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Abstract

The e�ciency of many data structures and algorithms relies on \locality-preserving"

indexing schemes for meshes. We concentrate on the case where the maximal distance

between two mesh nodes indexed i and j shall be a slow-growing function of ji�jj. We

present a new 2-D indexing scheme we call H-indexing, which has superior (supposedly

optimal) locality in comparison with the well-known Hilbert indexings. H-indexings

form a Hamiltonian cycle and we prove that they are optimally locality-preserving

among all cyclic indexings. We provide fairly tight lower bounds for indexings without

any restriction. Further investigations include lower bound results for 3-D mesh index-

ings. Finally, exempli�ed by investigations concerning 2-D and 3-D Hilbert indexings,

we present a framework for mechanizing upper bound proofs for locality.

Keywords: space-�lling curve, self-similar curve, locality-preserving mesh-indexing,

locality-preserving grid-indexing



1 Introduction

For many �elds in computer science, indexing schemes for meshes, that is, bijective

mappings f0; : : : ; n� 1gr ! f0; : : : ; nr � 1g, play a crucial role. For example, in com-

putational geometry one often has to map an r-dimensional raster to a one-dimensional

traversal order or storage order. In this case, it is often advantageous if close-by raster

points have close-by indices [3]. Analogous problems also arise in evaluating di�erential

operators or even in a biological setting [17]. On the other hand, it is also important

to consider \locality the other way round." For example, in parallel processing on

mesh-connected computers, one often has to map one-dimensional data structures to

the processor-mesh. If the communication requirements within this data structure are

predominantly between close-by indices, it is advantageous to map them to close-by

processors in order to decrease network contention and latency [5, 6, 18, 21]. In this

paper we concentrate on this second kind of locality.

Several mesh-indexing schemes are well-known. Most of these have been developed

for the two-dimensional case, but they usually have generalizations for multiple dimen-

sions, for example, row-major or snakelike row-major. However, taking a closer look at

applications in parallel processing, one may observe that these kinds of indexings do

not preserve locality of computation and communication very well. So, e.g., for an r-

dimensional mesh with side-length n and row-major indexing, processors 1 and n are at

distance n� 1 from each other. Hence, a communication between these two processors

ties up n�1 communication links and has a high latency. This is large compared to the

distance of about r r
p
n achievable if the �rst n processors could be arranged in a cube.

A locality-preserving indexing should yield a distance f(n) 2 O( r
p
n). This should

generalize to all pairs of processors within the mesh, that is, processors indexed i and j

should be at most at distance f(ji�jj) from each other. For example, a simple parallel

variant of quicksort can be shown to run in average time �
�
(n+ logm)m

nr

�
for m � nr

elements on nr processors if a locality-preserving indexing scheme is used. This is

asymptotically optimal and compared to other asymptotically optimal algorithms only

� (log n) rather than � (n) messages are sent on the critical path [21]. Quicksort, using

row-major indexing and related schemes, needs time �
�
(n log n + logm)m

nr

�
. Various

other applications in parallel processing are, e.g., discussed in [6, 13, 16]. Further ap-

plications of this kind of locality can be found in image processing and related �elds

(see [9] and the references cited there). Further discussion of some applications of

space-�lling curves as mesh indexings can be found in Section 3

In this paper, we improve previous work on locality in mesh-indexings using (dis-

crete) space-�lling curves. To analyze locality, we always utilize the three most im-

portant metrics in use: Manhattan, Euclidean, and maximum. One of the most im-

portant contribution of this paper is the introduction of so-called H-indexings for two-

dimensional meshes which are based on a variant of the 2-D Sierpi�nski curve. H-

indexings show better locality than Hilbert indexings. Indeed, we conjecture that they

are optimally locality-preserving among all space-�lling curves. At least, we can show

that this holds for the class of cyclic indexings. For H-indexings we prove, for example,

that with respect to the Euclidean metric for arbitrary indices i and j, it holds that

d(i; j) �
p
4ji� jj � 2, which is tight up to a small additive constant. This answers

an open question of Gotsman and Lindenbaum [9] for the existence of a family of

space-�lling curves with locality properties better than those of Hilbert curves, where

we approximately have a constant factor of
p
6 instead of 2. We also give improved
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lower bounds for the locality achievable by arbitrary indexings with respect to all three

metrics mentioned above and we prove lower bounds for locality in 3-D mesh indexings.

Furthermore, we develop a technique for �nding upper locality bounds by mechanically

inspecting a �nite number of cases which is then applied to the 2-D Hilbert indexing

and 3-D variants of the Hilbert indexing. This approach enables us to obtain simple

and complete proofs of results which which are new or previously relied on di�cult to

check proofs involving tedious manual case distinctions.

The paper is organized as follows. We introduce some notation in Section 2 and

review related work in Section 3. In Section 4 we introduce H-indexings and show

that they provide better locality than 2-D Hilbert indexings. The general lower bound

which indicates that the H-indexings may indeed be optimal are derived in Section 5.

The techniques for mechanically deriving upper bounds is developed in Section 6. This

technique is exempli�ed by a rather simple yet complete proof for the locality properties

of the 2-D Hilbert indexing with respect to the Manhattan metric. Then we generalize

this method and apply it to 3-D variants of the Hilbert indexing and also include the

Euclidean an maximum metrics. Section 7 summarizes the results of the paper and

points out possibilities for future research. Finally, in an appendix we give some more

complicated proofs of upper bound results given in Section 4 and outline some technical

details with respect to indexings for non-orthogonal meshes.

2 Preliminaries

In this paper we work with 2-D and 3-D meshes (or grids, equivalently). We focus

attention on quadratic and cubic grids, where, for example, in the 2-D case we have

n2 points arranged in an n � n-array. Meshes occur in various settings such as paral-

lel computing, data structures, image processing, and many other �elds of computer

science. In what follows, we restrict the description of some basic concepts to the 2-D

case. The generalization to the 3-D ( and r-D) setting is straightforward.

We are interested in indexing schemes for meshes. An indexing scheme simply

is a bijective mapping from f0; : : : ; n2 � 1g onto f0; : : : ; n � 1g � f0; : : : ; n � 1g,
thus providing a total ordering of the mesh points. We will study discrete space-

�lling curves as special kinds of indexing schemes, which turn out to have the desired

property of preserving locality. To de�ne locality, we �rst need a metric. We will use

the Manhattan, the Euclidean, and the maximum metric, which are de�ned as follows.

Assume that x(i) and y(i) denote the position of a point i within the grid with respect

to Cartesian coordinates. Then the Manhattan distance of two grid points i and j is

de�ned as

d1(i; j) := jx(i)� x(j)j+ jy(i)� y(j)j;
for the Euclidean distance we have

d2(i; j) :=
p
(x(i)� x(j))2 + (y(i)� y(j))2;

and the distance according to the maximum metric is

d1(i; j) := maxfjx(i)� x(j)j; jy(i)� y(j)jg:

A discrete space-�lling curve C : f0; : : : ; n2� 1g ! f0; : : : ; n� 1g�f0; : : : ; n� 1g
ful�lls d2(C(i); C(i + 1)) = 1. Thus one might say that space-�lling curves provide

2



continuous indexings. A space-�lling curve traverses the grid making unit steps and

turning only at right angles. The meaning will always be clear from the context.

Another feature of space-�lling curves, besides being continuous, is usually their self-

similarity. Self-similarity here simplymeans that the curve can be generated by putting

together identical (basic construction) units, only applying rotation and re
ection to

these units. This will become clearer when considering the construction principles of

Hilbert and H-curves in subsequent sections. To simplify presentation, in this paper

we will often write i when referring to its geometric location (x(i); y(i)) as well as to

its index value. A segment (i; j) of a space-�lling curve is the set fC(i); : : : ; C(j)g of
mesh nodes. We deal with the following measure of locality. The basic requirement

is that if according to the indexing scheme it holds that ji � jj is small, then d(i; j)

shall also be small (applying one of the above metrics). We call a continuous indexing

cyclic if d2(0; n
2 � 1) = 1. In this case, we compute modulo n2 � 1, i.e., we use the

additive group (f0; : : : ; n2� 1g;+) for adding and subtracting indices. Also, for cyclic

indexings jij shall denote the distance from i to 0, thus jij � n2=2. Informally speaking,

these assumptions express that for cyclic indexings we do not care at which node the

numbering starts.

3 Related Work

In this section we provide some links to related literature. We cite a few recent papers

from various �elds dealing with locality questions for meshes and using space-�lling

curves as indexing schemes. In particular, we pay special attention to the �eld of

parallel processing and give a short account of the development of locality-preserving

indexings in this �eld.

There are basically two aspects of locality studied for meshes. Locality as studied

by us requires that the smaller the absolute value of the di�erence between two points

i and j is, i.e., ji � jj, the smaller d(i; j) shall be. This kind of locality is important

in many areas, we refer to two recent papers in parallel processing [6] and image

processing [9]. Locality \the other way round," namely requiring that small d(i; j)

shall imply small ji�jj is e.g. studied by Mitchison and Durbin [17], who present some

optimal results for this setting. Refer also the paper of Gotsman and Lindenbaum [9] for

a short discussion of various locality measures and related results. However, whenever

the demand for whatever kind of locality in mesh indexings arose, nearly always space-

�lling curves and, particularly, Hilbert indexings came into play [3, 4, 5, 6, 8, 9, 11, 19,

21]. Besides the applications described later, locality-preserving indexing schemes are

also useful whenever geometrical data is to be mapped to a one-dimensional domain,

e.g, in parallel gravitational particle simulation [22], for graph partitioning [12] and

fast range queries for geometrical data stored on disks [3, 4].

In what follows we will concentrate on the �rst kind of locality as mentioned above.

There are three kinds of metrics used for d(i; j)|Euclidean, maximum, and Manhattan.

The Euclidean metric particularly plays an important role in �elds like image processing

and computer graphics. We refer to the recent paper of Gotsman and Lindenbaum [9].

They mainly studied Hilbert's space-�lling curve and provide upper and lower bounds.

We will improve their upper and lower bounds in the 2-D case.

As to the Manhattan metric, it has particular importance in the �eld of paral-

lel processing on mesh-connected processor arrays. Here good locality of an indexing
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scheme for the processors may lead to reduced communication costs [5, 6, 13, 16, 21].

(The same holds for the maximum metric, which is more suitable for grids with diag-

onal connections, cf. e.g. [14, 15].) For the Manhattan metric and the �eld of parallel

processing, we delve into more detail about the history of results and applications.

Stout [23] seems to be the �rst who used so-called proximity orderings in the context

of 2-D mesh algorithms. We call them Hilbert indexings due to the direct relation to

Hilbert's space-�lling curve [10, 20]. Subsequently, they have been used to speed up

a wide variety of parallel algorithms: computational geometry [16], fast backtracking

and branch-and-bound [13], mapping of pyramid networks [7], simulation of abstract

parallel computation models [6, 18], and parallel quicksort [21]. Quantitative analysis

of the properties of locality-preserving indexing schemes have, so far, focused mainly on

the 2-D Hilbert-indexing. According to Stout \there is a constant c < 4 such that pro-

cessors numbered i and j are no more than c �
p
ji� jj communication links apart" [23,

page 27]. Such a claim for c = 4 was later proved by Kaklamanis and Persiano [13]

(although they apparently did not know of Miller and Stout's work [16, 23]). Recently,

a bound of 3 �
p
ji� jj has been proved by Chochia, Cole, and Heywood [6]. However,

the proof is quite complicated. We present a fairly simple and complete proof of this

result and show that H-curves, to be introduced in the next section, beat Hilbert curves

with respect to locality. Very recently, Chochia and Cole [5] also provided results for

3-D Hilbert indexings, which also will be complemented by our results.

4 The H-Indexing

Gotsman and Lindenbaum [9, page 797] asked \whether there exist families of space-

�lling curves with locality properties better than those of the Hilbert curves for all

sizes." One of the main contributions of this paper is to answer this question a�r-

matively. Moreover, our result not only holds for the Euclidean metric as studied by

Gotsman and Lindenbaum, but also for the Manhattan and the maximum metrics.

In this section we introduce H-indexings and analyze their locality properties showing

the claimed improvement compared to Hilbert indexings. The next section will advo-

cate that H-indexings are optimally locality-preserving among all discrete space-�lling

curves by giving tight lower bounds.

4.1 Construction scheme

H-indexings are related to 2-D Sierpi�nski curves [20]. As the naming indicates, H-

indexings have an \H-shaped" form. In analogy to Hilbert indexings, we obtain index-

ings for 2k�2k-meshes1 by an inductivemethod. There is, however, a decisive di�erence.

Whereas in the case of Hilbert indexings the building blocks are four smaller squares

(cf. Section 6 and Figure 7 there), the construction of H-indexings is easier to describe

using right-angled triangles. As for Hilbert indexings we only have one building block

to which we apply rotation or re
ection. To build the �nal mesh indexing, we put

together two triangles. Fig. 1 shows the construction of a triangle from 4 smaller trian-

gles. A triangle with 8 mesh nodes is constructed from triangles with only two nodes

and a triangle with 32 nodes is constructed from those with 8 nodes. Observe that the

1A Java program for the general case of non-cubic meshes with arbitrary side-lengths can be found

at http://www-fs.informatik.uni-tuebingen.de/~reinhard/hcurve.html.
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Figure 1: H-indexings are built using triangles as building blocks.

Figure 2: Building an H-indexing for a square using two triangles.

triangles are constructed in such a way that exactly each other mesh node along the

diagonal belongs to the nodes of the triangle. Thus an indexing scheme for a square

mesh can be obtained as shown in Fig. 2. In an alternative way, Fig. 3 shows how for

all k > 1 an H-indexing through a square of size 4k is built from 4 H-indexings through

squares of size 4k�1 each. For subsequent proofs, however, it is more convenient to

make use of the construction principle based on triangles as described above.

More formally, we can describe the H-indexing of an 2k � 2k mesh by expressing

the coordinates of the i-th point recursively in the following way (also see Figure 4).

Observe that the subsequent parameter l is uniquely determined in each recursive step

Figure 3: Inductive construction principle of H-indexings.
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9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;
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Figure 4: The positions of the points i and j for the worst cases. The recursion is

shown for l = k � 1. Let g = 22l�1 and h = 22l�3.

by the if-conditions of the various cases; l ranges from k � 1 to 1.

x(i) =

8>>>><
>>>>:

2k � 1 � x(i� 22k�1) if i � 22k�1;

2l + x(i� 3 � 22l�1) if 4 � 22l�1 > i � 3 � 22l�1;

2l � 1� x(3 � 22l�1 � 1 � i) if 3 � 22l�1 > i � 2 � 22l�1;

x(22l � 1 � i) if 2 � 22l�1 > i � 1 � 22l�1;

0 if i � 1:

y(i) =

8>>>><
>>>>:

2k � 1 � y(i� 22k�1) if i � 22k�1;

2l + y(i� 3 � 22l�1) if 4 � 22l�1 > i � 3 � 22l�1;

2l + y(3 � 22l�1 � 1� i) if 3 � 22l�1 > i � 2 � 22l�1;

2l+1 � 1� y(22l � 1� i) if 2 � 22l�1 > i � 1 � 22l�1;

i if i � 1:

The following results for worst cases are to be compared with the subsequent The-

orem 1 presenting upper bounds for the locality of H-indexings. The Euclidean worst

case (cf. Figure 4) for each k are pairs of points i = 3 � 22k�5� 1 and j = 22k�3+1 with

ji� jj = 22k�5 + 2 and

d2(i; j) =
p
(x(i)� x(j))2 + (y(i)� y(j))2

=
p
(2k�2 � 1� 2k�1 + 2)2 + (2k�2 � 2k�1 � 1)2

=
p
4(22k�5 + 2) � 8 + 2 =

p
4ji� jj � 6:
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The same pairs are also responsible for the worst case in Manhattan metric:

d1(i; j) = jx(i)� x(j)j+ jy(i)� y(j)j
= �2k�2 + 1 + 2k�1 � 2� 2k�2 + 2k�1 + 1 = 2k�1

=
p
8 � 22k�5 =

p
8(ji� jj � 2):

Thus in both cases we observe the worst cases on a diagonal direction (from i to j).

But in the maximummetric, the worst cases are from 0 to f = 22k�2�1 (see Figure 4)

with j0� f j = 22k�2 � 1 and

d1(i; j) = 2k � 1 = 2
p
j0� f j+ 1 � 1:

4.2 Upper bounds

In this subsection we give results for locality properties of H-indexings with respect to

the Euclidean, the Manhattan, and the maximum metric. As it turns out, proofs that

give tight results including additive constants are fairly complicated and are therefore

deferred to the appendix. Here we state only the results.

Theorem 1. For two arbitrary indices i and j, i 6= j, on the H-indexing the following

holds:

1. d1(i; j) �
p
8(ji� jj � 2) for ji� jj > 3,

2. d2(i; j) �
p
4ji� jj � 2,

3. d1(i; j) � 2
p
ji� jj+ 1� 1.

Theorem 1 shows that H-indexings provide an improvement in locality compared to

Hilbert-curves, answering an open question of Gotsman and Lindenbaum [9]. Focusing

their attention on the Euclidean metric, they proved that for Hilbert curves C with

respect to their locality measure L1(C) := maxi;j2f1;:::;n2g;i<j d2(i; j)
2=ji � jj it holds

6 � (1�O(2�k)) � L1(C) � 20=3, where n = 2k with k > 1. Our result implies that for

H-indexings C we have L1(C) = 4. To present our result of Theorem 1, we preferred

to make a more concrete and more precise statement (which even includes additive

constants) than the \L1(C)-notation" allows.

Both maximum metric and Manhattan metric are of particular relevance in par-

allel processing [6, 18, 21]. In particular, a further advantage of H-indexings over

Hilbert indexings is that they not just describe a Hamiltonian path but a Hamilto-

nian cycle through the mesh. This is, e.g., useful for parallel algorithms which employ

communication along a virtual ring network. Interestingly, H-indexings are optimally

locality-preserving among all Hamiltonian cycles through a square mesh, as the next

section shows.

Although it is complicated to prove Theorem 1 as such, it is fairly easy to prove an

only slightly weaker version, which only involves slightly weaker additive constants.

Theorem 2. For two arbitrary indices i and j on the H-indexing the following holds:

1. d1(i; j) �
p
8ji� jj+ 4,

2. d2(i; j) � 2
p
ji� jj+p

10,
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Figure 5: Indexing nodes (f0; 1; 2; 3; 4; 5; 6; 7g) in a triangle of size 8 and their repre-

sentatives (f00; 10; 20; 30; 40; 50; 60; 70g). Note that 10 and 30 have the same location and

so on.

3. d1(i; j) � 2
p
ji� jj+ 3.

Proof. We concentrate on proving the result for the Euclidean metric d2(i; j). The

statements for the Manhattan metric d1(i; j) and the maximum metric d1(i; j) then

easily follow by the general relations

d1(i; j) �
p
2 � d2(i; j)

and

d1(i; j) � d2(i; j):

The proof for d2(i; j) works by induction on the size of the smallest triangle (ac-

cording to the construction principle of H-curves) that contains both i and j. Note

that all these triangles are right-angled and contain 2l mesh points with l � 1. Hence

the induction operates on l. For l = 1 and l = 2 the claim can be trivially checked.

Consider a triangle of size 8 (8-triangle for short), that is, l = 3, as drawn in Fig. 5. To

each of the nodes in an 8-triangle nodes we assign a representative lying at the corners

of the 4 subtriangles as drawn in Fig. 5. The rule behind this assignment is that the

two representatives of a 2-triangle are determined as follows: If possible, rotate the

2-triangle in such a way that it has the same orientation (the vertical cathetus to the

left, the horizontal cathetus to the bottom) as the original 8-triangle. The two rep-

resentatives are then (in the case of Fig. 5) at the endpoints of the vertical cathetus.

Observe that in Fig. 5 the 2-triangle containing nodes 4 and 5 cannot be rotated in

such a way that it has the same orientation as the 8-triangle. In this case, we speak

of the complementary triangle and here the endpoints lie on the horizontal cathetus.

Note that each right-angled triangle can be brought (by rotation) in one of the orien-

tations \one cathetus as bottom line and one cathetus either to the left or to the right

as vertical line."

Let i and j be two arbitrary nodes and let l > 2. Let i0 and j0 be the representatives

of i and j, respectively. We show by induction on l that

d2(i
0; j0) � 2

p
ji0 � j0j: (�)

8



p

i0

j0

Figure 6: Two representatives in the two halves of the smallest triangle containing

both of them.

Observe that the numerical values of i and i0 resp. j and j0 are the same, only their

geometric positions di�er a little. In particular, we introduce the convention that a

\2l-triangle" may contain 2l+1 representatives, where the 2l+1st is also the �rst node

of the subsequent triangle. This assumption is solely due to technical reasons. From (�)
our claim immediately follows, because the Euclidean distance between an index i and

its representative i0 (for example, 2 and 20) may be at most
p
(1=2)2 + (3=2)2 =

p
10=2.

Hence

d2(i; j) � d2(i
0; j0) +

p
10:

In the Manhattan case we have

d1(i; j) � d1(i
0; j0) + 4

and in the maximum case we have

d1(i; j) � d1(i
0; j0) + 3:

It remains to prove inequality (�) by induction on l. The claim for l = 1 and l = 2

can be easily checked (cf. Fig. 5). Now let i0 and j0 be in two di�erent halves of their

(smallest) \surrounding" triangle (otherwise the induction hypothesis applies). Due to

our de�nition of representatives we can assume (up to rotation) a situation as drawn

in Fig. 6. In Fig. 6, the point p located at the right angle always exists and the angle

between i0, p, and j0 is always bounded by 90o. Thus the Euclidean distance between

i0 and j0 can be bounded from above using Pythagoras' theorem and the induction

hypothesis:

d2(i
0; j0) �

q
d22(i

0; p) + d22(p; j
0)

�
p
4ji0 � pj + 4jp � j0j

= 2
p
ji0 � j0j:

This veri�es inequality (�) and the proof is completed.

In the next section we show that H-indexings are at least close to providing optimal

locality in mesh-indexings.
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5 Lower Bounds

This section indicates that H-indexings might be optimal in locality-preservation among

all indexings of 2-D meshes. Indeed, we conjecture that they are optimal for the

Euclidean, the maximum and the Manhattan metric. Because the di�culty for a

general proof lies in \coming to grips with the loose ends," we advocate this conjecture

by showing the optimality among the cyclic indexings. Furthermore, we also provide

lower bounds for indexings of 3-D meshes.

5.1 Euclidean and maximum metric

Theorem 1 of Gotsman and Lindenbaum [9] says that for any discrete 2-D space-�lling

curve on an n � n-mesh, it holds d2(i; j) >
p
3(1 � 1=n)2ji� jj. They also report

that by a computerized exhaustive search they have improved the constant factor 3

to 3.25. We improve this to 3.5 by a direct proof. In addition, their result only holds for

continuous indexings, whereas ours poses no restrictions concerning the indexing. We

conjecture that this can be raised to 4, which would imply the optimality of H-curves

among all mesh-indexings (cf. Theorem 1 and Theorem 2).

In the following theorem we make use of the general relationship d1(i; j) � d2(i; j)

by only proving the result for the maximum metric.

Theorem 3. For each indexing of an n�n-mesh, n � 2, there must be indices i and j

with d2(i; j); d1(i; j) > n=4 such that d2(i; j); d1(i; j) �
p
3:5ji� jj � 1.

Proof. Due to d2(i; j) � d1(i; j) it su�ces to restrict our attention to the maximum

metric. Assume on the contrary that for all i and j with d1(i; j) > n=4 we have

d1(i; j) <
p
3:5ji� jj � 1, that means ji� jj > (d1(i; j) + 1)2=3:5. Let i1 < i2 < i3

and i2 < i4 be the indices of the 4 corner points of the n� n-mesh. Since we leave the

relation between i3 and i4 open, the following describes (except for symmetric cases)

all possibilities (cf. [9]). Note that the right-hand picture is necessary for the case of

non-continuous indexings.

i1

i2

i4

i3

i0 i5 i1

i3

i4

i2

i0 i5

Let i0 be the rightmost point on the line between i1 and i4 with i0 < i2 and distance

m� 1 from i1. Therefore the neighboring point i5 with i2 < i5 has distance n�m� 1

from i4. We have two possible orders of i0 and i1 and six possible orders of i3, i4 and i5.

Thus, assuming n=4 < m < 3n=4 in order to be able to make use of our assumption

ji � jj > ((d2(i; j) + 1)2)=3:5, we have the following relationship. Observe that the

following is valid for both pictures above at the same time.
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n2 � minfji0 � i1j+ ji1 � i2j; ji1 � i0j+ ji0 � i2jg
+minfji2 � i3j+ ji3 � i4j+ ji4 � i5j; ji2 � i3j+ ji3 � i5j+ ji5 � i4j;

ji2 � i5j+ ji5 � i4j+ ji4 � i3j; ji2 � i5j+ ji5 � i3j+ ji3 � i4j;
ji2 � i4j+ ji4 � i3j+ ji3 � i5j; ji2 � i4j+ ji4 � i5j+ ji3 � i3jg

> minf(d1(i0; i1) + 1)2 + (d1(i1; i2) + 1)2

3:5
;
(d1(i1; i0) + 1)2 + (d1(i0; i2) + 1)2

3:5
g

+minf(d1(i2; i3) + 1)2 + (d1(i3; i4) + 1)2 + (d1(i4; i5) + 1)2

3:5
;

(d1(i2; i3) + 1)2 + (d1(i3; i5) + 1)2 + (d1(i5; i4) + 1)2

3:5
;

(d1(i2; i5) + 1)2 + (d1(i5; i4) + 1)2 + (d1(i4; i3) + 1)2

3:5
;

(d1(i2; i5) + 1)2 + (d1(i5; i3) + 1)2 + (d1(i3; i4) + 1)2

3:5
;

(d1(i2; i4) + 1)2 + (d1(i4; i3) + 1)2 + (d1(i3; i5) + 1)2

3:5
;

(d1(i2; i4) + 1)2 + (d1(i4; i5) + 1)2 + (d1(i5; i3) + 1)2

3:5
g

=
m2 + n2

3:5

+minf2n
2 + (n�m)2

3:5
;
2n2 + (n�m)2

3:5
;
n2 + (n�m)2 + n2

3:5
;

3n2

3:5
;
3n2

3:5
;
n2 + (n�m)2 + n2

3:5
g

=
m2 + 3n2 + (n�m)2

3:5
=

2m2 + 4n2 � 2nm

3:5
=

3:5n2 + 2(n=2 �m)2

3:5

On the other hand, if m � n=4, by eliminating i0 we get

n2 � 3n2 + (n�m)2

3:5
� 3n2 + (3n=4)2

3:5
=

3:5625n2

3:5
:

Analogously, if m � 3n=4, by eliminating i5 we get

n2 � m2 + 3n2

3:5
� 3n2 + (3n=4)2

3:5
=

3:5625n2

3:5
:

Each case leads to a contradiction.

The lower bound for cyclic indexings can be obtained fairly easily. Together with

Theorem 1 it shows optimality of H-indexings up to small additive constants.

Theorem 4. For each cyclic indexing of an n�n-mesh, n � 2, there must be indices i

and j such that d2(i; j); d1(i; j) � 2
p
ji� jj � 1. In particular, this lower bound holds

for two corners i and j of the mesh.

Proof. Let i1, i2, i3, and i4 be the 4 corner points of an n � n-mesh. Because the

indexing is cyclic (and thus also continuous, cf. Section 2) there must be two corner

points ij and ik with j; k 2 f 1; 2; 3; 4 g and j 6= k such that jij � ikj � n2=4. On the

other hand, it holds d2(ij; ik) � d1(ij; ik) � n� 1 � 2
p
jij � ikj � 1.

11



5.2 Manhattan metric

Whereas in the case of the Euclidean and the maximum metric we could give quite

close bounds also for the \general case," this seems to be more di�cult in the case

of the Manhattan metric. In the general case we obtain the following, comparatively

weaker result:

Theorem 5. For each indexing of an n� n-mesh, n � 2, there must be indices i and

j with d1(i; j) > 2n=5 such that d1(i; j) �
p
6:5ji� jj � 2.

Proof. Assume on the contrary that for all i and j with d1(i; j) > 2n=5 we have

d1(i; j) <
p
6:5ji� jj � 2, that means ji� jj > (d1(i; j)+ 2)2=6:5. Let i1 < i2 < i5 < i6

be the indices of the 4 corner points of the n�n-mesh the indexing passes through in the

given order. Then (except for symmetric cases) we have the following �ve possibilities.

Observe that the �rst picture comes into play because we also allow non-continuous

indexings.

i1

i5

i6

i2

i1

i2

i5

i6

i0 i3

i4 i7

i1

i2

i5

i6

i0 i4

i3 i7

i1

i2

i6

i5

i0i3 i4i7 i1

i2

i6

i5

i0 i7

Here i0 is the rightmost point on the horizontal line containing i1 with i0 < i2 and

distance m� 1 from i1, and i7 is the leftmost point on the horizontal line containing i6
with i5 < i7 and distance l� 1 from i6. Moreover, i3 and i4 are direct left respectively

right neighbors of i0 and i7 with i3 < i4.

The case exhibited with the �rst picture is fairly easy to handle. Needing no further

assumptions, we have

n2 � ji1 � i6j = ji1 � i2j+ ji2 � i5j+ ji5 � i6j
>

(d1(i1; i2) + 2)2 + (d1(i2; i5) + 2)2 + (d1(i5; i6) + 2)2

6:5

� 4n2 + n2 + 4n2

6:5
=

9n2

6:5
;

a contradiction.
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In the case referring to the second picture, we have

n2 � ji0 � i7j = ji0 � i2j+ ji2 � i3j+ ji3 � i4j+ ji4 � i5j+ ji5 � i7j
>

(d1(i0; i2) + 2)2 + (d1(i2; i3) + 2)2 + (d1(i3; i4) + 2)2

6:5

+
(d1(i4; i5) + 2)2 + (d1(i5; i7) + 2)2

6:5

� (n+m)2 + (n +m)2 + (2n �m� l)2 + (n+ l)2 + (n+ l)2

6:5

=
8n2 + 3m2 + 2ml + 3l2

6:5
� 8n2

6:5
:

In the third picture, if m+ l � n=2 then

n2 � ji0 � i7j = ji0 � i2j+ ji2 � i5j+ ji5 � i7j
>

(n+m)2 + 4n2 + (n+ l)2

6:5
=

6n2 + 2(m+ l)n+m2 + l2

6:5
� 7n2

6:5
;

else (i.e., m + l < n=2) we have to distinguish between three sub-cases. First assume

that i3 < i1. Then

n2 � ji3 � i5j = ji3 � i1j+ ji1 � i2j+ ji2 � i5j
>

(2n � l)2 + n2 + (2n)2

6:5
=

9n2 � 4ln+ l2

6:5
� 7n2

6:5
:

If i3 < i1, then we further distinguish between i4 < i6 and i4 > i6. If i4 < i6, then

n2 � ji1 � i6j = ji1 � i3j+ ji3 � i4j+ ji4 � i6j
>

(2n � l)2 + n2 + (2n�m)2

6:5
� 9n2 � 4(m+ l)n

6:5
� 7n2

6:5
:

Finally, if i4 > i6, we then have

n2 � ji2 � i4j = ji2 � i5j+ ji5 � i6j+ ji6 � i4j
>

(2n)2 + n2 + (2n�m)2

6:5
=

9n2 � 4mn+m2

6:5
� 7n2

6:5
:

With respect to the fourth picture, let w.l.o.g. m � l. Then

n2 � ji0 � i7j = ji0 � i2j+ ji2 � i3j+ ji3 � i5j+ ji5 � i7j
>

(n+m)2 + (n+m)2 + (2n�m)2 + (n + l)2

6:5

� 7n2 + 4m2 + 6nm� 4nm

6:5
� 7n2

6:5
:

In the last picture, the di�erence to the fourth case is that i0 and i7 are now direct

neighbors. In addition, for symmetry reasons (interchange the roles of i0 and i7) we

w.l.o.g. assume that m � n=2. If m � 0:418n, then

n2 � ji1 � i7j = ji1 � i5j+ ji5 � i7j
>

(2n)2 + (1:582n)2

6:5
=

(4 + 2:502)n2

6:5
:
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If i0 < i1 and m > 0:418n, then

n2 � ji0 � i7j = ji0 � i1j+ ji1 � i5j+ ji5 � i7j
>

m2 + (2n)2 + (2n�m)2

6:5
=

8n2 + 2m2 � 4nm

6:5

=
6:5n2 + (n� 2m)2=2 + (n� 2m)n

6:5
� 6:5n2

6:5
:

If i7 < i6 then

n2 � ji1 � i6j = ji1 � i5j+ ji5 � i7j+ ji7 � i6j
>

(2n)2 + (1:5n)2 + (0:5n)2

6:5
=

(4 + 2:25 + 0:25)n2

6:5
:

Otherwise we have 0:418n < m � n=2, i1 < i0, and i6 < i7. Then

n2 � ji1 � i7j = ji1 � i0j+ ji0 � i2j+ ji2 � i6j+ ji6 � i7j
>

m2 + (n +m)2 + (2n)2 + (n�m)2

6:5
=

6n2 + 3m2

6:5
>

6:5n2

6:5
;

again a contradiction. This completes the proof.

In the special cyclic case, however, we can again prove (asymptotic) optimality of

H-curves due to the following theorem.

Theorem 6. For each cyclic indexing of an n� n-mesh, n � 2, there must be indices

i and j such that ji� jj � n2=2 and d1(i; j) �
p
8ji� jj � 2. In particular, this lower

bound holds if i and j are in two diagonally opposite corners of the mesh.

Proof. Since the indexing in a cycle is regarded as modulo the number of nodes (cf.

Section 2), we have ji � jj � n2=2 for any i and j in an n � n square. For two

diagonally opposite corners i and j we thus have d1(i; j) = 2n � 2 � 2
p
2ji� jj � 2 =p

8ji� jj � 2.

5.3 Omitting surjectivity

So far for the lower bounds we considered bijective indexings, which �ll the mesh com-

pletely. On the other hand, in practical situations it could happen that the grid has

more nodes than we have to embed. In this case we can construct a curve �lling only

a non-orthogonal square of the form

and this can indeed be done by the same inductive recursion principle as for the H-curve

(see Appendix, part B). Of course this will not help for the Euclidean metric, since

the worst case (the two points lying at the endpoints of the hypotenuse of a triangle)

has the same factor in any orientation, but the other two metrics are dependent from

the orientation, which allows a slight improvement. This reveals that surjectivity is

necessary for Theorem 4 (maximum case) and Theorem 6.
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5.4 The bounds for 3 dimensions

We conclude this section by providing lower bounds for 3-D n� n� n-meshes.

Theorem 7. For each indexing of an n� n � n-mesh, n � 2, there must be indices i

and j with d(i; j) > n=4 for all three metrics such that the lower bounds of the following

table hold.
d(i; j) Euclidean maximum Manhattan

General lower bound 3

p
11:1ji� jj � p

3 3

p
8:25ji� jj � 1 3

p
42:625ji � jj � 3

Cyclic lower bound 3

p
12:39ji� jj �

p
3 3

p
9ji� jj � 1 3

p
54ji � jj � 3

In particular, the cyclic lower bounds hold for i and j being on a corner or an edge of

the 3-D mesh.

Proof. We start with the cyclic lower bound for the Manhattan metric. For any i

and j we have ji � jj � n3=2. For two diagonally opposite corners i and j we have

d1(i; j) = 3n � 3 � 3 3

p
2ji� jj � 3 = 3

p
54ji � jj � 3.

For all the other �ve cases we �rst assume the contrary (cf. the proof of Theorem 5)

for all i and j and lead this to a contradiction.

For the non-cyclic Manhattan case, consider the corners i1; : : : ; i6 of a cube

i1

i7

i6 i5

i4

i3i2

For symmetry reasons, we can assume w.l.o.g. i1 < i3 < i6. If i4 < i1, then

n3 � ji4 � i3j = ji4 � i1j+ ji1 � i3j+ ji3 � i6j > (3n)3 + (2n)3 + (3n)3

42:625
= n3 62

42:625
;

a contradiction. If i6 < i4, then

n3 � ji1 � i4j = ji1 � i3j+ ji3 � i6j+ ji6 � i4j > (2n)3 + (3n)3 + (2n)3

42:625
= n3 43

42:625
:

If i1 < i4 < i3, then

n3 � ji1 � i6j = ji1 � i4j+ ji4 � i3j+ ji3 � i6j > (3n)3 + n3 + (3n)3

42:625
= n3 55

42:625
:

Let d1(i1; i7) = n=2. If i3 < i7 < i4, then

n3 � ji1 � i6j = ji1 � i3j+ ji3 � i7j+ ji7 � i4j+ ji4 � i6j
>

(2n)3 + (2:5n)3 + (2:5n)3 + (2n)3

42:625
= n3 47:25

42:625
:

If i4 < i7 (otherwise, consider ji7 � i3j+ ji3 + i6j), then

n3 � ji1 � i7j = ji1 � i4j+ ji4 � i7j > (3n)3 + (2:5n)3

42:625
= n342:625

42:625
:
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Now we consider the maximum metric for the cyclic (non-cyclic) case. Let i1 <

i2 < : : : < i8 be the indices of the corner points. Since at most 8 (7) of the 12 edges

lead from ij to ij+1, regarding the points on these edges as additional reference points

would have no e�ect. Let us therefore consider the remaining 4 (5) edges leading from

ik to il with jk � lj > 1 for k; l 2 f1; : : : ; 8g.
For all k and l, let ik;l be the point with ik;l < il�1 or ik;l > il+1 on the edge from

ik to il that is next to il, and let mk;l� 1 be the distance from ik to ik;l. Note that the

following picture shows the only possibility where ik;l is left to il;k, which implies that

they are direct neighbors. Furthermore, observe that the picture only shows sample

positions for the points ik�1, ik+1, il�1, and il+1|other positions are possible, too.

Clearly mk;l +ml;k � n.

ik�1

ik+1

ik ik;l il;k

il+1

il

il�1

Now consider the estimation of n3 as the sum of all jij � ij+1j for j = 1; : : : ; 8 (7),

which is (in the cyclic case, using the assumption jij� ij+1j > (d1(ij; ij+1)+1)3=9; the

non-cyclic case works analogously) 8n3=9 (7n3=8:25). If we insert ik;l in this chain, we

increase the sum by at least m3
k;l for the distance from ik to ik;l; the distance from ik;l

to the other corner point is still n � 1. Together with inserting il;k, we increase by at

least m3
k;l+m3

l;k, which is � 0:25n3 since mk;l+ml;k � n. (For the case that ik;l < ik�1

or ik;l > ik+1, we will even get an increase by n3.) Doing this for 4 (5) such edges will

increase the sum to 9n3=9 (8:25n3=8:25) leading to the contradiction.

A problem with this method can occur if ik and ik+1 are both neighboring corners

of il with ik�2 6= il 6= ik+2, then we take only one of the points ik;l or ik+1;l|depending

on whether mk;l or mk+1;l is bigger|as additional reference point. But in this case the

way from ik to ik+1 is no edge of the cube; this means that the number of edges that

are available to de�ne a pair of reference points is even greater than 4 (5).

Finally, we come to the Euclidean metric. We start with the cyclic case. Let

i1 < i2 < : : : < i8 again be the indices of the corner points; here we distinguish

between 2 cases: If ij is the opposite corner to ij+4 for every j 2 f1; : : : ; 4g, then
following the indexing, we have three intermediate corners on the way to the opposite

corner. However, a way from a corner to its opposite corner using only edges of the cube

would always have an even number of intermediate corners, therefore one way must

go diagonally over a plane of the cube, which means w.l.o.g. d2(i1; i2) = d2(i5; i6) =

(n�1)
p
2. The following picture illustrates this situation for the points i1, i2, i5, and i6.

i1

i4

i3

i8

i2

i5

i7i6
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Furthermore, w.l.o.g. d2(i2; i4) = d2(i6; i8) = (n� 1)
p
2. Now we can estimate

n3 � ji1 � i2j+ ji2 � i4j+ ji4 � i5j+ ji5 � i6j+ ji6 � i8j+ ji8 � i1j

>
4(n

p
2)3 + 2n3

12:39
> n3 13

12:39
:

Otherwise, w.l.o.g. i1 is opposite to ij and ik is opposite to il with 1 < j < k < l. Thus

we can estimate

n3 � ji1 � ijj+ jij � ikj+ jik � ilj+ jil � i1j > (n
p
3)3 + n3 + (n

p
3)3 + n3

12:39
> n312:39

12:39
:

In the non-cyclic case with the corner points i1 < : : : < i8 we again distinguish

between two main cases: If d2(ij; ij+1) = n� 1 for all j 2 f1; : : : ; 7g, then we have two

subcases: If d2(i1; i4) = d2(i5; i8) =
p
3(n� 1) (shown in the left picture below), then

n3 � ji1 � i4j+ ji4 � i5j+ ji5 � i8j > 2(n
p
3)3 + n3

11:1
� n311:39

11:1
:

i1

i3

i8

i6

i7

i4

i5i2

i2

i4

i1

i7i9

i0 i8

i5

i6i3

i2

i4

i1

i7i9

i0 i6

i5

i8i3

Otherwise (see right two pictures), we have d2(i2; i5) = d2(i4; i7) =
p
3(n � 1). Let i9

be the point on the middle of the line between i2 and i7. If i4 < i9 < i5, then

n3 � ji1 � i2j+ ji2 � i4j+ ji4 � i9j+ ji9 � i5j+ ji5 � i7j+ ji7 � i8j

>
n3 + (n

p
2)3 + 2(n

p
2:25)3 + (n

p
2)3 + n3

11:1
= n32

p
2:25

3
+
p
2
3
+ 1

11:1
> n314:4

11:1
:

If not i4 < i9 < i5, then w.l.o.g. we may assume i5 < i9. If i8 < i9, then

n3 � ji1 � i2j+ ji2 � i5j+ ji5 � i7j+ ji7 � i8j+ ji8 � i9j

>
n3 + (n

p
3)3 + (n

p
2)3 + n3 + (n

p
1:25)3

11:1

= n31 +
p
3
3
+
p
2
3
+ 1 +

p
1:25

3

11:1
> n311:4

11:1
;

else let i0 be the point on the line between i1 and i8 (respectively. i6) with distance

d0:307n � 1e from i1. If i0 < i2, then

n3 � ji0 � i2j+ ji2 � i5j+ ji5 � i9j+ ji9 � i8j

>
(n
p
1:094)3 + (n

p
3)3 + (n

p
2:25)3 + (n

p
1:25)3

11:1

= n3

p
1:094

3
+
p
3
3
+
p
2:25

3
+
p
1:25

3

11:1
> n311:11

11:1
;
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else if i0 > i6 (the cases i2 < i0 < i6 lead to even bigger sums), then

n3 � ji1 � i2j+ ji2 � i5j+ ji5 � i6j+maxfji6 � i0j; ji8 � i0jg

>
n3 + (n

p
3)3 + n3 + (n

p
2:48)3

11:1
� n31 +

p
3
3
+ 1 +

p
2:48

3

11:1
> n311:1

11:1
:

In the second main case we have d2(ij; ij+1) �
p
2(n � 1) for a j 2 f1; : : : ; 7g. If

j is odd, then we know that there is an even number of corners before ij and an even

number of corners after ij+1. Thus we can make our estimation using at least four

diagonals through a plane, yielding

n3 >
4(n

p
2)3

11:1
� n311:31

11:1
:

If d2(ij0; ij0+1) �
p
2(n� 1) for a j0 2 f1; : : : ; j � 1; j + 1; : : : ; 7g, we can estimate

n3 >
3(n

p
2)3 + 3n3

11:1
� n311:48

11:1
:

If d2(ij�1; ij+1) =
p
3(n� 1) or d2(ij; ij+2) =

p
3(n� 1), we can estimate

n3 >
(n
p
3)3 + 2(n

p
2)3 + n3

11:1
� n311:85

11:1
:

In the remaining cases ij�1; ij; ij+1, and ij+2 form a \Z" on one plane of the cube. If

j = 4 (in the following the left and the middle picture), then if i1 is the opposite corner

of i4, then

n3 � ji1 � i4j+ ji4 � i5j+ ji5 � i8j

>
(n
p
3)3 + (n

p
2)3 + (n

p
3)3

11:1
= n32

p
3
3
+
p
2
3
+ 1

11:1
> n313:22

11:1
;

i1

i3

i2

i7

i8

i4

i6i5

i8

i3

i0
i9

i2

i7

i1

i4

i6i5

i6

i1
i0

i7

i5

i8

i2

i4i3

else i8 must be the opposite corner of i4. Let i0 be the point on the edge from i2
to i8 next to i8 with i0 < i4 having distance m � 1 from i2 and let i9 be the lower
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neighbor, then

n3 � minfji0 � i1j+ ji1 � i2j+ ji2 � i4j; ji1 � i0j+ ji0 � i4jg
+minfji4 � i5j+ ji5 � i6j+ ji6 � i9j; ji4 � i9j+ ji9 � i6j+ ji6 � i8jg

>
minfpn2 +m2

3
+ n3 + (n

p
2)3;

p
n2 +m2

3
+
p
2n2 +m2

3g
11:1

+minf(n
p
2)3 + n3 +

p
2n2 + (n�m)2

3

11:1
;

p
2n2 +m2

3
+
p
2n2 + (n �m)2

3
+ (n

p
2)3

11:1
g

=
minfpn2 +m2

3
+ n3 + (n

p
2)3;

p
n2 +m2

3
+
p
2n2 +m2

3g
11:1

+
(n
p
2)3 + n3 +

p
2n2 + (n�m)2

3

11:1

� n3minf2 +p
2
3
+
p
2
3
+ 1 +

p
2
3
; 1 + 2

p
2:25

3
+
p
2
3
+ 1g

11:1
=

� n3minf11:48; 11:57g
11:1

:

Otherwise (j 6= 4, see the right picture above), we may assume w.l.o.g. j = 2. Let i0
be the point in the middle on the edge from i1 to i7. If i0 < i2, then

n3 � ji0 � i2j+ ji2 � i3j+ ji3 � i4j+ ji4 � i7j+ ji7 � i8j

>
(n
p
1:25)3 + (n

p
2)3 + n3 + (n

p
3)3 + n3

11:1

= n3

p
1:25

3
+
p
3
3
+
p
2
3
+ 2

11:1
> n311:42

11:1

else if i5 < i0 < i8 (the cases i2 < i0 < i5 or i8 < i0 lead to even bigger sums), then

n3 � ji1 � i2j+ ji2 � i3j+ ji3 � i5j+ ji5 � i0j+ ji0 � i8j

>
n3 + 2(n

p
2)3 + (n

p
2:25)3 + (n

p
1:25)3

11:1

= n31 + 2
p
2
3
+ 1 +

p
2:25

3
+
p
1:25

3

11:1
> n311:42

11:1
:

Thus all cases led to contradictions, �nishing the proof.

6 Mechanizing proofs for upper bounds

The main intent of this section is to introduce a technique which makes it possible

to derive locality properties of self-similar indexings by mechanical inspection. In

Section 6.1, we start with the well know 2-D Hilbert indexing and give a more complete

proof of the tight bound for the Manhattan distance already found in [6] which does

not need tedious manual case distinctions. Then, in Section 6.2 we develop a more

general technique and apply it to other metrics and to 3-D Hilbert indexings.
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Figure 7: Hilbert indexings of size 4 and 16 and the general construction principle.

6.1 The Hilbert indexing

Fig. 7-(a) shows the two smallest Hilbert indexings for meshes of size 4 and 16. Fig-

ure 7-(b) shows the general construction principle. For any k � 1 four Hilbert indexings

of size 4k are combined into an indexing of size 4k+1 by rotating and re
ecting them

in such a way that concatenating the indexings yields a Hamiltonian path through the

mesh. Note that the left and the right side of the curve are symmetric to each other.

So we only need to keep track of the orientation of the edge which contains the start

and end of the curve (drawn with bold lines here).2 We start with a lower bound for

the locality:

Theorem 8. For every k � 1, there are indices i and j on the Hilbert indexing such

that ji � jj = 4k�1 and the Manhattan-distance of i and j is exactly 3
p
ji� jj � 2 =

3 � 2k�1 � 2.

j

2
ki1

2
k

i

Figure 8: Worst-case for the Manhattan-distance between two indices i and j.

Proof. Consider Fig. 8. It shows parts of the Hilbert indexing (rotated right by

90 degrees compared to Fig. 7). It su�ces to show that the indices i and j in

2We note without proof that the above rule uniquely de�nes the Hilbert indexing up to global

rotation and re
ection. In a sense, the Hilbert curve is the \simplest" self-similar, recursive, locality-

preserving indexing scheme for square meshes of size 2k � 2k. More details can be found in [2].
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the lower left and upper right corner of the shaded area of Fig. 8 have Manhattan-

distance 3
p
ji� jj � 2. We must compute the size of the shaded area which denotes

all nodes on the Hilbert indexing lying between i and j. We always draw the largest

subsquare �lled by the Hilbert indexing on the path from i to j. In this sense, the

dotted line represents the path of the Hilbert indexing respecting the sizes of the

largest subsquares it passes through. Except for the lower left corner and upper right

corner we have exactly three subsquares of size 2l � 2l within the shaded area for

each 0 � l < k � 1. Because the shaded area of the left half can be mapped to the

unshaded area in the right half of Fig. 8 (except for one mesh node remaining), we

get ji � jj = 4k�1. Computing 3
p
ji� jj � 2 = 3 � 2k�1 � 2, we obtain exactly the

Manhattan-distance of i and j, where the latter can easily be read from Fig. 8.

Before we come to the matching upper bound, we need a technical lemma that

shows how we can bound maxji�jj=m d(i; j) for a �xed m by inspecting a �nite number

of segments. Namely the segments of length m which either lie within a single indexing

of size 4dlog4 me or within two such sub-grids which can only have 4 di�erent relative

orientations. This method works for an arbitrary norm k�k.
Lemma 9. Let x(i) and y(i) denote the x-coordinate and y-coordinate of the ith point

in the Hilbert indexing. Let

dint(m) := max
�
d(i; j) : ji� jj = m ^ 0 � i < j < 4dlog4 me

	
and

dext(m) := max
0�n<m

max

 
k(1+y(n)+x(m�n�1);x(n)�y(m�n�1))k

k(1+y(n)+y(m�n�1);x(n)�x(m�n�1))k

k(1+x(n)+y(m�n�1);y(n)�x(m�n�1))k

k(1+x(n)+x(m�n�1);y(n)�y(m�n�1))k

!
:

Then 8i; j : d(i; j) � max(dint(ji� jj); dext(ji� jj)).
Proof. Consider any segment size m and any indices i and j with ji� jj = m. W.l.o.g.

assume j > i and let k = dlog4me.
(1) Case :9l 2 fi+ 1; : : : ; jg : l � 0 mod 4k: Due to the self-similarity of the

Hilbert indexing, the segment (i; j) is isomorphic to the segment (i mod 4k; j mod 4k)

and this segment has been checked by computing dint(m).

(2) All other cases: There is exactly one l with i < l � j and l � 0 mod 4k.

Due to the self-similarity and symmetry of the Hilbert-indexing the segments (l; j) and

(i; l� 1) are isomorphic to the segments (0; j � l) and (0; l� i� 1) respectively. There

are only four di�erent (disregarding rotation and re
ection) ways the segments (l; j) and

(i; l� 1) can be oriented towards each other. The distances stemming from these four

subcases have been checked by computing dext. Figure 9 shows these possibilities.

This result will be later used in its full generality. It should be emphasized here

that Lemma 9 can be employed mechanically by a simple computer program. But for

now, we concentrate on the Manhattan metric:

Theorem 10. For the Manhattan-distance of two arbitrary indices i and j on the

Hilbert indexing with i 6= j, we have d1(i; j) � 3
p
ji� jj � 2.

Proof. The basic idea is to exploit the self-similarity of the Hilbert indexing for an

inductive proof over ji� jj. In principle, the proof is quite simple. However, it turns
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j0 jy(j0)� y(i0)j

jy(j0)� x(i0)j

x(j0)

1 1

1

1

i0

i0
x(i0)

y(i0)
x(j0)

y(j0)y(j0)

x(i0)
y(i0)

i0

j0 j0

i0

jx(j0)� x(i0)jjx(j0)� y(i0)j

j0

Figure 9: Possible relative orientations of two Hilbert-squares, where i0 corresponds to

the term l� i� 1 in the proof of Lemma 9 and j0 corresponds to j � l.

out that a special treatment is necessary for \small" meshes and for indices i and j

which are close to the worst case described in Theorem 8.

(1) Case ji� jj < 16: By inspection. E.g. by applying Lemma 9.

(2) Case ji � jj � 16: By induction over ji � jj we prove the following stronger

statement: d1(i; j) � 3
p
ji� jj � 2:5 or i and j are arranged as in Theorem 8 (Fig. 8)

and d1(i; j) = 3
p
ji� jj � 2.

(2.1) Basis of induction, 16 � ji � jj � 80: By inspection. Note that Lemma 9

can be applied mechanically by a simple computer program.

(2.2) Inductive step for ji� jj > 80: We look at the \coarsened" indexing de�ned

by considering each 2�2 subsquare starting at even coordinates as a single mesh node.

Due to the self-similarity of the Hilbert indexing, the coarsened indexing is itself a

Hilbert indexing.

De�ne a 2 N and b 2 f0; 1; 2; 3g such that i = 4a + b, and c 2 N and d 2 f0; 1; 2; 3g
such that j = 4c + d. In the coarsened indexing, the positions of i and j are a

and c. Since ja � cj � 16, we can apply the induction hypothesis. Furthermore,

d1(i; j) � 2 � d1(a; c) + 2 because for each of the four mesh-positions in subsquare a

there is a corresponding mesh-position in subsquare c which is 2 � d1(a; c) steps away;
at worst j can be another two steps away from the mesh-position corresponding to i.

We now distinguish two cases regarding the relative positions of a and c.

(2.2.1) a and c are not arranged as in Theorem 8: By the induction hypothesis

we have d1(a; c) � 3
p
ja� cj � 2:5 and therefore d1(i; j) � 2(3

p
ja� cj � 2:5) + 2 =

6
p
ja� cj � 3 : Substituting a = i�b

4
and c = j�d

4
we get ja � cj = j(i�b)�(j�d)j

4
�

ji�jj+jd�bj

4
� ji�jj+3

4
and therefore d1(i; j) � 3

p
ji� jj+ 3 � 3. A simple calculation

shows that 3
p
ji� jj+ 3 � 3

p
ji� jj + 0:5 for ji � jj � 80 and therefore d1(i; j) �

3
p
ji� jj � 2:5.
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(2.2.2) a and c are arranged as in Theorem 8: Up to symmetric cases the

2 � 2-subsquares for i and j are numbered
�
0 3
1 2

�
and

�
0 1
3 2

�
and the subsquare for j is

above and to the right of the subsquare for i (refer to Fig. 8). There are two subcases:

(2.2.2.a) b = d = 1: i and j are also arranged as in Theorem 8 and therefore

d1(i; j) = 3
p
ji� jj � 2.

(2.2.2.b) Else: We can use the estimate d1(i; j) � 2d1(a; c) + 1 because the worst

case in which d1(i; j) = 2d1(a; c) + 2 has already been covered by the case b = d = 1.

A similar calculation as before now shows that d1(i; j) � 2(3
p
ja� cj � 2) + 1 =

6
p
ja� cj � 3 � 3

p
ji� jj � 2:5.

6.2 A Generalized Technique and its Applications

There are few places where the proof of Theorem 10 makes explicit use of the properties

of the Hilbert indexing or the Manhattan metric. We now present a generalized tech-

nique which can be applied to a wide spectrum of self-similar indexings in r-dimensional

meshes made up of building blocks of size q1, : : : , qr and a norm k�k. For simplicity,

however, we restrict the presentation to cubic building blocks with side-length q and

only show how slightly looser upper bounds than that of Theorem 10 can be proved.

The latter relaxation allows us to avoid the special treatment of the worst case segments

which is necessary in the proof of Theorem 10.

Theorem 11. Given any indexing scheme for r-dimensional meshes with the property

that combining each elementary cube of size qr in a mesh of size qkr into a single meta-

node yields the indexing for a mesh of size q(k�1)r:

If 8q(k�1)r � ji� jj � qkr : d(i; j) � �( r
p
ji� jj � �)� �

where � := k(1; : : : ; 1)k and � �
r
p
qkr + qr � 1 � qk

q � 1

then 8ji� jj � q(k�1)r : d(i; j) � �( r
p
ji� jj � �)� �.

The Proof of Theorem 11 is quite analogous to the Proof of Theorem 10:

Proof. By induction over ji � jj. Let a = bi=qrc, b = i mod qr, c = bj=qrc, and
d = j mod qr. Due to the self-similarity of the indexing scheme, we can apply the

induction hypothesis to a and c if ji� jj � qkr. We have d(i; j) � q � d(a; c) + �(q� 1)

because for each of the qr mesh-positions in subcube a there is a corresponding mesh-

position in subcube c which is q � d(a; c) steps away; at worst j can be another �(q� 1)

steps away from the mesh-position corresponding to i (the diameter of a cube of side

length q). By the induction hypothesis we have d(a; c) � �( r
p
ja� cj � �) � � and

therefore

d(i; j) � q(�( r
p
ja� cj � �)� �) + �(q� 1) = q � �( r

p
ja� cj � �)� � :

Substituting a = i�b
qr

and c = j�d

qr
we get

ja� cj = j(i� b)� (j � d)j
qr

� ji� jj+ jd� bj
qr

� ji� jj+ qr � 1

qr

and therefore d(i; j) � �( r
p
ji� jj+ qr � 1� q�)� �. A simple calculation shows that

r
p
ji� jj+ qr � 1� q� � r

p
ji� jj � � for ji� jj � qkr and � �

r
p

qkr+qr�1�qk

q�1
.
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Figure 10: Relative cube orientations to be checked for bounding maximum distances

for a given segment size.

Theorem 11 can be applied to yield upper bounds for d(i; j). However, the additive

constant � and|except for the Manhattan metric|the additive constant � are artifacts

of the inductive proof. If we do not want to make case distinctions involving special

properties of worst case segments as in the proof of Theorem 10, we have to accept

a small increase in the multiplicative factor � which compensates for the additive

constants if ji � jj is large. The case of small ji � jj can be resolved by inspection.

Consider the following procedure for obtaining bounds of the form d(i; j) � � r
p
ji� jj+

c where c is some constant to be determined.

� Determine q and r from the de�nition of the indexing.

� Fix a k.

� Set � =
r
p
qkr + qr � 1 � qk

q � 1
and � := k(1; : : : ; 1)k.

� Exploit the self-similarity of the indexing to �nd an analog to Lemma 9 which

makes it possible to bound d(i; j) for indices with ji� jj = m using some mech-

anizable method.

� Find a constant � such that d(i; j) � �( r
p
ji� jj��)�� for q(k�1)r � ji�jj � qkr.

Applying Theorem 11 we can infer that the same is true for ji � jj � qkr, i.e.

8ji� jj � q(k�1)r : d(i; j) � �( r
p
ji� jj � �)� � � � r

p
ji� jj � �.

� Find a constant c � �� such that d(i; j) � � r
p
ji� jj+ c for ji� jj � q(k�1)r.

� We can now conclude from the two points above that for all i, j, d(i; j) �
� r
p
ji� jj+ c.

In what follows, we will simply use c = 0 (which will always su�ce) in order to

re
ect that the additive constants are not tight. Also, we will only cite the tightest

constant factor for an upper bound as given by our method without reiterating that the

constructive nature of the method also yields a lower bound with a close-by constant

factor.
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2-D Hilbert indexings

Using the above method and by applying a small computer program3 to the case k = 8,

we can infer a bound for the Euclid metric of d2(i; j) �
p
6 + 0:01

p
ji� jj which is

very close the lower bound of
p
6ji� jj � 2 � 1 due to Gotsman and Lindenbaum [9]

and a signi�cant improvement over the upper bound d2(i; j) �
q
6 + 2

3

p
ji� jj derived

in the same paper.

Trivially, the same bound also applies to the maximum metric for which Gotsman

and Lindenbaum reported the same constant factors of
p
6 and

q
6 + 2

3
for lower and

upper bounds respectively.

Symmetric 3-D Hilbert indexings

(b)(a) (c)

Figure 11: Rule for building 3-D Hilbert indexings of order k from indexings of order

k � 1. The bottom front edge of the new cube is distinguished by the fact that the

indexing starts and ends there. The corresponding edges of the component cubes are

drawn with thick lines. The order k � 1 cubes have to be rotated accordingly.

We have also applied the above technique to the three variants of a 3-D Hilbert indexing

shown in Fig. 11. Up to rotation and re
ections these are the only variants which are

symmetric with respect to an axis. The maximum segment distances can be checked

in complete analogy to Lemma 9: Now nine relative orientations are to be checked.4

Applying the \method" for variants (b) and (c) with k = 5 yields d1(i; j) �
4:820661 3

p
ji� jj and the systematic search discovers indices with d1(i; j) �

4:820248 3

p
ji� jj. Variant (a) has slightly better locality: d1(i; j) � 4:6161 3

p
ji� jj�3

for large ji � jj and the same holds for small ji � jj using a slightly looser additive

constant. In comparison, the best analytic bound derived in [5] has the constant factor

8= 3
p
4 � 5:04.

Variant (a) is also slightly superior for the Euclidean metric where we get d2(i; j) �
3:212991 3

p
ji� jj for variant (a) and d2(i; j) � 3:245222 3

p
ji� jj for variants (b) and

(c) when we apply a simple program5 for k = 4. As opposed to the 2-D case, the

maximummetric allows smaller bounds than the Euclidean metric in the 3-D case. We

3Available under http://liinwww.ira.uka.de/~sanders/hilbert/euclid2.c.
4A C-program doing the necessary checks is available under http://liinwww.ira.uka.de/

~sanders/hilbert/check3d.c.
5Available under http://liinwww.ira.uka.de/~sanders/hilbert/euclid3d.c.
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get d1(i; j) � 3:076598 3

p
ji� jj for variant (a) and d1(i; j) � 3:104403 3

p
ji� jj for

variants (b) and (c).6

The method could also be applied to the asymmetric variants of the Hilbert indexing

described in [5]. We need only to change the procedure for checking maximum segment

sizes to take segments starting at both ends of a cube indexing into account. Even

generalizations to more complicated schemes like the H� indexing described in [5] seem

possible. (This scheme appears to have a better locality than simple Hilbert indexings.)

H� uses two non-isomorphic building blocks to de�ne larger indexings. But it still has

the crucial property, that replacing a 2� 2� 2 cube by a unit cube yields an instance

of the indexing.

7 Conclusion

Locality-preserving indexing schemes are increasingly becoming a standard technique

for devising simple and e�cient algorithms for mesh-connected computers, for pro-

cessing geometric data, for image processing, data structures, and several other �elds.

The methods developed here help to use the term \locality-preserving" in an accurate

quantitative sense. This makes it possible to show that for the most important 2-D

case, the newly presented H-indexing is superior with respect to locality compared to

the previously used Hilbert indexing. We conjecture that H-indexings actually are op-

timal among all possible indexing schemes although we could only prove this for cyclic

indexings yet. The claim holds for the Euclidean as well as the maximum as well as

the Manhattan metric.

Our techniques for mechanically deriving upper bounds make it possible to quickly

gain insight into the locality properties of indexing schemes. In particular, it was

possible to give new, almost tight bounds for the 2-D Hilbert indexing with respect to

the Euclidean metric and the maximummetric and also for the symmetric 3-D Hilbert

indexings. In the following table we summarize our locality bounds for 2-D indexings:

d(i; j) (2-D) Euclidean maximum Manhattan

General lower bound
p
3:5ji� jj � 1

p
3:5ji� jj � 1

p
6:5ji� jj � 2

Cyclic lower bound
p
4ji� jj � 1

p
4ji� jj � 1

p
8ji� jj � 2

Upper bd. H-curve
p
4ji� jj � 2

p
4ji� jj+ 4 � 1

p
8(ji� jj � 2)

Upper bd. 2-D Hilbert
p
6:01ji� jj

p
6:01ji� jj

p
9ji� jj � 2

With the advent of 3-D mesh-connected computers like the Cray T3E, the in-

creasing interest in processing 3-D geometrical data, and the growing importance of

multidimensional data structures, locality-preserving 3-D mesh indexings will become

more important.7 The following table summarizes locality bounds for 3-D indexings. In

particular, it provides upper bounds for some symmetric 3-D variants of the Hilbert in-

dexing. Note that here we still have a signi�cant gap between upper and lower bounds.

6The program is available under http://liinwww.ira.uka.de/~sanders/hilbert/max3d.c.
7On modern parallel machines, good locality has mainly the indirect e�ect to increase the usable

bandwidth whereas the latency due to the distance in the network is negligible compared to other

overheads. So is would also be interesting to study bandwidth directly.
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d(i; j) (3-D) Euclidean maximum Manhattan

General lower bound 3

p
11:1ji� jj �

p
3 3

p
8:25ji� jj � 1 3

p
42:625ji � jj � 3

� 2:23 3

p
ji� jj � p

3 � 2:02 3

p
ji� jj � 1 � 3:49 3

p
ji� jj � 3

Cyclic lower bound 3

p
12:39ji � jj � p

3 3

p
9ji� jj � 1 3

p
54ji � jj � 3

� 2:31 3

p
ji� jj �

p
3 � 2:08 3

p
ji� jj � 1 � 3:77 3

p
ji� jj � 3

U. bd. 3-D Hil. (a) 3

p
33:2ji � jj 3

p
29:2ji� jj 3

p
98:4ji� jj

� 3:22 3

p
ji� jj � 3:08 3

p
ji� jj � 4:62 3

p
ji� jj

U. bd. 3-D Hil. (b,c) 3

p
34:2ji � jj 3

p
30:0ji� jj 3

p
112:1ji � jj

� 3:25 3

p
ji� jj � 3:11 3

p
ji� jj � 4:83 3

p
ji� jj

Future work

There are a number of interesting open questions, one is to close the gap between

the upper and lower bound for non-cyclic 2-D indexings and, in particular, for 3-D

indexings.

Mechanical inspection methods will play an important role for investigating other

curves in particular for higher dimensions and for more complicated construction rules.

The inspection methods themselves can be re�ned in various ways. They can be

adapted to indexing schemes which are not based on combining cubic elements if we

use a top-down decomposition rather than a bottom-up decomposition. For example,

an H-indexing of size 2k � 2k could be partitioned into 2 � 4k0

triangles of area 2k�k
0�1

without �xing k and for some constant k0. The construction principle for the H-curve

then de�nes a (cyclic) path traversing all the triangles. Thus a computer can count the

number of triangles on the (shortest) H-path between any two triangles. The algorithm

can also be made faster by adaptively only re�ning those segments where computations

for small k0 could not rule out high diameter segments.

Initial work concerning the study of structural and combinatorial properties of

Hilbert indexings in higher dimensions have been started very recently [2]. In partic-

ular, it is clearly pointed out what characterizes an r-dimensional Hilbert curve for

arbitrary r � 2.
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Figure 12: Relative positions of i (inA orB) and j (in C orD) yield the case distinction.

Appendix

A Proofs for exact results from Section 4, Theo-

rem 1

Proof of Theorem 1, Manhattan case. We may focus attention on the smallest triangle

containing both i and j. In Fig. 12 we have drawn the (smallest) triangle containing

both i and j. It is easy to verify our claim for k � 2 in Fig. 12. We perform an

induction on k. Note that here we assume that both points on the two acute angles

are part of the triangle, thus all triangles have size 1
2
� 4k +1. According to Fig. 12, we

distinguish between six cases: A�B, A�C, A�D, B�C, B�D, and C�D, where

X � Y means that i lies somewhere in X and j lies somewhere in Y .

We start with a simple case, namely B � C. We can easily observe that the worst

case in this setting is when i and j are located at the two opposite acute angles e.g. of

triangle C, thus reducing to the general case with k � 1.

Next we show the validness of our claim for the case A�D. We re�ne the case as

shown in Fig. 13. Unfortunately, now we cannot at once exclude some of the occurring

16 subcases. Thus, in principle, we had to present a table with all 16 subcases. In

what follows, however, we restrict attention to the subcase A:a�D:d, because for all

other cases simple checking shows that d1(i; j) �
p
8(ji� jj � 2) trivially holds. As to

A:a�D:d, we have d1(i; j) � 2 �2k�2, ji� jj � 14 � 1
2
�4k�2 and thus

p
8(ji� jj � 2) =p

56 � 4k�2 � 16, which doesn't su�ce to prove d1(i; j) �
p
8(ji� jj � 2). Hence we

further re�ne A:a�D:d as shown in Fig. 14. Now again by simple calculation it can be

shown that except for the subcase A:aa�D:dd, all other cases ful�ll our claim. Due

to the self-similarity of H-curves we can re�ne subcase A:aa�D:dd in completely the

same way as we did for for A:a� D:d. Iterating this process k � 2 times, we end up

with the only \di�cult"case A:ak�1�D:dk�1. Here we clearly have d1(i; j) � 2 � 2k � 2

and ji� jj � 1
2
� 4k � 3. The relation

2 � 2k � 2 �
r
8(
1

2
� 4k � 3 � 2) =

p
4 � 4k � 40

is true for k � 3, thus proving our claim.
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Figure 15: Re�nement of case A� C.

Next we consider the case A� C, which we further re�ne as shown in Fig. 15. It

su�ces to study the subcases A:a�C:a, A:a�C:b, A:b�C:b, and A:d�C:a, because

all other cases are clearly subsumed by these ones. We have the following table, which

we directly obtain from considering Fig. 15.

Subcase d1(i; j) � ji� jj �
p
8(ji� jj � 2) �

A:a� C:a 5 � 2k�2 7 � 1
2
� 4k�2

p
28 � 4k�2 � 16

A:a� C:b 6 � 2k�2 8 � 1
2
� 4k�2

p
32 � 4k�2 � 16

A:b� C:b 5 � 2k�2 7 � 1
2
� 4k�2

p
28 � 4k�2 � 16

A:d� C:a 4 � 2k�2 4 � 1
2
� 4k�2 + 2 4 � 2k�2

In fact, as to subcase A:d�C:a, there is one i such that ji� jj is only 4 � 1
2
�4k�2+1. In

this case, however, it holds that d1(i; j) � 4 � 2k�2 � 1, which is due to the construction

principle of H-curves, see Subsection 4.1. The table reveals that for k > 2 in each

subcase, except for A:a� C:b, our claim is ful�lled. In particular, subcase A:d � C:a

also gives a worst case situation providing the lower bound. As to A:a� C:b, we just

mention in pass that a further re�nement analogous to case A:a�D:d before (leading

to 16 subcases) shows the validity of our claim. We omit the messy but straightforward

details. Note, however, that by way of contrast to A:a�D:d we do not even need to

\iterate" here.

The case B �D is similar to A� C. According to Fig. 16 it su�ces to study the

subcases B:c�D:a, B:c�D:c, B:c�D:d, B:d�D:a, and B:d�D:d, because all the

other cases are subsumed by these ones. We have the following table.

Subcase d1(i; j) � ji� jj �
p
8(ji� jj � 2) �

B:c�D:a 4 � 2k�2 5 � 1
2
� 4k�2

p
20 � 4k�2 � 16

B:c�D:c 5 � 2k�2 7 � 1
2
� 4k�2

p
28 � 4k�2 � 16

B:c�D:d 6 � 2k�2 � 2 8 � 1
2
� 4k�2

p
32 � 4k�2 � 16

B:d�D:a 4 � 2k�2 � 1 4 � 1
2
� 4k�2

p
16 � 4k�2 � 8

B:d�D:d 5 � 2k�2 7 � 1
2
� 4k�2

p
28 � 4k�2 � 16
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Figure 17: Re�nement of case C �D.

The validity of our claim for case B:c�D:d now follows in complete analogy to case

A:a� C:b before. As to case B:d�D:a, the claim is true if k � 3, thus providing the

validity of our claim for case B �D.

It remains to prove our claim for the cases A � B and C � D. The same proof

applies for both. Consider Fig. 17, giving a re�ned view of C � D. Calculating a

table for all 16 subcases as we did before in other subcases, it comes out that the

\di�cult cases" are C:a �D:a and C:b�D:a and the corresponding symmetric ones

(i.e., C:d�D:d and C:d�D:c), which have to be further re�ned (as we already did in

Fig. 17). Again considering the subcases of C:a�D:a and C:b�D:a, it turns out that

d1(i; j) �
p
8(ji� jj � 2) is ful�lled (assuming k � 3) except for the case C:aa�D:aa.

Making use of the self-similarity of the H-curve, it follows that after k � 1 iterations

of re�nement we end up with the only \di�cult" case C:ak�1 �D:ak�1. Here we have

d1(i; j) � 2 � 2k � 1 and ji� jj � 1
2
� 4k, yielding the validity of our claim.

Proof of Theorem 1, Euclidean case. We consider the triangles of size 22l�1, l � 1 ac-

cording to the construction scheme of H-curves. Note that in order to get common
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Figure 18: A triangle of size 22l�1 + 3, including the additional points r; u and v.

points for the connection of the triangles, we assume that the points r, u, and v (see

Fig. 18) also belong to the triangle. To get a 2k�2k mesh, we simply restrict the trian-

gle for l = k+1 to B [C in Fig. 18. (Because of symmetry, we can use the connection

at y.) To prove our result we employ an induction on the size of the triangles. As

Fig. 18 shows, we extend the scope by three additional points: r, v and for technical

reasons we assume a further arti�cial connection to the point u from a point diagonally

under u. (This means u replaces the point left of u.)

We start with the base of the induction for l = 1 (see Fig. 18), where we have

ji� jj � 3. In this case d(i; j) �
p
4ji� jj � 2 � p

10 is always ful�lled.

Now we come to the induction step, assuming that l � 2. We distinguish between

subcases X � Y , which means that i lies somewhere in X and j lies somewhere in Y .

Clearly, cases A � A, B � B, C � C, and D � D follow easily from the induction

hypothesis.

In the case C �D, we distinguish between two further subcases. First assume that

not both i and j (where w.l.o.g. i shall be in C and j in D) are located exactly at the

corresponding diagonal lines. This means that either the angle between the lines from

i to y and from y to j (cf. Fig. 18) or the angle between the lines from i to z and from

z to j is at most 90o. Thus we may use the estimation d(i; j) �
p
d2(i; y) + d2(y; j)

and applying the induction hypothesis for d(i; y) and d(y; j), we obtain

d(i; j) �
p
4ji� yj � 2 + 4jy � jj � 2 =

p
4ji� jj � 4:

Thus our claim is veri�ed (analogously for z).

If both i and j are lying on the two diagonal lines as drawn in Fig. 19, then we get

the following. W.l.o.g. assume that yj � yi. Then

d(i; j) =

q
(yi + yj � 1)2 + (yj � yi)2 =

q
2y2i + 2y2j � 2yi � 2yj + 1:
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Figure 19: The case when i and j are lying both on opposite diagonal lines. Note that

every second row contains such a point. The number of rows till i and j, respectively,

counting from the top are denoted yi and yj, respectively.

On the other hand,

ji� jj � 1

2
(yi + 1)2 � 1 +

1

2
(yj + 1)2 � 1 � 1 =

1

2
y2i +

1

2
y2j + yi + yj � 2

due to the construction principle of H-curves and some straightforward considerations,

yielding the validity of our claim in the case C �D.

The case A�B is a bit more tricky. In order to employ a similar argument as for

C �D, we arti�cially regard x and y as the connection of A and B (see Fig. 18). It is

obvious that the Euclidean distance from any point within the triangle to x or y is at

least as big as the Euclidean distance to the real points of connection. Thus in a sense

we only make things \worse" and are �nished if we can upper bound d(i; j) using x or

y. Now we can again distinguish two subcases in the same way as in case C�D: If not

both i and j are located at diagonal lines, then completely the same argumentation as

in C �D applies. If both i and j are on diagonal lines, then analogous considerations

as for C�D show that d(i; j) �
q
2y2i + 2y2j � 2yi � 2yj + 1 and ji�jj � 1

2
y2i +

1
2
yj�1,

which implies our claim for yi; yj � 2, which always holds.

It remains to handle cases (A[B)� (C[D). For i 2 A[B we distinguish the case

i 6= r, where we use the induction hypothesis for d(i; p), from the case i = r, where we

use jr � pj = 4l�1. For j 2 C [D we distinguish the case j 6= v and u is reached by

the normal way (i.e., not using the arti�cial diagonal connection), where we use the

induction hypothesis for d(p; j), the case j = v, where we use jp � vj = 4l�1 + 1 and

the case j = u being reached on the arti�cial way, where we use jp�uj = 4l�1. In each

of those 6 combined cases we make an estimation using an angle of at most 90o at p or
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a point beside p. Simple calculations yield

d(i; j) �
p
d(i; p)2 + d(p; j)2 �

p
4ji� jj � 4

d(r; j) �
p
(2l � 1)2 + (d(p; j) + 1)2 �

p
4jr � jj � 2(2l � d(p; j))

d(i; v) �
p
(d(p; i) + 1)2 + (2l � 1)2 �

p
4ji� vj � 2(2 + 2l � d(p; i))

d(r; v) �
p
(2l)2 + (2l)2 �

p
4jr � vj � 4

d(i; u) �
p
(d(p; i)2 + (2l � 1)2 �

p
4jp � uj � 1 � 2 � 2l

d(r; u) �
p
(2l)2 + (2l � 1)2 �

p
4jr � uj � 2 � 2l + 1

and the claim follows for l � 1 in each case.

Proof of Theorem 1, maximum case. The proof can be done similar to the Manhattan

case. It has been part of a semester work by Alber [1].

B Details of Subsection 5.3

In what follows we want to substantiate our claim that surjectivity is necessary for

Theorem 4 (maximum case) and Theorem 6. Note, however, that the following is in

no way a formal proof.

A non-orthogonal subsquare of an n�n-square with n = 4(a+b)m having the form

can be �lled by using parts of the form

4a

2b-1

2b
corresponding to one

node of the H-curve �lling an m �m-square. Each of these parts is �lled by a curve

leading from one corner to another, which may look for example for a = 1 and b = 4

as follows:
�
4a

9>>=
>>;

2b� 1

9>>>=
>>>;

2b

Connecting them leads, for example for m = 4, to such a partial �lling of a n � n

square with n = m4(a+ b) as indicated in Fig. 20.

In this way for any natural numbers a; b, a family of such curves can be generated.

Some of them, for example, a = 3, b = 1 (or a = 5, b = 3) again hit a worst

case on the diagonal (see Fig. 21; also cf. Subsection 4.1 and Figure 4 there) where

the Manhattan metric is
p
2 times the Euclidean metric. Here having combined two

triangles of di�erent size, we get ji � jj � 5
p
(n=4)2 + (n=8)2

2
=2 = n225=128 and

d1(i; j) � n5=4 =
p
n225=16 �

p
8ji� jj (or ji � jj � 17

p
(n=8)2 + (n=32)2

2
=2 =

n2289=2048 and d1(i; j) � n17=16 =
p
n2289=256 �

p
8ji� jj).

But some others do not hit a worst case on the diagonal: If we approximate a=b

to
p
2 � 1, which leads to an angle of � = 45o=2 = 22:5o, then m4a � n

p
1=2 and
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Figure 20: A partial �lling of an n� n-square with n = m4(a+ b) and m = 4.
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Figure 21: Two ways (a = 3; b = 1 and a = 5; b = 3) of combining two triangles of

di�erent size. Observe that the line from i to j is a 45o-diagonal and � = 18:43o in

the left picture and � = 30:96o in the right picture. In addition, note that in the left

picture j is in the middle of one side of the non-orthogonal square and in the right

picture j divides the side in 1=4 and 3=4.

m4b � n(1 �
p
1=2) and we get asymptotically ji� jj � (n

p
2�p

2)25=16 = n2(2 �p
2)5=16 = 0:183n2 and

d1(i; j) � n(1=2 +
p
1=2) =

q
n2(3=4 +

p
1=2) �

p
7:96ji � jj

(or ji� jj � (n
p
2 �

p
2)217=64 = n2(2 �

p
2)17=64 = 0:155n2 and d1(i; j) � n(3=4 +p

1=2=2) =
p
n21:22 �

p
7:83ji� jj). This means that it leads asymptotically to

a factor of
p
7:96 for the Manhattan metric and accordingly to

p
3:92 for maximum

metric, if we approximate a=b to
p
2� 1.
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