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Abstract. 1 It is a common wisdom of component technology that reuse

is not obtained automatically: one has to design for reuse; and reusability

has to be preserved as a key quality through design, implementation and

maintenance. Besides other technologies aiming at reuse, the component

based approach gains increasing attention. Although the idea of reusing

prefabricated software components is not new, many obstacles hinder

reuse and make it hard to achieve the bene�ts of reuse in practice.

In general few components are reused as they are. Often, available com-

ponents are incompatible with what is required. This necessitates ex-

tensions or adaptations. In this paper we develop a method assisting

the software engineer in identifying the detailed causes for incompatibil-

ity and systematically overcoming them. Our method also permits the

synthesis of common adapters, coercing incompatible components into

meeting requirements.

1 Introduction

It is a common wisdom of component technology that reuse is not obtained au-

tomatically: one has to design for reuse; and reusability has to be preserved as

key quality through design, implementation and maintenance[BR88]. Successful

reuse has been achieved in the area of algorithms and data structures, where

common abstractions are agreed and widely understood, through components

which provide basic infrastructure for many software projects [MS89,MS96]. A

component's source code is not available in general [Szy98]. In practice much

of component reuse therefore is black-box use or reuse. Such reuse may include

genericity, where a range of pre-designed parameters allow customising the com-

ponents for the using context in anticipated ways. This permits the management
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of product lines, with various individual component con�gurations and vary-

ing component selections and assemblies into an overall product [CE00,Bos00].

Considerable reuse has also been achieved in user interfaces with their vari-

ous windows, controls, presentations and event mechanisms [Pre95]. On many

platforms, such reuse has been achieved using a glass-box approach: The source

code is accessible and piecemeal, features of a reused part are inherited, adapted,

overridden or replaced. Reuse through implementation inheritance is harder to

achieve than black-box reuse and actualisation of generic components. This is

due to the opportunistic nature of inheritance: modi�cations under inheritance

are often unplanned-for.

Semantic inheritance lifts this concept to the level of interface speci�cations,

designs and software architectures de�nitions - usually referred to as precode,

because such software artefacts usually precede the source code. Semantic inher-

itance works with black-box reuse because it does not rely on the availability of

the source code itself. SuÆcient information about the component is abstracted

into the precode. Black-box reuse with semantic inheritance is therefore associ-

ated with higher hopes of being achievable because the semantics of speci�ca-

tions are less complex (abstracting from implementation detail) and more pre-

cisely de�ned (permitting automation and tools). Constraints can thus be put

to the potential reuser clearly without the need to prearrange for all relevant

customisations. An excellent example for this is the conformance notion arising

from design-by-contract, where assertions capture the most relevant architec-

tural and interface features of a reusable component and where conformance

represents substitutability under code modi�cation or under change in seman-

tics: the substituted component must at least satisfy all semantic assertions,

which hold for the replaced component. And this component in turn is checked

for its proper use in all using contexts.

In todays enterprise systems, software is often distributed and multi-threaded.

Here reuse has the added problem of inheritance anomalies which arise from the

tight coupling of component routines and non-local synchronisation conditions

in imperative concurrent code.

Due to these diÆculties, required and provided functionality often do not

conform or match, when a domain-speci�c distributed component, in precode,

source code or binary, is retrieved for reuse.

Ideally, when the \best match" is still incompatible we would like to be able

to identify the matching part clearly. Then we would like to adapt the partially

matching component in order to maximise reuse. To date, incompatibility means

the start of complex manual work. Only in the simplest cases, such incompati-

bilities are due to missing functions. More frequently a bunch of functions are

tightly intertwined in their behaviour or they are not behaving as expected.

For example, they may have undesired behavioural alternatives, exceptions, re-

turn values, or require extra synchronisation, or worse, imply some extraneous

synchronisation unwanted in the context of reuse.

In this paper we propose an approach for modelling adaptable components.

Our components are black-box but carry suÆcient information to analyse com-
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patibility at a detailed level and to reuse black-box components partially by hid-

ing or extending their functionality by means of interface adapters. In part such

adapters are generated automatically. First, the paper assumes that components

are designed using the Uni�ed Modeling Language (UML) [RJB99], speci�cally

state charts. For these we assume a formal semantics is given in terms of �nite

state machines. Next we assume that software architectures are described for-

mally including con�gurations of components with distinguished provided and

required interface objects. Next, the paper reviews component compatibility for

behavioural contracts, analyses incompatibilities in more detail, and, proposes

automated and semi-automatic correction of such incompatibilities by adapter

generation.

The approach hopes to bring \software engineering" to component technol-

ogy in the sense that it uses scienti�c methods for repeatably achieved software

quality and productivity improvements with a focus on building practical sys-

tems on time and within budget through increased automation.

More concretely our approach aims at deriving the following bene�ts from

precode:

1. improved documentation of components by standardised architecture and

behaviour de�nitions (using UML);

2. additional detailed checks of component suitability for a particular reuse

context;

3. consequently accompanying facilities for selecting and matching library com-

ponents to contexts of reuse;

4. detailed (in)compatibility diagnostics in component use and reuse;

5. consequently design and reuse decision support in the sense of \what-if"

simulations for hiding, modifying or adding functionality;

6. automatic synthesis of adapters, hiding, modifying or adding functionality

to coerce near-match yet incompatible components into compatibility.

7. evaluation and cost-bene�ts analysis of di�erent alternative competing ar-

chitectures and designs. This analysis includes measuring the missing com-

ponents code and missing glue code.

2 Kens and Gates: Component Architectures and

Interface Adapters

In distributed systems, besides the separation of interfaces and implementa-

tion, also the separation of architecture and interface de�nition is now widely

accepted. Architecture de�nitions take a mix of black-box and glass-box ap-

proach in which successively some interior architectural and con�guration as-

pects are revealed, together with a successive clari�cation of interfaces and

connections. This approach is taken, for instance, in OLAN [BBB+98], or in

DARWIN [MDEK95,FS96,RE96a,RE96b], its predecessor [KMN89], and in our

own DARWIN extension [Sch98,LSF00]. A general overview over ADLs is given

in [JRvdLvdL00]. The separation of architecture and interface de�nitions goes
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back perhaps to the mid seventies with work on so-called Module Interconnec-

tion Languages (MILs), see e.g., [DK76]. In our methods and tools we termed a

self-contained component a ken2 [SC95,Sch98]. Such a composite ken may be hi-

erarchically de�ned in terms of other more primitive kens. But most importantly

it de�nes a protection domain with well de�ned connections from and to other

kens. The ken encompasses a cluster of \internal" objects. It separates them

from, and controls their interoperation with, the outside world. The connection

control is exercised by so-called gates. Gates are interface objects { not just

abstractions. They may serve as adapters and controllers not just reection of

component capabilities at runtime. Kens can only be entered via gates, whether

(data) objects or control is transferred.

2.1 Gate Behaviour: Recognisers and Generators

Gates permit a black-box approach to kens. For understanding how to enter or

interoperate with a ken, it should be suÆcient to understand its gates.

Like DARWIN, we distinguish between required and provided gates. A pro-

vided gate describes possible connections to the external world for the purpose

of providing a service. A required gate represents possible connections to other

components required to perform the services provided.

In our architecture graphs, required gates are connected to provided gates

(of other components) to show, as part of the architectural design, the kind of

distributed components and their interoperation necessary to perform the overall

function of the system.

In contrast to DARWIN ports, each gate lists the signatures of a number of

methods and de�nes a �nite state machine (FSM) as the protocol for method

calls. For provided gates the FSM can be interpreted as the acceptable call

sequences. An example of valid calls to a video-player component may be the se-

quence play-pause-play-stop, whereas the sequence pause-stop is commonly

not supported. The provided gate FSM is abbreviated by P-FSM for short. For

required gates it can be interpreted as an abstraction of the call sequences po-

tentially generated during services provided. For short, the required gate FSM

is abbreviated R-FSM.

Current industrial component models, such asMicrosoft's (D)COM(+) [DCO],

Sun Microsystems' and IBM's EJB [EJB], or OMG's Corba [OMG] model the

interface of a component / object as a list of the o�ered services' signatures.

This interface model has several drawbacks. Firstly, since only provided services

are modelled one cannot check in advance, whether a component will work in a

given environment. Secondly, and perhaps more importantly, the method names

and then the existence of corresponding services are only a super�cial aspect of

a component's behaviour and its interoperability. Some services of a component

may only be callable in certain situations. For example, �rst an initialisation

service must be called, before other services are usable. Or one service excludes

2 English: range of knowledge; Japanese: area (of local autonomy)
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the usage of another, or requires the synchronisation with another component.

Such constraints form a protocol of the provided services.

The drawbacks of commercial component models and their precursors in

research labs gave rise to interface de�nition including behavioural speci�ca-

tion. Automata and automata based calculi have been used widely for pro-

tocol veri�cation and testing in telecommunication and real-time component

systems[Mil80,KS87,BCG+82,Har87]. With the wide-spread acceptance of UML

and its associated use of state charts for interface modelling there is a revived

interest in automata based approaches [Nie93,YS94,RH99].

Nierstrasz [Nie93] proposes the modelling of the provided services with a

nondeterministic �nite state machine. Yellin and Strom describe the protocol of

o�ered and required services in one �nite state machine, and use this protocol

information to generate adapters [YS97].

In our FSM based approach we wish to take advantage of the rich theory

about FSMs on the one hand, but also hide the technical details of the formalism

entirely inside our method and tools. Firstly, in order to use our methods, the

software engineer does not have to understand the details of the algorithms

presented in this paper. More over, in parallel projects at Karlsruhe University

we a studying automatic generation of FSM based component interfaces from

source code and Message-Sequences-Charts.

2.2 Compatibility

In design-by-contract we distinguish between correctness and conformance. A

component implementation is correct in relation to its interface contract when it

is both consistent and complete. Roughly, consistency means that two behaviours

distinct according to the speci�cation, are distinct in the implementation's be-

haviour. A trivial example is the distinction between true and false, or that

between returning from a call and raising a de�ned exception. Completeness

means roughly, that any behaviour observable according to the speci�cation, is

indeed implemented. A simple form of completeness implies that all features

listed in the interface are actually implemented; more complex forms of speci�-

cation require all possible orders of calls permitted according to the speci�cation

to be served by the implementation.

Correctness is thus a relation between implementation and interfaces. Quite

distinct from correctness, we de�ne conformance as a relation between interfaces

of two di�erent components such that either these components can interoperate

adequately or one can replace the other. Regarding substitutability, conformance

is de�ned between two instances of the same kind. The conformance between two

kens can be reduced to the conformance between their provided gates and that

of their required gates. Conformance regarding interoperability is de�ned for

bindings. Compatibility �nally, extends the above relationships. A component

is compatible to its environment if its contracts (more generally its precode)

are conformant to a given architectural context, its implementation must be

correct, and possibly compliance may entail a number of other aspects including
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Writer

Reader

2:1 Adaptor

Buffer

binding provided mapping kenprovided gate required gate required mapping

Fig. 1. Example: Kens, Gates, Bindings and Mappings

compliance with standard notations for its precode, standard protocols, possibly

domain-speci�c, etc.

2.3 Ken Architecture and Recon�guration

In our gray-box approach to kens we show the hierarchical decomposition of kens

into lower-level kens and gates. A con�guration of sub-kens with their interop-

eration connections is shown inside the box for the encompassing ken.

This leads to the distinction of gate mapping from gate binding. When the

required gate of a ken is connected to the provided gate of a neighbour ken, this

is called a binding.

A binding is considered legitimate if the provided gate conforms to the

required gate. Intuitively this means that every call sequence generated by

the FSM of the required gate is accepted by the provided gate's FSM. This

includes a form of subtyping and thus permits signi�cant variation - again in

contrast to DARWIN which always requires identity: the required FSM de�nes

a sublanguage of the provided one - in the sense of formal automata theory.

In contrast to a binding, a mapping relates a provided gate of the composite

ken to the provided gate of one of its interior kens, or one of its required gates

to the required gate of an interior ken.

Because there are many provided and required gates to one ken, conformance

under substitution has two forms (in accordance with [FZZ96]):

1. conformance demands that
(a) in each provided mapping, the interior gate conforms to the exterior gate

(contravariant conformance);
(b) in each required mapping, the exterior gate conforms to the interior gate

(covariant conformance);
(c) there may be unmapped interior provided gates;
(d) there may be unmapped exterior required gates;

2. partial conformance is like conformance except that
(a) there may be unmapped exterior provided gates, if these are not used in

the encompassing ken's context;
(b) there may be unmapped interior required gates, if these cannot be reached

from required gates;
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Partial conformance is thus context-dependent and requires a more global anal-

ysis of at least the immediately adjacent components.

3 Modelling Component Behaviour with Finite State

Machines

In the Uni�ed Modeling Language (UML) extended �nite state machines (FSMs)

[Har87] are used to model the behaviour of objects [RJB99]. An FSM model

abstracts from many facets of implementation (source code) behaviour and hence

reduces the complexity of reasoning about objects. While we follow the UML

notation in our presentation of FSMs, for the purpose of this paper, technically,

an FSM consists of the following elements:

a �nite set S of states. The system is in exactly one state at any time. The

system spends an signi�cant amount of time in each state. A single special

state is distinguished as the initial state (s0 2 S). There is a non-empty

set of distinguished �nal states (F � S). There also exists a special distin-

guished error state (e 2 S�F) which, once reached, the system cannot leave.

Each state has an associated behaviour, which is described by the following

elements.

an alphabet (�nite set) Ie of input events. Each element (event) of that

set is accepted in at least one state.

an alphabet Ia of actions. An action is triggered by incoming events or be-

fore or after transitions from one state to the next.

a transition function t. A transition from a source state s to a target state

s0 is performed, when an event e occurs. During this transition the action

a is �red. An FSM is deterministic, when there is at most one transition

for each source state and input event. Non-deterministic FSMs occur only

as intermediate constructions in our algorithms. We do not support their

use in modelling interfaces. This is not a restriction, because every non-

deterministic FSM can be converted into a deterministic one. We can model

transitions in deterministic FSMs with a transition function. This function

t takes as argument an input and the source state and maps that to the

target state. Usually actions are regarded as results of a transition. In our

approach actions are regarded as inputs for transitions, like events. In none

of our FSMs we have transitions associated with an event and an action.

Hence we can regard events and actions as inputs (I): I := Ie [ Ia. Now, we
can de�ne the transition function t : S � I ! S.

Ongoing activities in one state can be modelled by transitions remaining in

the same state (s = s0). Actions are thus performed when leaving or entering
a state. Transitions are (approximately) instantaneous, that is, they take zero

time.

The left FSM in Figure 2 may illustrate the graphical notation we use (UML).

The states are denoted as circles. State 1 is depicted as initial state (entered by a
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special circle arrow). State 3 is the (only) �nal state - indicated by a solid centred

circle. A transition from t(s; e=a) is depicted by an arc from state s to state

s0 = t(s; e=a) inscribed with a label e=a. We only show non-error transitions. All

events not shown shown lead to the error state.

For di�erent purposes we use di�erent specialisations of such FSMs. Firstly,

so-called recognisers omit actions. The left FSM of Fig. 2 is a recogniser. All

actions are missing and transitions and traces are just event sequences. Pro-

vided gates are modelled this way. For example the above mentioned recogniser

describes the supported sequences of calls to a VideoMail component. An ex-

ample for such a supported sequence is play pause play stop, whereas pause

stop is not supported. While this seems simple and clear, one has to provide

this information explicitely. E.g., some home video-players support the sequence

play pause pause stop whilst others do not. Generally the problem is, that

while the component changes its state due to method calls, the set of actually

supported callable methods changes. We use a provides-FSM to describe this

protocol. The component is in the initial state when leaving the constructor.

Final states leave the component in a state, where the usage of the component

may end. When a sequence of method calls drives the FSM in a �nal state, we

call this sequence a valid sequence. Is the sequence not supported by the compo-

nent, the sequences is called invalid and leads the FSM in a so called error state,

i.e., a state, what cannot be left by the FSM. So formally, the provides-FSM is

by the tuple:

P-FSMK := (IK ; SK ; FK ; eK ; s0K ; tK)
A FSM without events is a generator for action calls driving another compo-

nent. The behaviour of required gates is modelled in this way. This is described

in section 3.2

Hybrid forms where recognition and generation transitions are mixed in one

FSM are simply called translators. They describe the mapping of inputs to out-

puts.

3.1 Normalisation

We normalise architecture and interface de�nitions into a canonical form reduc-

ing the complexity of our analysis and synthesis algorithms. These simpli�cations

are purely in terms of the underlying semantics and mechanisms, not at the level

of user-de�ned behaviour models.

For our purposes pure recogniser transitions and generator transitions are

suÆcient. This leads to a further simpli�cation. We assume the event and action

alphabet are disjoint (Ie \ Ia = ;) and hence transitions can be modelled as

triples (s; x; t), where the transfer x is either an event or an action symbol.

UML concurrent state machines permit the synchronisation of two FSMs by

means of actions emitted by one and recognised by the other. The corresponding

pair e=a can always be modelled by two transitions: e followed by a, such that

e produces an intermediate state from which a arises as the sole action.

A further simplication normalises connections such that each gate has a

unique binding or mapping. In other words a canonical architecture graph does
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not have multiple connections ending in the same gate. For this purpose a split-

operator and a join-operator is introduced. The former provides a single gate

and requires two gates to which incoming calls are dispatched appropriately.

The latter, inversely, joins the incoming call streams of two provided gates and

channels them to its sole required gate.

With these two operators, all other kens can be normalised in the canonical

representation by merging their gates into a single provided and a single required

gate by using the shu�e-FSM construction de�ned in a subsequent section.

The shu�e-FSM represents all possible interleavings of the original component

behaviours.

play/- stop/-

volume_up/- volume_down/- 
brightness_up/- brightness_down/- 
contrast_up/- contrast_down/- 
speed_up/- speed_down/-

pause/-play/-

brightness_up/- brightness_down/- contrast_up/- contrast_down/- 
speed_up/- speed_down/- save_to_file/-

P-FSM
VideoMail

1 2 3

4

MC-FSM
VideoMail::play

-/VideoPlayer::play

-/SoundPlayer::play

Fig. 2. Examples: Provided FSM of VideoMail component (left) and Method FSM of

a method (right, shaded states only to ease traceability to Figure 3).

3.2 Component Behaviour: Translators

Each provided method of a component gives rise to a sequence of calls via the

required gates. Since we wish to track the causes and e�ects of binding incompat-

ibilities through a chain of components we need to model the abstract behaviour

of such invocations. To this end, additionally to the gate FSMs, we require the

user to specify for each provided method of a component a generator FSM, the

so-called M-FSM.

In UML based software engineering processes, such method FSMs may occur

at the level of detailed design before the actual implementation.

Figure 2 (right) shows as an �ctive example of the method FSM of a the

above VideoMail's method play.

Figure 3 shows as an example of this construction a part of the C-FSMVideoMail

constructed by \inserting" using the P-FSMVideoMail and the method FSM (both

shown in Figure 2).

The following subsection describes the method FSM and the construction of

the component FSM in more detail.
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P-FSM VideoMail

...

R-FSM VideoMail

play/- stop/-

play/-
-/VideoPlayer::play

-/SoundPlayer::play
...

return/- stop/-
-/VideoPlayer::stop

-/SoundPlayer::stop

return/-

Fig. 3. Required FSM of VideoMail.

Therefore a transitive closure must be computed: if method a() calls the

internal method b(), M-FSMa has to include the external calls of method b(),

that is the M-FSMb. Of course, the same is valid when constructing M-FSMb.

The method FSMs are now de�ned as follows

De�nition 1 (Method FSM). A method FSM (M-FSM) of a method f is a

FSM (If ; Sf ; Ff ; ef ; s0f ; tf ), such that

{ the input alphabet I is the transitive closure of a's calls to required methods

(i.e., methods of the required gate).

{ a state a is in the set of �nal states F, i� a the method may return in this

state,

{ and the transition function t models calls to external services. Each call

corresponds to a transition. All valid call sequences must bring the M-FSM

in an accepting state. Only valid call sequences are modelled.

Now, given the provided gate (more precisely, the P-FSM of a component)

and all the M-FSMs, we are capable of constructing the actual translator for a

component. Intuitively, this translator replaces every transition (method invo-

cation) of the P-FSM by inserting a copy of the M-FSM corresponding to the

respective method. The resulting translator is called the component FSM, short

C-FSM.

Algorithm 1 (Construction of the C-FSM)

The easiest way to explain the construction of the C-FSM out of the P-FSM and

the M-FSMs is to look at the FSMs as graphs. Then each transition t(s;method) in

the P-FSM graph is graphically substituted by the corresponding M-FSMmethod. A

transition labeled with the designated input symbol \return" is drawn from the �nal

state(s) of the inserted M-FSMmethod to the state s in P-FSM, which is the result

of t(s;method). In terms of this graphical explanation the �nal states of the C-FSM

are only the �nal states of the P-FSM, not the �nal states of the inserted M-FSMs.

In [Reu00] detailed algorithms are given for the construction of the required

interface out of the provided interface and the method FSM of a component,

and for the reconstruction of the provided interface out of the required interface.
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This FSM provides a mapping from called methods (events) to emitted se-

quences of calls to external components (sequences of actions). Each transition

is annotated with either an event or an action.

Theorem 1. The C-FSM, constructed according the above algorithm, models at

least all possible sequences of calls to external methods emitted by component K.

Proof. Assume there exists a sequence s := s1:::sn of calls to external methods,

which can be emitted by K, but is not modelled by C-FSMK . Lets denote si the

last method call in the sequence s, which is also modelled in C-FSMK and si+1
the �rst method call in s which is not modelled by C-FSMK . We use proof by

contradiction. We have to look at three cases:

1. si and si+1 are called by the same method m of K:

Hence, the partial sequence sisi+1 should be modelled in M-FSMm. This is

in contradiction to the construction of C-FSMK out of K's M-FSMs.

2. si is called by K's method m and si+1 is called by a method n and n was

called (possibly indirectly) by method m of K:

Thus, the partial sequence sisi+1 should be modelled in M-FSMm because we

look at the transitive closure of methods calls performed by m. This is in

contradiction to the construction of C-FSMK out of K's M-FSMs.

3. si is called by K's method m and si+1 is called by a method n (and n is not

called by m):

Then the methods m and n are called consecutively. Therefore the partial

sequence mn is modelled in C-FSMK . According to the consctruction of

C-FSMK the partial sequence sisi+1 must also be modelled in C-FSMK , what

is a contradiction.

All three cases ended in a contradiction, whence C-FSMK models a superset of

all possible call sequences.

Note that the C-FSMK may model more sequences than possibly emitted in

reality by component K. This is because the M-FSMK 's of K also may model a

superset of the methods possible external call sequences.

3.3 Component Consistency

Once the component FSM C-FSM is generated, the question arises whether it

is is consistent with the required gate FSM R-FSM speci�ed by the software

architect. This consistency check boils down to an inclusion test between �nite

state machines. This inclusion check can be performed by using a more general

formula:

G�C-FSM � R-FSM , G�C-FSM \R-FSM = ;.

The negation R-FSM of the required gate FSM denotes the complement state

machine, which maps �nal states into non-�nal states and vice versa. The in-

tersection of two state machines is a well de�ned operation (e.g., [Nel68]) and
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testing equality to the empty set translates into searching for a reachable �nal

state. The complexity of the consistency check lies mainly in the construction of

the intersection, which is

jSR-FSM j � jSG�C-FSM j �min(jIR-FSM j; jIG�C-FSM j).

4 Adapters

In the following adapter synthesis algorithms, we introduce an algebraic notation

to describe di�erent ken con�gurations. If A and B denote FSMs (for gates or

kens), then A+B denotes the shu�e-FSM of A and B. Similarly, A B B denotes

the adaptation of A to the required FSM of B. The semantics of these operators
will now be de�ned below.

4.1 1:n-Adapter

In this section we cover the case A B B + C. Hence, B is a split-operator. It

dispatches the calls of A to the right component (B or C). One way to check

whether A's required gate �ts to the provided gates of B and C (and to possibly

adapt A) is to model the services provided by B and C in one single interface.

Problem 1 (1:n Adapter)

Given two provided gates P1 and P2, how can one merge their behaviours into a

single combined behaviour P .

To solve this problem we construct the shu�e-FSM P1 + P2. The basic idea
is, that both provided FSMs can switch states independently. In each state of

P1 all P2, events acceptable in that state are acceptable in the combined FSM.

The converse also holds. The resulting interleaving is modelled exactly by the

shu�e language of the provided gates. The formal construction of the shu�e of

two FSMs is a well known operation (motivated by shu�e languages [Sha78])

and works as follows.

Algorithm 2 (Construction of Shu�e-FSM)

Given two FSMs A and B the resulting shu�e-FSM A + B = (I; S; F; e; s0; t) is

constructed as follows

{ the input alphabet I is the union of IA and IB . Note that the input alphabets IA
and IB must be disjoint. This can always be achieved by pre�xing the method

names with the name of their ken).

{ the set of states S is the Cartesian product of the state sets SA and SB : S :=

f(sa; sb)jsa 2 SA; sb 2 SBg.

{ a state (sa; sb) is in the set of accepting states F � S, i� sa 2 FA or sb 2 FB .
{ in principle, all states (sa; sb) are an error state if sa = eA or sb = eB . All these

error states can be combined to one error state e.
{ the initial state is (s0A; s0B),
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{ and the transition function t : S � I ! S is de�ned

t((sa; sb); i) :=

�
(tA(sa; i); sb) i� i 2 IA
(sa; tB(sb; i)) i� i 2 IB

(1)

Note that the resulting FSM is deterministic, since both FSMs are deterministic

and have a disjoint input alphabet.

Lemma 1. The shu�e-FSM (constructed from A and B) contains all allowed
call sequences to a combined interface of A and B.

Proof. follows from the construction of the transition function of the shu�e-FSM

as de�ned in equation 1.

play/- stop/-

P-FSM
VideoPlayer

play/-

play/- stop/-

P-FSM
SoundPlayer

play/-

Fig. 4. P-FSMVideoPlayer (left) and P-FSMSoundPlayer (right)

Figure 5 shows an example, where the shu�e-FSM of the provided gate of the

VideoPlayer component (Figure 4, left) and the provided gate of a SoundPlayer

(Figure 4,right) is shown. Now, for example, we can adapt the functionality of the

VideoMail (using VideoPlayer and SoundPlayer) according the functionality

of that shu�e FSM. The complexity of this algorithm lies mainly in the de�nition

VP::play/- VP::stop/-

VP::play/-

VP::play/- VP::stop/-

VP::play/-

VP::play/- VP::stop/-

VP::play/-

SP::play/-

SP::play/-

SP::stop/-

SP::play/-

SP::play/-

SP::stop/-

SP::play/-

SP::play/-

SP::stop/-

P-FSM
VP+SP

Fig. 5. P-FSMVideoPlayer+SoundPlayer

of transitions. The number of resulting transitions is bounded by

jSAj � jSB j � (jIAj+ jIB j).

13



4.2 n:1-Adapter

Fig. 6 shows a producer-consumer system 6. A producer writes to a bu�er, then

a consumer reads and clears the bu�ers. The producer can continue writing

the next symbol to the bu�er. (For sake of brevity, lets assume bu�er size 1.

This means, producer and consumer communicate using a simple handshake

protocol.) It is clear that synchronization between producer and consumer is

necessary. The consumer has to wait for the producer to �ll the bu�er. Likewise,

the producer has to wait for the consumer to read and clear the bu�er. The task

of the join-operator is to automatically �nd these points of synchronisation.

Producer

Consumer
Buffer

-/read

R-FSM
Consumer

P-FSM
Buffer

1

-/write

R-FSM
Producer

1

write/-

read/-

21

Fig. 6. Producer as producer, Consumer as Consumer and Buffer as input for the

join-operator generation.

Problem 2 (Synchronisation)

Given two required gates R1 and R2, how can one merge their behaviours into a

single combined behaviour R such that

1. conicting calls exclude each other (calls are conicting, when they both call

the same method of a provided gate.
2. calls from R1 and R2 are synchronised relative to a shared provided gate P .

In the following, for the sake of simplicity, we show the C-FSMs without any

\return" transitions. In an actual implementation these transitions are regarded

as invisible transition (producing the empty word �) when constructing the

shu�e-FSM.

The algorithm to �nd these synchronization points works as follows:

Algorithm 3

1. Compute the shu�e-FSM A + B as de�ned in Algorithm 2 from A and B.

Note that the input alphabets IA and IB are not necessarily disjoint. So, the

resulting shu�e-FSM may be non-deterministic. But for later use, we annotate

each transition t with the name of the required gate it came from (either A or

B) and we refer to that annotation as the owner of e. A method of A or B
called from an edge e is denoted by method(e). When constructing the shu�e-

FSM, we de�ne a mapping � : SA+B � I ! fSA � IAg [ fSB � IBg, which
maps each transition of A+B to its originating transition in A or B.

2. Build the intersection FSM of the shu�e-FSM A + B and the provided gate

FSM C. The resulting ((A + B) � C) is non-deterministic, i� A + B is non-

deterministic.
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3. Derive synchronization information from ((A+B)� C) and A:

for each path p in ((A + B) � C) from s((A+B)�C) to an accepting

state do

hin paths with circles, circle only twicei

eold  null;

for each edge e 2 p do

annotate �(e) with excludes E(e);
if eold 6= null then

if owner(eold) 6= owner(e) then
annotate �(eold) with "-,enables �(e)";
henabling the other transitioni

annotate �(e) with "enables�(e),-";
hwaiting on the other transitioni

fi

fi

eold  e;
od

od

The set E(e) denotes all edges i from the state where e originates from, having the

owner(i) 6= owner(e) and method(i) = method(e).

The intermediate Producer + Consumer and the (Producer + Consumer)� Bu�er

are shown in Figure 7. The annotations are given in statechart event syntax

-/write
-/read

1,1

R-FSM
Producer + Consumer

R-FSM
(Producer + Consumer) x Buffer
-/Writer::write

-/Reader::read

11,211,1

Fig. 7. Intermediate FSM constructions: Producer + Consumer and

(Producer + Consumer)� Bu�er.

[Har87], as also used for the dynamic models in UML. An annotation a/b means

that this transition has to wait on event a and �res event b (when the transi-

tion is used, i.e., event a arrives). The result of the algorithm are the annotations

\-/enablesC-FSMProducer::write 1" and \enables C-FSMConsumer::read 1/-"

for the read operation. Both annotations can be combined to

\enables C-FSMConsumer::read 1/ enables C-FSMProducer::write 1".

Similarly, the result for the C-FSMProducer:write operation is

\enables C-FSMProducer:write 1/enables C-FSMConsumer:read 1".

To �nd the dependency between the write- and the read-operation, we have

to visit the states in the order 1,2,1,2,1. That is, we have to take the loop twice.

To see, why this algorithm solves problem 2, we state
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method call annotations

A:a 1 excludes B:a 1, -,enables B:b 1

B:a 1 excludes A:a 1

B:b 1 enable B:b 1,-

Table 1. resulting annotations.

Lemma 2. The FSM ((A+B)�C) describes all possible sequences of calls from
A and B to the component C.

Proof. Analogous to Lemma 1 the FSM (A+B) describes all possible sequences

of calls to external methods, which A and B can emit simultaneously. The in-

tersection with the provided gate FSM C restricts (A +B) to the call sequences

supported by C.

Theorem 2. Algorithm 3 solves the synchronisation problem 2.

Proof. From Lemma 2 we know that ((A+B)�C) describes all possible sequences
of calls from A and B to the component C. If a state s 2 S((A+B)�C) has several
edges i, which are all calling the same method from C then only one call can be

performed, that is the other calls are excluded.

Synchronisation is required between consecutive calls, when the �rst call is

emitted by another component than the second call. These dependencies are de-

tected by traversing all paths (while taking loops only twice). Taking loops only

twice suÆces to detect in the �rst cycle the dependencies with in the loop. The

second circle detect the dependency between the last and the �rst statement in

the loop.

Note that Algorithm 3 does not resolve conicting method calls. It just detects

conicting calls. An appropriate resolving strategy might be implemented man-

ually by the programmer, or could be an additional parameter for the adapter

generator. While the consumer producer example is a classic, well-known syn-

chronization problem, here it may seem a little degenerated. Therefore we present

a more abstract, but complicated example. In our second example components

A and B wants to to use component C. We would now like to synchronise A
and B calls to C's methods. In Figure 8 we see the C-FSMs of A and B, and
the P-FSM of C.

The shu�e FSM of C-FSMA and C-FSMB is shown in Figure 9.

Finally, the FSM (A+B)� C is created to derive the annotations.

As a result, we have the annotations shown in table 1.

The complexity of this algorithm lies mainly in the construction of the shu�e-

FSM and the cross product. Both constructions require maximum jSAj � jSB j �
max(jIAj; jIB j) steps. (Since the input alphabets are overlapping we take their

maximum instead of their sum.)
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-/a

R-FSM
A

a/-

P-FSM
C

b/-

-/b

-/a

R-FSM
B

-/b
1

2 3

4

1 2 1 2 3

Fig. 8. C-FSMA, C-FSMB , and P-FSMC as input for the join-operator generation.

R-FSM
A + B

-/a -/b

-/b

11 12 13

14

-/a -/b

-/b21 22 23

24

-/a -/a -/a

-/a

Fig. 9. A+B as an intermediate result during the join-operator generation.

4.3 Protocol Changing Adapters

In the above section we concentrated on the synchronization of two (or in gen-

eral several) components simultaneously using another component. All using

components and the used component were given. We looked for the set of syn-

chronization points (if existing). In this section we tackle the case where one

component (A) uses another component (B), but the protocols C-FSMA and

P-FSMB are not compatible. Because of simplicity, in the latter we refer with

C and P to C-FSMA and P-FSMB . In some cases we can compute a restriction

of C's functionality (i.e., adaptation of P-FSMA [RH99]). But this works only if

the intersection of the languages described by C and P is not empty. One inter-

esting case of incompatible protocols (which results in an empty intersection) is

that the method P :: f called by C exists in principle, but is not yet ready in
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(A + B) x C

-/B::a -/B::b
11,1

12,2 13,3

-/B::a
21,2

22,3

-/A::a

FSM

Fig. 10. (A+B)� C used to generate synchronising events for the join-operator.

the current state of P . Some such protocol incompatibilities can be resolved by

'pre�xing' each call to P with a sequence of calls to P . These 'pre�x calls' bring
P into a state, in which the concerned method of P can be called. For exam-

ple imagine a required gate of a simple CD player GUI, which only can start,

stop, and pause the current CD. Now couple this to a more powerful provided

CDPlayer gate additionally o�ering to select one of �ve CDs, before playing

them. The C-FSMSimpleCDPlayer and the P-FSMCDPlayer are shown in Figure 11.

In this example we need to pre�x C-FSMSimpleCDPlayer's method play in state

init/-

P-FSM
CDPlayer

1 2
play/-

selectCD1/-
selectCD2/-
...
selectCD5/- stop/-

pause/-play/-

selectCD1/-
selectCD2/-
...
selectCD5/-

3 4 5

6
-/stop

R-FSM
SimpleCDPlayer

-/play

-/pause-/play

1

2 3

4

Fig. 11. C-FSMSimpleCDPlayer (left) and P-FSMCDPlayer (right)

one with calls to init and selectCDn. Here we can recognise two simple facts:

(a) there may be several di�erent possible pre�xes. This ambiguity must be re-

solved by the programmer (here one might choose selectCD1 for example). (b)

not every call of play must be pre�xed. Only calls to play must be pre�xed,

when P-FSMCDPlayer is in state one. (In general the pre�x depends on the state

of C, the state of P and the method of P to be called). One problem occurs: It
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is not suÆcient to generate a pre�x to bring P into a appropriate state (say s1),
where P can handle a call to a method (say m1). We must also ensure that P
in state s1 can handle all possible sequences of calls to its methods that C can

emit after the call to m1. This clearly restricts the set of pre�xes. Using pre�xes

means that a call to a method of P must �rst bring P into an appropriate state.

After that call, P might be left in this state { yet this state is not a �nal state.

In order to coerce P to move to a �nal state, some additional post�x transitions

need to occur. It is noteworthy, that not all component incompatibilities can be

resolved by pre�xing or post�xing. A valid pre�x or post�x may not exist.

Problem 3 (Initialising / Finalising problem)

Given a C-FSMA and a P-FSMB , we look for a function prefix which given a triplet

(sc; sp;method) returns a sequence of methods such that: (a) They are called in state

sp to drive P into a state enabling the method. (b) the methods of P that can be

called from C after being in state sc are also supported by P . Furthermore, we require

a function postfix, which given a triplet (sc; sp;method) returns a sequences of

method calls such that the sequence starts in sp and takes P into a �nal state after

method was called by C.

The main step to compute this functions, is to create the so-called asymmetric

shu�e-FSM. The set of states of this FSM is a subset of the Cartesian product

of the state set of C and P . The main idea is that this FSM contains two kinds

of transitions: marked and unmarked transitions. Marked transitions go from a

state pair (sc; sp) with an input i, where in both FSMs i is handled in state

sc (resp. sp). In an unmarked transition, the input i is only handled in P , but
not in C. (Since we do not consider the case, that inputs are accepted in C and

not in P , we call this shu�e-FSM asymmetric.) Now we can look for a pre�x

as a path in this asymmetric shu�e-FSM from a state pair (sc; sp) to a marked
transition i. Similarly the post�xes are de�ned as paths from t((sc; sp); i) to a

�nal state.

The asymmetric shu�e-FSM of our example is shown in Figure 12. As the re-

init
1,1 1,2

play(M)

selectCD1
selectCD2
...
selectCD5 stop(M)

pause(M)play(M)

1,3 2,4 3,5

4,6

AShuffle-FSM
SimpleCDPlayer + CDPlayer

Fig. 12. The asymmetric shu�e-FSM of the CDPlayer and the SimpleCDPlayer

sult of our example the pre�x for CDPlayer:Play in state 1 is: init, SelectCD1.
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Note that the selection of the �rst CD is a choice of the programmer. The algo-

rithm would present all possible CD's here (1{5).

The rest of the section describes the algorithm and argues why it solves the

problem.

Before we can state the algorithm, we have to de�ne three predicates. Ac-

cording to Kleene [Kle56], each �nite FSM describes a regular language. This

language clearly depends on the initial state of the FSM. When not assuming

a �xed initial state, we can parameterize the language recognised by an FSM

with the initial state. Let LC(s) denote the language recognised by FSM C,
when state s is takes as its initial state. A �nite FSM may contain � transitions,

i.e. transitions which do not consume any input symbol (and so are used non-

deterministically). The set RL (restricted language in dependence of the initial

state) is de�ned as RLC;P (s) := LC0(s), where A0 is the FSM C with every

transition t(s; i) replaced with an � transition t(s; �) i� i 2 IP Now we can state

the predicate LC (language contained), used in the algorithm. LCC;P (sc; sp) is
true i� the language LC(sc) is contained in the language RLP;C(sp).

Algorithm 4 (Construction of the Asymmetric Shu�e-FSM)

Given one component-FSM C and one provides-FSM P the resulting asymmetric

shu�e-FSM C � P = (I; S; F; e; s0; t;M) is de�ned as follows

{ the input alphabet I is IP .
{ the set of states S is a subset of the Cartesian product of the state sets SC and

SP : S := f(sc; sp)jsc 2 SC ; sp 2 SP g. After creating the transition function

(as de�ned below) one has to check for each state (sc; sp) if L(sc) � RL(sp)
(predicates also de�ned below). In case this condition is not true, the state

(sc; sp) is removed from the state set (and the transition function adapted

accordingly).
{ a state (sc; sp) is in the set of accepting states C � S, i� sc 2 FC and

sp 2 FP and the predicate LCC;P (sc; sp) (de�ned below) is true. Note that

the requirement that both states sc and sp are required to be �nal states. That

di�ers from the de�nition of the 'symmetric' shu�e-FSM.
{ the set of error-states is empty.
{ the initial state is (s0C ; s0P ),
{ and the transition function t : S � I ! S is de�ned

t((sc; sp); i) :=

8>>>><
>>>>:

(tC(sC ; i); tP (sP ; i)) i� i 2 IC ^ i 2 IP^
tC(sc; i) 6= unde�ned^

tP (sp; i) 6= unde�ned

(sc; tP (sp; i)) i� i 2 IC ^ tP (sp; i) 6= unde�ned^

tC(sc; i) = unde�ned

{ the set M of marked transitions: a transition t((sc; sp); i) 2M , i 2 IC ^ i 2
IP ^ tC(sc; i) 6= unde�ned ^ tP (sp; i) 6= unde�ned

After the construction of this FSM, one may have to remove unreachable or

dead states. Now we de�ne the predicates used in the asymmetric shu�e-FSM

construction.
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Now we can state the function Set:prefix(sc; sp; i) which returns for a state
in C and a state in P and for each input symbol i 2 IC a (possibly empty) set

of pre�xes (method calls) which must be injected in P before method i can be

called.

pre�x (sc; sp; i)
return fpathes p 2 IC�P j
starting from(sc; sp) and ending in (s0

c
; s0
p
)j

tC�P ((s
0

c
; s0
p
; i) 6= unde�ned g

The function Set:postfix(sc; sp; i) which returns for a �nal state in C and a

state in P and for each input symbol i 2 IC a (possibly empty) set of post�xes

(i.e. a set of sequences of method calls) which must be injected in P after method

i was called to bring P in �nal state. This function postfix is necessary, because

when FSM C is in a �nal state, but P is not, we cannot wait on a next call of a

method of P since C is in a �nal state.

post�x (sc; sp; i)
return fpathes p 2 I(C�P )j
starting from(sc; sp) and ending in (s0

c
; s0
p
)j(s0

c
; s0
p
) 2 FC�P g

As speci�ed in the functions prefix and postfix, we are looking for paths

to (resp. from) marked transitions, because a marked transition m originating

from a state (sc; sp) is supported in state sc by C, and in state sp by P . Due
to the construction of the asymmetric shu�e-FSM, a path from a state (s0

c
; s0
p
)

to (sc; sp) is a sequence of method calls. This sequence must be called in P . It
brings P to a state where the transition m is supported by P . (Similar reasoning
holds for the postfix function).

When selecting a pre�x, we must ensure that P-FSMP in state (sc; sp) is
still able to accept (with possible further pre�xing) all possible sequences, which

C-FSMC can emit in state tC((; s)c;m). This is ensured by predicate LC. (In fact,

LC is to restrictive: the conversion of unknown method calls to �-transitions only
takes pre�xes into account, which consist of methods of C-FSMC not contained

in P-FSMP .) This is ensured by predicate LC. Putting this together, we yield

Theorem 3. The functions prefix and postfix solve the pre- and post�xing

problem.

The complexity of this algorithm lies mainly in the construction of the asym-

metric shu�e-FSM and the cross product. Again, both constructions require

maximum jSC j � jSP j �max(jIC j; jIP j) steps.

5 Conclusions

In this paper we presented a new method for specifying, analysing and adapt-

ing component interoperability. To this end we utilised an formal FSM based
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semantics for component interfaces in combination with an architectural de�-

nition of component con�gurations. While many of our constructions are very

technical, the software engineer is not involved with the internal representation

and algorithms. Our methods operate largely automatically. Where the software

engineer is required to resolve any ambiguities, it is most in terms of the state

models, provided by him or her.

Our methods allow us to locate incompatibilities for component bindings.

Furthermore, from each black-box component speci�cation, we automatically

derive a single behaviour abstraction for a component as a new FSM. This

permits various consistency checks but also the computation and simulation

of the e�ects of changes at either the provided or required interfaces of the

component in consideration.

We then presented three di�erent kind of adapters to overcome common

cases of component incompatibility: (A) One component uses two (or more)

other components. (B) Two components simultaneously use a third one. Here

the mediating adapter has to perform synchronization between the two using

components. (C) One component uses another one but with conicting proto-

cols. In this case the mediating adapter has to present the functionality of the

used component in another (�tting) protocol. For each case (A){(C) algorithms

were presented for the semi-automatic adapter generation. Furthermore the cor-

rectness of some of the algorithms was shown.

The approach presented supports an architectural design process oriented

towards reuse. The algorithms partly automate design steps and partly support

the software architect in decision making.

Open issues are related to: (1) parameter handling: the generation of adapters

is semi-automatic; it would be interesting to develop skeleton adaptor genera-

tion; also an integration of Yellin and Stroms approach [YS97] is promising. (2)

the presented interface model includes signature lists and protocol information

(constraints on calling sequences). An extension of that model to include and

reason about component qualities is sorely missing.
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