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Nano-scale electronic devices provide physical realization of the elements required for
quantum computation [1-3]. Small Josephson junctions, where Coulomb blockade effects
allow the control of individual Cooper-pair charges, constitute quantum bits (qubits),
with logical states differing by the charge on one island. Single- and two-bit operations
can be performed by applied gate voltages. The phase coherence time is sufficiently long
to allow a series of these steps. In addition to the manipulation of qubits the resulting
quantum state has to be read out. This can be accomplished by coupling a single-electron
transistor to the qubit [4]. We describe this quantum measurement process by considering
the time-evolution of the density matrix of the coupled system. The transistor destroys
the phase coherence of the qubit only when a transport voltage is turned on. The process
is characterized by three time scales: the dephasing time, the ‘measurement time’ when
the signal resolves the different quantum states, and the mixing time after which the
measurement process itself destroys the information about the initial state.

1. Introduction

The investigation of nano-scale electronic devices, such as low-capacitance tunnel junc-
tions or quantum dot systems, has always been motivated by the perspective of future
applications. By now several have been demonstrated, e.g. the use of SETs as ultra-
sensitive electro-meters and single-electron pumps. From the beginning it also appeared
attractive to use these systems for digital operations needed in classical computation [5].
Obviously single-electron devices would constitute the ultimate electronic memory. Un-
fortunately, their extreme sensitivity makes them also very susceptible to fluctuations,
either due to the external circuit or microscopic sources such as electron hopping in the
substrate. Due to these problems — and the continuing progress of conventional techniques
— the future of SET devices in classical digital applications remains uncertain.

The situation is different when we turn to elements for quantum computers. They could
perform certain calculations which no classical computer could do in acceptable times by
exploiting the quantum mechanical coherent evolution of superpositions of states [6]. Here
conventional systems provide no alternative. In this context, ions in a trap, manipulated
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Figure 1. The proposed 1-bit and 2-bit  Figure 2. The circuit consisting of a
Josephson systems. qubit plus a SET used as a measuring
device.

by laser irradiation are the best studied system. However, alternatives need to be explored,
in particular those which are more easily embedded in an electronic circuit. From this
point of view nano-electronic devices appear particularly promising.

The simplest choice, normal-metal single-electron devices are ruled out, since — due to
the large number of electron states involved — different, sequential tunneling processes are
incoherent. Ultra-small quantum dots with discrete levels and spin degrees of freedom are
candidates [3], but the strong coupling to the environment renders the phase coherence
time short. More attractive are systems of Josephson contacts, where the coherence of the
superconducting state can be exploited. Quantum extension of elements based on a single
flux logic have been suggested, however, an essential process, the coherent oscillation of
the flux between degenerate states, has not yet been observed. We suggest the use of
low-capacitance Josephson junctions, where Cooper-pair charges tunnel coherently and
can be controlled by applied gate voltages [1].

In addition to controlled manipulations the quantum computation requires a quantum
measurement to read out the final state. The requirements for both steps appear to
contradict each other. During manipulations the dephasing should be minimized, whereas
a measurement should dephase the state of the qubit as fast as possible. The option
to couple the measuring device to the qubit only when needed is hard to achieve in
nanoscale systems. The alternative, which we suggest [4], is to keep the measuring device
permanently coupled to the qubit in a state of equilibrium during the quantum operations.
The measurement is performed by driving the measuring device out of equilibrium, which
dephases the quantum state of the qubit. Similar nonequilibrium dephasing processes [7]
have recently been demonstrated experimentally [§].

2. Josephson junction qubits

First we discuss the properties and quantum manipulations of Josephson qubits shown
in Fig. 1. Each qubit consists of two superconducting islands coupled by a Josephson
junction. The coupling to the external circuit is purely capacitive and does not involve
dissipative currents. The qubit’s state is characterized by n, the number of extra Cooper
pairs on the upper island. The scale of the energy splitting between consecutive charge
states is the charging energy F,; the precise value can be tuned by an applied gate



voltage V. We concentrate here on the regime where the charging energies of two states,
| 1) = |n) and | 1) = |n 4 1), are close. Choosing the Josephson coupling sufficiently
weak, Fy < Eg,, we ensure that the coherent Cooper-pair tunneling only mixes these two
states. The effective Hamiltonian thus reduces to H = %EJ(COt no.+ o,). The mixing
angle n depends on the ratio of energy scales Fj/FEy, and the applied gate voltage V.
Here it is sufficient to note that the latter allows the tuning of H.

The system is thus equivalent to a spin in a magnetic field with constant z-component,
while the z-component can be varied by Vi,. Hence, the standard techniques of spin
manipulations by time-dependent fields (7/2-pulses, ...) are available for manipulations
of the qubit [1]. By varying the gate voltage we can put the system in a regime where the
mixing is strong, which is of advantage when performing quantum manipulations. On the
other hand, between manipulations and we keep it at the “idle point”, nigie (sin Mae < 1),
far from degeneracy. The eigenstates of the qubit at the operation point constitute its
logical basis: [0) = cos 2| |) 4 sin 2de| 1) and |1) = —sin Adle| |) 4 cos Zdle| 1). The
energy splitting between the logical states is then AE = Ej/ sin niqie > Ej.

Since the splitting AFE' is non-zero, the relative phase of two components of the state
evolves between manipulations (the spin precesses). The state is preserved, however, in the
interaction representation (in terms of spins, in the rotating frame). In this representation,
if the voltage is changed at t; for some time 7 to the value V defining a new 7, the
quantum state of the qubit evolves according to the unitary transformation U(to, 7,7) =
exp(tH (Niaie)(to + 7)) - exp(—i H(n)7) - exp(—t H (miare)to). With proper choice of o, 7, and
V any 1-bit operation can be realized. E.g., U(tg, 7 = mh cos e/ Fy,n = Niale + 7/2) is
a NOT operation, exchanging |0) and |1), while U(tg, 7 = 2nNhsinn/Ej,n) is a shift of
their relative phase by ¢ = 27 N sin 5/ sin niqie for any integer N.

To perform 2-bit operations, we couple the qubits, as shown in Fig. 1b, by an oscillatory
mode of an inductance L and the total capacitance of the qubits. The oscillator frequency
should be much larger than AFE. Then, the oscillator stays in the ground state, while its
zero-point fluctuations induce a coupling between the qubits of the form ELU;Uj The
energy scale B oc E}L/®%, with &, = h/2e being the flux quantum, should be small
compared to AE. When, by varying the gate voltages, the states | [',1?) and | 1, ]?) are
tuned close to degeneracy, this interaction produces coherent “flip-flop” transitions. One
can compensate for the effect of unwanted phase shift using single-bit operations. Away
from degeneracy, the inductor produces only a weak perturbation for each qubit.

The electromagnetic circuit induces fluctuations of the bias voltage Vi, which couple to
the charge of the qubit o,. As a result the diagonal elements of the density matrix, in the
basis of the qubit’s eigenstates, relax to their equilibrium values with a rate ['j,con, while
the off-diagonal elements decay with the dephasing rate I'y. In the low-frequency regime
the system consisting of qubit and environment is described by the spin-boson model at
finite bias [9], and we can take over the established results. When the qubit is kept at

the idle point the two rates are I'jncon = %AE—E coth (2?BET) sin? niqre and 'y = %Fincoh +

QgTWEBlCOSQ Nidle- The parameter g ~ (Cy/C)?h/(4e*R) characterizes the coupling to the
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electromagnetic environment, model here by a resistor R. The rate ['j,con corresponds to

real transitions between the two eigenstates of the qubit, while the second term in the
expression for I'y (o< T') originates from the fluctuations of the energy splitting between the



eigenstates. The last process may be called a “pure” dephasing since it occurs even if there
is no tunneling between the islands of the qubit (£ = 0), i. e. in the absence of transitions.
The decay rates are small if the resistance of the circuit is low compared to the quantum
resistance, h/e? &~ 26kQ). Furthermore, a low gate capacitance C' reduces the coupling of
the qubit to the environment. With suitable parameters (R < 1009, C/Cy < 0.1) at low
temperatures the number of operations which can be performed before the environment
destroys the coherence may be as large as 10% — 10%.

3. The quantum measurement process

The most elementary system proposed for the quantum measurements is shown in Fig. 2.
It is a SET, with a qubit inserted into the control gate circuit. At the stage of the quantum
manipulations the SET is kept deeply in the off-state (N = 0), no dissipative currents
flow in the system, and dephasing effects due to the transistor are minimized. When
one drives the SET out of equilibrium, the resulting normal current depends on the state
of the qubit, since different charge configuration induce different voltages on the middle
island of the SET. The picture gets complicated by various noise factors (shot noise) and
by the measurement induced transitions between the states of the qubit. The first set the
lower time limit after which we can extract the information from the experimental data,
while the last destroy the information of the quantum state to be measured.

The total system is characterized by three charging energies: the typical energy splitting
between consecutive charge states (V) of the SET, F.., the charging energy scale of the
qubit, Eq, and the Coulomb repulsion between charges on the qubit and the middle island
of the SET, Fiy. To drive the system out of equilibrium one applies a transport voltage
V, so that tunneling to another charge state, say N = 1, becomes possible. We choose
Eiet to be the largest energy scale, Fer > AFE > Ej, Fiy, and the transport voltage
large enough to overcome the Coulomb energy gap between the states N =0 and N =1
by an amount of order Fg, but small enough to insure that only these two states are
involved in the transport. The actual value of the Coulomb gap differs by FEi,; for different
charge states of the qubit. As a result, an electron finds it easier to tunnel to the middle
island of the SET when there are less Cooper pairs on the upper island of the qubit.
Thus, the total transport rates I'g and I'y, corresponding to the qubit’s states |0) and |1),
differ by 2maF;,, where a = h/(47r262]%T) characterizes the tunneling resistance of the
normal tunnel junctions. Conversely, when the SET is in the state N = 1, the energy
splitting between the states |0) and |[1) is shifted by FEiy and, therefore, an additional
relative phase is acquired. Since the tunneling events in the SET are random, they are
a source of dephasing. Moreover, when N = 1, the states |0) and |1) are no longer the
exact eigenstates. This gives rise to the measurement induced transitions.

To describe the dissipative current in the SET we introduce the variable m which
counts the number of electrons which has arrived in the right lead. Thus the total system
is described by a reduced density matrix p; N m.ir N/ mi(t), where ¢ and ' stand for the
quantum states of the qubit, |0) or |1), the variables N and m have been introduced
above, and all other degrees of freedom are traced out. The off-diagonal elements in
N and m may be eliminated from a closed set of equations [10]. Therefore, we need

to consider only the elements ﬁfvz,m = piN.m:i'.Nm- We assume in the following that at



time ¢t = 0, as a result of previous quantum manipulations, the qubit is prepared in the
superposition state «|0) + b|1), and we switch on a transport voltage to the SET.

To proceed we further reduce the density matrix in two ways to obtain dual descriptions
of the measurement. The first procedure is to trace over N and m, which yields a reduced
density matrix of the qubit p;; = > N, ﬁfvjm Starting in a superposition of states (pgo =
la|?, p11 = |b]*, poa = ab*) the questions are how fast the off-diagonal elements of p; ;
vanish due to dephasing, and how fast the diagonal elements change their original values
(for instance due to transitions induced by the measurement). This description is enough
when one is interested in the quantum properties of the qubit only and the measuring
device is used as a source of dephasing [7,8]. It does not tell us much, however, about the
quantity measured in an experiment, namely the current flowing trough the SET.

The second procedure is to evaluate the probability distribution of the number of elec-
trons m which have tunneled trough the SET during time t: P(m,t) = Y, ,éfvlm(t)
At t = 0 no electrons have tunneled, so P(m,0) = §,,0. Then this peak starts to shift
towards positive m, and, at the same time, it widens due to shot noise. Since two states
of the qubit correspond to different conductivities, one may hope that after some time the
peak splits into two. If after sufficient separation of the two peaks their weights are still
close to |a|* and |b]?, a good quantum measurement has been performed. Unfortunately,
there exist processes which destroy this idealized picture. After a long time the two peaks
transform into a broad plateau, since transitions between the qubit’s states are induced
by the measurement. One should find an optimum time for the measurement, so that,
on one hand, the two peaks are separate and, on the other hand, the induced transitions
have not yet happened. To this end we derive a master equation for ﬁfvjm, using the real
time diagrammatic technique [10,4], and we analyze it both analytically and numerically.

First, we assume that the Josephson coupling is switched off during the measurement.
Then the master equation splits into three independent groups of equations: two for the
diagonal matrix elements ﬁévbm and ﬁ]lvlm and the third for the off-diagonal elements. The
first two groups describe propagation of two independent peaks with velocities I'y and
I';. The weights of the peaks are |a|* and [b|? and their widths at time ¢ are given by
VTot and /Tl (shot noise). Thus one arrives at the criterion for the peaks’ separation:
ITo — Iyt > /Tot + +/T1t, which yields the time of measurement: #,,o = [/To — +/T1|7%

The third group of equations describes the decay of the off-diagonal matrix elements
ﬁéﬁm. We find the dephasing time 7, to be parametrically different from the measurement
timet . In the range of validity of our approach ¢, exceeds 74, consistent with the fact
that a quantum measurement implies a complete dephasing of a quantum state. The faster
dephasing indicates that during the measurement some additional uncontrolled parts of
the environment “observe” the quantum state of the qubit. For example, information
may be lost into the unspecified microscopic states of the SET.

The residual Josephson coupling ignored so far generates mixing transitions between
the states of the qubit. We estimate the mixing time for the concrete physical situation
discussed above t 1 ~ 2raF2 E?F../(AFE)*, while the measurement time is given ap-
proximately by ¢! ~ 2raF2,/FE... The results of numerical simulations of the master
equation in the regime t,,; < t,,;, showing the peak separation, are presented in Fig. 3.

Here we have described that the current through a SET measures the quantum state
of the qubit, in the sense that for a superposition of two eigenstates it yields one or
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the other result with the appropriate probabilities. This should be distinguished from
another question, namely whether it is possible to demonstrate that an eigenstate of a
qubit can actually be a superposition of two different charge states. The latter had been
addressed successfully in the experiments of Refs. [11] where, in a setup similar to Fig. 2,
a single-Cooper-pair box was coupled to a SET.
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