type

type

entity

1 7

...

owner type

1 2

21

entity

(b)

arr_tp

0 .. 1

3

3 5

Corresponding Entities

Constant Values

(b_arr_elt)

(b_arr)

entity
(constA)
constant

Figure 3.9: Constant array entities.

With this design constant entities refer to other entities to represent
their constant content. When these other entities are optimized the con-
tent representation of the constant entity gets invalidated. libFIRM allows
to update the content representation lazy. In this case entities removed
completely must be turned into Id-entities. A later pass over the constant
representation can compute the correct representation: It removes value and
entity if the entity is an Id-entity or if the entity is no more reachable within
the compound graph of the constant entity.

Constant values are always represented by Firm nodes. This can be
arbitrary Firm graphs that do not use any control flow operations. These
graphs can include Call nodes and Loads from other constant entities, but
they can not have any side effects. These nodes must be allocated with
the comfortable construction interface, current ir graph must be set to
get const code irg().

CHAPTER 3. PROGRAM REPRESENTATION 25

3.2.7 Entities of Classes

Entities with a class type as owner can specify which entities of a superclass
they overwrite. Further the inverse of this relation is represented explicitly.
The entities referred to must be members of a (direct) superclass of the
owner of the entity.

A method entity that is only represented to represent an inheritance
that is not directly representable by the Firm semantics must be of pe-
culiarity inherited. Such entities are necessary if, e.g., a class type has
as super types classes of peculiarity description and existent. If the
existent superclass contains an entity that implements one of the entities
of the description superclass, an entity of peculiarity inherited must
be inserted that overwrites both of these entities so that proper access is
guaranteed. Without explicit representation of the inherited entity both
of these entities would be inherited to the common subclass. See also the
example in Figure 3.4.

3.2.8 Representation of Entities

To implement these features an entity has the following attributes:

type A type that describes the type of this entity.
owner A type that describes the owner of this entity.
name The name used for this entity in the source program. For entities that

are not explicitly named the front end must come up with some name.
This name should differ from the name of the type for this entity. The
name is useful for debugging the compiler, for debug support and to
implement functionality as reflection.

ld name A unique name for the entity. This name can be set by the user
of the library. If it is not set when it is first read it is automatically
generated by concatenating the name of the owner with the name of
the entity. This name is used to generate linking information, e.g.,
when outputting the value of a SymConst node.

allocation This attribute specifies whether the entity is allocated stat-
ically or dynamically. Possible values: automatic allocated,
static allocated or dynamic allocated (default).

visibility This attribute specifies the visibility of the entity. Possible values:
external visible, external allocated or local (default).

variability The variability of the entity. Possible values: uninitialized
(default), initialized, part constant and constant.

CHAPTER 3. PROGRAM REPRESENTATION 26

part constant is only possible for entities of class and structure
types. Entities of type method are always constant.

volatility The volatility of the entity. Possible values: non volatile (de-
fault) and is volatile.

offset The offset to be added to a pointer to the owner to compute a pointer
to this entity. This attribute is only set if the owner of the entity is in
the state for fixed memory layout.

link A void* to associate some additional information with the entity.
visited This attribute can be used for traversing the entities. For a descrip-

tion how to traverse the entities see Chapter 8.

Attributes of entities of type method:

irg The ir graph that represents the program code of the entity. En-
tities where irg is set must have a method type and are of
static allocation.

peculiarity The peculiarity of the entity. Is one of existent, inherited
or description. If the entity is not of peculiarity existent the field
irg is NULL.

Attributes of entities of types primitive, pointer and enumeration:

value A Firm node representing the value for this entity. Only available if
the entity is initialized or constant.

Attributes of entities of types class, struct, union and array:

n values The number of constant values associated with this entity. Only
available if the entity is initialized, part constant or constant.

value A list of constant values for the leave entities of the compound graph
of this entities type. Only available if the entity is initialized,
part constant or constant.

member The leave entities of the compound graph of this entities type
corresponding to the value list. Only available if the entity is
initialized, part constant or constant.

Attributes of entities of type class:

n overwrites The number of entities overwritten by this entity.
overwrites A list of entities in super classes overwritten by this entity. If

the class of this entity is treated as the superclass a Sel node will return
this entity instead of the overwritten one. The entities overwritten by
this one must be members of direct super classes of this entities owner.

CHAPTER 3. PROGRAM REPRESENTATION 27

n overwrittenbys The number of entities that overwrite this entity.
overwrittenby The inverse of the overwrites relation.

3.3 Representation of Program Code

The representation of program code is organized hierarchically. At the top
there is a data structure (ir prog) representing a whole program. It contains
references to all procedures and types as well as general information about
the program. Below there is a data structure representing single procedures.
The code of a procedure is represented as a graph of Firm nodes. The data
structure for the procedure holds general information about the procedure
and entry points to the graph. The nodes of the graph are the third level
of the hierarchy. (There is no distinction in hierarchy between basic blocks
and operations due to the structure of Firm.) Finally all nodes are typed
with a mode.

3.3.1 The Program

A program is represented by several procedures, types and entities. libFIRM
supplies a data structure (ir prog) to merge all this information, and to
hold further central information about the program. Functionality for the
representation of a program is supplied in the header irprog.h. The data
structure contains the following attributes:

program entry point The program entry point is the method that needs
to be started by the operating system to execute the program. This
method may not be of visibility local. If this field is NULL no explicit
program entry point exists. This can be the case if the program is
translated only partially.
Besides this method all methods that are external visible can be
called from outside the compiled code.

irg A list of all methods (ir graphs) compiled.
global type The global type needed as owner for global entities, see 3.2.
types A list of all types compiled. This list does not contain the

global type nor the frame types.
const code irg An ir graph that contains all constant expressions needed

to represent array bounds and initializers.

The entities of a program can be found by inspecting the types. All
static entities are found as members of the Global type.

CHAPTER 3. PROGRAM REPRESENTATION 28

The irprog data structure is allocated and initialized by the initialization
function of the library.

3.3.2 A Method

The representation for a method (ir graph) mainly serves as entry point to
the graph of the method. It is specified in the header irgraph.h and has
the following attributes:

entity The entity for the method.
frame type A class type containing local variables as members. It can also

contain “inner” methods.
start node The start node of the Firm graph.
start block The block that contains the start node.
end node The end node of the Firm graph.
end block The block that contains the end block.
frame pointer A node that represents the stack frame pointer. This

pointer is needed to model selection of local entities with the Sel node.
global pointer A node that represents the pointer to the global entity, see

3.2. This pointer is needed to model selection of global defined entities
with the Sel node.

procedure arguments A Proj node that returns the tuple of all argu-
ments.

current block This attribute is only relevant for the construction of ir.
During construction this is the block to which new nodes are added
automatically by the node constructors.

number of local variables This attribute is only relevant for the con-
struction of ir. It contains the number of all local variables and the
procedure parameters, see also 4.4.2. It is initialized by the constructor
and can not be accessed further.

bad A reference to the unique Bad node in the graph. When building code
use the constructor new Bad() instead.

unknown A reference to the unique Unknown node in the graph. When
building code use the constructor new Unknown() instead.

link A void* to associate some additional information with the graph.
visited A flag for graph traversal.
block visited A flag for block wise graph traversal.

CHAPTER 3. PROGRAM REPRESENTATION 29

States of the Representation

The representation of a method can be in different states. The states re-
flect different phases during the compilation and the validity of additional
analysis data. The states allow to control the interactions of different com-
putations on the ir graphs.

State for Compiler Phase Three states represent different compiler
phases: phase building, phase high, phase low. During construction a
graph is in phase building. After the construction it is in phase high.
Here high level abstractions as Sel nodes are allowed. If all high level ab-
stractions are removed the graph is in phase low.

Other states are documented with the analysis/transformations estab-
lishing the state.

3.3.3 The Code of a Method

The code of a Method is represented by a Firm graph. All nodes of this graph
are represented by a single data type specified in the header irnode.h. The
different Firm operations are distinguished by an opcode of the node and a
mode. The data type for a node has the following attributes:

firm kind A tag specifying that this is a Firm node. This is useful for
dynamically checking the type of a node.

opcode The opcode of the node. There are routines to get the opcode but
also to access the attributes of the opcode directly.

mode The mode of the node. There are routines to get the mode but also
to access the attributes of modes directly.

arity The number of predecessors in the Firm graph not counting the block
predecessor.

in A list with the predecessors in the Firm graph. There is functionality to
access the predecessors individually depending on the opcode of the
node and to iterate over all predecessors.

node nr A unique number for the node. Available only if compiled for
debugging. (Configure with flag –enable-debug).

visited A flag for node traversal.
link A void* to add some information to the node.

CHAPTER 3. PROGRAM REPRESENTATION 30

3.3.4 An Operation in the Code

An Operation is identified by an opcode. Opcodes are defined in header
irop.h. The Opcode holds all generic information about an operation.
Operations can have specific attributes which are stored in the nodes. An
opcode has the following attributes:

name A name for the opcode represented as an ident. To be used in
development and debugging.

opcode An enum identifying the opcode. To be used for switching.
pinned A flag indicating that the node always must be pinned, i.e., the

node may not be move to another block. Has one of the values pinned
or floats.

For the structure of a Firm graph and the semantics of the nodes see
[TLB99]. This report also lists the possible predecessors stored in the in
list specified above and the result of the node.

The following nodes have specific attributes:

The Block Node

block visited A flag to traverse the control flow graph.
cg cfgpred Predecessors in inter procedural graph. This list is automati-

cally accessed by all access functions if interprocedural view is set.

The Start Node

To project individual values from the result tuple of the start node the
following enumerators exist:

pns initial exec The initial control flow.
pns global store The initial global memory.
pns frame base The pointer to the base of the procedures stack frame.
pns globals The pointer to the global memory.
pns args A tuple containing all arguments of the procedure.

The EndReg and EndExcept Node

irg The ir graph this node belongs to. This is needed to set current ir graph
correctly when iterating over an interprocedural graph.

CHAPTER 3. PROGRAM REPRESENTATION 31

The Cond Node

We distinguish three kinds of Cond nodes. These can be distinguished by the
mode of the selector operand and an internal flag kind of type cond kind.
First we distinguish binary Conds and switch Conds. A binary Cond has as
selector a boolean value. Proj (0) projects the control flow for case ”False”,
Proj (1) the control flow for ”True”. A binary Cond is recognized by the
boolean selector. The switch Cond has as selector an unsigned integer. It
produces as result an n+1 Tuple (cf0, ... , cfn) of control flows.

We differ two flavors of this Cond . The first, the dense Cond , passes
control along output i if the selector value is i, 0 ≤ i ≤ n. If the selector
value is >n it passes control along output n.

The second Cond flavor differs in the treatment of cases not specified in
the source program. It magically knows about the existence of Proj nodes.
It only passes control along output i, 0 ≤ i ≤ n, if a node Proj (Cond , i)
exists. Else it passes control along output n (even if this Proj does not
exist.) This Cond we call ”fragmentary”. There is a special constructor
new defaultProj() that automatically sets the flavor. Default flavor is
”dense”. Flavor ”fragmentary” is experimental.

Figure 3.10 shows a dense Cond node. The front end constructing this
node must determine that the switch chooses the default block for value 1
to add the corresponding Proj node.

switch (x)
case 0: ...break;
case 2, 3: ...break;
default: break;

end switch

Block BlockBlock

Cond

x

(case 0) (case 2,3) (default)

0
Proj Proj Proj Proj Proj

1 2 3 4

Figure 3.10: A dense Cond node.

The Const Node

con The target value (see 3.4.1) representing the constant.

CHAPTER 3. PROGRAM REPRESENTATION 32

The SymConst Node

symconst kind A tag specifying the kind of the SymConst . Possible values
are type tag, size or linkage ptr info.

type This attribute only exists if the SymConst is a type tag or a size.
It contains the type it corresponds to.

ptrinfo This attribute only exists if the SymConst is a linkage ptr info.
It contains an ident representing a string to be used for linking.

The Sel Node

ent Contains the entity to select from the argument. The argument is a
pointer to an entity of the owner type of ent (or of a subtype of
this type).

The Call Node

type The type of the called function.
callee A list of all functions that can be called from this node. This list

must be computed by an analysis.

The CallBegin Node

irg The ir graph this node belongs to. This is needed to set current ir graph
correctly when iterating over an interprocedural graph.

call The call node visible in the intra procedural view.

The Filter Node

proj The projection number for the Filter node in the intra procedural
view.

cg pred Interprocedural predecessors of this node. This list is automati-
cally accessed by all access functions if interprocedural view is set.

The Alloc Node

type The type of which to allocate an entity.
where A flag indicating where to allocate an entity: on the stack or in the

heap. Default value: heap alloc.

CHAPTER 3. PROGRAM REPRESENTATION 33

The Free Node

type The type of the freed entity.

The Proj Node

proj The position of the projected value in the Tuple. (First position is
‘0’.)

3.3.5 The Mode of an Operation

The modes are defined in irmode.h. A mode represents a basic data type
that can be represented in the target language, or, that can be handled by
the target processor. For further details about modes see [TLB99].

A mode has the following attributes:

modecode An enum identifying the opcode. To be used for switching.
name A name for the mode represented as an ident. To be used in devel-

opment and debugging.
size The size of values of this mode in bytes.
ld align The alignment of values of this mode in bytes.
min The smallest representable value of this mode represented as a target

value.
max The biggest representable value of this mode represented as a target

value.
null The zero value of this mode represented as a target value.
signed Indicates whether the mode represents signed values.
float Indicates whether the mode represents floating point values.

Most of these attributes are useful for constant evaluation. The repre-
sentation of modes supplies a set of functions that test whether a mode is
in a certain subset of all modes according to Table 2.2 in [TLB99]. This
allows to test legal modes for the operands of nodes. Further a method
smaller mode() tests whether a mode can be converted to an other with
the Conv node, see Section 2.2.2.5 in [TLB99].

The data structures representing the modes defined in Section 2.2.1 in
[TLB99] are constructed by the libFIRM initialization. They can be accessed
by global variables.

CHAPTER 3. PROGRAM REPRESENTATION 34

3.4 Other

To represent a program completely a representation for constants (target
values) and for identifiers is needed.

3.4.1 Target Values

A target value (tv.h) represents values of Firm modes. It does not represent
values of libFIRM types. I.e., a target value can represent a 32 bit integer
value, but not a string constant or a dispatch table. There are no target
values for special modes as memory, execution or auxiliary modes (M, BB,
X, T).

Numerical target values are represented by their bit pattern. Pointer tar-
get values can be represented in two ways: By a bit pattern of the pointer
value or by referencing an entity. A target value referencing an entity rep-
resents the address of this entity. The entity must be static allocated.

The target value module supplies global constants containing specific val-
ues including a ‘bad’ value representing an undefined target value. Further
it supplies a set of constructors and access routines.

The target module also implements the evaluation of constant expres-
sions. It supplies routines to execute most arithmetic operations of Firm
nodes on two target values. The implementation of this evaluation is in-
dependent of the platform compiled on and can be initialized for arbitrary
target architectures.

3.4.2 Identifiers

An identifier represents a source language name. Identifiers are implemented
in ident.h. The module supplies the following routines:

id from str() The constructor.
id to str() Returns a pointer to a string that is not null terminated.
id to strlen() Returns the length of the represented string.
id is prefix() Returns true if the first argument is a prefix of the second.
id is suffix() Returns true if the first argument is a suffix of the second.
print id() Prints an ident to stdout.
fprint id() Prints an ident to the file passed.

Chapter 4

Connecting to a Front End

This chapter explains how to connect the Firm library to a front end. We
assume that the front end produced an abstract syntax tree (AST) that
represents a correct program. Further we assume the existence of a definition
table. First we introduce the general approach and then discuss individual
phases of the construction of Firm code in detail. At some points there are
references to small test programs included in the Firm library that build an
illustrative Firm graph.

4.1 General Approach

This section describes the steps a compiler has to take to construct inter-
mediate representation with the Firm library in execution order.

• Initialize the Firm library (init firm() in firm.h)
• Set optimization flags (See functions in irflag.h, skip to use defaults).
• Construct type information.

– Before a type can be used (i.e., for Sel nodes), it must exist.
Although it may be possible to create types on-demand, it can
be more convenient and simpler to ensure that all types exist
before starting Firm construction.

– Associate Firm types with the corresponding type entry in the
definition table. In general, whenever a type identifier is used
in the source program, the construction needs the corresponding
Firm type.

– Firm types must be constructed for all (used) language defined
types that might have no explicit representation in the AST.

35

CHAPTER 4. CONNECTING TO A FRONT END 36

– Firm types must be constructed for all (used) methods.
– With compound types also the entities for the members of the

compound types (methods or fields) can be constructed. Alter-
natively this can be done on demand.

• Construct entities for global variables.

– Firm globals should be associated with the corresponding entry
in the definition table.

• Construct procedures.

– Construct the general data structure for a procedure.

∗ Count the number of local variables of this procedure. Here
procedure parameters are considered to be local variables.
(This number needs not to include possibly aliased variables.)
Associate each local variable with a unique number (0 ≤
number < number of local variables)

∗ Generate an entity for the procedure (if not already done).
This requires the type of the procedure and the type of the
owner. In an object oriented language the owner is the class
(or object) the method belongs to. If the programming lan-
guages provides no owner of the procedure use the global
type (get glob type()).

∗ Call the constructor for the procedure (new ir graph() in
irgraph.h).

∗ Perform a set value() for all procedure parameters. (See
4.4.5 and 4.4.2.)

– Decide which local variables can be resolved to data flow edges.
These must be alias free variables. Generate entities as members
of the stack frame type for all other variables.

– Construct the program code for the procedure.
– Call intra procedural optimizations.
– libFIRM is designed to construct several procedures at a time.

• Perform optimizations
• Code generation.

4.2 Constructing Types

The constructors for types require some general information about the types.
A major part of information about compound types are the members that

CHAPTER 4. CONNECTING TO A FRONT END 37

are specified for them as well as sub and super types for classes. These need
not be supplied with the constructors or right after construction of the type,
they can be added on demand. These members (including sub and super
types) are held in dynamic arrays, so new members need to be added by a
special add routine. All these arrays supply four methods to access them
with the following functionality:

• Get the length of the array.
• Add the passed element to the array.
• Get an element of a given position. The position must be valid, i.e. 0

≤ position < length.
• Set an element at a given position. The position must be valid, i.e. 0

≤ position < length.

The constructor for an entity automatically adds the entity to the proper
member list.

For the information needed to built a specific type representation see the
documentation of the type data structures in 3.1 and the documentation in
type.h.

4.3 Constructing Entities

The constructor for an entity requires the type of the entity, the owner of
the entity and a name of the entity.

The name is any string stored as Firm identifier. It is useful to use
variable or field names from the source program.

The type of an entity is either the type of a local or global variable or
the type of a member of a compound type.

The owner of an entity that is a member of a compound type is the com-
pound type. The owner of entities for global variables is a special type called
“GlobalType”. This type is automatically generated with the initialization
of the library an can be obtained with a call to get glob type() defined
in irprog.h. The entity constructor automatically adds the entity to the
owners list of members.

4.3.1 Construction of Constant Entities

First construct an entity of the proper type with the global type as
owner. Then set the intended variability with set entity variability().
Set current ir graph to get const code irg() and build the expressions

CHAPTER 4. CONNECTING TO A FRONT END 38

specifying the constant values with the comfortable construction interface.
These expressions may not contain control flow operations, Call nodes are
possible. The methods called should not have any side effects, though.

4.4 Constructing Firm Graphs

4.4.1 Support by libFIRM

This library supplies several interfaces to construct a Firm graph for a
method, where each is built on top of the other.

• A “comfortable” interface generating SSA automatically. Automat-
ically computed predecessors of nodes need not be specified in the
constructors. (new <Node>() constructors and a set of additional
routines.)

• A less comfortable interface where all predecessors except the block an
operation belongs to need to be specified. SSA must be constructed
by hand. (new <Node>() constructors and switch block()). This
interface is called “block oriented”.

• An even less comfortable interface where the block needs to be spec-
ified explicitly. This is called the “raw” interface. (new r <Node>()
constructors). It automatically calls the local optimizations for each
new node.

For all three interfaces exist two implementations, one considering debug
information, the other not.

To use the functionality of the comfortable interface correctly the front
end needs to follow certain protocols. This is explained in the following.
To build a correct ir with the other interfaces study the semantics of the
firm nodes (See tech-report UKA 1999-14). In the following we explain the
comfortable interface.

4.4.2 The Comfortable Interface

The comfortable interface contains the following methods:

ir_node *new_immBlock(int arity, ir_node **in);
ir_node *new_Jmp (void);
ir_node *new_Cond (ir_node *c);
ir_node *new_Return (ir_node *store, int arity, ir_node **in);

CHAPTER 4. CONNECTING TO A FRONT END 39

ir_node *new_Raise (ir_node *store, ir_node *obj);
ir_node *new_Const (ir_mode *mode, tarval *con);
ir_node *new_SymConst (type_or_id_p value, symconst_kind kind);
ir_node *new_simpleSel(ir_node *store, ir_node *objptr, entity *ent);
ir_node *new_Sel (ir_node *store, ir_node *objptr, int arity,

ir_node **in, entity *ent);
ir_node *new_Call (ir_node *store, ir_node *callee, int arity,

ir_node **in, type *type);
ir_node *new_Add (ir_node *op1, ir_node *op2, ir_mode *mode);
ir_node *new_Sub (ir_node *op1, ir_node *op2, ir_mode *mode);
ir_node *new_Minus (ir_node *op, ir_mode *mode);
ir_node *new_Mul (ir_node *op1, ir_node *op2, ir_mode *mode);
ir_node *new_Quot (ir_node *memop, ir_node *op1, ir_node *op2);
ir_node *new_DivMod (ir_node *memop, ir_node *op1, ir_node *op2);
ir_node *new_Div (ir_node *memop, ir_node *op1, ir_node *op2);
ir_node *new_Mod (ir_node *memop, ir_node *op1, ir_node *op2);
ir_node *new_Abs (ir_node *op, ir_mode *mode);
ir_node *new_And (ir_node *op1, ir_node *op2, ir_mode *mode);
ir_node *new_Or (ir_node *op1, ir_node *op2, ir_mode *mode);
ir_node *new_Eor (ir_node *op1, ir_node *op2, ir_mode *mode);
ir_node *new_Not (ir_node *op, ir_mode *mode);
ir_node *new_Shl (ir_node *op, ir_node *k, ir_mode *mode);
ir_node *new_Shr (ir_node *op, ir_node *k, ir_mode *mode);
ir_node *new_Shrs (ir_node *op, ir_node *k, ir_mode *mode);
ir_node *new_Rot (ir_node *op, ir_node *k, ir_mode *mode);
ir_node *new_Cmp (ir_node *op1, ir_node *op2);
ir_node *new_Conv (ir_node *op, ir_mode *mode);
ir_node *new_Phi (int arity, ir_node **in, ir_mode *mode);
ir_node *new_Load (ir_node *store, ir_node *addr);
ir_node *new_Store (ir_node *store, ir_node *addr, ir_node *val);
ir_node *new_Alloc (ir_node *store, ir_node *size,

type *alloc_type, where_alloc where);
ir_node *new_Free (ir_node *store, ir_node *ptr, ir_node *size,

type *free_type);
ir_node *new_Sync (int arity, ir_node **in);
ir_node *new_Proj (ir_node *arg, ir_mode *mode, long proj);

void add_in_edge (ir_node *block, ir_node *jmp);
void mature_block (ir_node *block);
void switch_block (ir_node *target);

CHAPTER 4. CONNECTING TO A FRONT END 40

ir_node *get_value (int pos, ir_mode *mode);
void set_value (int pos, ir_node *value);
ir_node *get_store (void);
void set_store (ir_node *store);
void keep_alive (ir_node *ka);

Further it includes the global variable current ir graph.
The methods of the interface can be separated into three categories:

constructors for nodes, support for control flow construction and support
for SSA construction. All node constructors add the node to the graph in
current ir graph.

Control Flow

Several basic blocks can be constructed in parallel, but the code within each
block needs to be constructed (almost) in program order.

The field current block of current ir graph (See also 3.3.2) holds the
current basic block. All non block nodes generated are added to this block.
The current block can be set with switch block(<block node>). If sev-
eral blocks are constructed in parallel, block switches need to be performed
constantly. The block constructor automatically sets current block to the
new block it creates.

To generate a Block node (with the comfortable interface) it’s prede-
cessor control flow nodes need not be known. With add in edge(block,
cfnode) predecessors can be added to the block. If all predecessors are
added to the block mature block(block) needs to be called. Calling
mature block() early improves the efficiency of the Phi node construction
algorithm. But if several blocks are constructed at once, mature block()
must only be called after performing all set value()s and get store()s
in the block. (See also documentation of new immBlock() constructor in
ircons.h.)

From the End node all useful code that is constructed must be reachable.
Endless loops are not reachable by standard control flow edges from End .
Therefore one block in each endless loop must be added to the End node as
direct predecessor to be kept alive explicitly. Further all Phi nodes of mode
memory in endless loops must be kept alive.

The Firm construction interface automatically adds the proper nodes as
operands of End if endless loops result from optimization of Cond nodes.
It also adds all memory Phi operations. If the source language allows loops

CHAPTER 4. CONNECTING TO A FRONT END 41

by explicit Goto operation the construction must add the concerned blocks
itself with keepalive().

Support for SSA Construction

SSA construction is performed automatically by the interface. The construc-
tion algorithm must only tell the interface when a variable is defined and
when it is used. This is performed by the two methods get value() and
set value(). The same holds for the memory value for which the methods
get store() and set store() are available.

A call to get value(<number of local value>) returns the valid value
of a variable, i.e., the node that last defined the variable. The number
used as argument is a unique identifier for the variable and needs to be
administered by the front end. If an assignment assigns to a local variable
the value assigned needs to be passed to the library by set value(<node>,
<number of local value>). In straight line code these two operations just
remember and return the pointer to nodes producing the value. If the value
passes block boundaries Phi nodes can be inserted. The call to get value()
also triggers the generation of Phi nodes.

4.4.3 Procedure Initialization

First the front end needs to decide which variables and values used in a
procedure can be represented by data flow edges. These are variables that
need not be saved to memory as they cause no side effects visible out of
the procedure. Often these are all compiler generated variables, the local
variables of the procedure and the procedure parameters. The front end
has to count and number these variables. It has to decide which of these
can not be represented by data flow edges – in general all those that are
dereferenced. For all variables it can not represent as data flow edges it
must build entities. These entities are members of the stack frame. A call
to get irg frame type() returns the type modeling the stack frame for a
procedure.

The construction algorithm internally keeps an array for each basic block
containing references to the valid value of a variable. The size of this field
is derived from the number of local variables passed to the constructor
new ir graph(). The numbers associated with the local variables are used
to reference the values in this array. Therefore they must range from zero to
the total number of local variables in this procedure. In order to optimize

CHAPTER 4. CONNECTING TO A FRONT END 42

memory consumption it is possible to skip aliased variables in this number-
ing, but the effect is negligible as the memory is freed after the construction.

Now the basic data structure for the Firm graph can be constructed with
a call to new ir graph(). The constructor gets the number of local (alias
free) variables including parameters as well as the entity representing the
procedure. The graph is held in the global variable current ir graph.

Start

End

Proj 0
X

Proj 1
M

Proj 2
P T

Proj 4Initial Exec

Block

Block

...

BlockEnd Block

Current Block

Start Block

...

P
Proj 3

Global Store Frame Base ArgumentsGlobals

Figure 4.1: Initial graph built by new ir graph().

This constructor creates a set of nodes to start with, see figure 4.1. The
Proj nodes are remembered in the graph data structure, see irgraph.h.
The start block is mature, the current block and the end block must be
matured by the ir construction when all predecessors are known, see 4.4.2.

Here it is convenient to make the procedure parameters visible as known
values: Generate Proj nodes for these and make them known to the con-
struction algorithm by calling set value() (See 4.4.5 and 4.4.2):

set value(new Proj(get irg args(current ir graph), <Proper
Mode>, <Number of variable>)).

CHAPTER 4. CONNECTING TO A FRONT END 43

4.4.4 Constructing a Simple Node

The algorithm to construct a node must perform three steps: First it must
obtain the nodes for the operands in some way. Then it can construct
the node for the operation. Finally it must deal with the results of the
node. In the following we describe the general approach for expression trees.
Statements are considered later.

Operands of a Node

There are three ways to retrieve the nodes needed as operands. If the
operands result from constructing Firm for sons of the current AST node the
attributed grammar or recursive descend passes these nodes as attributes or
results to the node that needs them as operand.

This is not possible for leaves in the AST. In general, leaves of expression
subtrees are variables or constants. For constants the algorithm needs to
construct a new Firm Const node. If the same constant is used in several
places the AST traversal can generate a new Const every time, the construc-
tor of the node will automatically reuse an already existing equivalent node
(as a result of common subexpression elimination). For variables there are
two cases depending on whether they are known to be alias free.

Alias Free Variables The initialization of the construction of the current
Firm graph identified all alias free variables with an unique number, see
4.4.3. These variables are resolved to data flow edges, i.e., the loading and
storing of values in these variables on the stack is not modeled by explicit
Load or Store operations. As operands the AST traversal just uses the node
that last defined this variable. This node can be retrieved from the Firm
library by a call to get value(<Number of variable>).

Other Values If the variable is a local variable that is not known to
be alias free or if it is a global variable the AST traversal must create a
Load operation. The load operation needs as input a pointer to the loaded
variable. This pointer is retrieved with a Sel node that operates either on a
pointer to the data segment that holds the global variables or on the stack
frame pointer. Both these pointers are supplied by the Start node. The Proj
nodes that project them out of the result tuple of the Start are stored in the
central ir graph data structure and can be obtained by get irg globals()
and get irg frame(). Further for the Sel and Load nodes it is necessary to
have the entity for the variable available. The AST traversal must supply

CHAPTER 4. CONNECTING TO A FRONT END 44

a mechanism how to access the entity it created before, e.g., by storing a
reference to it in the definition table.

Constructing a Node

To construct a node the AST traversal simply must call the constructor of
this node. There are three kinds of parameters of these constructors: Other
nodes that are operands of the operation associated with the node, the mode
and attributes.

Node Parameters Which operands are needed for a node is defined by
the syntax of Firm nodes, see [TLB99, Table 3.1] (Print out this table as a
quick guide). Not all of these operands need to be specified as parameters
of the constructor.

Some nodes require a list of operands as, e.g., the Call node. The AST
traversal should assemble this list in a local array and pass it along with the
array length in the constructor. The constructor will copy the content of
this array.

The Mode Some constructors require that the mode of the operation is
mentioned. Whenever the constructor can derive this mode by itself it is
omitted. The AST traversal should be able to derive the necessary mode
from the type associated with the AST node. This type should allow to
navigate to a firm type which then again contains the information to which
mode the type is mapped. Modes should be only necessary for AST nodes
that are typed with an atomic type that can be mapped to a mode.

Node Attributes Certain nodes need specific attributes. For the purpose
of these attributes see the documentation of the nodes ([TLB99]) and 3.3.4.

Results of a Node

For the results of nodes see [TLB99, Table 3.1]. The standard nodes have
only one result: the value produced by the node. In an expression tree
this value is either passed to the father AST node by an attribute of the
attributed grammar or it is returned by the recursive ascend function.

If [TLB99, Table 3.1] lists several operands for a node the actual im-
plementation of the node returns a tuple containing these operands. The
construction algorithm must project each of these operands from the node
by Proj nodes. E.g., to deal with a Div node it is necessary to project

CHAPTER 4. CONNECTING TO A FRONT END 45

the memory result M and call set store() for this Proj node. If excep-
tion control flow is modeled explicitly the X result must be projected and
inserted as predecessor of the exception handler block. Finally the result
value is projected and handled as a common value result, e.g., returned by
the recursive descend.

The result of the Call node contains nested Tuples, i.e., two levels of
Proj nodes are needed to extract a result.

As a consequence the mode of the Div node is tuple. The Proj nodes
must carry the proper modes for the tuple elements.

Some Special Situations

Memory Operands For the AST traversal there exists only a single value
for the Memory. This single value is treated as an alias free local variable:
Whenever a Memory operand is needed this can be obtained by a call to
get store(). Every Memory result must be announced to the firm library
by a call to set store(<node defining Memory>). In general the node
defining the memory is a Proj node (except for Free and Sync).

Field Access For field access a Load node is necessary. The pointer
for this Load is the result of a Sel node. The Sel needs as operands the
pointer to the compound containing the field and an entity describing the
field. Union members are treated as field accesses. Use the constructor
new simpleSel(). See test program oo program example.c.

Array Access For array access also a Load node is necessary. The pointer
for this Load is the result of a Sel node. The Sel needs as operands the
pointer to the array and an entity describing the arrays elements. Fur-
ther it needs a list of Firm nodes that compute the array indexes. The
computation of the element address is hidden within the Sel node. The
constructor new Sel() is provided for this purpose. See test program
array heap example.c.

Method Access For method access also a Sel node is necessary. This
node hides any method access functionality required by the source language,
as, e.g., method dispatch. The pointer passed to this method points to the
compound whose type specifies the method.

If the method does not belong to a certain type (class) it is a member
of the global type and the call is unique. The address of the method can be
represented by a Const node containing the entity as target value. It is also

CHAPTER 4. CONNECTING TO A FRONT END 46

possible to select the method address from the the only entity of the global
type to which a pointer is available from the start node. The Proj node
for this pointer can be obtained with get irg globals(). See test program
oo program example.c for method calls.

4.4.5 Statements

Assignments

Here again we must distinguish the assignment to an alias free local variable
and other assignments.

For assignment to an alias free local it is sufficient to call set value()
with the node computing the assigned value as parameter. Assignments to
all other variables are performed with a Store node. The pointer for the
Store comes from a Sel which is built the same way as for loading from
variables, see 4.4.4. An assignment to a field or an array is also performed
with a Store operation. 4.4.4.

Statements Specifying Control Flow

Generating Firm from statements specifying control flow requires a deliber-
ate design. It is not possible to generate and mature the blocks necessary
for the statement in the computation for a single AST node. The descend
from the AST node for the statement can generate further blocks nested
within the blocks necessary to implement this statement.

We propose the following approach to generate control flow for state-
ments. We illustrate the approach with the computations necessary for a
while statement with break statements.

Before
while (Condition) {

Body with break statements
}
After

Figure 4.2: A while statement.

All computations for AST nodes should assure that whenever a recursive
descend is performed current block is set to the block that shall contain
the code generated by the descend. Current block may not be mature.
Further they must assure that they return with current block set to the

CHAPTER 4. CONNECTING TO A FRONT END 47

immature block that shall take further code. This guarantees that, whenever
a descend returns, current block contains a block that can take the place of
the block current block was set to when the descend started. Alternatively
it is possible to pass the current block as an argument.

In the example a computation above the AST node for the while gen-
erates the code for Before and After. The computation for the while must
generate the control flow for the loop. It descends recursive to generate the
code for the Condition and the loop Body. The computation must prepare
a data structure to collect the control flow of the break statements.

Jmp

Jmp

Header

Cond

Condition

Jmp

descend can add
Here the recursive

control flow.

After

Control flow for

break statements

Before

Body

Figure 4.3: Intended control flow for while statement.

First it is necessary to design the control flow required for the statement.
It is important that blocks that are current in a descend have all their
predecessors before the descend is started. The descend can mature the
block making it impossible to add further control flow edges.

Here it is important to separate the Header block from the block for the
Condition code. The recursive descend for the condition can mature the
block passed. In this case it is later impossible to add the control flow edge
closing the loop. This edge can not be added beforehand as the last block
of the Body can not be known in advance.

CHAPTER 4. CONNECTING TO A FRONT END 48

ir_node *x;

ir_node *before_bl = get_irg_current_block(current_ir_graph);

x = new_Jmp();

mature_block(before_bl);

ir_node *header_bl = new_immBlock();

add_in_edge(header_bl, x);

x = new_Jmp();

ir_node *condition_bl = new_immBlock();

add_in_edge(condition_bl, x);

ir_node *bool = EXPR_DESCEND(condition);

condition_bl = get_irg_current_block(current_ir_graph);

x = new_Cond(bool);

mature_block(condition_bl);

ir_node *after_bl = new_immBlock();

add_in_edge(after_bl, new_Proj(x, FALSE));

ir_node *rem_break = break_bl;

break_bl = after_bl;

ir_node *body_bl = new_immBlock();

add_in_edge(body_bl, new_Proj(x, TRUE));

STMT_DESCEND(body);

body_bl = get_irg_current_block(current_ir_graph);

x = new_Jmp();

mature_block(body_bl);

add_in_edge(header, x);

mature_block(header_bl);

break_bl = rem_break;

switch_block(after_bl);

Figure 4.4: Implementation for while statement. The code assumes a global
variable ir node *break bl.

The implementation for this AST node can allocate all blocks in advance
and remember them in local variables. It can add code to these blocks and
mature them. At the end it must set current block dedicated for further
code.

First the current block (Before) is finished by adding a Jmp node and
maturing the block. The Header block is allocated and fixed as target of
the Jmp. We need to remember the header block to add the loop edge later
(and to add edges of eventual continue statements). Now we allocate the
Condition block and add the single control edge from the Header block.

CHAPTER 4. CONNECTING TO A FRONT END 49

These two blocks will eventually be merged by an optimization. We add the
condition code to the condition block by recursive descend. As the condition
is an expression the descend should return the node that represents the result
of the condition. The descend can add further blocks. Therefore we need
to reload condition bl from the current block. We add the conditional
jump Cond and generate the After and Body blocks. The After block is
remembered in a global variable that is used by the break statement to insert
the control flow edges. Actually we need a stack of break targets in case of
nested loops but here we can use the call stack by preserving the state of
the global variable and later restoring it.

Then the descend for the Body block is performed. This descend can
add edges to the After block. When the descend returns we must reload
body bl from the current block. We add the loop control edge and mature
the Body block. Finally we must restore the old value of the global variable
and set After block as current so that further code can be added to it.

add_in_edge(break_bl, new_Jmp())

mature_block(get_irg_current_block(current_ir_graph));

new_immBlock();

Figure 4.5: Implementation for break statement.

The implementation for the break statement closes the current block
and adds a Jmp node to jump to the break block. Then it allocates a
new block. This block is unreachable in the program. Nevertheless it is
necessary to allocate another block to fulfill the above agreement to leave
every computation with an immature current block.

See test programs if example.c, if else example.c,
if while example.c and while example.c for further examples.

Chapter 5

The Interprocedural
Representation

Firm defines an interprocedural data flow representation. In this represen-
tation explicit control flow edges connect all call sites with the entry and
exit points of possibly called methods. Further all arguments passed to Call
nodes are connected to the use of arguments in the called methods. If nec-
essary the values are merged by Phi nodes. A comparable representation is
built for the results of methods. See also [Sch02].

A call to cg construct() (ircgcons.h) builds the interprocedural rep-
resentation. It expects that the attribute callee of all Call nodes contains
a list of all method entities that can be called by this node. This informa-
tion must be collected beforehand. libFIRM supplies a simple analysis to
compute the callees, see 7.4.

The method cg destruct() removes the interprocedural view.
When the interprocedural representation is constructed it is possible to

use the representation of the program in two views: the interprocedural
view or the intra procedural view. The flag interprocedural view (see
irgraph.h) states which view to use. Iterators and access functions as
irg walk() or get irn n() will act according to the view flag.

50

Chapter 6

Optimizations and
Transformations

All optimizations can be turned off by flag optimize.

6.1 Constant Evaluation, Algebraic Simplification
and Others

A large set of transformations implementing various kinds of optimiza-
tions as constant evaluation or algebraic simplification are performed by
local optimize graph(). These optimizations are controlled by flag
opt constant folding .

The terms following below summarize the performed transformations.
Firm nodes are represented as a function named with the opcode operat-
ing on its operands. Nesting these functions and using variables for nodes
describes patterns of in the Firm graph. Attributes to the Firm nodes are
represented as subscripts. If necessary, nodes are distinguished by super-
scripts.

The variables X, Y , V and M represent nodes that are valid, but are
not further checked for opcode or attributes; nodes denoted by M can be
understood to represent a memory value, while V can be understood to
represent a real value (not a synthetic value like memory or execution).

The variables tv1, tv2 etc. denote target values; operations specified on
such values must be executed with the semantics of the respective operation
on the target platform.

Further conditions are expressed by pseudo-logical clauses. The left pat-
tern is replaced by the right one. Constant evaluations are only performed if

51

CHAPTER 6. OPTIMIZATIONS AND TRANSFORMATIONS 52

the target value module could compute the result (i.e., no exception would
occur).

SymConsttype() ⇒ Consttv(get type size(type))()
∧ layout fixed(type)

Add(Consttv1(),Consttv2()) ⇒ Consttv1+tv2()
∧ mode(tv1) = mode(tv2) �= mode p

Sub(Consttv1(),Consttv2()) ⇒ Consttv1−tv2()
∧ mode(tv1) = mode(tv2) �= mode p

Sub(X,X) ⇒ Consttarval null(mode(Sub))()

Minus(Consttv()) ⇒ Const−tv()
Mul(Consttv1(),Consttv2()) ⇒ Consttv1∗tv2()

Mul(Const0(),X) ⇒ Const0()
Mul(X,Const0()) ⇒ Const0()

Quot(Consttv1(),Consttv2()) ⇒ Consttv1quottv2()
∧ tv2 �= 0

Div(Consttv1(),Consttv2()) ⇒ Consttv1divtv2()
∧ tv2 �= 0

Mod(Consttv1(),Consttv2()) ⇒ Consttv1modtv2()
∧ tv2 �= 0

Abs(Consttv1()) ⇒ Const|tv1|()
And(Consttv1(),Consttv2()) ⇒ Consttv1∧tv2()

And(Const0(),X) ⇒ Const0()
And(X,Const0()) ⇒ Const0()

Or(Consttv1(),Consttv2()) ⇒ Consttv1∨tv2()
Or(Const1(),X) ⇒ Const1()
Or(X,Const1()) ⇒ Const1()

Eor(Consttv1(),Consttv2()) ⇒ Consttv1eortv2()
Not(Consttv()) ⇒ Const¬tv()

Shl(Consttv1(),Consttv2()) ⇒ Consttv1shltv2()
Shr(Consttv1(),Consttv2()) ⇒ Consttv1shrtv2()

Shrs(Consttv1(),Consttv2()) ⇒ Consttv1shrstv2()
Conv(Consttv()) ⇒ Consttarval convert(tv,mode(Conv))()

CHAPTER 6. OPTIMIZATIONS AND TRANSFORMATIONS 53

Projn(Cmp(X,X)) ⇒ Consttrue()
∧ n ∈ {Eq,Le,Ge,Leg, Ue, Ule, Uge, T rue, }

Projn(Cmp(X,X)) ⇒ Constfalse()
∧ n ∈ {False, Lt,Gt, Lb, Uo, Ul, Ug,Ne}

Projn(Cmp(Consttv1(),Consttv2()) ⇒ Consttarval cmp(tv1,tv2,n)()
Projn(Cmp(Proj(Alloc(...)),Constvoid)) ⇒ Consttrue()

∧ mode(Proj) = mode(Const) = mode p

∧ n /∈ {False,Eq}
Projn(Cmp(Proj(Alloc(...)),Constvoid)) ⇒ Constfalse()

∧ mode(Proj) = mode(Const) = mode p

∧ n ∈ {False,Eq}
Projn(Cmp(Constvoid,Proj(Alloc(...)))) ⇒ Consttrue()

∧ mode(Proj) = mode(Const) = mode p

∧ n /∈ {False,Eq}
Projn(Cmp(Constvoid,Proj(Alloc(...)))) ⇒ Constfalse()

∧ mode(Proj) = mode(Const) = mode p

∧ n ∈ {False,Eq}
Projn(Cmp(Proj1(Alloc1(...)),Proj2(Alloc2(...)))) ⇒ Consttrue()

∧ mode(Proj1) = mode(Proj2) = mode p

∧Alloc1 �= Alloc2

∧ n /∈ {False,Eq}
Projn(Cmp(Proj1(Alloc1(...)),Proj2(Alloc2(...)))) ⇒ Constfalse()

∧ mode(Proj1) = mode(Proj2) = mode p

∧Alloc1 �= Alloc2

∧ n ∈ {False,Eq}
Proj0(DivMod(Consttv1(),Consttv2()) ⇒ Consttv1divtv2()

∧ tv2 �= 0
Proj1(DivMod(Consttv1(),Consttv2()) ⇒ Consttv1modtv2()

∧ tv2 �= 0
Or(X,X) ⇒ X

CHAPTER 6. OPTIMIZATIONS AND TRANSFORMATIONS 54

Add(X,Const0) ⇒ X

Add(Const0,X) ⇒ X

Eor(X,Const0) ⇒ X

Eor(Const0,X) ⇒ X

Sub(X,Const0) ⇒ X

Shl(X,Const0) ⇒ X

Shr(X,Const0) ⇒ X

Shrs(X,Const0) ⇒ X

Rot(X,Const0) ⇒ X

Minus(Minus(X)) ⇒ X

Not(Not(X)) ⇒ X

Mul(X,Const1) ⇒ X

Mul(Const1,X) ⇒ X

Div(M,X,Const1) ⇒ Tuple(M,Bad(),X)
And(X,X) ⇒ X

And(X,Consttrue) ⇒ X

And(Consttrue,X) ⇒ X

Conv(X) ⇒ X

∧ mode(Conv) = mode(X)
Conv1(Conv2(X)) ⇒ X

∧ mode(Conv1) = mode(X) = mode b

Store(Proj(Store(M,X,V)),X, V) ⇒ Store(M,X,V)
Store(Proj(X), P,Proj(Y)) ⇒ Tuple(Proj(X),Bad())

∧ X = Y = Load(M,P)
Store(M,P,Proj(Load(M,P))) ⇒ Tuple(M,Bad())
Proj0(Cond(Eor(X,Const1())) ⇒ Proj1(Cond(X))

∧mode(Eor) = mode b

Proj1(Cond(Eor(X,Const1())) ⇒ Proj0(Cond(X))
∧mode(Eor) = mode b

Proj0(Cond(Not(X))) ⇒ Proj1(Cond(X))
∧mode(Not) = mode b

CHAPTER 6. OPTIMIZATIONS AND TRANSFORMATIONS 55

Proj1(Cond(Not(X))) ⇒ Proj0(Cond(X))
∧mode(Not) = mode b

Eor(Projn(Cmp(...), Const1())) ⇒ Projnegated pnc(n)Cmp(...)
∧ mode(Eor) = mode b

Eor(X,Const1())) ⇒ Not(X)
∧ mode(Eor) = mode b

Not(Projn(Cmp(...))) ⇒ Projnegated pnc(n)Cmp(...)
∧ mode(Not) = mode b

6.2 Unreachable Code and Dead Code Elimina-

tion

Unreachable code is code in basic blocks that are never executed. Dead code
are expressions that are computed but never used. Such code can emerge
in two ways. The front end can construct expressions that are never used
or blocks that have no control predecessor. Further Optimizations can leave
dead computations when replacing predecessors of nodes by better ones or
it can remove predecessors of block nodes by constant evaluation of Cond
nodes.

Dead code is automatically removed from the program as it is no more
reachable in the Firm graph as soon as it gets dead. Nevertheless the dead
code still occupies memory in the representation.

Unreachable code is optimized during construction and by a call to
local optimize graph(). When Cond nodes are optimized the dead con-
trol flow is represented by a Bad operation. A Block that has only Bad nodes
as control flow predecessors is replaced by a Bad node itself. All operations
(except Block and Phi) that have a single Bad predecessor are replaced by
Bad nodes. Once the Bad nodes are propagated completely only Block and
Phi nodes with some Bad predecessors will remain. The unreachable code
also still occupies memory after being removed from the representation.

The functions dead code elimination(), remove bad predecessors()
and optimize cf() remove the Bad predecessors of Blocks and Phis. (See
irgopt.h.)

The function dead code elimination() further copies the graph of a
procedure to a new memory location. It only copies the reachable nodes
and thereby frees the memory of dead and unreachable code. Further the

CHAPTER 6. OPTIMIZATIONS AND TRANSFORMATIONS 56

first call frees memory used for construction of the ir. This method depends
on the compiler flag opt dead node elimination.

Further libFIRM supplies an optimization that removes methods that
are never called and that are not external visible. This reduces memory
consumption of the compiler and the size of the generated code. gc irgs()
in ircgopt.h performs the optimization. It requires that the call graph
information (in field callee of Call nodes) is constructed and accepts a list
of methods that may not be removed. This can be established by calling
cgana().

6.3 Control Flow Optimizations

A call to optimize cf() (see irgopt.h) performs a set of con-
trol flow optimizations. These optimizations can not be performed
by local optimize graph() as they require precomputed information.
optimize cf() reduces the amount of basic block by removing empty blocks
(if simplification, loop simplification), merging single exit / single entry
blocks and doing further unreachable code elimination. It depends on flags
opt unreachable code and opt control flow. Independent of the com-
piler flags it removes Bad predecessor of Block and Phi nodes as well as
Tuple nodes in control flow.

Further control flow optimizations are performed by
local optimize graph(). It also merges single exit / single entry
blocks and removes Cond nodes that branch to the same block on both
conditions. It catches less optimization opportunities than optimize cf(),
but is more efficient. Further it evaluates constant Cond nodes. These
optimizations are also controlled by the flags opt unreachable code and
opt control flow.

6.4 Reassociation

The predecessors of the following nodes are sorted to increase the number
of common subexpressions:

Add , Mul , Or , And and Eor .
Reassociation is performed by local optimize graph(). It is controlled

by flag opt reassociation.

CHAPTER 6. OPTIMIZATIONS AND TRANSFORMATIONS 57

6.5 Common Subexpression Elimination

A Firm graph has a common subexpression (cs) if it contains two nodes with
the same predecessors and the same attributes. Only the essential attributes
as defined in [TLB99] are relevant for common subexpressions.

If the common subexpression elimination (cse) finds a pair of such nodes,
it replaces one by the other. To perform cse on a Firm graph the optimiza-
tion flag opt cse must be set during the graph construction or a run of
local optimize graph().

The Firm library implements cse on basic block level and on procedure
level. To perform cse on procedure level flag opt global cse must be set
in addition to opt cse.

The global cse (on procedure level) does not consider block predecessors
for the comparison of nodes. If two css differ in their block predecessor the
remaining node must be placed in the common dominator of the two original
nodes. This means global cse implies code motion. Therefore, if global cse
is performed partial redundancy elimination or some other transformation
placing nodes must be performed, too. Further it is illegal to move cer-
tain nodes. These are Phi and control flow nodes and nodes with memory
operators. Cse does not move nodes if their opcode is marked as pinned
(opposite: floats, see irop.h).

Global cse invalidates the block operands of all floating nodes. This is
reflected by a flag pinned in the ir graph data structure. If all nodes have
a valid block operand this flag is set to pinned. If global cse was performed
for one or more nodes in the graph the flag is set to floats.

Place code() in irgopt.h performs code placement and thereby vali-
dates the block predecessors. It sets the pinned flag in ir graph to pinned.
Therefore a call to this method is necessary after global cse. See also 6.6.

6.5.1 Common Subexpression Condition

The following condition defines when two nodes a and b are common subex-
pressions. Two nodes / types . . . are equal if they are the same object in the
ir.

opcode(a) == opcode(b) ∧
mode(a) == mode(b) ∧

#predecessors(a) == #predecessors(b) ∧

CHAPTER 6. OPTIMIZATIONS AND TRANSFORMATIONS 58

∀i ∈ 0 . . .#predecessors(a)− 1 :
predecessor(a, i) == predecessor(b, i) ∧

(opcode(a) �= Const ∨ const(a) == const(b)) ∧
(opcode(a) �= Proj ∨ proj nr(a) == proj nr(b)) ∧

(opcode(a) �= Filter ∨ proj nr(a) == proj nr(b)) ∧
(opcode(a) �= Alloc ∨ (where(a) == where(b)

∧ type(a) == type(b))) ∧
(opcode(a) �= Free ∨ type(a) == type(b)) ∧

(opcode(a) �= SymConst ∨ (kind(a) == kind(b)
∧ tori(a) == tori(b))) ∧

(opcode(a) �= Call ∨ type(a) == type(b)) ∧
(opcode(a) �= Sel ∨ ent(a) == ent(b)) ∧

For global cse the block node is not included in the list of tested prede-
cessors for floating nodes.

6.5.2 Pinned Nodes

Nodes with the following opcodes are pinned by default in libFIRM:
Block , Start , End , EndReg , EndExcept , Jmp, Break , Cond , Return,

Raise, Call , CallBegin, Quot , DivMod , Div , Mod , Phi , Filter , Load , Store,
Alloc, Free and Sync.

6.6 Code Placement and Partial Redundancy

Elimination

Place code() in irgopt.h performs Code Placement which subsumes Par-
tial Redundancy Elimination. It requires dominator information that can
be computed with compute doms(), see 7.2.

The function place code() places all floating nodes in blocks with the
least estimated execution frequency. It first places the nodes in the highest
possible dominator of its uses. This results in a legal but inefficient place-
ment. In a second phase the node is moved down in the dominator tree as
far as possible. The node is never moved into a loop.

CHAPTER 6. OPTIMIZATIONS AND TRANSFORMATIONS 59

6.7 Inlineing

The library offers two ways to perform inlineing. A call to inline method()
inlines a given method at a given call site. Inline small irgs() inlines
at call sites that call a static function, i.e., the address passed to the Call
node must be a Const node containing a method entity as constant value. It
iterates in an arbitrary order over all procedures and visits all Call nodes. It
never inlines a method into itself and never visits inlined Call nodes. It only
inlines method whose representation occupies less that the given amount of
memory. The representation size is used as a measure of procedure size.
(See irgopt.h.)

Chapter 7

Existing Analyses

libFIRM implements a set of basic analyses. Their implementation and use
are explained in this chapter.

7.1 Def-Use Edges

Def-Use edges are edges directed in the sense of the control and data flow.
The basic Firm graph represents Use-Def edges as these identify a value.
The Def-Use edges are not an essential part of Firm. Nevertheless they
are useful for certain optimizations and analyses. The Def-Use edges are
called outs. Functionality to build and access the outs is implemented in
irouts.h.

The outs are computed by compute outs(irg) for a graph irg.
compute outs() allocates some private memory for each graph that can
be freed by free outs(). Runtime is O(2*#edges), memory consumption
is O(#edges).

The consistency of the out information is controlled by a state flag of
the graph. compute outs() sets state outs state to outs consistent.
Default state of a graph is no outs. Any transformation of the graph must
either set the state to outs inconsistent, call free outs() or repair the
out edges. To update the out edges a routine set irn out() is supplied,
but updating is restricted as the amount of out edges can not be adjusted.
To access the out edges a walker and access routines are available.

60

CHAPTER 7. EXISTING ANALYSES 61

7.2 Dominator Information

libFIRM supplies a module to compute dominator information (irdom.h).
Whether a graph carries valid dominator information is indicated by a flag
dom state. The flag can contain the values no dom, dom consistent or
dom inconsistent.

Dominator information is computed by a call to compute doms(). The
memory allocated to hold the dominator information can be freed with
free dom(). The dominator information supplies the immediate domina-
tor as well as the dominance depth of a basic block.

Control dead basic blocks that are not yet removed contain invalid domi-
nator information. The immediate dominator is NULL, the dominance depth
−1.

7.3 Back Edges and Strongly Connected Regions

The module irloop.h computes back edge and loop information. Loops are
represented by a tree structure accessible from the ir graph data structure.
The representation of a loop has the following fields:

outer loop The data structure for the loop this one is contained in.
depth The nesting depth of this loop.
son A list of inner loops.
node The list of nodes in this loop.

The procedure body is considered as the outermost loop.
Further the module defines back edge information for Block , Phi

and Filter nodes. Each predecessor of these nodes can be annotated
with back edge information. The following access methods are supplied:
is backedge(), set backedge(), set not backedge(), has backedges()
and clear backedges().

The loop and backedge information can be computed for a single pro-
cedure by construct backedges(). construct ip backedges() computes
the loop information in interprocedural view. It considers all methods with-
out callers as entry points to the program. It finds all loops in the represen-
tation, including recursions and loops arising from several sequential calls
to the same method. I.e., the representation contains many not realizable
loops.

CHAPTER 7. EXISTING ANALYSES 62

7.4 Call Graph Analysis

libFIRM supplies a straight forward analysis to construct the call graph:
cgana() in cgana.h. It collects for all Call nodes the methods possibly
called. It evaluates the address expression passed to the Call node. If this
expression is a Sel node selecting a method entity from a class this method
entity and all method entities overwriting this entity can be called. If the
expression is a Const node referring to a method entity this entity can be
called. In all other cases an unknown method can be called.

Further cgana() collects and returns all free methods, i.e., methods
whose address is stored to memory so that they can be called from Call
nodes where the address can not be analyzed.

Chapter 8

Manipulating the
intermediate representation

8.1 Support for Traversing the intermediate rep-
resentation

The library provides three groups of flags to mark nodes. Traversals of the
ir can use these flags to mark visited nodes. Each group of flags consists of
a central master flag to compare against and flags in the nodes traversed.
Each algorithm using these flags must assert that the master flag is greater
or equal to the flags in all of the corresponding nodes after the traversal.

8.1.1 Flag for Firm Nodes

All Firm nodes have a flag visited. The corresponding master flag is the
flag visited in the ir graph data structure. Further exists a master flag
max irg visited that always contains the maximum off all visited master
flags in ir graph. Access methods:

get irn visited()
set irn visited()
mark irn visited()
inc irg visited()
set irg visited()
get irg visited()

63

CHAPTER 8. MANIPULATING THE INTERMEDIATE REPRESENTATION64

8.1.2 Flag for Firm Block-Nodes

All Firm block nodes have a flag block visited. With this flag simulta-
neous traversals of the full Firm graph and the control flow subgraph are
possible. The corresponding master flag is the flag block visited in the
ir graph data structure. Access methods:

get Block block visited()
set Block block visited()
mark Block block visited()
inc irg block visited()
set irg block visited()
get irg block visited()

8.1.3 Flag for Types and Entities

All Firm types and entities have a flag visited. The corresponding master
flag is the global variable type visited defined in type.h. Access methods:

get entity visited()
set entity visited()
mark entity visited()
get type visited()
set type visited()
mark type visited()

8.2 Existing Traversal Functions

libFIRM supplies a set of traversal functions implemented with the above
flags. These are defined in the headers irgwalk.h and typewalk.h.

The function irg walk() walks over all Firm nodes reachable from the
node passed as argument. It has two functions, pre and post, as arguments.
For each node it visits it calls pre, then iterates to the nodes predecessors
and finally calls post. It increments the master visited flag for nodes before
the traversal and sets the flag of a node to the value of the master flag before
calling pre. The functions pre or post must deal carefully with the visited
flags of new or changed nodes.

The function irg block walk() walks over the control flow graph reach-
able from the node passed. It uses the visited flag for Block nodes. It in-
crements the corresponding master visited flag before the traversal. Before
visiting a node it sets the visited flag of the node to the value of the master
flag. For each block node it executes pre. Then it walks to the predecessor

CHAPTER 8. MANIPULATING THE INTERMEDIATE REPRESENTATION65

blocks. It finds these by walking from the blocks predecessors, passing Id ,
Tuple and Proj nodes to the next control operation and taking its block.
After the walk it executes post.

The function cg walk() walks over all nodes in all graphs in interproce-
dural view. Sets current ir graph properly.

The function walk const code() walks over all nodes representing con-
stant expressions in const code irg().

Several shortcuts exist to call these walkers. See irgwalk.h for further
information.

The function type walk() walks over all types and entities.
type walk irg() walks only over type information reachable from a certain
graph. The function type walk super2sub() walks over all class types. It
guarantees that all super types have been visited before executing pre on
a class. Post will be executed at some point after executing pre. All type
walkers use the visited flag for types.

8.3 Support for Transformations

8.3.1 Transformation of Firm Graphs

The header irgmod.h defines several methods to transform Firm graphs.
The function exchange() replaces one Firm node by another by turning

the old node into an Id node. This is illustrated in Figure 8.1.

Add

.....

.....

.....

.....

Mul
IdMul

2 2

Figure 8.1: Use of Id node: replacing a node by turning the old node into
an Id node. Constant expression evaluation removes the Id nodes.

CHAPTER 8. MANIPULATING THE INTERMEDIATE REPRESENTATION66

The function turn into tuple(node, arity) turns node into a Tuple
node. The Tuple is in the same block as node. It has arity fields for data
predecessors that are not initialized. Figure 8.2 illustrates the use of this
function. This function can be used to replace nodes of mode tuple. Set the
Tuples predecessors with set Tuple pred().

Proj 0 Proj 1

Cond
Cond

Proj 0 Proj 1

Bad JmpTrue Bad Jmp

Tuple

Figure 8.2: Use of Tuple node: replacing a node by turning the old node
into a Tuple node. Constant expression evaluation removes the Tuple and
the Proj nodes.

The function collect phiprojs() collects all Phi nodes in a block as
a linked list in the link field of the block and all Proj nodes as a linked
list in the node producing the tuple. This is needed as a precondition for
part block(). Proj s for nested tuples are collected in the node producing
the outermost tuple.

The function part block() parts a block into two. It gets a single node
as argument. The block of this node is parted. This is useful to insert
other blocks or new control flow within a given block. The function adds a
new block in the control flow before the block (old block) of the argument
node. It moves node and its predecessors from the old block to the new
block. Further it moves all Proj s that depend on moved nodes and are in
the old block to the new block and it moves all Phi nodes from the old
block to the new block. To achieve this the routine assumes that all Phi
nodes are in a list (using the link field) in the link field of the old block.
Further it assumes that all Proj nodes are accessible by the link field of the
nodes producing the tuple. This can be established by collect phiprojs().
part block() conserves this property. The function adds a Jmp node to the
new block that jumps to the old block. It assumes that node is contained
in current ir graph. It sets current block in this ir graph to the new block.
Figure 8.3 illustrates the effect of part block().

CHAPTER 8. MANIPULATING THE INTERMEDIATE REPRESENTATION67

.....

Phi 17

Load

Proj 0 Proj 1

Store

Proj 0
 Jmp

.....

Phi

.....

Phi

.....

Phi

Load

Proj 0 Proj 1

 Jmp Proj 0

Store

 17

Jmp

Figure 8.3: The effect of part block() if called for the Load node. The
green edges indicate the lists of Phi and Proj nodes. The red nodes are
introduced by part block().

8.3.2 Transformation of Type Information

Functionality supporting transformation of type information is implemented
in typegmod.h. The method exchange types() replaces a type by a new
one turning the old type into an Id type. This transformation is dual to
exchange() as explained in 8.3.1.

Chapter 9

Firm and Debug Support

9.1 Rational

libFIRM is a library dedicated to develop and test compiler optimizations.
Therefore supporting debugging in a compiler using libFIRM is not a pri-
mary goal. Nevertheless there is the need to include support to transport
information necessary for debugging programs translated with a compiler
incorporating libFIRM.

Therefore libFIRM supports an interface to a module implementing de-
bug support. It allows to annotate each Firm node with arbitrary debug
information, e.g., the origin file and line and column numbers. Further lib-
FIRM calls routines after performing code transformations to update the
debug information. This is necessary if the optimization decides to replace
a node annotated with debug information by a new one.

9.2 Interface for Debugging Support

Each Firm node contains a reference to debug information. This reference
can be administrated with the two access routines get irn dbg info() and
set irn dbg info(). If the get routine is called for a node without de-
bug information it returns Null. Further libFIRM supplies a set of node
constructors that allow to pass a reference to the debug information. All
optimizations call one of two methods to update this information after a
transformation of the Firm graph. The optimizations pass a flag of type
dbg action indicating the optimization performed. Everything else is left
to the module implementing the debugging support.

68

CHAPTER 9. FIRM AND DEBUG SUPPORT 69

libFIRM expects the debug information to be of the type

\texttt{typedef struct dbg_info dbg_info;}

If the optimization can match single nodes it calls a function with the sig-
nature

void deb_info_copy(ir_node *new, ir_node *old,
dbg_action info);}

where old is the node now replaced by new. If the optimization replaces
larger subgraphs by another subgraph and there is no obvious mapping
between single nodes in both subgraphs it calls

void deb_info_merge(ir_node **new_nodes, int n_new_nodes,
ir_node **old_nodes, int n_old_nodes,
dbg_action info);

I.e., the optimization simply passes two lists to the debug module, one con-
taining the nodes in the old subgraph, the other containing the nodes in the
new subgraph.

The initialization routine of the debug module expects a pointer to these
two functions. The optimizations call the functions by these pointers.

Index

add in edge(), 38
allocation, 16, 23

automatic allocated, 17, 23
dynamic allocated, 16, 23
static allocated, 16, 23, 32

array type
lower bound, 11

array type, 10, 19
order, 11
upper bound, 11

atomic entity, see entity
atomic type, see type
autodoc, 4
automatic allocated, see alloca-

tion

back edge, 59
block visited, 62

callee, 30, 48, 54
cg construct(), 48
cg destruct(), 48
cg walk(), 63
cgana(), 54, 60
cgana.h, 60
class type, 13
clear backedges(), 59
collect phiprojs(), 64
compound entity, see entity
compound type, see type
compute doms(), 56, 59
compute outs(), 58

cond kind, 29
const code irg(), 63
constant, 24, see variability
construct backedges(), 59
construct ip backedges(), 59
current block, 38, 44, 46
current ir graph, 22, 35, 38, 38,

40, 63

dbg action, 66
dbg info, 67
dead code elimination(), 53
debugging, 66
dom consistent, see dom state
dom inconsistent, see dom state
dom state, 59

dom consistent, 59
dom inconsistent, 59
no dom, 59

dynamic allocated, see allocation

element ent, see array type
element type, see array type
entity, 5, 6, 16, 26, 30, 34, 40, 43

allocation, 16
atomic, 19
compound, 19
constant, 19, 36
construction, 35
global, 17
local, 17
name, 6

70

INDEX 71

offset, 9
peculiarity, 18
reference to constant, 32
size, 7
visibility, 17
visited, 62
volatility, 18

entity.h, 16
enumeration type, 9

nameid, 10
exchange(), 63, 65
exchange types(), 65
external allocated, see visibility
external visible, see visibility

firm.h, 4, 33
floats, see pinned
free dom(), 59
free outs(), 58

gc irgs(), 54
get const code irg(), 22, 35
get glob type(), 34, 35
get irg frame(), 41
get irg frame type(), 39
get irg globals(), 41, 44
get irn dbg info(), 66
get irn n(), 48
get store(), 38, 43
get value(), 39, 41
global type, 25

has backedges(), 59
heap alloc, see where

ident, 28, 30, 31, 32, 35
ident.h, 32
init firm(), 33
initialized, 24, see variability
inline method(), 57
inline small irgs(), 57

interprocedural view, 28, 30, 48
ir graph, 24, 26, 41, 55, 59, 61, 62
ir prog, 25
ircgcons.h, 48
ircgopt.h, 54
ircons.h, 9, 38
irdom.h, 59
irdump.h, 4
irflag.h, 33
irg block walk(), 62
irg phase state

phase building, 27
phase high, 20, 27
phase low, 20, 27

irg walk(), 48, 62
irgmod.h, 63
irgopt.h, 53–57
irgraph.h, 26, 34, 40
irgwalk.h, 62, 63
irloop.h, 59
irmode.h, 31
irnode.h, 27
irop.h, 28, 55
irouts.h, 58
irprog.h, 25, 35
irvrfy.h, 4
is backedge(), 59
is volatile, see volatility

k type, 6
keepalive(), 39

layout fixed, see type state
layout undefined, see type state
link field

entity, 24
ir graph, 26
node, 27, 64
type, 7

linkage ptr info, 30

INDEX 72

local, see visibility
local optimize graph(), 49, 53–55
loop, 59
lower bound, see array type

mature block(), 38
max irg visited, 61
method type, 8, 12
mode, 7, 19, 27, 31, 42
mode p, 8

n dimensions, see array type
nameid, see enumeration type
new Bad(), 26
new defaultProj(), 29
new immBlock(), 38
new ir graph(), 34, 39
new Sel(), 43
new simpleSel(), 43
new Unknown(), 26
no dom, see dom state
no outs, see outs state
non volatile, see volatility

offset, see entity
opt constant folding, 49
opt control flow, 54
opt cse, 55
opt dead node elimination, 54
opt global cse, 55
opt reassociation, 54
opt unreachable code, 54
optimize, compiler flag, 49
optimize cf(), 53, 54
order, see array type
out edges, 58
outs consistent, see outs state
outs inconsistent, see outs state
outs state, 58

no outs, 58
outs consistent, 58

outs inconsistent, 58

part block(), 64
part constant, 24, see variability
peculiarity, 16, 18

description, 14, 16, 18, 23
existent, 14, 16, 18, 23
inherited, 16, 18, 23

phase building, see
irg phase state

phase high, see irg phase state
phase low, see irg phase state
Phi , 38, 39, 48, 53–55, 59, 64
pinned, 28

floats, 28, 55
pinned, 28, 55

place code(), 55, 56
pointer type, 7

points to, 7
points to, see pointer type
primitive type, 7

remove bad predecessors(), 53
robodoc, 4

set backedge(), 59
set entity variability(), 35
set irn dbg info(), 66
set irn out(), 58
set not backedge(), 59
set store(), 43
set Tuple pred(), 64
set value(), 34, 38–40, 44
size, of a type, see type
size, SymConst, 30
smaller mode(), 31
static allocated, see allocation
strongly connected region, 59
structure type, 12, 12
switch block(), 36, 38

INDEX 73

tpop.h, 6
turn into tuple(), 64
tv.h, 32
type, 6

array, see array type
atomic, 6
class, see class type
compound, 6
enumeration, see enumeration

type
layout, 9
method, see method type
mode of, 7
pointer, see pointer type
primitive, see primitive type
size, 7, 12
state of, 7
structure, see structure type
union, see union type

type.h, 6, 35, 62
type state, 7

layout fixed, 7, 8, 10
layout undefined, 7

type tag, 30
type visited, 62
type walk(), 63
type walk irg(), 63
type walk super2sub(), 63
typegmod.h, 65
typewalk.h, 62

uninitialized, see variability
union type, 13
upper bound, see array type

variability, 19, 23
constant, 23
initialized, 23
part constant, 23
uninitialized, 23

visibility, 17, 23
external allocated, 18, 23
external visible, 18, 23, 25
local, 18, 23, 25

visited, 61, 62
entity, 24
node, 26, 27
type, 7

volatility, 18, 24
is volatile, 24
non volatile, 24

walk const code(), 63
where, 30

heap alloc, 30

Bibliography

[Sch02] Hubert Schmid. Explizite Interprozedurale Abhängigkeitsgraphen.
Studienarbeit, Dept. of Computer Science, University of Karlsruhe
(TH), June 2002.

[TLB99] Martin Trapp, Götz Lindenmaier, and Boris Boesler. Documenta-
tion of the Intermediate Representation FIRM. Technical Report
1999-14, Dept. of Computer Science, University of Karlsruhe (TH),
December 1999.

74

