
Feasible Models of Computation: Three-Dimensionality

and Energy Consumption�

Peter Sanders, Roland Vollmar, Thomas Worsch

University of Karlsruhe, Department of Informatics,

76128 Karlsruhe, Germany

Abstract

Using cellular automata as models of parallel machines we investigate the

relation between (r � 1)- and r-dimensional machines and constraints for the

energy consumption of r-dimensional machines which are motivated by funda-

mental physical limitations for the case r = 3. Depending on the operations

which must be considered to dissipate energy (state changes, communication

over unit-length wires, : : :), some relations between the relative performance

of 2-dimensional and 3-dimensional machines are derived. In the light of these

results it seems imperative that for feasible models of computation energy con-

sumption has to be considered as an additional complexity measure.

1 Introduction

Emphasizing that models of parallel computation must always be an abstraction

from reality is almost a tautology, else we would not have a model but a descrip-

tion of a particular machine. What simplifying assumptions we make, very much

depends on the pursued goal. When we want to devise algorithms which expose as

much parallelism as possible, a powerful model like the CRCW-PRAM is adequate.

However, practical experience shows that real computers have additional limitations

worth modeling. If we assume the speed of information propagation to be e�ectively

in�nite and the cost of wires to be negligible, �xed degree interconnection networks

are one adequate model [5].

However, at now feasible clock speeds approaching 1 GHz no information can

travel further than 30 cm during one clock cycle. The currently dominant technol-

ogy of information transmission by charging wires costs an additional order of magni-

tude in latencies. Since large parallel computers can have a diameter of many meters,

transmission latencies are an issue. (We do not concern ourselves with telecommu-

nication where latencies are even more crucial [21].) In addition, interconnection

networks turn out to be a major cost factor for large parallel computers. These

problems are particularly important for the design of a scalable architecture. Ide-

ally, one would like to have a generic architecture where the maximum interconnect

length is independent of the number of nodes and the interconnect cost never exceeds

a constant fraction of the total system cost [7].

Usually the discussion of these issues is constrained to 2-D layouts1 of computers

because chips and printed circuit boards allow only a constant number of layers.

�This is technical report 2/97 of the Department of Informatics, University of Karlsruhe. It is
also available at http://liinwww.ira.uka.de/~worsch/papers/.

1Usually \r-dimensional" will be abbreviated to \r-D".

1

The starting point for this paper is to look at the general r-dimensional case in

order to identify nontrivial scaling issues which show up for higher dimensions with a

particular emphasis on the case r = 3 which is important for large parallel computers.

What kind of model is adequate here? Abstract models like LogP [3] or BSP [15]

can be parameterized to model the maximum communication latency but in order

to be useful for designing portable parallel algorithms they do not allow to exploit

local communication. The traditional way used in papers like [2, 9, 13] is to enhance

the circuit model of computation by additional properties like cycles with latches,

wire delays, energy consumption and space requirement. For practical questions,

e.g., as studied in the PATMOS series of workshops these models get very complex.

For example, in VLSI design tools, very detailed multilevel descriptions from register

transfer languages down to analog simulations are used.

Conceptually much simpler than the above models is the very low level grid

model of circuits [23] which describes the circuit as a regular orthogonal grid of cells

which must consist of the same material. This model can be considered universal

since inaccuracies in the production technology forbid to exploit arbitrarily accurate

placement of materials. The cell model is on the other hand equivalent to cellular

automata where the state of an automaton-cell encodes the states of a �xed number

of VLSI-cells.2 Note that the additional feature of synchronous operation does not

increase the performance of cellular automata [16]. We will therefore use the cellular

automata model for our studies and only note here without proofs that the results

can also be translated into an appropriately enhanced circuit model. Our theorems

overlap with curcuit model results stated in [13] and the papers cited there. How-

ever, our results for higher dimensions illuminate additional aspects like the relation

between speed and energy consumption. Also, we consideer functions with a sin-

gle output bit which makes it possible to use the formalisms developed in formal

language theory.

The price we pay for this simple model is that we have to neglect various constant

factors due to the di�erence in space and time requirements for wires and \compute

cells" and the fact that the average packing density in the third dimension will be

smaller than in the other two dimensions for currently realistic technologies. We

therefore only make propositions in asymptotic notation (O(�),
(�), : : :). Although

the universe is �nite, we assume to be able to scale the architectures to a su�cient

size to make it meaningful to renounce constant factors. This assumption has to

be made for every asymptotic analysis; otherwise, every physically feasible machine

would have to be considered a �nite automaton.

As a motivation of our assumptions we use fundamental physical principles and

some basic properties of actual or proposed technologies which also indicate some

practical relevance of the results obtained.

This paper is organized as follows: After introducing some basic de�nitions in

Section 2 we discuss the relative performance of (r�1)-dimensional and r-dimensional

machines in Section 3. In Section 4 it is shown that the energy consumption has to be

taken into account for r = 3 and that this has some interesting implications for the

performance of the machine. Section 5 summarizes the tradeo�s between di�erent

models. Finally, Section 6 summarizes the consequences of the technical results on

a more abstract level.

2In a VLSI-cell there might be in�nitely many levels of a physical quantity like voltage but for a

digital computer they fall into a �nite number of equivalence classes.

2

2 Basic De�nitions and Examples

Although from a physical point of view we are mainly interested in 3-dimensional

systems, it turns out that all results can be generalized for higher dimensionality.

Therefore everything will formulated for an arbitrary dimensionality r � 2. Never-

theless we will usually only speak of \planes" and \cubes" instead of \hyperplanes"

and \hypercubes".

An r-dimensional cellular automaton (CA), or Zr�CA for short, consists of a

collection of deterministic �nite automata (called cells) positioned at all points of

the underlying lattice R = Z
r. The cells are identical in that they use the same set of

states Q and work according to the same rule. Let N (r) = f(x1; : : : ; xr) j
P

i
jxij �

1g � Z
r denote the so-called r-dimensional von Neumann neighborhood. If r is clear

from the context or not important, we will drop the superscript. It is known to be

no loss of generality to consider only this type of neighborhood. The neighbors of

the cell with coordinates x are the cells in x+N .3

A (global) con�guration of a CA is a mapping c : R! Q, i.e.4, c 2 QR. The local

con�guration in c at position x is the mapping cx : N ! Q : n 7! c(x+n). The local

transition function (or local rule) of a CA is a mapping � : QN ! Q. It induces the

global transition function � : QR ! QR describing one step of the CA according to

(�(c))(x) := �(cx), i.e., all cells synchronously update their state according to �.

The type of problems which will be considered as computational tasks for CA is

the recognition of formal languages. Let A denote some input alphabet with jAj � 3

containing a symbol @. We assume the symbols of an input w 2 A+ of length n = jwj

to be numbered from 0 to n � 1. We want to ignore problems concerning the way

how the input symbols are fed into the CA and assume that they are provided in a

\row major order" to an input cube of cells: For k 2 N+ denote by HC k the cube

f(x1; : : : ; xr) j 8i : 0 � xi < kg. Let m = dn1=re. Then at the beginning of a

computation a cell in HCm with coordinates (x1; : : : ; xr) receives the j-th symbol

of w, if 0 � j =
P

r

i=1 xim
i�1 < n. The initial con�guration for an input w will

be denoted cw. In cw all cells not containing an input symbol are in a so-called

quiescent state. In the course of a computation a CA may also use cells initially in

the quiescent state (quiescent cells).

Without loss of generality, cell 0 has to produce the result, i.e., the information

whether the input has been accepted or rejected. This is indicated by assuming a

special state f+ (resp. f�) in the case of acceptance (resp. rejection).

We will only consider CA which halt for every input. The time complexity of a

CA C is the function t where t(n) is the maximum number of steps needed by C

to accept or reject an input of size n. The computation cube HC(n) is the smallest

cube comprising all cells used during the computation for at least one input of size

n.

The extent ofHC(n) (its side length) is always denoted by d(n); the size ofHC(n)

is d(n)r. It should be noted that extent (and size) are only partially motivated by

the wish to be able to measure the amount of used cells, in other words a kind of

\space complexity". (Of course there are CA for which the number of non-quiescent

cells is signi�cantly smaller than the size of HC(n).) Another aspect of extent that

is of interest in this paper is that for nontrivial problems it gives a lower bound on

the computation time.

3We write v+M for fv + x j x 2Mg.
4
Y
X denotes the set of all functions from X into Y .

3

In Subsection 4.2 we will introduce a further measure called (state) change com-

plexity.

Throughout the paper we will consider (variants of) two formal languages :

Lparity :=
�
w
�� w 2 f0; 1g+ and w contains an even number of 1s

	
Lvv :=

�
v@jvjv

�� v 2 f0; 1g+
	

For a language L let L[r] := fw 2 L j jwj1=r=3 is an integerg. Words in L[r] have

the nice property that they completely �ll their input cubes (because jwj1=r is an

integer). In the case of words w 2 L
[r]
vv it is even the case that each of the three parts

of w completely �lls a hyperrectangle which is one third of the input cube.

For the description of algorithms for these languages as well as for later con-

structions and proofs it is useful to de�ne the following notation. Given some cube

W � R and some 1 � k � r and i let HPk(i) denote the plane of W consisting of all

cells having coordinates with a k-th component xk = i. When considering a CA for

inputs of size n it is always to be understood, that planes refer to HC(n).

Lparity as well as Lvv can be accepted using only the cells in the input cube in

time �
�
n1=r

�
which is asymptotically optimal. In order to keep the descriptions of

the algorithms clear we will only consider the cases of the \nice" languages L[r].

2.1 Algorithm. (for Lparity) As always let m = m(n) =
�
n1=r

�
. In the �rst phase

all the cells in HPr(m� 1) send signals to their corresponding cells in HPr(0) com-

puting the sum modulo 2 of all symbols in one row along the last dimension. The

resulting values are then added according to the algorithm for the r� 1 dimensional

case in the side face HPr(0) of the input cube.

Note that during the �rst n1=r steps the signals amount to a kind of activity front

moving through the cube. Hence, in each step the cells of only one plane are \active"

(this notion will be made precise in Section 4).

2.2 Algorithm. (for Lvv) The recognition of L
[r]
vv on Zr�CA is a little bit more

complicated. The cells in HPr(0) send an activity front with speed 1=2, which

initiates each plane HPr(i), 0 � i < m=3 to send its information to the last third

of the input with speed 1.5 The �rst plane in the second v-part (which is able to

identify itself because of its @-neighbors) waits for the �rst signals to arrive. As soon

as this happens an activity front is started with speed 1=2 moving through the second

v-part. Each time it arrives at a new plane its cells compare their own symbol to

the one arriving from the �rst v part, which is killed (i.e. it does not move further).

If one of the comparisons fails a rejection signal is sent to cell 0 with speed 1. If no

such signals arrive during the �rst (4
3
+ r)m steps the input is accepted. (This time

can be measured easily by a signal running along the edges of the cube.)

If this algorithm is implemented in a standard CA, the sending of the sym-

bols from the �rst v-part to the second one is achieved using activity fronts. In

this case the m=6 activity fronts which have been started �rst simultaneously move

through m=3 cells before beginning their comparisons. Hence in each of �
�
n1=r

�
steps there are up to �(n) \activities" per step, and therefore the algorithm may

involve �
�
n(r+1)=r

�
state changes overall.

5In a standard CA this is done using further activity fronts which carry with them the symbols
of the plane where they started. But note that this algorithm will also be adopted to a generalized
model in Subsection 4.3.

4

Note that in the above algorithm we have only described what happens in the case

of an input from L
[r]
vv. We leave the case of an input not belonging to the language

as an exercise.

3 r � 1 Versus r Dimensions

The methods in this section are easier to explain using terms like embedding, simu-

lation and layout of networks [11]. The translation of the results into CA is possible.

But since there are further technical complications this will be done in another pa-

per. An additional reason for an informal presentation is that we are convinced

that the facts presented here are known or easy to reproduce by experienced people

working on network embeddings. Since the results are needed in Section 5 and be-

cause we think that the techniques deserve wider publicity, we did not want to omit

descritpions of the basic ideas however.

Note (added during �nal proof reading): The papers by Rosenberg and Leighton

[12, 18, 19] contain results which are very closely related to those reported in Sec-

tion 3.2.

3.1 Mutual Simulation of r � 1 and r

Interestingly, it is not trivial to simulate a cubic (r � 1)-D mesh on a cubic r-

dimensional mesh of equal size (for r > 2) if one is only interested in the case of

one-to-one assignments of simulated processors to simulating processors and a su�-

ciently \nice" data ow during the simulation (i.e. small congestion and dilation).

In particular, there is no embedding doing the job. However, by decoupling the com-

putations of distant parts of the machine a simulation with constant slowdown can

be achieved. (The case r = 3 is described in [1] and it can be generalized to arbitrary

dimension.)

On the other hand, there are many problems for which Zr�CA are faster than

Z
r�1�CA. For instance, for Lparity the speed ratio is in �

�
n1=(r(r�1))

�
. This result

is tight in the sense that there are no languages for which the speed gap is even

larger: An n-node cubic r-D mesh can be mapped one-to-one into an n-node cubic

(r� 1)-D mesh such that nodes which are immediate neighbors in the r-D mesh are

at most �
�
n1=(r(r�1))

�
hops apart in the (r � 1)-D mesh. We only state the scheme

for the case that n is a (r � 1)r-th power: Cut the cube into n1=r slices. Scale each

slice to size n1=(r�1)�n1=(r�1) such that cube nodes are n1=(r(r�1)) nodes apart. Now

interleave the n1=r stretched slices such that nodes adjacent along the r-th direction

are also neighbors in the embedding, e.g. in a snake-like fashion. The resulting

embedding has dilation n1=(r(r�1)) and congestion n1=(r(r�1)) + 1. Figure 1 depicts

the embedding for r = 3; n = 64.

3.2 Layout Complexity of Buttery Networks

An argument often brought forth against the feasibility of logarithmic diameter in-

terconnection networks is their large VLSI layout complexity. For example, in [23,

Theorem 6.2] it is shown that the 2-D layout of an n log n-node buttery requires

area �
�
n2
�
. This does not only imply a high cost but also a maximum distance

between nodes of �(n). So it would seem that such networks asymptotically have a

larger latency than 2-D meshes (n1=2).

5

Figure 1: Embedding of a 43 cube into an 82 mesh.

The situation gets a di�erent touch for general r. An n logn node buttery can

be assembled within an r-cube of diameter O
�
n1=(r�1)

�
and volume O

�
nr=(r�1)

�
with

no wire longer than O
�
n1=(r�1)

�
: Over one layer with n processors, log n layers of

connections are placed. Each of these layers consists of a certain number of cell

planes. Switches and processors are connected in the r-th direction. The exchange

connections alternate between the r � 1 remaining directions. So the length of the

wires only doubles every r � 1 layers. It is also su�cient to double the height of the

layers every r � 1 layers in order to keep the wires at a constant distance. Figure 2

gives an example for r = 3, n = 16. We can think of this arrangement as a way

to extend a (r � 1)-D architecture by r-dimensional wiring in order to achieve a

higher bisection bandwidth (�(n) versus �
�
n1�1=r

�
) (and possbily a lower latency

by a constant factor).

Figure 2: 3-D layout of a multistage buttery with 24 processors and 4 layers of

connections.

4 Energy Consumption

4.1 Is There a Problem?

It is well known that cooling and power supply of chips and entire computers is

a crucial issue in hardware design. However, if the power consuming elements are

arranged in two dimensions, cooling poses no limit to building larger machines since

the surface of the machine grows in proportion with the number of active elements.

6

Power distribution faces the practical problem that for building larger chips the

number of power supply pins needs to be scaled in proportion with the chip area.

This is not possible if we insist on using only pads at the boundary of the chip. We

get an analogous but more fundamental problem with cooling (and power supply)

for 3-D machines since there is no additional space dimension left we can exploit.

A 3-D machine with extent d can have �
�
d3
�
active elements but all the dissipated

energy has to be transported through the surface of some cube with surface area

O
�
d2
�
. (This holds regardless of the actual surface of the machine which could

even be a fractal with an area of up to �
�
d3
�
.) On the other hand, for any given

technology, the maximum allowable temperature at any point in the machine must

not exceed a certain constant value, i.e., this limit cannot be scaled with the machine

size. Therefore, it is not feasible for each cell of a large machine to consume one

unit of energy in each step because eventually, the machine will become overheated.

More precisely, we can state the following necessary condition for a physically feasible

computation:

4.1 Proposition. (for the 3-dimensional case) For every physically feasible com-

putation, every subcube of the machine with extent d0 and every interval of the com-

putation of length t0, no more than O
�
d0

3
+ t0d0

2
�
units of energy may be dissipated

within this space-time interval of the computation.

For the general case of r-D systems we restate this proposition as follows.

4.1 Proposition. (for the r-dimensional case) For every physically feasible com-

putation, every subcube of the machine with extent d0 and every interval of the

computation of length t0, no more than O
�
d0
r
+ t0d0

r�1
�

units of energy may be

dissipated within this space-time interval of the computation.

This generalization for example makes sense for the pin limitation problems for 2-D

chips mentioned above. In this case we would have r = 2. The interest in the case

r � 4 is probably a more theoretical one.

The crucial question now is: Which operations should be considered to con-

sume energy? It follows from the laws of thermodynamics, that every irreversible

computation (e.g. and, or) must consume at least kBT ln 2 of energy where kB is

the Boltzmann constant and T the temperature of the switching element in Kelvin.

But this cannot imply a nontrivial lower bound on the energy consumption for the

solution of any problem, since in principle universal computers can be built using

only reversible gates. However, gates which actually consume less energy than the

kBT ln 2 bound are currently only gedanken experiments and/or trade speed for en-

ergy consumption; so they cannot be used for building fast computers. Nevertheless

it is interesting to note that reversibility has proved important (shown to be useful?)

for the design of low power MOS circuits [17, 22] (although these circuits still con-

sume much more energy than kBT ln 2 so that reversibility is no physical necessity for

reducing energy consumption). In addition, some reversible computations generate

a lot of \garbage" information [6] which either has to be stored somewhere or moved

out of the machine. For a more detailed discussion refer to [4, 10, 14].

4.2 The Relation to Change Complexity

A simple approximation to the actual energy consumption of a machine is to count

the (proper) state changes of its cells. Especially for CMOS this is quite accu-

7

rate. Proposition 4.1 can therefore be reformulated in terms of the numbers of state

changes.

For CA this corresponds to the concept of (state) change complexity which has

been introduced in [24]: The change complexity of a CA C with time complexity t

is the function s where

s(n) = max
w2An

����(x; �) j � < t(n) and (�� (cw))(x) 6= (��+1(cw))(x)
	��� :

A CA satisfying the constraints of Proposition 4.1 is called a Zr�CAce (where ce

stands for \cold everywhere").

Obviously the relation s(n) � t(n) always holds: In each step of a computation

at least one cell has to change its state, because otherwise the reached con�guration

will never change again. On the other hand we also have:

4.2 Corollary. A Zr�CA which ful�lls Proposition 4.1 must have a time complexity

of at least t(n) 2

�
s
0(n)�d0(n)r

d0(n)r�1

�
if s0(n) changes occur in a cube of extent d0(n).

One of the basic tools for the results in Section 5 is Proposition 4.4 below that there

are languages the recognition of which requires a certain nontrivial amount of state

changes. As prerequisites some more formalism and a lemma are needed, which is a

generalization of [24, Lemma 2].

We use the notation hwi for the \space time diagram" of an input w, i.e. the

mapping R � N+ ! Q where (�� (cw))(x) gives the state of cell x at time � . The

restriction of hwi to a subset M � R is denoted6 hwjMi :M � N+ ! Q.

Let R =M1 _[M2 be a partition of the whole lattice of a CA in two disjoint subsets

and let K denote the border \between" M1 and M2, i.e.

K = fx 2M1 j 9n 2 N : x+ n 2M2g [fx 2M2 j 9n 2 N : x+ n 2M1g :

The hwjKi will be called crossing sequences [8] because they will be used in the same

way as Hennie's concept for Turing machines.

4.3 Lemma. Let R =M1 _[M2 be a partition with border K and let w1; w2 be two

inputs of equal length such that hw1jKi = hw2jKi. Then hw1jM1i [hw2jM2i is the

space time diagram for an input w. If 0 2 Mi, w is accepted if and only if wi is

accepted.

Here the notation hw1jM1i [hw2jM2i is to be understood as the mapping X :

(M1 [M2)� N+ ! Q, where X(x; �) = hwijMii(x; �) for x 2Mi.

Proof. Let K1 = M1 \ K and K2 = M2 \ K. As always n = jw1j = jw2j. Let

X = hw1jM1i [hw2jM2i.

Let w be the input corresponding to the input cube consisting of the M1-part of

the input cube for w1 and the M2-part of the input cube for w2.

By induction on � we prove: 8� � 0 : 8x : hwi(x; �) = X(x; �).

� � = 0: by the construction of w.

6This notation should not be confused with the bra-ket notation from quantum mechanics.

8

� � ! � +1: Assume that x 2M1 (the case x 2M2 can be treated analogously).

Then for all � we have X(x; �) = hw1jM1i(x; �) and hence it su�ces to prove

hwi(x; � + 1) = hw1jM1i(x; � + 1).

hwi(x; � + 1)

= (��+1(cw))(x) de�nition of hwi

= �((�� (cw))x) de�nition of �

= �(n 7! (�� (cw))(x + n)) de�nition of cx

= �(n 7! X(x+ n; �)) induction hypothesis

= �(n 7! (hw1jM1i [hw2jM2i)(x + n; �)) de�nition of X

= �(n 7! (hw1jM1i [hw2jM2 \Ki)(x+ n; �)) because x 2M1

= �(n 7! (hw1jM1i [hw1jM2 \Ki)(x+ n; �)) because hw1jKi = hw2jKi

= �(n 7! hw1i(x+ n; �))

= hw1i(x; � + 1)

= hw1jM1i(x; � + 1) because x 2M1

In the sequel we will need nondecreasing functions f(n) =2 O(logn), i.e., satisfying

limn!1
log n
f(n)

= 0. The interesting case will be when f(n) grows slowly; therefore we

restrict ourselves to functions which are bounded by a polynomial of log n. We will

call such functions almost-log.

4.4 Proposition. A Z
r�CA recognizing Lvv makes a total of

�
n
(r+1)=r

f(n)

�
state

changes for every almost-log f(n) in the subcube of extent 3n1=r containing the

input cube in its center. The same is true for L
[r]
vv.

Proof. Assume that C is a CA with jQj states accepting Lvv in polynomial time t(n)

(otherwise the change complexity is trivially hyperpolynomial). W.l.o.g. consider an

input of size n = mr for some integer m. For 1 � i � m

6
consider the partitions

Mi1 _[Mi2 and the corresponding borders Ki, such that Mi1 = f(x1; : : : ; xr�1; xr) j

�2i � x1 < m+ 2i; : : : ;�2i � xr�1 < m+ 2i and � 2i � xr <
m

3
+ 2ig.

Obviously all Mi1 encompass all symbols of the �rst third of an input but none

of the last third. All the Ki are nonintersecting and their sizes can be bounded by

b1n
(r�1)=r for some common constant b1.

For any i, 1 � i � m

6
, the total number of crossing sequences containing at most

g(n) := n

f(n)
state changes in Ki is less than

�
b1t(n)n

(r�1)=r

g(n)

�
jQjb1n

(r�1)=r+g(n) �
�
b1t(n)n

(r�1)=r)
�g(n) �

jQj1+b1f(n)=n
1=r
�g(n)

�
�
2log(b1t(n)n

(r�1)=r)jQjb2
�g(n)

� 2b3g(n) log n

for su�ciently large n and some constant b3. This follows from the observation that

any such crossing sequence (and only these) can be constructed by independently

9

choosing the states for the b1n
(r�1)=r cells of Ki at time � = 0, g(n) points in the

space time diagram where a cell might change its state, and the corresponding new

states.

Because of Lemma 4.3, the de�nition of Lvv and the shape and position of the

borders Ki there must not be two words w1 6= w2 in Lvv and an index i such that

hw1jKii and hw2jKii are identical. Hence for each of the m=6 values of i there are

at most 2b3g(n) log n words for which we can have at most g(n) changes in Ki. For

su�ciently large n we have

(m=6)2b3g(n) log n = 2b3g(n) log n+log(m=6) = 2b3n(log n)=f(n)+log(n1=r=6) < 2n=3

because limn!1
log n
f(n)

= 0. Since the latter is the number of words of length n in Lvv,

there must be at least one word w of length n which causes more than g(n) = n=f(n)

state changes in each of the m

6
crossing sequences Ki. Hence a total number of state

changes for this w exceeds mn

6f(n)
2

�
n
(r+1)=r

f(n)

�
.

4.5 Corollary.

1. Lvv cannot be accepted by any Zr�CAce in less than n2=r=f(n) time (where

f(n) is an arbitrary almost-log function).

2. Lvv can be accepted by a Zr�CAce in time �
�
n2=r

�
.

Proof.

1. This follows from Proposition 4.4 and Corollary 4.2.

2. This follows from Algorithm 2.2 and Proposition 5.5 below.

It should be noted that for the proof of Proposition 4.4 we did not restrict our-

selves to CA which use only the input cube for their computations. The result holds

for all CA. It can therefore also be exploited to give an example where any CAce

has to be slower than a general CA due to a large change complexity only in a proper

subcube of the input cube although the overall change-complexity is small. Let Lr
denote the language of all words with the following r-dimensional arrangement: The

central subcube of extent n1=(r+1) (and size nr=(r+1)) contains a word from L
[r]
vv and

the remainder of the input cube is �lled with @ symbols everywhere.

4.6 Corollary. Let f be an almost-log function.

1. A Z
r�CA C recognizing Lr will make a total of
(n=f(n)) state changes in

the central subcube of the input cube of extent 3n1=(r+1).

2. A Z
r�CAce needs at least

�
n2=(r+1)=f(n)

�
steps to accept Lr.

Proof.

10

1. For the proof of the �rst part one has to observe that an algorithm for the

recognition of Lr can be turned into an algorithm for the recognition of L
[r]
vv

very easily: one only has to produce the output in another cell. Hence a low

state change complexity for Lr would also imply a low state change complexity

for L
[r]
vv contradicting Proposition 4.4.

2. The second part immediately follows from the �rst because of Corollary 4.2.

4.3 The Role of Communication

We have seen that technologies which limit the change complexity, considerably

constrain the performance of 3-D machines. It is therefore important to look for

relaxations. One candidate is communication. In terms of CA, handing information

from one cell to another must involve state changes. Therefore communicating one

bit of information through a simulated \wire" requires energy proportional to the

length of the wire. Although this is really an issue for current CMOS technology

(e.g. [20]), there are technologies which do have negligible energy consumption per

unit of wire length. For example, modern optical �bers are very translucent for many

kilometers.

Therefore we introduce a modi�cation of the CAce model, namely with wires,

denoted by Zr�CAww: Each cell has access to unidirectional \wire"-registers for

each of the 2 �r coordinate directions. The information in these registers moves to the

corresponding neighboring cell in every step without consuming energy. However,

reading or writing a wire register requires one unit of energy. Furthermore it is

required that the same energy constraints as for CAce must be satis�ed.

4.7 Algorithm. Algorithm 2.2 can be implemented on a CAww in such a way that

the information about the �rst v-part is transmitted through the wires. In this case

there are never more than two active planes and therefore Proposition 4.1 is ful�lled

without any slowdown of the algorithms.

5 Comparison of the CA Models

In this section we will compare the di�erent types of models introduced above.

Let Zr�CA�Ext�Time(d; t) denote the families of languages recognized by

Z
r�CA with extent at most O(d) and time complexity at most O(t); for Zr�CAce

a similar notations will be used.

We begin with the results concerning the simulations of higher-dimensional CA

on lower-dimensional CA and vice versa. Observe that in both cases the size of the

computation cube remains invariant.

5.1 Proposition. (Change of dimensionality)

If d is space-constructible in time t [25]:

1. Zr�CA�Ext�Time(d; t) � Z
r�1�CA�Ext�Time(dr=(r�1); d1=(r(r�1))t)

2. Zr�1�CA�Ext�Time(d; t) � Z
r�CA�Ext�Time(d(r�1)=r ; t)

11

Proof.

1. The basic idea for the proof of this result has been sketched in Section 3. It

should be noted that one has to solve the additional problem of rearranging

the input. Refer to �gure 1: A 2-D CA gets its input in the form \2 rows of

white elements, 2 rows of light gray elements, 2 rows of dark gray elements, and

2 rows of black elements". Before the simulation can be started the elements

have to be moved around to get the distribution as indicated on right hand side

of �gure 1. This can indeed be done on a CA in a su�ciently small amount of

time.

2. This has been proved in [1] (for the case r = 3).

Obviously each Zr�CAce is a Zr�CA. Hence, for no language a Zr�CA has to be

slower than a Zr�CAce. Furthermore for no language a Zr�CA has to be slower

than a Zr�CAww. The relations between models of di�erent dimensionality, e.g.,

between Zr�1�CA and Zr�CAce are less obvious.

5.2 Proposition. (Restricted vs. unrestricted CA)

Let f be an almost-log function.

1. There are problems for which Zr�CA are faster than every Zr�CAce by a

factor of

�
n1=r

f(n)

�
.

2. The same result holds for Zr�CAww instead of Zr�CA.

Proof.

1. According to Corollary 4.5 any CAce recognizing Lvv needs at least time

�
n2=r=f(n)

�
. On the other hand Lvv can be recognized by an unrestricted

Z
r�CA in time �

�
n1=r

�
(Algorithm 2.2).

2. This follows analogously from the fact that Lvv can be recognized by Z
r�CAww

in time �
�
n1=r

�
(Algorithm 4.7).

As can be seen from the above results the high state change complexity in our

examples stems \only" from the need for the \movement" of a lot of data over a long

distance but not from the need for a lot of \computations". It is an open problem,

whether there are also languages for which Zr�CA can be signi�cantly faster than

any Zr�CAww (for which per de�nitionem energy constraints hold).

5.3 Proposition. (Restrictions versus dimensionality) Let r � 3.

1. There are problems for which Zr�CAce are faster than Zr�1�CA by a factor

of at least �
�
n1=(r(r�1))

�
. The factor cannot be larger for any problem as long

as the computation cube coincides with the input cube.

2. There are problems for which Zr�1�CA are faster than Zr�CAce by a factor

of at least �
�
n(r�2)=(r(r�1))=f(n)

�
.

12

Proof.

1. Lparity can be recognized by Zr�CAce in time �
�
n1=r

�
using Algorithm 2.1

(and analogously for dimensionality r�1). Of course this is also a lower bound.

The tightness follows from Proposition 5.1.1.

2. Lvv can be recognized by Zr�1�CA in time �
�
n1=(r�1)

�
(Algorithm 2.2). On

the other hand every Z
r�CAce needs at least time

�
n2=r=f(n)

�
(Corol-

lary 4.5).

Considering Z2�CA and Z3�CAce to be feasible, but not Z3�CA, the above results

imply that in some cases, e.g., for Lvv, the time saved by going from (feasible) 2-

dimensional CA to (feasible) 3-dimensional CA gets more than lost because of the

restriction on the number of state changes. This is not only the case for Lvv. In

general it follows immediately from Proposition 5.1 above:

5.4 Corollary. If a language L can be recognized by a Zr�CA with extent d(n)

faster than by Zr�CAce with extent d(n) by a factor of q(n) =2 O
�
d(n)1=r

�
, then

L can be recognized faster by Zr�1�CA with extent d(n)r=(r�1) than by Zr�CAce

with extent d(n).

5.5 Proposition. (Reduction of state changes)

Z
r�CA�Ext�Time(d; t) � Z

r�CAce�Ext�Time(d; d � t) :

Proof. Let C be an arbitrary Zr�CA. A Z
r�CAce E recognizing the same formal

language works as follows: Each step of C (during which all cells may possibly change

their states) is simulated in d steps of E. On the side face HP1(0) an activity front

is started moving once through the cube and updating the states of the cells HP1(i)

in the i-th step.

The example of Lvv shows, that choosing d = n1=r in Proposition 5.5 leads to

an asymptotically almost optimal result. The proposition assures that recognition

on CAce is possible in time O
�
n2=r

�
while Corollary 4.5 provides a lower bound of

n2=r=f(n) for every almost-log f(n).

6 Conclusions and Future Work

This paper helps to understand some of the present and future problems of parallel

machine design using cellular automata as a simple but accurate model. In particular,

it shows that the third space-dimension has to be taken into account. In a sense,

even machines traditionally thought as two-dimensional require the third dimension

for cooling and power supply; so, why not exploit the third dimension for additional

purposes in order to increase performance. However, cooling considerations show

that the energy consumption must not be increased by more than a constant factor.

There are technologies which meet this constraint for memory and communica-

tion channels. If we are considering a moderately coarse grained machine which has

13

n processors with

�
n1=2

�
memory cells for each processor, even supplying a full

multistage-buttery network (or hypercube, or : : :) does not disproportionately in-

crease the cost of the machine. (Currently, sophisticated networks are very expensive

for economic reasons because they are not mass-produced like processors or memory.)

Exploiting the third dimension also for computations can be faster than any 2-D

machine. However, there are also problems with such a high energy consumption

that a at two-dimensional arrangement is superior if communication consumes en-

ergy proportional to wire length. For classical nonreversible computing, the state

change complexity of CA elegantly models the energy consumption and mirrors the

amount of information transmission (and can therefore give hints for the division of

computation processes).

Technological considerations suggest a number of remaining questions. For ex-

ample, we believe that a more restricted variant of wires allowing only access to the

endpoints, would only incur a logarithmic overhead compared to the current model.

The scaling properties of free space optical interconnects might also be interesting.

Other restrictions would treat memory cells di�erently than compute cells. Also, the

energy complexity of memory access in the presence of memory hierarchies is worth

looking at. The condition formulated in Proposition 4.1 is only a necessary condi-

tion. But it is not entirely trivial to actually devise a scalable cooling technology. For

example, if it should turn out to be feasible to build 3-D nanoscale cellular automata

[22] these will probably have to be cooled by heat di�usion which is very ine�cient.

In this case, Proposition 4.1 needs to be changed to O(d0
3
+ t0d0) for computations

deep inside any subcube (because the time a unit of energy needs to reach the surface

by a \random walk" grows quadratically with the diameter).

Acknowledgments

The authors gratefully acknowledge interesting and helpful discussions with Sebastian

Egner and Jozef Gruska.

References

[1] A.-C. Achilles, M. Kutrib, and Th. Worsch. On relations between arrays of

processing elements of di�erent dimensionality. In R. Vollmar, W. Erhard, and

V. Jossifov, editors, Parcella '96, pages 13{20. Akademie Verlag, 1996.

[2] A. Aggarwal, A. K. Chandra, and P. Raghavan. Energy consumption in VLSI

circuits (preliminary version). In Proceedings of the Twentieth Annual ACM

Symposium on Theory of Computing, pages 205{216, Chicago, Illinois, 1988.

ACM Press.

[3] D. Culler, R. Karp, et al. LogP: Towards a realistic model of parallel compu-

tation. In Fourth ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, pages 1{12, San Diego, 1993.

[4] R. P. Feynman. Feynman Lectures on Computation. Addison Wesley, 1996.

[5] L. M. Goldschlager. A universal interconnection pattern for parallel computers.

Journal of the ACM, 29(4):1073{1086, 1982.

[6] J. S. Hall. A reversible instruction set architecture and algorithms. In Physics

and Computation, pages 128{134, 1994.

14

[7] A. C. Hartmann and J. D. Ullman. Model categories for theories of parallel

systems. In H. J. Lipovski and M. Malek, editors, Parallel Computing { Theory

and Comparisons, pages 369{381. Wiley, 1987.

[8] F. C. Hennie. One-tape, o�-line Turing machine computations. Information

and Control, 8:553{578, 1965.

[9] G. Kissin. Upper and lower bounds on switching energy in VLSI. Journal of

the ACM, 38(1):222{254, 1991.

[10] R. Landauer. Zig-zag path to understanding. In Physics and Computation,

pages 54{59, 1994.

[11] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes. Morgan Kaufmann Publ., San Mateo, CA 94403, 1992.

[12] F. T. Leighton and A. L. Rosenberg. Three-dimensional circuit layouts. SIAM

Journal on Computing, 15(3):793{813, 1986.

[13] T. Lengauer. VLSI theory. In Jan van Leeuwen, editor, Handbook of Theoret-

ical Computer Science, volume A, chapter 16, pages 835{868. Elsevier Science

Publishers and MIT Press, 1990.

[14] M. Li and P. Vitanyi. Introduction to Kolmogorov Complexity and its Applica-

tions. Springer-Verlag, 1993.

[15] W. F. McColl. Scalable computing. In Computer Science Today, number 1000

in LNCS, pages 46{61. Springer, 1996.

[16] K. Nakamura. Asynchronous cellular automata and their computational ability.

Systems, Computers, Controls, 5(5):58{66, 1974.

[17] P. Patra and D. S. Fussell. On e�cient adiabatic design of MOS circuits. In

Physics and Computation, pages 260{269, 1996.

[18] A. L. Rosenberg. Three-Dimensional Integrated Circuitry, pages 69{80. Com-

puter Science Press, Inc., 1981.

[19] A. L. Rosenberg. Three-dimensional VLSI: A case study. Journal of the ACM,

30(3):397{416, 1983.

[20] J. Smit and J. A. Huisken. On the energy complexity of the FFT. In PATMOS

Power and Timing Modeling for Performance of Integrated Circuits, pages 119{

132, 1995.

[21] A. S. Tanenbaum. Computer Networks. Prentice Hall, 3 edition, 1996.

[22] T. To�oli. Power management alternatives for nanoscale cellular automata. In

Physics and Computation, pages 303{307, 1996.

[23] J. D. Ullman. Computational Aspects of VLSI. Computer Science Press, 1984.

[24] R. Vollmar. Some remarks about the \e�ciency" of polyautomata. International

Journal of Theoretical Physics, 21:1007{1015, 1982.

[25] K. Wagner and G. Wechsung. Computational Complexity. D. Reidel, Dordrecht,

1986.

15

