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Abstract

 

. Context dependency of knowledge models causes several problems:
unreliability of knowledge-based systems, maintainability effort and limitations for
sharing and reuse. Problem-solving methods are knowledge models of the reasoning
process of knowledge-based systems. In the paper we present two complementary
methods to deal with the situatedness of problem-solving methods. First, we present a
method that helps to investigate the context dependency of a method by making
underlaying assumptions explicit. We use failed proof attempts as a search method for
assumptions and analysis of these failures for constructing and refining assumptions.
Second, we present a structured approach for developing and adapting problem-solving
methods to different contexts. We view this process as stepwise combination process of
methods we adapters. Starting from very generic strategies with very general data
structures and add adapters that refine the states of the problem-solving process, that
refine state transitions, and that add assumptions necessary to link the competence of a
method with given problem definitions and domain knowledge.

 

1 Introduction

 

During the last years, Problem-solving methods (PSMs) have become quite successful in describing the
reasoning behavior of knowledge-based systems (KBSs). Despite the strong agreement on the
usefulness of PSMs and the large body of documented PSMs there is still a lack of clear methodological
support in developing PSMs and in (re-)using them. Recent work [AWS93], [BA], [Fen95a],
[WAS95], [BG96], [BFS96], [FB96], [FEM+96], [FS96], [HS96], [MZ96], [Bre97], [FS97a], and
[Tei97] provide in-depth analysis of the essence and main rationales of some PSMs. There seems to be
common agreement that the 

 

assumptions

 

 underlying a reasoning process are central in characterizing
and developing PSMs. Some of the papers outline general steps that have to be taken in developing
PSMs. However, it still remains rather unclear how to develop PSMs, how to adapt PSMs to given
problems and domain-specific circumstances and how to select PSMs from a library, i.e. how to
organise such a library. We provide two complementary solutions for these problems.

 

Assumption Detector Method.

 

 PSMs for KBSs need to make assumptions to provide effective and
efficient problem solving: assumptions about the scope of the problem they should solve and
assumptions about the domain knowledge they can use as a resource for their reasoning process [FS96],
[BFS96]. If these assumptions are made explicit they can improve the reusability of PSMs by guiding
the refinement process of PSMs for a given application and by defining goals for the acquisition process
of domain knowledge. However, making the underlying assumptions explicit is not an easy task. The
goal of our paper is to provide methods for solving this problem. The main idea is to construct
mathematical proofs and to analyse their failure as a systematic means for formulating assumptions.
Tool support is provided by adapting the Karlsruhe Interactive Verifier (KIV) [Rei95] for our purpose.
KIV is an interactive theorem prover that returns with open goals if a proof could not be completed.
These open goals can be used to derive the assumptions we are looking for.

 

Adapter Method.

 

 We show a principled way of developing and adapting PSMs and provide a new
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concept on how to organise a library of PSMs to support their reuse. This is mainly achieved by using

 

adapters

 

 as a means to express the refinement of PSMs. Adapters were originally introduced in

 

[FSG+96]

 

, [FG97] to allow the independent specifications of problem definitions, PSMs, and domain
knowledge. Building KBSs from reusable elements require adapters that properly link these elements
and adapt them to the application-specific circumstances. Because these elements should be reusable,
they must abstract from application-specific circumstances and because they are specified
independently from each other there is a need to introduce their mappings. Introduced as glue that
brings other elements together, we will give adapters a much more prominent role during this paper.
They will play a central role in refining PSMs. Actually, a refined version of a PSMs is achieved by
combining it with an adapter.

The paper is organised as follows. In section two we discuss the problems our approach tries to solve.
We sketch the problem of context dependency of PSMs. In section three and four we discuss two
different methods that deal with context dependency of PSMs. First we introduce the 

 

assumption
detector method

 

 that supports the process of making a context of a method explicit. Second we
introduce the 

 

adapter method

 

 that supports the modification of a PSMs to a new or changed context.
Conclusions, related and future work are discussed in section five.

 

2 The Problem

 

Cyc is a prominent and long-term research project aiming for a large knowledge base enabling
common-sense reasoning [GL90]. To achieve this goal large amounts of human common sense
knowledge were encoded in their representation formalism. However, they encountered a serious
problem when formalizing human knowledge. Knowledge is 

 

situated

 

 and its usefulness for different
situations is limited [MC]. Knowledge can be understood as a model of the reality serving specific
(probably implicit) purposes [AFH94]. Trying to represent this situated knowledge creates recursively
the same problem. A representation of this knowledge, i.e. a model, reflects a point of view taken by
the modeller [Cla93]. The point of view he takes reflects implicitly or explicitly the intended use of the
model. [Guh93] enumerates three aspects of a representation that reflect the situatedness of a
knowledge model:

• the 

 

vocabulary

 

 used to formulate the model,

• the 

 

granularity and accuracy

 

 of the model, and 

• the 

 

assumptions

 

 that underlay the model.

[McC93] and [Guh93] present 

 

context logic

 

 as a means to deal with the problem.
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 The notion of context
is reified within first-order logic by introducing terms that denote a context, i.e. that provide context
names. Simplified, a literal 

 

P

 

(

 

a

 

) becomes extended by a context name 

 

c

 

 as an second argument 

 

P

 

(

 

a,c

 

)
that states that 

 

P

 

(

 

a

 

) is assumed to be true in context 

 

c

 

. That allows to express that 

 

P

 

(

 

a

 

) may be true in
one context c and false in another context 

 

c

 

´. 

However, providing a notion for context dependency (i.e., a language that allows to express
situatedness) is only halve of the work. The second problem is 

 

how to get aware of the context
dependency of a model

 

. That is, can we provide methodological support in building a model of the
context dependency of our knowledge model. Making the context of a (knowledge) model explicit is a
tricky problem that is unsolvable in principle however (heuristically) solvable in practice. It is
unsolvable in principle because its solution would require to solve a problem of infinite regress.
Making a context explicit needs a perspective that is used as point of reference for this activity. Clearly
this creates a new context dependency of the model. “As a consequence, there doesn’t seem to be any
certain knowledge on which to stop and stand ... that doesn’t rely on unproven assumptions“ [AFH94].
However, this does not imply that there is no pragmatical solution at all. [AFH94] claim that a notion
of purpose realized by a social selection process comparable to the effect of the evolution process in
nature solves the problem in practice. Some assumptions remain if they coincide with the desired
purpose and its efficient achievement and other get rejected inquiring deeper search for a foundation. 

 

1.  

 

See [AS96] for a survey on formalization formalisms for contexts.
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Making the context of a knowledge model explicit is an infinite process. We cannot expect to get a solid
ground where we can built our knowledge model on top. Therefore, the only thing we can provide are
shovels and dredgers that can be used to deepen the fundament and to rebuilt the house if required.
What can be provided and what is needed is active support in 

 

context explication

 

 and in 

 

changing
knowledge or its underlying context assumptions

 

 in the case we have to adapt it to a new context (i.e.,
we got aware that it does not fit well to a context). This are precisely the goals of our contribution:

• First, we will discuss a method that allows to explicate hidden assumptions of a knowledge model
and

• second, we will discuss a method that allows the adaptation of a knowledge model to a changed
contexts by transforming the vocabulary and granularity of the model. 

The context dependency of knowledge models is more than just a “philosophical“ problem. First, when
developing a knowledge model for a single application the developer may have a good intuition about
which assumptions can be made to deal with his problem adequately. In this case, hidden assumptions
get aware in cases, where the system fails. The KBS may not be able to proceed a given input or it
returns a result that is not the solution as it is required. Using error situations and system breakdowns
is the most common (implicit) search method for assumptions. However, this “method“ may also cause
significant damage. Reliable systems require the explication of their assumptions as explicit part of
their development process. Second, contexts have the problematic feature that they change over time.
As a consequence the KBS must be maintained [Men97]. The notion of the context can be used as a
guideline for this process to answer the questions whether it is necessary to change the system and how
this can be done without losing other necessary properties of it. Third, the problem of context-
dependency is immediately present for knowledge models that should be sharable and reusable. In this
case they cannot be designed to intuitively fit to a given context because they should be applicable to
a broad range of problems not known beforehand.

In this paper we do not investigate knowledge models in general. Instead we focus our attention on a
specific knowledge type that is called 

 

problem-solving methods

 

. The concept of 

 

problem-solving
method

 

 (PSM) is present in a large part of current knowledge-engineering frameworks (e.g. Generic
Tasks [CJS92]; Role-Limiting Methods [Mar88], [Pup93]; CommonKADS [SWA+94]; the Method-
To-Task approach [EST+95]; Components of Expertise [Ste90]; GDM [THW+93]; and MIKE
[AFS96]). 

In general a PSM describes in a domain-independent way which reasoning steps and strategy (i.e.,
control) and which types of knowledge are needed to perform a task. In addition, [vdV88] and
[AWS93] define the competence of a PSM in addition to the description of the reasoning behaviour.
The competence of a PSM should describe which goals a method can achieve without referring to 

 

how

 

these goals are achieved. Libraries of PSMs are described in ([Ben95], [BvV94], [CJS92], [MZ96]),
and [Bre94] describes a library of problem types. PSMs are used in a number of ways in knowledge
engineering: as a guideline to acquire problem-solving knowledge from an expert, as a description of
the main rationale of the reasoning process of the expert and the KBS, as a skeletal description of the
design model of the KBS, and to enable flexible reasoning by selecting methods during problem
solving.

On the one hand, there seems to be a strong consensus on the usefulness of PSMs as knowledge level
models of reasoning processes. On the other hand, there is still no solid theoretical background in
characterising the precise competence of PSMs and in providing guidelines for developing reusable
PSMs and for adapting these PSMs to application specific circumstances. In [Fen95a] we wanted to
specify the competence of the PSM 

 

propose & revise for parametric design 

 

[SB96]. However we run
into two significant problems:

• There is not only one 

 

propose & revise

 

 method but there is a large number of slightly different
variants and there is no justification to select one of them as the golden standard.

• Each of this variants uses slightly different assumptions about what the precise problem is and
about the strength of the domain knowledge that it can use for its reasoning process. In general,
the competence of a PSM cannot be described independent of these assumptions.

One could wonder whether it would be a solution to choose the variant of a PSM making as less
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assumptions as possible. However, this misses the essence of PSMs. In general, most problems tackled
with KBSs are inherently complex and intractable (cf. [Byl91], [BAT+91], [Neb96]). Efficient
reasoning is only possible by introducing assumptions. These assumptions are necessary to reduce the
complexity of the reasoning task [FS96] and the complexity of the development process of the
reasoning system [HS96]. They either formulate requirements on domain knowledge used by the PSM
or restrictions on the size of the problem that is solved by the PSM [BFS96]. Therefore, 

 

making
assumptions for efficiency reasons

 

 is an essential feature of PSMs. As more assumptions a PSM makes
as more efficient reasoning power it can provide.

There are two consequences that have be drawn for PSMs. There is neither a golden standard for a PSM
nor can we expect that we will ever find a useful assumption-free method. Therefore, what we need to
provide are generic schemes of PSMs and methodological support in adapting such schemes to
problem-specific and domain-specific circumstances. Such a support has to deal with two aspects (see
Figure 1): 

• We have to provide a method that can be used to make context dependency explicit.

• We have to provide a method that supports adaptation of a PSM to a given context.

In the following, we will sketch our contribution to both requirements on a development method for
PSMs.

 

2.1 Context Explication

 

We already argued that making strong assumptions on available domain knowledge and problem
restrictions is not a bug but a feature of PSMs that should enable efficient reasoning. [FB96] reviews
the work done on PSMs in model-based diagnosis for their assumptions. We collected a large number
of assumptions and related them to the different subtasks of diagnostic problem solving. This
assumption list can be used to check given domain knowledge, to define goals for knowledge
acquisition, to restrict the size of the problem that must be solved by the KBS or to select a PSM that
fits to the given context as characterized by the established assumptions. However, what we did was a
kind of post-analysis. We collected the results of an around twenty years long common research
project. Searching for hidden assumptions was a kind of implicit activity of this community during
developing problem solvers for diagnosis. In this paper, we will present a method that allows a pre-
analysis for hidden assumptions. We provide support for an active and explicit search process for these
assumptions (see section 3).

 

2.2 PSM Adaptation

 

The context problem of PSMs were already encountered during the early work on 

 

role-limiting
methods

 

 [Mar88] and 

 

generic tasks

 

 [Cha86]. The implemented methods fit well for the application the
were developed for. However, trying to apply them to similar problems with slightly different goals
and domain knowledge failed because of the brittleness of these methods. [KBD+91] rephrased this as
the usability-reusability trade-off of PSMs. On the one hand as more assumptions and commitments to
a specific problem type are made as stronger is the support of the method in developing a solution for
this problem. On the other hand as more commitments to the specifity of the problem are made as less
reusability could be expected. 

The 

 

mismatch

 

 problem of PSMs and problem types is another way how context-dependency of PSMs
are realized. The literature on knowledge engineering is full of examples that show that different
methods can be applied to solve the same problem and a PSM can be applied to solve very different

Problem-Solving
Method

Context
Domain and Problem

Making context explicit

Adapting to a context

Fig. 1.    The two directions of the context problem.
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types of tasks. A method like 

 

propose & revise

 

 was developed for parametric design problems but there
is no real reason why it should not be applicable to more difficult design problems or, for example,
planning tasks. Recently, [vHA96] and [BBH96] have proposed that PSMs should be described not
only in a domain-independent, but also in a complete task-independent way, so that they can become
more broadly reusable. The mismatch of problems and PSMs can be solved in this way. However, this
decontextualization of PSMs significantly reduces the usefulness of these methods that they usually
provide with their task-specific vocabulary, assumptions, and granularity. In their approach, there
remain only abstract algorithmic schemas without any relation to the problem that can be solved with
it. As a consequence, the mapping between such an algorithmic schema and a problem-, domain-, and
application-specific problem solver is immense complex and little support in knowledge acquisition is
provided.

All these discussions deal with the problem of adapting a PSMs to a new or modified context. In this
paper we will show methodological support for this process. We show a principled way of developing
and adapting PSMs. This is mainly achieved by using 

 

adapters

 

 ([FSG+96], [FG97]) as a means to
express the adaptation of PSMs. Refined versions of PSMs are achieved by combining them with
adapters.Therefore PSMs can be used and reused at an arbitrary level of contextualization.

 

3 Making a Context Explicit: The Assumption Detector

 

“Science does not rest upon solid bedrock. The bold structure of its theories rises, as if
were, above a swamp. It is like a building erected on piles. The piles are driven down

from above into the swamp, but not down to any natural or 'given' base; and if we stop
driving the piles deeper, it is not because we have reached firm ground. We simply stop

when we are satisfied that the piles are firm enough to carry the structure, at least for the
time being.“ [Pop59]

 

Our method consists of two main steps: (1) Establishing a notion of the competence of a method in
dependence of assumptions and (2) relating a competence of a method with a problem definition that
introduces a general notion in which the PSM can be applied. Both steps are assumption search and
construction processes and both rely on the

 

 same principle

 

, however play

 

 different conceptual roles 

 

and
require

 

 different techniques

 

. We use failed proof attempts as a search method for assumptions and
analysis of these failures for constructing and refining assumptions. A mathematical proof written
down in a text book explains why a lemma is true under some preconditions (i.e., assumptions and other
sublemmas). The proof establishes the lemma by using the preconditions and some deductive
reasoning. Taking a view at the proof 

 

process

 

 we get a different picture. Usually first proof attempts
fail running into improvable subgoals. These stucked proof attempts point to necessary features that are
not present from the beginning. Actually they make aware of further assumptions that have to be made
in order to succeed the proof. Taking this perspective a proof process can be viewed as a search and
construction process of assumptions. Gaps that can be found in a failed proof provide already first
characterizations of missing assumptions. They appear as sublemmas that were necessary to proceed
with the proof. An assumption that implies such a sublemma closing the gap in the proof is a possible
candidate we are looking for. That is, formulating this sublemma as an assumption is a first step in
finding and/or constructing assumptions that are necessary to ensure that a PSM behaves well in its
context. Using an open goal of a proof directly as an assumption normally leads to very strong
assumptions. That is, these assumptions are 

 

sufficient

 

 to guarantee the correctness of the proof, but they
are often neither 

 

necessary

 

 for the proof nor 

 

realistic

 

 in the sense that application problems will fulfil
them. Therefore, further work is necessary to find improved characterizations for these assumptions.
This is achieved by a precise analysis of their role in the completed proof to retrace unnecessary
properties.

Such proofs can be done semiformal in a textbook style as proposed by 

 

Evolving algebras

 

2

 

 community

 

2.  

 

Meantime also called Abstract State Machines (ASMs).
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[Bör95], a recent specification framework in software engineering. However, providing specification
formalisms with formal syntax and formal semantics allows (semi-)automated proof support. The large
amount of details that arises when proving properties of software (and each PSM finally has to be
implemented) indicates the necessity of such mechanization. Therefore, we provide a formal notion for
PSMs and semi-automatic proof support by adapting the Karlsruhe Interactive Verifier (KIV) [Rei95]
for our purpose.

 

3

 

 KIV was originally developed for the verification of procedural programs but it can
also be applied to formal specifications of KBSs (see [FS97b]). Three main reasons justify our choice:

• KIV integrates specification of dynamics in dynamic logic with functional specifications in an
abstract data type style. Therefore, KIV can express the dynamic of a reasoning process as well as
its static competence.

• KIV provides structuring operations for specification that can be used to represent tasks, PSMs,
adapters, domain models and their relationships.

• KIV uses an 

 

interactive

 

 tactical theorem prover that makes it suitable for hunting hidden
assumptions. We expect many proofs to fail. Using a theorem prover that returns with such a fail
adds nothing. Instead of returning with a failure KIV returns with open goals that could not be
solved during its proof process. In addition, KIV provides support in counter examples generation.
These are precisely the kind of support we are looking for finding and constructing assumptions.

• Further important support is provided by correctness management and reuse facilities. Because the
development process of the appropriate PSM and its assumptions is an iterative and reversible
process, one has to keep track of (repeated) changes of lemmas, assumptions and proofs. Support
in generating and managing different proof obligations and reuse of proofs for slightly modified
specification, is essential in making proofs practicable.

During the following, we will illustrate our method by discussing small toy examples that present our
ideas clearly and that are easy to understand. First, we present 

 

hill-climbing

 

 and relate the competence
of this local search method with a problem of finding a global optimum. Second, we discuss a simple
version of abductive diagnosis and the kind of assumptions that can be found when trying to solve this
problem with a local search method. The reader may argue that we do not discuss PSMs for KBS but
simple search methods. However, we would like to make three points:

• The algorithmic core of PSMs are simple search methods. Take 

 

propose & revise

 

 ([MM89],
[SB96]) as an example. It is a simple local search method with two different modes: Proposing
extensions of a state and revising a state if constraints violations occur. Therefore, our results can
immediately applied to this type of methods.

• PSMs gain their “intelligence“ by using strong domain heuristics for the search process, by
restricting the size of the problem they deal with properly, and by ontological commitments that
make them immediately applicable to a specific problem type. In section 4 we will explain how
the search methods that we discuss can be adapted to richer contexts constituting task-specific (or
problem-type specific) PSMs.

• In the following we will derive rather strong assumptions providing local search techniques with
the power to solve global search problems. However, we will sketch in the last part of section 3
how more realistic assumptions reflecting the heuristic nature of PSMs can be found.

 

3.1 First Example: A Local Search Method

 

Our methods consists of two main steps: (1) Establishing a notion of the competence of a method in
dependence of assumptions and (2) relating a competence of a method with a problem definition that
introduces a general notion in which the PSM can be applied. Each step uses the same principle but rely
on a very 

 

different conceptual and technical

 

 background. Establishing a competence of an operational
algorithm specification requires proof techniques of dynamic logic. We have to relate a procedural
specification with a first-order specification of its assumptions and competence. For the second step we
have to relate two declarative specifications. The gap between a competence specification and a

 

3.  

 

This formal framework is used in the paper but is not its subject, cf. for more details [FG96], [FG97], [FS97b].
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problem definition has to be closed via assumptions. The specifications and proofs remain within first-
order logic by proving equivalence of first-order formulas.

 

3.1.1 Establishing a Competence of a PSM in Dependence on Assumptions

 

Hill-climbing

 

 is a local search algorithm that stops when it has found a local optimum. The control flow
is defined in Figure 2. The method works as follows: First, we select a start object. Then we recursively
generate the successors of the current object, and select a successor if we find a better one. Otherwise
we terminate and return the current object that does not have better successors. The functions 

 

select-
start

 

, 

 

generate, 

 

and

 

 select-a-best 

 

correspond to elementary inference actions in CommonKADS
[SWA+94].

The main requirements on 

 

domain knowledge

 

 that are introduced by 

 

hill-climbing

 

 (and by other local
search methods for an optimum) is the existence of a 

 

preference

 

 relationship and a 

 

successor

 

relationship between the objects. The former is used for selection and the latter is used to enable the
local search process. A third requirement is a selection criterion for the start object of the search
process. The performance and competence of the method depends on the properties of these three
relations. 

With KIV, we tried to prove that 

 

hill-climbing

 

 always terminates and that it has the competence to find
a local optimum (see Figure 3).

 

4

 

 KIV automatically generates all proof obligations in dynamic logic
that are necessary to ensure termination and competence of an algorithmic specification. In our case it
generates the following proof obligations (see [FS97b]):

|

 



 

 <

 

hill-climbing

 

(

 

input

 

)> true, i.e. termination
|

 



 

 <

 

hill-climbing

 

(

 

input

 

)> 

 

output

 

 

 

∈

 

 

 

input

 

|

 



 

 <

 

hill-climbing

 

(

 

input

 

)> 

 

¬∃

 

x . 

 

(

 

successor

 

(

 

output,x

 

) 

 

∧ 

 

x 

 

∈

 

 

 

input ∧  output < x).

4.  See http://www.aifb.uni-karlsruhe.de/WBS/dfe/ijcai.html and http://www.aifb.uni-karlsruhe.de/WBS/dfe/eurovav.html for
details of the proof processes.

operational spec hill-climbing
hill-climbing(input)

begin
current := select-start(input);
output := recursion(current)

end
recursion(X)

begin
successors := generate(X);
new := select-a-best(X,successors)
if X = new

then output := X 
else recursion(new)

endif
end

/* select-start must select an element of input and uses a selection criterion. */
select-start(x) ∈  x ∧  select-start(x) ∈  select-criterion(select-start(x),x)

/* generates selects input elements that are in successor relation with the current object.*/
x ∈  generate(y) ↔ x ∈  input ∧  successor(y,x)

/* select-a-best selects the current object if no better successors exist or a successor if a better successor
exists. In the latter case the selected successor must be better than the current object and there need not to be
another successor that is better than the selected successor. */

¬∃ z . (z ∈ {y} ∪  y´ ∧ select-a-best(y,y´) < z)
¬∃ z . (z ∈ y´ ∧  y < z) → select-a-best(y,y´) = y
∃ z . (z ∈ y´ ∧ y < z) → select-a-best(y,y´) ∈  y´ ∧  y < select-a-best(y,y´))

endoperational spec

Fig. 2.    The operational specifiction of of hill-climbing.
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Tool support is provided in unfolding these proof obligations and in applying proof tactics like
inductive proofs. In general the user has to select proof tactics and heuristics from a menu. In our case,
user interaction is needed to select axioms of a specification as supporting lemmas for the proof and in
selecting the kind of induction (see [FS97b]). We run into a number of open goals during the proofs:

• We had to ensure that select-criterion retrieves an object for each possible input. Otherwise we
cannot guaranty that hill-climbing provides any output.

• We had to ensure that the preference we use (<) is a partial order. We have to be sure of
irreflexivity and transitivity to ensure that hill-climbing cannot be catched in circles (imagine a <
b and b < a and a ∈  successor(b) and b ∈  successor(a)). Also we have to ensure finiteness of the
input set.

Based on these assumptions that were necessary to complete the proofs we could establish a
competence of hill-climbing as shown in Figure 3. We can ensure that hill-climbing finds a local
optimum of the input.

To give an impression of how to work with KIV, Figure 4 is a screen dump of the KIV system when
proving the competence of hill-climbing. The current proof window on the right shows the partial
proof tree currently under development. Each node represents a sequent (of a sequent calculus for
dynamic logic); the root contains the theorem to prove. In the messages window the KIV system
reports its ongoing activities. The KIV-Strategy window is the main window, which shows the sequent
of the current goal, i.e. an open premise (leaf) of the (partial) proof tree. The user works either by
selecting (clicking) one proof tactic (the list on the left) or by selecting a command from the menu bar
above. Proof tactics reduce the current goal to subgoals and thereby make the proof tree grow.
Commands include the selection of heuristics, backtracking, pruning the proof tree, saving the proof,
etc.

3.1.2 Relating the Competence of a PSM with a General Problem Definition

A problem definition specifies the goals that should be achieved by the KBS. It establishes an explicit
notion of the context the PSM is applied in. A general context hill-climbing can be applied in is the
search for a (global) optimum. Figure 5 provides the definition for our running example. The goal
describes what an optimum must fulfil. However, the PSM hill-climbing has only the competence to
find a local optimum in a graph. Again, we start the interactive proof process knowing that it will lead
us to further assumptions because in general hill-climbing does not have the competence to find a global
optimum. Two main problems arise during the proof:

1) We would have to prove that the selected start object is always connected with a global optimum
(there may exist several global optima because we do not require a total order). Otherwise, the
global optimum is not reachable by the recursive search of hill-climbing.

2) Even if we could prove (1) we may get stucked at the case distinction
if X = new

where hill-climbing stops for a local optimum.

competence hill climbing 
input requirement

∃ x. (x ∈  input ∧ x ∈  select-criterion)
knowledge requirement

¬ (x < x)
 x < y ∧ y < z →x < z

post condition
output ∈  input
∃ x . (x ∈  input ∧  select-criterion(x ,input) ∧  (x < output ∨  x = output))
¬∃ x . (successor(output,x) ∧ x ∈  input ∧  output < x)

endcompetence 

Fig. 3.    The competence theory of hill-climbing.
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A trivial assumption that close both gaps in the proof is to require that each object is directly connected
with each object.

totally-connected assumption: successor(x,y)

However this is not a very meaningful assumption. In this case, hill-climbing collapses to a complete
search in one step because all objects are successors of each possible start object. A less drastic
assumption is to require that each object (except a global optimum) has a successor with a higher
preference.

better-successor assumption: 
x ∈  input → (∃ y . (y ∈  input ∧  successor(x,y) ∧  x < y) ∨  ¬  ∃ z . (z ∈  input ∧ x < z))

This assumption is derived to close the gap in the case distinction of the recursion. If the recursion stops
we have found a global optimum. We already know from the termination proof of hill-climbing that the
PSM always terminates.

The question remains whether the assumptions is minimal. Here, minimality means that the
assumptions is not only sufficient but also necessary to guarantee that the competence of the PSM
implies the problem definition, formally,

(PSMcompetence → Problem Definition) → Assumption

An assumption that is minimal in the logical sense (i.e., necessary) has the clear advantage that it
maximizes the circumstances under which it holds. It does not require anything more than what is
precisely required to close the gap between competence and problem. In fact, we have proven with KIV
that the better-successor assumption is a minimal assumption in the logical sense.5 However, besides

Fig. 4    Verifying the PSM with KIV.

task global optimum
goal

 global-optimum ∈ input
¬∃ x . (x ∈ input ∧  global-optimum < x)

endtask

Fig. 5.    The problem definition global optimum.
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logical minimality other aspects like cognitive minimality (effort in understanding an assumption) or
computational minimality (effort in proving an assumption) may influence the choice of assumptions,
too. We will illustrate this in the following subsection. In general, minimizing (i.e., weakening) of
assumptions can be achieved by analysing their sufficiency proof with KIV and eliminating aspects that
are not necessary for continuing the proof.

It was also easy to prove with KIV that the better-successor assumption is weaker6 than the totally-
connected assumption but the former has the disadvantage that it is not only formulated in terms of
domain knowledge but also in terms of the current case input (we have to ensure that the local better
successor is always element of the input). Therefore, whether this assumption holds cannot be proven
statically independent from the actual input.

The two assumptions that we have introduced yet are rather trivial. This is a consequence of our
simplistic example. In the following section we will define a more complex task and PSM which will
lead to more interesting assumptions. 

3.2 Second Example: Finding an Abductive Explanation

In the following, we introduce a more complex task definition. We ask for explanations, where an
explanation is a set of hypotheses that explains a set of observations. That is, we define a typical
abductive problem.

3.2.1 The Task of Finding Complete and Parsimonious Explanations

[BAT+91] analyse the computational complexity of abduction. They define an abduction problem by
a set of input data that must be explained and a set of hypotheses that can be used to construct
explanations. A complete explanation must explain all input data (i.e., observations) and a
parsimonious explanation must be minimal (that is, no subset of it explains all observations). Figure 6
provides the problem definition for our new example.

3.2.2 The Set-Minimizer Method

We use the simple PSM set-minimizer of [FG97] for our example. It receives a set of objects as input
and tries to find a minimized version of the set that still fulfils a correctness requirement. The applied
search strategy is one-step look ahead. The PSM-specification is provided in Figure 7. The main
requirement on available knowledge and input is the existence of a predicate correct holding true for
the input set. The method works as follows: First, we take the input. Then we recursively generate the
successors of the current set and select one of its correct successors. If there is no new correct
successor we return the current set. The competence states that set-minimizer is able to find a local
minimal subset of the given set of objects. The three axioms state that it (1) finds a subset that is
correct (2), and (3) each set containing one element less is not a correct set. 

We skip all proofs that were necessary to establish this competence. Actually we could reuse the proofs
that were done for hill-climbing based on our adaptation method (see section 4) and the proof reuse
facilities of KIV. By providing a library of reusable PSMs and support in adaptation, their proofs can
be reused, too. Therefore, this type of proofs that an operational specification of a PSM has some

5.  This proof process leads to several refinements of the original assumption as we encountered several wholes during the proof
process.
6.  A is weaker than B iff B |= A.

task complete and parsimonious explanation
goal(x) ↔ complete(x) ∧  parsimonious(x)
complete(x) ↔ expl(x) = observables
parsimonious(x) ↔ ¬∃ x’. (x’ ⊂ x ∧  expl(x) ⊆  expl(x’ ))

endtask

Fig. 6.    The problem definition for abduction.
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competence (related to a fixed set of assumptions) has to be done only once when introducing the PSM
into the library.

3.2.3 Relating Problem and Method

Problem and PSM become connected by providing the set of all hypotheses as input and identifying
correct sets with complete explanation, i.e. input := {x | x is a hypothesis} and correct(x) ↔
complete(x).

Again we have to investigate the circumstances that ensure that the PSM achieves the goal as
introduced by the problem definition. We use the same procedure again. We try to prove:

goal(output)

This immediately splits into two subgoals:

• complete(output)

• parsimonious(output)

Completeness. The completeness of output follows directly from axiom (2) of the competence of the
PSM (see Figure 7). However, it is based on the input requirement of the method. We have to
strengthen the problem definition of abduction. The set of all hypothesis must be a complete
explanation. This puts a strong restriction on the abductive problem: The function expl has to be defined
in a way that adding hypotheses to a set of hypotheses must not destroy the explanatory power of the
set. Actually, we will establish the latter property during the proof of parsimonity.

Parsimonity. The competence of our method ensures local parsimonity. Our method set-minimizer
finds a local-minimal set that is parsimonious in the sense that each subset that contains one element
less is not a complete explanation. However, we cannot guaranty that it is parsimonious in general.
There may exist smaller subsets of it that are complete explanations. The reader may already have
realized the similarity with the problem of hill-climbing that finds only local optimal elements.
However, with the better-successor assumption it is able to find global optima. A natural way to close
our gap is therefore to reformulate the better-successor assumption and global optimum in terms of the

operational spec set-minimizer
output := set-minimizer(input)
set-minimizer(X)

begin
successors := generate(X);
if ¬  ∃ x . (x ∈  successors ∧  correct(x))

then output := X
else 

new := select-a-correct(successors)
set-minimizer(new)

endif
end

/* generate creates subsets that contain one element less.*/
x ∈  generate(y) ↔ ∃ z . (z ∈  y ∧  x = y \ {z})

/* A selected successor has to be correct. */
∃ x . (x ∈  y ∧  correct(x)) → (correct(select-a-correct(y)) ∧  select-a-correct(y) ∈  y)

endoperational spec
competence set-minimizer 

input requirement
correct(input)

post condition
(1) output ⊆ input,
(2) correct(output),
(3) x ∈  output → ¬correct(output \ {x})

endcompetence 

Fig. 7.    The specifiction of set-minimzer.
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new problem. Instantiating the better-successor assumption requires the definition of a preference and
of a successor relation:

x < y :↔ expl(x) ⊆  expl(y)
successor(x,y) :↔ ∃ z . (z ∈  x ∧  y = x \ {z})

The better-successor assumption is now reformulated as:

x ⊆  hypotheses → 
(∃ y . (y ∈  x ∧  expl(x) ⊆  expl(x \ {y})) ∨  ¬ ∃ z . (z ⊆  hypotheses ∧ expl(x) ⊆  expl(z))

However, this is a minimal but not very intuitive assumption. Again we apply our failed-proof
technique. We use it now to generalize an assumption. The idea is to prove that the better-successor
assumption holds based on the problem definition, the input requirements and competence of the set-
minimizer method, and the way we defined the preference. KIV returns with open goals that would be
necessary to complete the proof. These open goals are generalizations of the better-successor
assumption because they imply its truth. This proof attempt with KIV is straightforward and gets stuck
in the following subgoal:

y ⊂  x ∧  expl(x) ⊆  expl(y) → ∃ z . (expl(x) ⊆  expl(x \ {z})

This assumptions requires that if there are smaller subset of x with larger explanatory power than there
must be another subset that differs only in one element from x and also has larger explanatory power.
A simple generalization of this implication is to negate its premise. That is, we select the strengthening
tactic:

¬a | a → b

This tactics leads to

¬ (y ⊂  x ∧  expl(x) ⊆  expl(y)), 

i.e.,

y ⊂  x → ¬  expl(x) ⊆  expl(y)

This assumption requires that for any set of hypotheses there may not exist a subset that has a larger
explanatory power. Deleting a hypothesis from the set of hypotheses may never lead to a superset of
explained observations. Actually this assumption plays a prominent role in the literature on abductive
reasoning and model-based diagnosis. 

A strengthened version of this assumption is used by [BAT+91] to define polynomial subclasses of
abduction. In general, abduction is NP-hard in the number of hypotheses. However, with their
monotonic abduction assumption

y ⊂  x → expl(y) ⊆  expl(x)

[BAT+91] proves that it is possible to find a complete and parsimonious explanation in polynomial
time. The assumption they use requires that a superset of hypotheses explains also a superset of
observations. The assumption is used to restrict the worst-case effort of a method.

[KMR92] examine their role in model-based diagnosis. The assumption holds for applications, where
no knowledge that constrains fault behaviour of devices is provided or where this knowledge respects
the limited-knowledge-of-abnormal behaviour assumption. This is used by [KW87] as minimal
diagnosis hypothesis to reduce the average-case effort of finding all parsimonious and complete
explanations with GDE. A syntactical way to ensure this assumption (i.e., to formulate it as a
requirement on the domain knowledge) is the restriction of the domain theory to Horn clauses
constraining only the correct behaviour of devices, cf. [KMR92].

It is interesting to see how the very generic better-successor assumption transforms into such intuitive
and broadly used task-specific assumptions.

3.3 Heuristic Assumptions

The assumptions introduced so far ensure that a local method solves a global problem. They ensure that
a local search method has the same competence as a global search method. However, that is not what
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one is usually looking for. Often these assumptions are too strong. In addition, we mentioned that GDE
uses the monotonic-abduction problem to reduce the average-case behaviour of the problem solver.
However, we have not provided measurements nor proofs of these aspects. In this subsection, we will
sketch how both can be integrated.

3.3.1 Domain-specific Reformulation and Weakening of Assumptions

Propose & revise ([MM89], [SB96]) is a local search method consisting of two substeps: Propose
extend a current state and revise modifies the state if constraint violations occur. Both activities are
iterated until a complete and correct state is reached. In the general case, this cannot be guaranteed
because propose & revise does not include any backtracking mechanism that would allow to escape a
death-end of the solution process. Completeness of the search method can only be guaranteed if we
introduce strong assumptions about the domain knowledge that is used by the propose and by the revise
step (see Figure 8). 

[ZM96] provide an interesting and in-depth analysis of the PSM propose & revise and its application
to the vertical transportation (VT) domain ([MM89], [SB96]). The goal is to design an elevator that
meets several requirements and constraints. [ZM96] identify two key parameter in this domain that
influence the difficulty of the problem: the capacity and the required speed of the elevator. As larger
the values of these two parameters are as more difficult it is to find a solution. They investigate how
propose & revise behaves based on the available domain knowledge for different combinations of these
two parameter values. The instantiated method failed for some of the simple cases and not surprisingly
for many of the difficult ones. Some of the difficult ones could be solved by a complete search method
however it required large amount of storage size and computation time. Failures of propose & revise
in these cases can be accepted because we are looking for a heuristic problem solver that gains
efficiency by restriction to the simple cases. Aiming for a complete and efficient problem solver for the
general case would define an unsolvable problem. However, that propose & revise also fails for some
of the simple cases must be viewed as gaps in the provided domain knowledge. It should be strong
enough to enable propose & revise to find a solution for these cases.

Based on this domain analysis, we could weaken our assumptions of Figure 8. Instead of requiring that
we always have a propose and revise step available that find an optimal successor state we could restrict
these requirements to the more simple cases. That is, we include boundaries on the values of the key
parameters in the assumptions. For difficult cases we have to use either a more complex search method
with higher demands on storage and time or we have to ask the human expert to solve the tricky cases.

competence propose & revise
knowledge requirements

/* The propose knowledge never fails and monotonically extends the state. */
¬  Complete(s) → Partial completeness(s) < Partial completeness(propose(s))

/* The application of a propose leads to an optimal state. */
¬  Complete(s) → 

¬∃ s´ . (s´ ∈  State ∧ Correct(s´) ∧ propose(s) < s´ ∧ 
Partial completeness(s) < Partial completeness(s´) = Partial completeness(propose(s))

/* The revise knowledge never fails. */
¬  Correct(s) → Correct(revise(s))

/* The application of revise does not change the completeness of a state. */
Partial completeness(revise(s)) = Partial completeness(s)

/* The application of revise leads to an optimal state. */
¬  Correct(s) → 

¬  ∃ s´ . (s´ ∈  State ∧ Correct(s´) ∧ 
Partial completeness(revise(s)) = Partial completeness(s´) ∧  revise(s) < s´ )

post condition
/* The output is a complete, correct and optimal state. */

Complete(output) ∧ Correct(output) ∧ 
¬∃ s . (s ∈  State ∧  Complete(s) ∧ Correct(s) ∧ output < s)

endcompetence

Fig. 8.    The competence of propose & revise (see [FMD+]).
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3.3.2 Specification and Verification including Thresholds

We motivated the assumptions of PSMs with the goal to improve the efficiency of the assumption-
based reasoning process compared to a reasoning process using less assumptions. However, we have
not yet provided means to specify and verify the efficiency of PSMs. [Sha89], [SB95] describe means
that can be integrated into our framework. [Sha89] includes counters and boundaries for the values of
these counters into the specification of real-time software. Precisely the same can be done for PSMs.
In the case of hill-climbing we can add a counter for the number of successors that are derived and
compared in one step and a second counter on the number of steps. Then, we can formulate boundaries
for their combined value and formulate this in terms assumptions that either introduce requirements on
the domain knowledge or restrict the set of problems that are solved by hill-climbing (i.e., hill-climbing
terminates after it has consumed its computational time).7 

In general, such refinements of specifications by measurements allow more refined assumptions on the
search graph that is used by the local search methods. [Ste95] provides informal examples for such
refined assumptions for different variants of different PSMs in what he calls symbol-level analysis of
PSMs. For example, he discusses for classification methods under which circumstances data-directed
search, solution-directed search and opportunistic search are preferable. Each search type requires
some knowledge types but more important some properties of this knowledge in order to perform well
(i.e., effectively and efficiently).

3.4 Weakest Preconditions

Above we discussed two roles of assumptions. First, they are necessary to ensure that a PSM has a
specific competence. For example, without the assumption that the preference relation is a partial order
the termination proof of hill-climbing would not be possible. Second, they are necessary to ensure that
the competence of a PSM is able to achieve a goal as introduced by a problem definition. For example,
with the better-successor assumption we can prove that the competence of hill-climbing is strong
enough to find a global optimum. Both roles differ conceptually and technically. 

The first aspect has to be examined when establishing a PSM in a library of reusable elements. Such
elements must be reliable in the sense that they guarantee some competence and the conditions
necessary to provide this competence. Technically, it is a proof that concerns the algorithmic structure
of the method. Therefore, we use dynamic logic to specify the algorithm and the proof obligations are
formulas in dynamic logic. 

Assumptions → <Operational Specification> true
Assumptions → [Operational Specification] Competence

Finding weakest preconditions for an algorithm has a long tradition in software engineering (cf. the wp
calculus [Dij75] and predicate transformers [CS95]). Since the dynamic logic we use can be regarded
as a generalization of Hoare-triples we can employ methods and techniques developed in this area (cf.
e.g. the B-Toolkit [Wor96] or Z/EVES [MS96]).

However, the second aspect has a different purpose and requires different techniques. Here we are
looking for assumptions that ensure that the competence of the method implies the problem definition,
i.e.

Assumptions → (Competence → Problem Definition)

That is, we do not need to refer to the algorithmic structure of the PSM and neither specification nor
proof rely on dynamic logic. We relate two declarative specifications, the functionality of the system
and the specification of the required functionality. Assumptions are used to split the required
functionality into two parts. One part that is solved by the competence of the PSM (in the case the
assumptions holds) and one part that is only assumed to be solved. That is, this part is either be solved
by the domain knowledge, by an external possible human agent, or it must be viewed as a restriction
of the class of solvable problems. We argued that our PSMs can only provide a limited fragment of the
entire functionality because of the intractability of typical problems they are applied to. In software

7.  Using this direction, work on anytime algorithms [Zil96] could be integrated into the work on PSMs.
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engineering, usually a different point of view is taken. One assumes that the specification of the
functionality of the system is also the specification of the required functionality. In this setting, our
assumption hunting method makes no sense because the distinction between the two different
specifications and their relationship are not present.

4 Switching a Context: The Tower-of-Adapter Method

In the following, we show a principled way of developing and adapting PSMs to different contexts.
This is mainly achieved by using adapters as a means to express the refinement of PSMs. Adapters
were originally introduced in [FSG+96],[FG97] to allow the independent specifications of problem
definitions, PSMs, and domain knowledge. Building KBSs from reusable elements requires adapters
that properly link these elements and adapt them to the application-specific circumstances. Because
these elements should be reusable, they must abstract from application-specific circumstances and
because they are specified independently from each other there is a need to introduce their mappings.
Introduced as glue that brings other elements together they will now play a central role in refining
PSMs. Actually, a refined version of a PSM is achieved by combining it with an adapter.

The stepwise introduction of adapters can be used to stepwise refine generic PSMs. Three processes
are supported by our approach:

• the terminological structure of states of a method can be refined by introducing ontological
commitments;

• the terminological structure of states can be used to refine state transitions of a method; and

• assumptions can be introduced to link the competence of a method with problem definitions and
domain knowledge.

Again we use simple and self-containing examples to illustrate our ideas. First, we sketch the general
specification framework. Then we introduce a generic algorithmic schema for local search. First this
schema becomes refined to hill-climbing via an adapter. A second adapter is used to refine hill-climbing
into the set-minimizer method. The general search strategy always remains the same but the ontological
commitments of the methods become refined. States and state transitions are described with an
enriched vocabulary. A further adapter transforms this method into a method for abductive diagnosis
(by adding additional ontological requirements). Besides adding ontological commitments, it is
necessary to add assumptions to close the gap between a method and a problem. We discuss adapters
that ensure that these methods can be applied to problems that define a global optimum. We show how
this leads to a refinement of problem definitions and assumptions similar to the refinement of PSMs.
Finally, we discuss the refinement of control.

4.1 The Four Component Model

[FSG+96],[FG97] propose a four component model for the specification of KBSs built up from
reusable elements. (see Figure 9): a problem definition that introduces the problem that should be
solved by the KBS; a PSM that defines the reasoning process of a KBS; and a domain model that
describes the domain knowledge of the KBS. A fourth element of a specification of a KBS is an adapter
that is necessary to adjust the three other (reusable) parts to each other and to the specific application
problem. It is used to introduce assumptions and to map the different terminologies.

The Problem Definition. The problem definition specifies goals that should be achieved in order to
solve a given problem. A second part of this specification is the definition of requirements on domain
knowledge. For example, a task that defines the selection of the maximal element of a given set of
elements requires a preference relation as domain knowledge. Axioms are used to define the
requirements on such a relation (e.g. transitivity, connexitivity, etc.).

The Problem-Solving Method. The description of the reasoning process of a KBS by a PSM consists
of three elements in our framework: a competence description, an operational specification, and
requirements on domain knowledge. The definition of the functionality of the PSM introduces the
competence of a PSM independent from its dynamic realization. An operational description defines the
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dynamic reasoning of a PSM. Such an operational description explains how the desired competence
can be achieved. It defines the main reasoning steps (called inference actions) and their dynamic
interaction (i.e., the knowledge and control flow) in order to achieve the functionality of the PSM. The
third element of a PSM are requirements on domain knowledge.

The Domain Model. The description of the domain model introduces the domain knowledge as it is
required by the PSM and the task definition. Our framework provides three elements for defining a
domain model: a meta-level characterization of properties, the domain knowledge, and assumptions of
the domain model. The meta knowledge characterizes properties of the domain knowledge. It is the
counter part of the requirements on domain knowledge of the other parts of a specification. The domain
knowledge is necessary to define the task in the given application domain and necessary to proceed the
inference steps of the chosen PSM. External assumptions relate the domain knowledge with the actual
domain. They can be viewed as the missing pieces in the proof that the domain knowledge fulfil its
meta-level characterizations.

The Adapter. The description of an adapter maps the different terminologies of task definition, PSM,
and domain model and introduces further requirements and assumptions that have to be made to relate
the competence of a PSM with the functionality as it is introduced by the problem definition (cf.
[Fen95a], [BFS96]). Because it relates the three other parts of a specification together and establishes
their relationship in a way that meets the specific application problem they can be described
independently and selected from libraries.

4.2 Refining Problem-Solving Methods

We start describing the development process of PSMs with a very generic search schema. During the
following sections this schema will become refined. However, we do not make a commitment to this
top-down like development process. The process can start at any level of specialization and can take
the direction of specialization or generalization because we provide a library containing these generic
schemas and their adaptations. Specialization is achieved by adding an adapter to an existing PSM-
adapter combination and generalization is achieved by deleting an adapter from an existing PSM-
adapter combination.

[SL90] present a theory of search algorithms to support the transformation of problem definitions into
implementations. Figure 10 shows their hierarchy of search methods providing local search as an
instance of generate & test like approaches working on local structures. The general algorithmic
structure of a local search graph can be described by an initialization and a recursion that parses the

Assumptions

Adapter

Signature mappings

Requirements

Goals

Requirements

Problem definition 
Competence 

Operational Specification

Problem-solving method 

Requirements

Domain model

Fig. 9    The four elements of a specification of a KBS.

Domain knowledge 

Meta knowledge

Assumptions
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local search structure. Figure 11 provides the definition of such a generic search strategy. It can be used
to describe breadth-first search, depth-first search, hill climbing, beam search etc. This generic
specification will be the backbone of all our examples in the following. All other refined versions will
be achieved by combining it with adapters.

4.3 Hill-Climbing

Figure 2 already provided an operational specification of hill-climbing. However, we can achieve the
same effect by defining an adapter for the generic local search schema of Figure 11. This adapter has
to refine the definitions of the elementary state transitions (i.e., inference actions in terms of
CommonKADS) of the method. Axioms have to be added to the definitions of these relations. The
adapter that achieves this refinement is provided in Figure 12.

Hill-climbing refines the generic local search strategy. The output is a local optimal element, however,
this method is still very generic and can be applied to nearly any type of task. In the next step we will
specialize this method to the set-minimizer method.

4.4 Set-minimizer

We already presented set-minimizer that can be used to find a minimal but still correct subset of a given
set (see Figure 7). It returns a correct set that is local minimal in the sense that there is no correct subset
that has one element less. This method is obviously a local search method specialized for a specific type
of problems. Set-minimizer refines hill-climbing with the following refinements:

• An generic object of hill-climbing is a set in set-minimizer. That is, set-minimizer adds additional
ontological commitments used to characterize states of the search process.

• The successor relationship is hard-wired in set-minimizer. A set is a successor of another set if it
is a subset with one element less. The ontological commitment used to characterized states is used
to refine the definition of state transitions.

• A preference on entities is defined implicitly. Smaller sets are preferred if they are still correct.

Set-minimizer describes only one of several possible problem-specific adaptations of hill-climbing.
Traditionally for each variant the specification has to be re-done, all termination and correctness proofs
of the method have to be re-done, and the method has to be re-implemented. Our approach provides

Fig. 10.    Refinement hierarchy of algorithm theories [SL90].
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adapters as means to add the problem-specific refinement to hill-climbing, allowing to keep both
aspects separate. Therefore, the complete specifications, proofs, and implementations of hill-climbing
can be reused. Only the problem-specific aspects have to be specified, proven and implemented by an
adapter. Figure 13 provides the definition of such an adapter. Its main proof obligation is that the way
the preference is defined fulfils the requirement on such a relation.

By keeping the problem-specific refinement separate from the generic core of the method it is easy to
overcome what was viewed as the usability/reusability trade-off of PSMs [KBD+91]. The original
version of hill-climbing can reused for different problems requiring different kinds of refinement. The
combination of hill-climbing and the set-minimizer adapter can be used for problems that can be
expressed in terms of minimizing sets. This combined version is less reusable however much more
usable for cases it can be applied to. For achieving a problem-specific variant of a method it is not
necessary to change the method itself. Instead, a problem-specific adapter is added. These adapters can
also be stapled to increase the problem specificity of methods. We will show this in the following

operational specification local search
output := local search(input)
local search(X)

begin
currents := select1(X);
output := resursion(currents)

end
recursion(X)

begin
successors := generate(X);
new := select2(X,successors)
if X = new

then output := select3(X) 
else recursion(new)

endif
end

/* select1 must select elements of input. */
select1(x) ⊆  x 

/* generates selects input elements that are in successor relation with the current objects.*/
x ∈  generate(y) ↔ x ∈  input ∧  ∃ z . (z ∈  y ∧  successor(z,x))

/* select2 selects a subset of objects from the union of two sets. The new object set must be
constructed in a way that there remain no better objects unselected. That is, if we select x and
there is a y that is better than x we also have to select y. select2 selects at least one object. */

select2(y,y´) ⊆ y ∪ y´
¬∃ x,z . (z ∈ (( y ∪ y´) \ select2(y,y)) ∧  x ∈  select2(y,y) ∧  x < z)
y ∪ y´ ≠ ∅  → ∃ x . (x ∈ select2(y,y))

/* select3 behaves as select2 but specialized local search variants may refine them differently. */
select3(y) ⊆ y 
¬∃ x,z . (z ∈ ( y \ select3(y)) ∧  x ∈  select3(y) ∧  x < z)
y ≠ ∅  → ∃ x . (x ∈ select3(y))

endoperational spec

Fig. 11    The specifications of local search.

Fig. 12    The adapter local-search -> hill-climbing.

PSM refinement adapter local search -> hill-climbing
/* select1 must select one element. */

|select1(x)| = 1 
/* select2 selects the current object if no better successors exist or a better successor if such a successor 
exists. */

¬∃ z . (z ∈ y´ ∧  y < z) → select2({y},y´) = {y}
∃ z . (z ∈ y´ ∧ y < z) → select2({y},y´) ∈  y´)
|select2({y},y´)| = 1

endPSM refinement adapter 
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subsection where we adapt set-minimizer to abductive diagnosis.

4.5 Abductive Diagnosis

In section 3, we introduced the problem abductive diagnosis that receives a set of observations as
input and delivers a complete and parsimonious explanation (see Figure 6). We already described the
problem-specific refinement of set-minimizer in section 3. The adapter that actually realizes this
refinement is given in Figure 14. The set of all hypotheses is the set that must be minimized and
correctness is defined in terms of completeness. Assumptions ensure that the output of set-minimizer
is a complete and parsimonious explanation. First, we have to require that the input of the method is a
complete explanation. Second, as was shown the monotonicity assumption (cf. Figure 14) is sufficient
to prove that global parsimonity follows from its local parsimonity.

4.6 Resume

We showed in three steps the derivation of a refined PSM for abductive problems from a generic local
search frame via adapters:

• hill-climbing := Adapterlocal-search -> hill-climbing(local-search)

• set-minimizer := Adapterhill-climbing -> set-mimimizer(hill-climbing)

• abductive-method := Adapterset-mimimizer -> abductive-method(set-minimizer)

The first adapter refines mainly the definition of state transitions of the method. The second adapter
refines the notion of states to sets and state transition via defining a successor relationship between sets.
The third adapter adds some simple terminological mappings that express the method in terms of
abduction and adds assumptions that guarantee that the methods achieves the goal as it is introduced
by the problem definition.

In the same way we refined PSMs we can also refine problem definitions and assumptions necessary
to link PSMs and problem definitions. In section 3 we showed that the monotonicity assumption is a
problem-specific refinement of an assumption that is necessary and sufficient to prove that hill-
climbing finds a global optimum. Therefore, it is not only possible to refine PSMs but also problem
definitions and assumptions. Figure 15 summarizes our problem definitions, assumptions and methods.
We could have refined hill-climbing to a method for global optima, refined this method to a method
that finds global-minimal but correct sets and this method refined to a method for abduction. For both
paths, the dimension of this refinement is the ontological commitments made by problem definition,
assumptions and PSMs. Notice that these specializations are kept separate via adapters. Therefore, it is

Fig. 13    The adapter hill-climbing -> set-minimizer.

PSM refinement adapter hill-climbing -> set-mimimizer
/* The input set must be correct. */

correct(input)
/* select1 must select the input set. */

select1(x) = {x}
/* Successors are subsets that contain one element less.*/

successor(x,y) ↔ ∃ z . (z ∈  x ∧ y = x \ {z})
/* We prefer smaller sets if they are still correct. */

x < y ↔ correct(y) ∧  y ⊂  x
endPSM refinement adapter 

Fig. 14    The adapter set-minimizer -> abduction-method.

PSM refinement adapter set-mimimizer -> abduction-method
correct(x) = complete(x);
input = {h | h is hypothesis};
H1 ⊆  H2 → expl(H1) ⊆ expl(H2)

endPSM refinement adapter 
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always possible to reuse very specific or very generic entities of our library. We get an unified library
of problem definitions, assumptions, and PSMs where the refinements have a virtual existence via
adapters.

4.7 Refinement of Control

We view PSMs as task or problem-specific refinements of generic search strategies. However this
refinement concerns the characterizations of states, elementary state transitions and assumptions over
specific properties of concepts and relations used to characterize states and transitions. Take the
boardgame method [EST+95] as an example. It refines the generic search method chronological
backtracking for one-player board games. In [FEM+96] a formal specification of both methods is
analysed for their differences. It is interesting to note that the boardgame method does not change the
overall control, i.e. the algorithmic structure of chronological backtracking. It refines the notion of
states in terms of board positions (chronological backtracking does not make commitments to the
internal structure of the states it searches through) and uses this refined notion to define elementary
state transitions in terms of moves that changes board positions. As a consequence, it can be easier (i.e.,
more efficiently) applied to tasks it is well-suited for like the Sisyphus-I assignment problem [Lin94]. 

Our approach should support precisely these kinds of refinement processes. Developing new generic
search procedures or gaining efficiency by algorithmic optimization techniques applied to its overall
control structure is beyond its scope. We restrict our attention to assumptions that formulate
requirements on domain knowledge or that restrict the problem size and on ontological commitments
that improve the efficiency in applying the method to a given application domain and problem by
providing refined data structures. Both is usually beyond the scope of approaches that look for generic
optimization because these assumptions and commitments cannot be made in the generic case. Such
assumptions reflect specific domain-type or problem-type specific circumstances. 

Our approach is complementary to approaches that investigate generic control regimes (see [Bun90]
for a survey on search techniques). Such work can be used by our approach to introduce different
starting points for our refinement process like the local search schema we used in this paper. Our
approach is complementary algorithmic optimization methods like the KIDS/SPECWARE approach
that refines the control, i.e. the algorithmic structure, to gain efficiency [Smi96], [JSL96]. They provide
valuable support for refining a specification of a PSM into an efficient implementation. 

Fig. 15    Refining PSMs, assumptions and problem definitions.
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5 Conclusions, Related and Future Work

PSMs are connected with a context like every other knowledge model. This situatedness may appear
in three types of problems:

• The context a PSM is developed for may cause an error because the developers were not aware of
an implicit assumption that does not hold in this context.

• The initial context of a PSM may change over time and this causes the typical maintainage
problems.

• A PSM shall be shared and reused in a new context and it is hard to decide whether it fits into the
new context and whether and how it has to be adapted.

We provided two contribution to tackle with the situatedness of PSMs and the problems this may cause.
We provide methodological support in context explication and in context adaptation.8

In [FS96] we proposed the idea of characterising and developing PSMs by their underlying
assumptions. However, the problem arose how to find such assumptions. Now we present the idea of
the failed proof and its implementation by an interactive theorem prover. We developed and adapted
PSMs by introducing assumptions that close the gap between the problem definition and the
competence of a PSM. KIV has shown to be an excellent tool for our purpose. Its concepts of proof
modularity and proof reuse made the development and adaptation process of PSM, that is highly
iterative and reversive, tractable. The interactive theorem prover could be used to identify assumptions
as open goals in partial proofs. However, more work has to be done to integrate our conceptual models
used for the specifications directly into the generic module concept of KIV and to provide proof tactics
and proof engineering facilities that make use of this conceptual model. 

In the second part of the paper, we have shown how to use adapters for developing PSMs. The
development process of PSMs is viewed as a refinement process that:

• introduces ontological commitments used to characterize initial, intermediate and terminal states
of the method;

• uses ontological commitments to specialize the state transitions of a method; and

• introduces assumption to bridge the gap between competence of a method and a problem
definition.

All these refinement were achieved by adding adapters to existing elements. [BBH96], [vHA96] have
proposed that PSMs should be described not only in a domain-independent, but also task-independent,
so that they can become more broadly reusable. However, there is a known trade-off between usability
and reusability [KBD+91]. With our approach this dilemma disappears because PSMs can either reused
in their generic or more problem-specific variant as the latter does not modify the former but adds only
an external description to it. Therefore we also overcome the problems of [Ben95], [THW+93] that
express a PSM immediately in problem-specific terms (like symptom detection, hypothesis generation,
hypothesis discrimination, etc.) whereas we describe general algorithmic schemas that become
instantiated to a specific class of problem via adapters. Therefore we can discuss these algorithmic
schemas of PSMs independent from specific problems reflecting appropriate the fact that the same
PSM (or better the same algorithmic schema) can be applied to different problem classes.

Most existing approaches for developing PSMs either stop at the level of the competence of the
methods [Abe93], [AWS93], [WAS95], [Tei97] or view PSM development as a process of
hierarchically refining inference actions [THW+93], [Ben95], and [BA]. The former deal only with a
very limited aspects of the methods as a method is essentially a description of how to achieve some
goals. The latter assume that adapting a PSM to a given problem is an activity of decomposing a
problem in subproblems and defining control over the solution of the subproblems (and recursively
refining the subproblems). However it has often been reported that different control regimes can be
applied to solve the same problem type and the same control regime can be applied to very different
problems [Bre97]. Therefore, we think that adapting a control regime is neither the only nor the central

8.  Precisely spoken we do not adapt the context but the PSM.
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point in adapting a PSM to a task. 
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