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Vorwort 
 
 
 
 
 
Der Rhein unterliegt seit Jahrhunderten anthropogenen Eingriffen, die sich auf das 
Ablaufverhalten von Hochwasserwellen auswirken. Der Schutz und die 
Wiederherstellung ökologisch funktionsfähiger, naturnaher Gewässer ebenso wie 
eine bessere Hochwasserregulierung sind wesentliche Aufgaben der 
Wasserwirtschaft, wobei eine gesamtheitliche Betrachtungsweise erforderlich ist.  
 

Um die hydraulischen Auswirkungen einer Rückgewinnung von Retentionsräumen 
auf Hochwasserereignisse zu quantifizieren, wurde von Frau Dr. Minh Thu in dieser 
Forschungsarbeit ein hydrodynamisch-numerisches Modell für die gesamte 
deutsche Teilstrecke des freifließenden Rheins erstellt. Es besteht aus einem 500 
Kilometer langen Abschnitt des Rheins von Maxau am Oberrhein bis Lobith, dem 
hydrologischen Pegel an der Grenze zwischen Deutschland und den Niederlanden. 
Die wichtigsten Nebenflüsse des Rheins - Neckar, Main, Nahe, Lahn, Mosel, Ahr, 
Sieg, Ruhr und Lippe - wurden ebenfalls in dieses Modell mit einbezogen. Der 
Zufluss aus der Murg wird beim Pegel Maxau mit berücksichtigt. 

 
Die Entwicklung und der Einsatz geeigneter eindimensionaler instationärer 
hydrodynamisch-numerischer Modelle ist der Schlüssel zur Beantwortung 
komplexer hydraulischer Fragestellungen. So ermöglicht dieses HN-Modell die 
genaue Analyse der Auswirkungen vergangener und zukünftiger wasserbaulicher 
Maßnahmen auf das Abflussverhalten des Rheins. Da dabei das gesamte Abfluss-
spektrum berücksichtigt werden kann, hat sich dieses Modell als unverzichtbares 
wasserwirtschaftliches Werkzeug am Rhein etabliert. 
 
 

 
 

 
Karlsruhe, 17 Juli 2002       Franz Nestmann 
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Abstract 
 
 
 
 
 
 
During the last centuries the river Rhine underwent a major regulation process 
which separated the river-bed from its flood plains and reduced the available areas 
for flooding. The river was straightened and the consequence is the discharge 
conditions were strongly changed and many recorded flood events were occurred. 
 
Serious floods at the river Rhine in 1993 and 1995 resulted in the policy “Room for 
the Rivers” and in 1998 in the “Action Plan Flood Defence” by the International 
Commission for Protection of the Rhine (ICPR). The “Action Plan Flood Defence” 
aims at improving the protection of people and goods against flood while integrating 
ecological improvements of the Rhine and its flood plains. Targets include the 
enlargement of flood plains through dyke displacement, the protection of valuable 
flood plains and flood plain restoration. Further targets are the re-connection of the 
rivers backwaters, the restoration of hydrological and ecological interactions 
between river and flood plains and the restoration of the riparian zone. Changing 
criteria for flood retention areas will altogether contribute towards a more natural 
river landscape with a higher flood regulation capacity and larger biodiversity. 
 
In order to quantitatively assess the effectiveness of flood plain restoration 
measures on flood regulation, the hydrodynamic-numerical model for the whole 
Rhine of the free flowing section is constructed. It consists of a 500 km long section 
of the Rhine River, starting at Maxau, the first gauging station of the free flowing 
section of the Upper Rhine, and ending at Lobith, the hydrology gauge at the border 
between Germany and the Netherlands. The important main tributaries of the Rhine 
(Neckar, Main, Nahe, Lahn, Mosel, Ahr, Sieg, Ruhr and Lippe) are also included in 
this model; the contribution from the Murg is considered at the gauge Maxau. 
 
The hydrodynamic-numerical model (HN-Model) of the river Rhine and its flood plain 
areas has the ability to predict the response of the river to imposed change.  These 
obtained scenarios are of use to make political decisions and for the common 
understanding of the role of the wetlands on flood regulation. Furthermore, it is also 



useful for many different engineering works: The HN-Model is required for the 
design of flood control structures and for the assessment of impacts of alternative 
dyke configurations and flood retention options on the water level. And last but not 
least, the results obtained from the HN-Model are the boundary conditions for 2-D 
and 3-D numerical models and physical models and they are also one of the very 
important data for GIS applications on water resources management. Altogether, 
the HN-Model of the river Rhine gives a clear understanding on how the river 
adjusted to previous designs and plan implementations.  
 
The HN-Model of the river Rhine is based on the computer software CARIMA, 
developed by SOGREAH (Prof. Cung, France). Since 1963, it has already been 
used successfully for the large-scale Mekong delta mathematical model (in Vietnam) 
and for many other large rivers on the World.  
 
At the Institute for Water Resources Management and Agricultural Engineering,  
University of Karlsruhe, CARIMA is used for the projects of dyke replacements at 
the Lower Rhine with very  good practical results. This model was expanded, in 
order to be able to assess the effects of different flood retention measures (polder) 
on the flood discharge at the Lower Rhine. Here is the different effect between free 
flowing polder and controlled polder. Moreover the model for the Upper Rhine and 
Middle Rhine was extended and it included an optimization of the control works. 
Now a mathematical model of the entire Rhine distance downstream of the barrage  
Iffezheim is existing, with that the effects of construction measures on the discharge 
of floodwater can be determined.  



 
 
 
 

Kurzfassung 
 
 
 

 

Während der letzten Jahrhunderte wurden am Oberlauf des Rheins gravierende 
Regulierungsmaßnahmen vorgenommen, die zu einer harten Trennung des 
Flussbetts und des Vorlandes und zu einer Reduzierung der Überflutungsgebiete 
führten. Dies hat zur Folge, dass sich seither die Abflussverhältnisse starte 
verändert haben und viele Hochwasserereignisse verzeichnet werden. 

 

Nach den schwerwiegenden Hochwässern von 1993 und 1995 wurden die Initiative 
„Räume für Flüsse“ und der „Aktionsplan Hochwasser“ der „Internationalen 
Kommission zum Schutze des Rheins“ (IKSR) ins Leben gerufen. Letzterer zielt auf 
die Verbesserung des Schutzes von Anwohnern von Fließgewässern und 
Bauwerken vor Hochwasser, verbunden mit einer Verbesserung des Ökosystems 
des Rheins und seiner Vorländer, ab. Ziele sind die Vergrößerung der Vorländer 
durch Verlegung der Deiche, der Schutz der noch  vorhandenen Rückhalteräume 
und die wieder Nutzbarmachung zuvor abgetrennter Überflutungsflächen. Weitere 
Ziele sind der Wiederanschluss von Altrheinarmen an den Hauptstrom, die 
Wiederherstellung des hydrologischen und ökologischen Austauschs zwischen dem 
Rhein und den Vorländern und die Instandsetzung der riparianen Zone. Die 
veränderten Rahmenbedingungen werden letztenendes zu einer natürlicheren 
Flusslandschaft mit einer größeren Vielfalt an Flora und Fauna und zu einer 
besseren Hochwasserregulierung führen. 

 

Um die Auswirkungen einer Rückgewinnung von Rückhalteräumen auf 
Hochwasserereignisse quantitativ nachzuweisen, wurde ein hydrodynamisch-
numerisches Modell für den gesamten freifließenden Rhein erstellt. Es besteht aus 
einem 500 km langen Teilabschnitt des Rheins von Maxau, dem ersten Pegel des 
freifließenden Oberrheins, bis Lobith, dem hydrologischen Pegel an der Grenze 
zwischen Deutschland und der Niederlande. Die wichtigsten Nebenflüsse des 

 



 

Rheins (Neckar, Main, Nahe, Lahn, Mosel, Ahr, Sieg, Ruhr und Lippe) wurden 
ebenfalls in dieses Modell mit einbezogen; der Zufluss aus der Murg wird beim 
Pegel Maxau mit berücksichtigt. 

Das hydrodynamisch-numerische Modell (HN-Modell) des Rheins und seiner 
Vorländer erlaubt die Vorhersage des Verhaltens des Flusses bei einer 
Veränderung der äußeren Gegebenheiten. Die daraus resultierenden Szenarien 
sind vorausetzung, um politische Entscheidungen treffen zu können und um ein 
allgemeines Verständnis des Einflusses von Vorländern auf die 
Hochwasserregulierung zu erhalten. Weiterhin ist das HN-Modell für viele 
Ingenieuranwendungen von Nutzen: Es wird für die Planung von Bauwerken zur 
Hochwasserrückhaltung und für die Bewertung der Auswirkungen von alternativen 
Deichverläufen und Rückhaltegebieten benötigt. Die Ergebnisse dieses Modells 
werden auch Rahmenbedingungen für 2- und 3-dimensionale numerische Modelle, 
physikalische Modelle und wichtige Daten für GIS-gestützte Anwendungen für die 
Wasserwirtschaft liefern. Insgesamt gesehen gibt das HN-Modell des Rheins einen 
genauen Aufschluss über die Auswirkungen vergangener und zukünftiger 
wasserbaulicher Maßnahmen. 

 

Das HN-Modell des Rheins basiert auf der Computersoftware CARIMA, entwickelt 
von SOGREAH (Prof. Cunge, Frankreich). Seit 1963 wurde dieses Programm 
bereits erfolgreich für viele große Flussmodelle weltweit eingesetzt, wie zum 
Beispiel für das umfangreiche mathematische Modell des Mekongdeltas in Vietnam.  

 

Am Institut für Wasserwirtschaft und Kulturtechnik der Universität Karlsruhe wird 
CARIMA bei Projekten für Deichrückverlegungen am Niederrhein mit sehr gut 
Ergebnissen für die Praxis eingesetzt. Dieses Modell wurde erweitert, um die 
Auswirkungen unterschiedlicher Hochwasserrückhaltemaßnahmen (Polder) auf den 
Hochwasserabfluss am Niederrhein abschätzen zu können. Hierbei wurde zwischen 
Flutpoldern und gesteuerten Poldern unterschieden. Des weiteren wurde das Modell 
auf den Oberrhein und Mittelrhein erweitert und eine Optimierung der Steuerung 
einbezogen. Nunmehr steht ein mathematisches Modell zu Verfügung mit dem 
Auswirkungen von Baumaßnahmen auf den Hochwasserabfluss in der gesamten 
Rheinstrecke unterhalb der Staustuffe Iffezheim berechnet werden können.  
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1     Introduction 
 
 
 
 

 
1.1  The River Rhine - General Aspects 
 

The Rhine ranks second to the Mississippi River as the World’s most economically 
important river (Saeijs, Logemann). It is one of the major European rivers that 
transports most water with an average discharge of 2090 m³/s at the gauge of 
Cologne (Rhine km-688,8) in Germany. It originates in the Swiss Alps and flows 
through Germany, France and The Netherlands in to the North Sea with the length 
over 1320 km and the catchment area of about 200.000 km² including parts of 
Switzerland, Germany, France, Luxembourg, Belgium and The Netherlands. The 
countries this river flows through belong to the highly developed, densely populated 
part of Europe.  

The undisturbed Rhine system could be roughly divided in to four parts (Fig. 1.1):  

The High Rhine: The river originates in the Swiss Alps. Flowing out of lake 
Constance (Rhine km 0) to Basel the Rhine is a high mountain river with a coarse 
stony substrate.  

The Upper Rhine: Flows from Basel (Rhine km 170) to Bingen (Rhine km-530), 
through the plain between the mountains of the Black Forest and the Vosges, the 
river freely meanders through a flood plain many kilometres wide. In this place the 
flood plain forest thrived with its characteristically soft-wood trees, supporting a very 
rich river ecosystem. The Rhine here receives five main tributaries: Aare, Ill, Murg, 
Neckar and Main. The floods appear of varying character, sometimes from Aare, 
sometimes from Neckar, Main, and are contained within the characteristic of the 
river and their catchment areas. 
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Higher Rhine

Upper Rhine 

Lower Rhine 

Middle Rhine 

Delta Rhine 

 
Total Area: 185,000 km2 

Germany: approx. 100,000 km2

Switzerland, France, 
Netherlands: 20 - 30,000 km2 

each 

 

 
Figure 1.1 The River Rhine Catchment (IKSR, 1998)  
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The Middle Rhine: Flows through a small and deep river valley in the mountain 
area of the Taunus, Hunsrück and Eifel to Bonn. The numerous cliffs and rocks in 
the river bed, for example the Lorelei, are characteristic for this part of the river. The 
natural ecosystem there is adapted to the stony environment; large flood plains are 
absent. There are also five main tributaries: Nahe, Lahn, Moselle, and Ahr.  

The majority of riparian dwellers on the Middle Rhine have accustomed themselves 
to living with the risk of floods, that means they have developed strategies to react 
on rising water stages. Thus, usually damages caused by floods here remain 
limited. However, the flood of 1993/1994 was different in this regard: because of the 
unusual height of the peak stages and the rapid advance of the flood wave. 

The Lower Rhine: Flows from Bonn to the North Sea. Flow velocities tend to 
decrease, particularly where the river bed becomes wider and large flood plains are 
present. Sediment deposition takes place, but during floods, erosion will also take 
place, causing a partial or complete rearrangement of existing habitats. Going down 
stream the sediment gradually changes from coarse to fine sand. Silt and clay are 
deposited in the flood plains. Most sediment is transported to the sea. The main 
tributaries in Germany area are: Sieg, Ruhr and Lippe. The flood in this area occurs 
not from its tributaries but from the upstream of the river.   

Rhine-Km

Q (m3/s)
River Rhine Discharge

0

1000

2000

3000

4000

5000

6000

7000

300 400 500 600 700 800 900
0

1000

2000

3000

4000

5000

6000

7000

M
ur

g

N
ec

ka
r

M
ai

n

N
ah

e

La
hn

M
os

el

Ah
r

Si
eg

R
uh

r

Li
pp

e

MHQ

MQ

MNQ

0

1000

2000

3000

4000

5000

6000

7000

300 400 500 600 700 800 900
0

1000

2000

3000

4000

5000

6000

7000

M
ur

g

N
ec

ka
r

M
ai

n

N
ah

e

La
hn

M
os

el

Ah
r

Si
eg

R
uh

r

Li
pp

e

MHQ

MQ

MNQ

MHQ Mean Flood Discharge
MQ Mean Discharge
MNQ Mean Low Flow

 
  Figure 1.2 River Rhine discharges 

(Deutsches Gewässerkundliches Jahrbuch 1994, time series 31/93) 
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Table 1.1 and Fig.1.2 indicates some characteristics of flow at the gauging stations 
of the Rhine in between the computational reach (Rhine km 362,3 – 862,2). After 
Koblenz, the river Rhine discharge has a great change up to the influence of the 
tributary Mosel. The middle flood discharge is changed from 4400 m³/s to 
approximately 6050 m³/s.   

Rhine PNP AE 0 MQ MHQ HQ Time
Km ( m + NN) (km2) (m3/s) (m3/s) (m3/s) Series

Maxau 362,3 97,79 50196 1250 3070 4400 31/94
Speyer 400,6 88,52 53131
Worms 443,4 84,16 68827
Mainz 498,3 78,43 98206 1580 3950 6950 31/93
Kaub 546,2 67,66 103488 1630 4110 7200 31/93
Koblenz 593,5 57,67 109806
Andernach 613,8 51,47 139549 2010 6030 10000 31/93
Bonn 654,7 42,66 140901
Cologne 688,8 34,97 144232 2090 6200 9950 31/93
Düsseldorf 744,2 24,48 147680 2120 6230 9780 31/93
Ruhrort 780,8 16,09 152895
Wesel 814,0 11,22 154210
Rees 837,4 8,73 159300 2260 6410 10200 84/93
Lobith 862,2

Gauge

 
PNP : Gauge zero point (Pegel Null Punkt) 
 

Table 1.1 Specifics of flow at the main gauges along the Rhine 
(Deutsches Gewässerkundliches Jahrbuch 1994) 

 

The river Rhine shows a variety of longitudinal and cross-sectional profiles, which 
are strongly marked by the character of the landscape and by human influence. 
From Maxau to Lobith, the bed elevation of the river Rhine changes from 97,48 m to 
3,5 m. The average slope of the river bed changes from 0.1 to 0.23 °/oo. At Bingen 
(Rhine km-528,40), after the confluence of river Nahe, the slope of the river bed is 
suddenly changed, the cross section are also very narrow due to the adaptation of 
the profiles for navigation purpose. Figure 1.3 shows the length profiles of the Rhine 
(after Water and Navigation Administration South-West Germany SWD, 1988).  

Until the beginning of this decade the river Rhine was from a managerial point of 
view considered an important water way for inland navigation and transportation, a 
source for drinking water, a receiver of waste water and cooling water coming from 
various origins and last but not least as means of transport for water, sediment and 
ice. 
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Figure 1.3 Length Profiles of the Rhine (after WSD South-West Germany, 1988) 
 

In the early history the river Rhine was a natural frontier in this part of the world. The 
river formed a difficult barrier to pass. This can be illustrated by the fact that the 
Oldest Roman Settlements along the Rhine were all located at the left bank of the 
river. The strategic importance as a barrier remained.  

The importance of the river as a water way, as a transport route for goods increased 
slowly during the middle  ages. The local powers along the river dictated whose 
ships were allowed to use the river and collected toll from each ship that wanted to 
pass a stronghold. The many castles along the river Rhine in Germany are a 
remembrance of this period. At the end of the 18th century and during the beginning 
of the 19th century the necessity of freedom of navigation was recognised and an 
international system of shipping rights was developed. 

The Rhine states agreed in 1815 to form an International Commission on the 
Navigation of the Rhine. An international treaty on navigation was concluded in 
1831. With various modifications and revisions this treaty is still in force as is the 
International Commission. 

Another economic asset of the river Rhine is the fishery, especially the salmon 
fishery. At the end of the 19th century it was recognised that co-operation between 
the Rhine-states was necessary to protect the stocks against over fishing and to 
allow a more equal distribution of catching between the nations. To end this the  
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salmon-treaty was agreed upon in 1885. Under this treaty an International Salmon 
Commission was formed. Unfortunately the salmon fishery reduced rapidly despite 
actions of the Salmon Commission to protect the salmon stock. The last meeting of 
the Commission took place in 1950. 

The aspect of trans-boundary pollution of the river Rhine was first given attention to 
in 1932 when the Dutch government protested against the issuing by France of a 
permit to discharge residual salt in to the river. 

After the second world war pollution problems further increased. This led to 
diplomatic steps by the Netherlands resulting in an International Commission charge 
with the study of the waste water and water quality problems. This Commission 
commenced its work in 1950 and was granted formal international status in 1963. 

The international co-operation against pollution was strengthened by two treaties, 
one for the protection of the Rhine against chemical pollution and one for the 
protection against pollution by chlorides. 

Considering  the river Rhine as an ecosystem has only recently been adopted by 
water authorities and governments. During the Minister-conference held December 
1986 in Rotterdam a common ecological objective for the Rhine was formulated for 
the first time: the river should be improved in such a way that the return of a fish 
species as the salmon in the Rhine would be possible. However, as far as we are 
informed it made the Rhine the first major trans-boundary river in the world for which 
such an ecological policy goal has been formulated. 

The floods along the Rhine during the winters of 1993/94 and 1994/95 and their 
consequences urgently highlighted a problem which has so far been neglected. On 
the occasion of the meeting of the EU-Ministers of Environment in Arles, February 
1995, they charged the Rhine Commission to draft an action plan on flood control 
measures. As questions related to pollution control and ecological restoration must 
now be co-ordinated with measures concerning flood defence and spatial planning.  
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1.2 Morphological Changes 
 
1.2.1 Dyking: 
 

Dating back to the Roman era, the first important intervention of man was the 
construction of dykes in the flood plain. In the Lower Rhine in most areas the 
embankment was completed around 1450; the flood plain, formerly  tens of 
kilometres wide, was restricted to narrow zones on both sides of the river (van Urk, 
et al. 1989). In the Upper Rhine the river found its way through a 6 km broad flood 
plain for many centuries, but in the 19th century it became (by river regulation) a 
stream of 200 to 250 m width. Fig. 1.4 shows the Upper Rhine River near Breisach 
in 1828, 1872 and 1963. 

Attempts to tame the unruly Rhine began in the 19th century, with the ‘rectification’ 
works of the Upper Rhine that were undertaken by the German engineer Johann 
Gottfried Tulla. Until then, the upper reaches of the river had remained largely 
undisturbed. For most of its journey, the Rhine took a meander path across a wide 
flood plain of forests and water meadows. In the ‘furcation zone’, between Basel and 
Karlsruhe, the river splitted into innumerable branches that continually moved, 
disappeared and reformed. The islands between the branches were dominated by 
flooded forests and wet pasture. Each spring the silt Rhine water spilled over the 
low dykes and into the forests, meadows and fields of the flood plain.  

However, the split channels and meanders prevented the passage of all but the 
smallest boats, and building was difficult on shifting riverbanks. The border with 
France moved whenever a flood passed, so Tulla forced the braided river into a 
single channel. ‘As a rule’, he said, ‘no stream or river needs more than one bed’. 
Nature never intended that this should be so, but Tulla´s maxim has since become 
the rule that river engineers follow. The rectification conveniently prepared the Rhine 
for its role as the great river highway of Germany that was created in 1871. Along its 
banks grew the great industrial cities of the new Germany, such as Mannheim, 
Koblenz, Cologne and Düsseldorf. 

This was the beginning of the ecological decline and hydrological disruption of the 
river. More than 2000 islands in the furcation zone disappeared. The new, straight 
Upper Rhine was also about 100 kilometres shorter than the old river and it flowed  
30 percent faster. The result was the disappearance of most of the sluggish 
backwaters and shallow gravel reaches in which wildlife had flourished.  
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1828

1872

1963

 
Figure 1.4 The rectification work and canalisation on the Upper Rhine (KHR, 1993) 
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In Figure 1.4: 

 1828   The furcation zone without greater human influence.  
 1872   The Upper Rhine after TULLA´s correction work. 
 1963   This figure shows the situation of the Upper Rhine today.  

 

While Tullas plan kept high dykes well away from the river, so maintaining a broad 
flood plain, farmers added their own dykes nearer to the stabilised river to turn 
seasonally flooded pastures into the arable fields. Between Basel and Strasbourg  

Figure 1.5 Lost of Flood Plain on the Upper Rhine between Kembs and Maxau 

Remaining flood-plains
Loss due to river regulation on the Upper Rhine
Loss due to erosion (Basel - Breisach)
Loss due to dyke construction (TULLA/HONSELL)

Remaining flood-plains
Loss due to river regulation on the Upper Rhine
Loss due to erosion (Basel - Breisach)
Loss due to dyke construction (TULLA/HONSELL)

(Integriertes Rheinprogramm, 1996) 

 

in the past 60 years, the river has been refashioned for a second time in a scheme 
designed to capitalise on its navigation and hydroelectric potential. Tullas version of 
the Rhine (now known as the Rest Rhine) has been largely abandoned in favour of 
an entirely engineered channel, completed with giant locks and a series of 
hydroelectric plants. This has cut off the Upper Rhine from 160 square kilometres of 
its flood plain, leaving just 10 percent of the original area available to the river (Fig. 
1.5) 
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1.2.2 Regulation 
 

The effect of these developments is the faster river speed towards the sea, but it 
also scoured the river’s bed and banks more fiercely. In the past 100 years, the river 
at Basel has fallen by seven metres, the height of a two storey house (Fig.1.6, 
Pearce, 1993).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6 The fall of water level on the Upper Rhine after regulation 
(Pearce, 1993) 

 

At the port of Duisburg, the largest inland harbour in the world, which lies 300 
kilometres downstream from the end of the engineering works, the level dropped by 
almost four metres (Fig.1.7, Broseliske et al., 1991). As the river bed fell, so did the 
ground water table in the alluvial flood plain. Ancient forests of oak, elm and willow 
dried out, and wells ran dry. 

A second effect of these developments has been to reduce the time it takes for the 
spring flood peak to pass out of the Alps, through Basel and as far as Karlsruhe by 
30 hours. There's also evidence that disasters are becoming more common. 
According to historic records, the Rhine at Karlsruhe rose 7.6 meters above flood 
stage only four times between 1900 and 1977. Between 1978 and 1996, it reached 
that point 10 times (Abramovitz, 1996). After storms over the catchment, the peak 
flow on the Rhine itself now coincides with those in tributaries such as the Neckar as 
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they meet the main river. This creates a flood surge that rushes down stream 
towards Bonn and Cologne, where there were several record river flows during the 
late 1980s. Peak flows are 35 percent higher than before 1955, said Peter Larsen of 
the Institute of Water Resources Management, Hydraulic & Rural engineering, at the 
University of Karlsruhe. Floods that previously were likely to occur once every 200 
years can now be expected every 50 years (Bernhart, 1990). 

A third effect of the artificial embankments on the remade Rhine has been to 
prevent the river collecting silt from its former flood plains. This reduces the supply 
of sediment downstream and increases the river’s ability to pick up material from the 
river bed farther downstream. The old, slow, silt stream that laid down alluvium as it 
went has been turned into a fast, silt-starved river that scours its bed, in places by 
up to 8 metres. Almost two centuries of efforts to ‘tame’ the Rhine have made it 
wilder and more unruly. 
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Figure 1.7 Change in water level of the Middle and Lower Rhine  
(Bundesministerium für Verkehr, Abt. Binnenschifffahrt und Wasserstraßen, 1987) 

 

Engineers started to reduce the impact of scouring by dumping gravel into the river. 
Up to 500.000 tons would be needed each year at downstream of Iffezheim , to be 
obtained either by dredging it elsewhere in the river or from gravel pits in the flood 
plain. These pits would further combat floods by creating a dozen of ‘flood retention 
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basins’ beside the Rhine. Rather than seeing these basins become barren 
receptacles for flood water, ecologists hope to forge an alliance with engineers to 
revive the flood plains but  house builders and farmers want the dykes retained. 

In the Upper Rhine protection against flooding seems to be ensured, but in the 
Lower Rhine floods continued to occur in the 19th century. The irregular array of 
groins and the presence of many sand bars in the channel not only impeded flow, 
but in particular led to the formation of ice jams. In the second part of the 19th and 
the first part of the 20th century all sand bars were removed and the river channels 
were corrected to facilitate flow. 

 
1.2.3 Canalisation 
 

The river Rhine became navigable up to Basel at the turn of this century. The result 
was that flow water levels had to be regulated to facilitate transport in periods of low 
discharge. In the High Rhine ten weirs were built in the period from 1900 to 1940; 
canalisation of the Upper Rhine began with the construction of a lateral canal (the 
Grand´Alsace canal), in which four hydro-electric stations were built in the period 
1927-1959. The diversion of the river Rhine water in to the lateral canal except for a 
small rest discharge in to the ‘Rest Rhine’ caused a fall in the water level of 2-3 m 
(de Jong et al., 1987). In the stretch downstream of the lateral canal to Strassbourg 
four weirs were built in the Upper Rhine. Down stream of each weir bed erosion 
increased dramatically causing new problems for navigation. Hence two new weirs 
had to be built down stream of Strabourg to keep the river navigable. All these 
measures have greatly reduced the buffering capacity for high water waves 
upstream, causing consequences for the high water levels in the Middle and Lower 
Rhine. 

In the Lower Rhine some new river branches were created in the last century, as the 
Nieuwe Merwede and the Nieuwe Waterweg. One branch, the Nederrijn/Lek has 
been canalised by the construction of three weirs. 

In the course of time the size of the ships navigating on the river increased, and in 
order to allow for sufficient water depth many stretches have been narrowed by the 
construction or extension of groins. This again caused an increase of bed erosion.  

Together with mining activities near Duisburg a lowering of the mean water level of 
more than two meters since the beginning of this century has been reported.  

All along the Rhine the increased navigation has caused bank erosion. For 
protection purposes many banks of the river have been changed in to stony shores. 
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The different types of human modifications on the Rhine river and their uses are 
summarized in Table 1.2. The modification of the Rhine has evolved a great deal 
during its history, from dam construction in the 11th and 12th centuries, to heavy 
canalisation in the 19th and 20th centuries, through current restoration attempts. 

 
 

N
N 

Stage of change Economical aim Consequences for the 
environment 

 

1 

Change of the river course of 
the upper part of the Rhine 
based on Tulla´s proposal 
(1800-1880) 

protection of flooding 

dry out land 

lower part of the Rhine: erosion of 
the riverbed, disappearing of the 
marshes, first step to the causing  
ground-water level drop 

 

2 

Channeling of the Rhine 
between Basel and 
Strasbourg (from 1907 and 
on) 

to ensure the steam 
shipping 

Destruction of the forests which 
are situated near the banks of the 
river, second step to the causing 
ground-water level drop 

 

3 

The construction of power 
plants along the Rhine (1898, 
1908, 1914) 

to supply new industrial 
areas with energy 

Destruction of the natural river 
environment through the building 
of storage reservoirs, dams and 
factory buildings 

 

4 

Production of waste water of 
the rising industries 

to eliminate the waste 
water produced by 
residential and 
industrial areas 

The polluted rivers are dangerous 
because they are both a source of 
drinking water and ecological 
systems for any animal life 

 

5 

The construction of the side-
Rhine-channels (1918) and 
nuclear power plants along 
the Rhine (Phillipsbourg, 
1972) 

to facilitate the transport 
of goods to the water 
ways and to increase 
the production of 
energy 

Draining and the destruction of 
the meadows, the water pollution 
and the increase of the water 
temperature  

 
 

Table 1.2 Types of human Modification of the River Rhine (BothENDS, 2000) 
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Consequences of human intervention into the river: 

 

•   Lack of areas which could catch water during times of flood since the river was 

     straightened, the riverbed was strengthened and the meadows were lost.  

•   Increased the amount of water flow in streams, tributaries and main rivers  

•   Increased velocity during times of flooding  

•   Increased velocity of flow  

•  Because the main and side rivers flow together, the chance of flooding is  

    increased  

•   Catastrophically levels between the middle and the lower floodgate of main  

    rivers  
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2    The Flood Situation in the Rhine Basin 
 
 
 
 
 
 

2.1 Flood History 
 

In consequence of human intervention into the river, there are many floods recorded 
during the last decade on the river Rhine. In this chapter some of the following 
important flood events are described.  

 
2.1.1 Impacts of Tulla´s Correction Works 
 

There is  limited research on the direct impact of Tulla´s correction works on flood 
situations of the Rhine. The recorded flood water level at Isteiner Klotz, downstream 
of Basel from 1828 to 1882 (Kunz, 1975), gives us a very impressive picture. They 
show clearly, which effect the correction of the Rhine for the Upper Rhine water 
level had in the years 1830 to 1870, between Basel and Karlsruhe. One compares 
for example the flood of 1824 (before Tulla´s correction) with a discharge of about 
4000 m³/s – approximately 1,2 m above datum – with the flood 1876 (after the 
correction) with a discharge of about 5700 m³/s and a water level of only 0,47 m 
above datum. Thus one finds that around 1700 m³/s the lower flood discharge was 
situated 1824, around 0.73 m over the highest flood water level of flood 1876 (Fig. 
2.1). 

 

One can suspect therefore, which fear these Rhine floods must have in-hunted for 
humans in the Upper Rhine Valley. For example, the history of Greffern, Baden-
Söllingen, has always been closely associated with the Rhine River, which not only 
brought work and food, but also misery and distress. The regular flooding of the 
river produced much hardship, as much as, that the village had to be relocated 
further inland four times between the 15th and 17th centuries. A further planned 
relocation of the village in the 19th century was averted by ,,Tulla's correction" of the 
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Figure 2.1 Flood water level marks at Isteiner Klotz 

(Water level after  Ergon Kunz, 1975) 

 

river's course. Before the construction of levies, the floods were recorded as being 
the height of a man standing upright, the water flowing into the houses through the 
windows (Greffern, 40 years 1953-1993). Therefore it is understandable that after 
repeated catastrophe floods the Grand Duke Karl Friedrich of Baden aimed at the 
whole area´s flood protection. This measure caused the largest water-structural 
works of that generation both in planning and in the execution. It was documented in 
the well known term ,, Tulla´s correction of the Rhine '' as the largest flood 
protection and hydraulic engineering measure of the last centuries on the Upper 
Rhine. However this also led to the flood acceleration down stream of the river 
where many floods were recorded during the last century.  

 
2.1.2 Impacts after Barrage Weirs Development Period 
 

Regarding to the consequences of the measures, executed between 1955 and 
1977, 130 km² of the flood plain areas were lost from the total 270 km² (see Fig. 
1.4). The flood wave of the Rhine was accelerated in such a way that the flow time 
of the wave peak between Basel and Karlsruhe was reduced from formerly 64 hours 
to 23 hours (see Fig. 2.2). 

 

While before 1955 with appropriate precipitation events in the Rhine catchment area 
the tributaries arrived with their flood waves before the wave peak of the Rhine at 
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the effluent, they meet today more frequently at the same time with the Rhine waves 
and cause a substantial height of the flood peak at downstream of the river. The 
Flood Studying Committee in the years from 1978 to 1992 in detailed investigations 
the discharge aggravation by the Upper Rhine development between 1955 and 
1977 determine concretely (Fig. 2.2).  
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Figure 2.2 The Effects by Regulations on the Upper Rhine between 1955-1977 

(Integiertes Rheinprogramm, 1996) 

 

According to it, for both small and middle Rhine floods, especially for extreme 
floods, about 40 cm water level arises at Cologne (corresponding to the increase 
discharge of about 800 m³/s), see Table 2.1. One example, today if a flood would 
occur how it occurred in 1882/1883 with the water level of 10,52 m at Cologne,  
alone a disaster flood devastating for Cologne as a result of the Upper Rhine 
development would arise around 90 cm of higher water level (Ölmann, H., 1997) . 

 

Because of the Upper Rhine development resulting in flood development 
themselves below Karlsruhe, on the basis of the study results of the Flood Studying 
Committee, a German and France agreement was decided for the balance of the 
flood aggravation at 6.12.1982.  In this agreement, it was determined: To take the 
necessary measures downstream of the barrage Iffezheim in order to re-establish 
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the available flood protection as before the development of the Upper Rhine (Fig. 
2.2).  

 
 

 
Gauge 

Q (m³/s) Q (m³/) 

 Bed status 1955 Bed status 1977 increase 
Returned 
period 

100 200 100 200 100 200 

Maxau 4700 5000 5300 5700 600 700 
Worms 5700 6000 6400 6800 700 800 
Mainz 7300 7900 7900 8700 600 800 
Kaub 7400 8000 8000 8800 600 800 
Andernach 11500 12450 12200 13250 700 800 
Cologne 11800 12750 12550 13550 700 800 
 

 
Table 2.1 Discharge Aggravations caused by the Upper Rhine Development 1955 

and 1977  
(After Flood Study Group for the Rhine distance Kaub – Rolandswerth, 1992) 

 
 
2.1.3 The Flood of March/April 1988 
 

The flood of March/April 1988 on the Rhine was caused by a number of very rainy 
months combined with considerable snow melt. 

In the months of January and February, the average monthly precipitation exceeded 
the monthly averages of the period 1951-1980, and the month of March was 
extremely wet. At two thirds of the measuring stations, it was the wettest month of 
March ever recorded. Most of the precipitation fell in the south of Germany and 
Switzerland, where in some parts the recorded rainfall amounted to more than 400% 
of the long-term average for the month of March (KHR, 1990). Besides this large 
amount of rainfall, the contribution of snow melt was considerable as well. 

A remarkable characteristic of this flood is that its discharge had two peaks. The 
peaks passed with an interval of about ten days (Fig. 2.3) 

The flood was not equally extreme in the whole Rhine basin. In the Swiss part of the 
area the peak reached a value which occurs once every 5 years. At Maxau, the 
recorded water levels occur in average once every 10 years, at Kaub  once every 50 
years (Table 2.2). This due to the large contribution of the Neckar and Main to the 
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flood. Tributaries which discharge the Rhine more downstream clearly contributed 
less to the flood, making its peak less extreme towards the mouth of the river. 
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Figure 2.3 Rhine Discharge during the Flood of March/April 1988 

(Bundesanstalt für Gewässerkunde, Datenbank 1988) 

 

Table 2.2 shows the effects of men works on flood situation of the river Rhine. For 
example at the gauge Worms, according to the historical data, the flood of March 
1988 should have the recurrence interval of about 50 years but in the case of 
computation with the present river bed situation it is only about 25 years, two times 
shorter. At the gauge Mainz it has the recurrence interval of 40 years instead of 85 
years. At the gauge Kaub it has the recurrence interval of 50 years instead of 95 
years.   

 

Although the 1988 flood was exceptionally extreme in certain reaches of the river 
Rhine, there were no catastrophic inundations and damage remained within 
acceptable limits.    
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Q
(m3/s) Q W Hydrologic Winter Hydrologic Winter

Year Year
Maxau 4090 > 10 4 16 24 10 1
Worms 5270 3 4 50 60 25 25
Mainz 6950 2 3 95 85 45 40
Kaub 7200 1 3 95 90 50 50
Andernach 9530 7 8 29 30 - -
Cologne 9580 8 6 21 22 - -
Rees 10200 4 8 30 31 - -
Lobith 10300 3 8 19 - - -

Gauge

Rank of Peak* Recurrence in Years
from historic data from homogenised data

4

 

* Occasionally 1988 measured peak values are identical to those earlier events. 

 
Table 2.2 Classification of the Flood1988 of the Rhine for the Time Series 

1871/1988 and Recurrence Intervals (KHR, 1990). 
 

 
2.1.2 The Flood 1993/1994  
 

 

Between December 1993 and January 1994, a number of European countries 
experienced damaging flood events, which have been caused by lasting 
precipitation, the accumulated December precipitation was more than double the 
amount of the long-term averages for this month (Geb, M., 1994) . More generally, 
the effectiveness of flood prevention measures has been partly set off by increasing 
the susceptibility to flood (Rosenthal, U. et. al, 1998). As a result many rivers 
overflowed their banks, especially on Christmas and in particular on river Moselle 
and on the Middle and Lower Rhine River. When the flood hit Cologne, it over 
topped the protection wall (10.63 m+NN). The river inundated the old town centre for 
almost three days.  

At the gauge Düsseldorf on the 21 of December the discharge was only 7300 m³/s 
but later in December the discharge became 9690 m³/s, and on 24.12.1993 the 
discharge became 10846 m³/s (Fig.2.5), which was only about 54 m³/s less than the 
highest discharge in 1926.  

The water level on the Rhine was only a little lower in comparison with the water 
level of the flood on 1926 (see Fig. 2.4):  
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Figure 2.4  Comparison of The Water Level between the Floods 1993 and 1926 
(Bornefeld, 1993, Das Weihnachtshochwasser 1993 des Rheins) 

 
 

Date 21.12.93 22.12.93 23.12.93 24.12.93 25.12.93 

 Q/n Q/n Q/n Q/n Q/n 
Maxau 3020/2,5     
Worms  4759/10    
Mainz   5570/10   
Kaub   6500/40   
Koblenz   -   
Andernach   10600/65   
Cologne    10800/65  
Emmerich     11100/80 

Q: Discharge ; n: recurrence intervals [n in years] [ sm /³ ]
Table 2.3 Ranking of flood peak at some selected gauges, 1993 
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Abflusskurvenvergleich von Pegeln und Nebenflüssen des Rheins - HW 15.12.1993 bis 12.01.1994
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Figure 2.5  Discharge curve of the Flood 1993 at selected gauges and tributaries 
(Bundesanstalt für Gewässerkunde, Datenbank 1994) 

 

Table 2.3 shows the maximum flood peaks, their arrival times and recurrence 
intervals for selected gauges in the Rhine basin. At Maxau, the recorded water 
levels occur on an average once every 2,5 years, at Kaub  once every 40 years and 
Andernach once every 65 years. This is due to the large contribution of the Neckar, 
Nahe and Moselle to the flood.  

 

It will be more illustrative with the comparison of the flood December 1993 with 7 
very big other floods in the past 120 years. Table 2.4 is the ranking of flood peaks at 
selected gauges on river Rhine and Moselle between 1880 and 1993. It shows that 
floods in the Rhine river basin have very strong regional differences and the flood 
1993 was extremely at the Lower Rhine.  

 

Based on a scenario with an increase of the winter precipitation of 10% as could 
recently be observed within the Rhine catchment, the recurrence time of a 100 
years flood, as e. g. the event of 1993, would decrease to 40 years (Bendix, J. 
1997). 
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Flood Rank of the peak among the floods between 1880 and 1993   

 Worms / Kaub /  Cologne / Emmerich / Cochem / 
 Rhine  Rhine Rhine Rhine  Mosel 

 Q W Q W Q W Q W Q W 
1882/83 2 1 2 2 > 10 8 4 3 > 10 > 10 
1926 > 10 > 10 10 > 10 1 1 1 1 2 2 
1955 1 2 7 8 > 10 > 10 10 > 10 9 7 
4/1983 6 10 9 10 8 10 > 10 > 10 > 10 10 
5/1983 5 6 8 9 6 6 8 > 10 8 8 
1988 3 4 1 3 9 7 5 > 10 > 10 > 10 
1993 9 > 10 6 7 2 2 2 4 1 1 
 

 
Table 2.4 Ranking of Flood Peaks at Selected Gauges on River Rhine and Moselle 
 

The first damage estimates of 1993/1994 come up to DM 650 million total loss alone 
in Rineland-Palatinate and DM 100 million in the Saarland. The figure quoted for the 
town of Cologne was about DM 110 million (Hochwasserschutzzentrale der Stadt 
Köln,1994) so that the overall damage in the land of North-Rhine Westphalia can be 
assumed to be at least DM 200 million. In Baden-Württemberg, alone the insured 
building damages exceeded DM 160 million. Together with the losses suffered in 
the Bavarian basin of river Main, the damage in the entire Rhine catchment comes 
to DM 1,300 million. 

     The flood event 1993, Koblenz (AP by Hermann Knippertz) 
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2.1.3 The flood of February 1999 
 

In many places strong rains and snow melt let to have swollen rivers. The Rhine 
rose for the first time after short relaxation again. In Baden-Württemberg the levels 
of Rhine, Donau and Neckar crossed to a large extent the first peak. In Karlsruhe 
Maxau the river achieved 6.71 meters on Wednesday morning (with 7.50 meters on 
the upper Rhine navigation had to be stopped). Already on the day before, the Flood 
Forecast Head Office (HVS-Baden Württemberg) had again taken up its work which 
had been stopped before. Many  highways were flooded. In North Bavaria rivers 
overtopped the banks.  
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Figure 2.6: Flood discharge of the Rhine during flood event of February 1999 

(Bundesanstalt für Gewässerkunde, Datenbank 1999) 
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In Rheineland-Pfalz the level of the Mosel in Trier crossed the six-meter level. In the 
south and southwest of Germany however for the coming days stagnating or falling 
water levels were counted. In Germany the protection of the Rhine and the flood 
precaution were strengthened. The State Government approved of a new 
convention, replacing several other declarations for the protection of the Rhine from 
and the 70's 60's. Ecological requirements are more strongly considered therein. 

It was the first time the flood entered the retention polders along the Upper Rhine 
(Homagk, 2000). Figure 2.6 indicates the discharge curves of the flood event 
February 1999. 

 
 
 

2.2 Existing of Flood Defences 
   

Figure 2.7 (Modified after BfG, status 1996) shows the flood safety that is provided 
by embankments and dykes on river Rhine: In the Upper Rhine Graben, dyke 
systems protect the riparian communities all along the stretch from the Swiss-
German  border to the area of the town of Mainz. It must be noted, however, that the 
provided safety differs. Along the  impounded reaches (downstream to Rhine km-
354) flood peaks of recurrence intervals of about 1,000 years can safety pass. 

These dykes are located directly at the banks of the river and their crests are up to 8 
m high above the natural level of the land. Downstream of the last impoundment 
barrage in the river Rhine to the inflow of river Main, the inundation safety is 
sufficient against 200-year flood peaks. The increased peaks resulting from the 
construction of the impoundments have been compensated by providing additional 
retention capacity (retention in the river, impoundment weirs, polders for controlled 
flooding).  

The actual protection dykes on this stretch of the river are often relatively distant 
from the banks. Smaller dykes in the foreshore areas provide protection only against 
summer floods, and have in winter only a peak-reducing effect for mean flood 
events.  

Downstream of the inflow of river Main to the area of the town of Bingen, dykes 
protect against 100-year flood peaks. From Bingen to Cologne there are no 
protective dykes, except the protection wall around the town of Neuwied built in 
1929 and some minor flood defence structures in the city of Cologne itself. 
Downstream of Cologne, from Rhine km 710, the river is again accompanied by 
dykes, which protect the inhabitants on the German bank of the river against peak 
discharges of more than 500 years recurrence. On the Dutch side, the recurrence 
intervals are even higher. 
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Figure 2.7 Maximum flood discharge and diversion capacity of dykes (BfG, 1996) 
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Figure 2.8 Typical cross section of the river Rhine 
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2.3 Water Retention on Flood Plains – The new concept 
      for flood regulation and re-naturalisation 
 
Protective measures against floods, land drainage, shipping, and hydroelectric 
engineering forced the river Rhine into channels and caused the decline of rive 
Rhine  wetlands. Those river constructions resulted in mono-functional water 
systems, most of which are maintained since decades until today. The ecological 
functions of a river system were not known in those days and so people did not feel 
the need to take care of them. 

 

Knowledge on the effects of climatic changes points out that there will probably be a 
general rise of risks from flooding in this century. And, partly because no-one can be 
certain what the future may bring, the maintenance of flood defence capable of 
protecting the populace from higher river flow remains the top priority, but the 
prospects of raising the dikes even further is no longer seen as appropriate. The 
central pillars of the water management policy are creating space for the river and 
increasing the ‘’flexibility’’ of the river system so that it can cope with floods. It 
means change of land use in the inundation plains to make them available for 
emergency flooding, even if only a part of the lost retention areas of 950 km² could 
be returned to this purpose, this could provide a considerable potential for retention 
space.  

 

Restoration of previously engineered and regulated rivers has been undertaken in 
many years ago and such projects can form part of a sustainable development plan 
for the river basin. The objectives of river restoration are normally to create a wider 
diversity of eco-systems by bringing the river into a closer contact with its flood 
plain. The visual amenity of the watercourse may be improved and its natural 
function for flood storage and conveyance regained.  

 

The natural variation of water levels is part of the feature of rivers. It is the basis for 
river flow dynamics and the development of a typical floodplain profile. Various 
human interferences have clearly altered the river regime. Thus, the starting point is 
to take back these human interferences with the river regime, as far as possible. 
This means above all to increase water storage on the surfaces and in the 
floodplains. A natural transition to alluvial flood plain would not only help flood 
prevention, it would also be beneficial to nature conservation as riverside flood plain 
are one of the rarest and most endangered types of biotope today.  
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2.3.1 Functions of Flood Plain 
 

The functions of flood plains are generally divided into three main groups. These 
include: Hydrologic functions, bio-geo-chemical functions, and habitat and food web 
functions (National Research Council, 1995). 

Many of the hydrologic roles that a flood plain plays are less well known. The 
reduction of downstream flood peaks due to a wetland’s short-term surface water 
storage capability has also been accredited as one of their benefits (LAWA, 1995). 
Other wetlands are able to store surface water over the long term, thus allowing for 
the maintenance of fish habitat during periods of dry weather. Another important 
hydrologic function of some wetlands is their ability to maintain the water table at a 
high level. This allows hydro-phytic communities to be maintained, thus sustaining 
bio-diversity in the area. 

Wetlands are also responsible for many bio-geo-chemical functions. Chemical 
elements are cycled through the system allowing nutrient stocks to be well 
maintained. Wetlands are also able to retain and remove dissolved substances and 
accumulate peat and inorganic sediments (National Research Council, 1995). 
These functions are very important as they allow for the enhancement of water 
quality; when water passes through a wetland, its velocity is reduced allowing for 
biochemical interactions to take place between the water, plants, and soil. This 
allows for the natural removal of nutrients, pathogens and pollutants. It is the 
trapping of sediments and the removal of nutrients that has the greatest impact on 
improving water quality. 

A large diversity of plants and animals depend on wetland areas for their survival. 
The distinct vegetation characteristic of wetlands provides food and shelter in 
addition to nesting grounds for many different migratory birds, including waterfowl. 
Some vertebrates and invertebrates depend on wetlands for their entire life cycle 
while others only associate with these areas during particular stages of their life. 
Because wetlands provide an environment where photosynthesis can occur and 
where the recycling of nutrients can take place, they play a significant role in the 
support of food chains (Adams, 1988).  

 
2.3.2 Flood Retention Areas on the Upper Rhine 
 

The flood prone part covers an area of nearly 1,000 km2 with a population of 
700,000 citizens and 350,000 working places. The property value amounts to 121 
bn German Marks and the annual added value to 35 bn. There are 26 protection 
schemes and 5 major areas without flood defence structures so that inundation 
levels  
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Nr. Polders Km Phase Area (ha) V(106m³) E (m+NN)
France:

1 Sonderbetrieb d. Rheinkraftwerke operation 45,0
2 Erstein plan 7,8
3 Moder operation 5,6

58,4
Baden-Württemberg:

1 Südliches KW Breisach 1020 25,0
2 Kulturwehr Breisach plan 510 9,3
3 Breisach/Burkheim plan 600 6,5
4 Wyhl/Weisweil plan 600 7,7
5 Elzmündung plan 550 5,3
6 Ichenheim/Meißenheim plan 390 5,8
7 Altenheim operation 520 17,6
8 Kulturwehr Kehl/Straßburg operation 700 37,0
9 Freistett plan 460 9,0

10 Söllingen/Greffern construction 580 12,0
11 Bellenkopf/Rappenwört 357,0 plan 510 14,0 106,50
12 Elisabethenwört 382,0 plan 400 11,9 98,00
13 Rheinschanzinsel 390,5 plan 210 6,2 96,00

7050 167,3
Rheinland-Pfalz:

1 Daxlander Au 358,0 operation 200 5,1 105,50
2 Neupotz/Wörth 364,0 plan 250 10,0 104,00
3 Mechtersheim 388,0 plan 500 7,4 97,00
4 Flotzgrün 392,0 plan 300 5,0 95,00
5 Kollerinsel 409,0 plan 500 6,1 94,00
6 Waldsee/Altrip/Neuhofen 412,0 plan 500 8,1 93,50
7 Petersau/Bannen 434,0 plan 200 1,4 91,00
8 Mittelbusch (Worms II) 438,0 plan 150 2,3 90,00
9 Bodenheim/Laubenheim 492,0 plan 700 6,0 84,00

10 Ingelheim 518,0 plan 500 3,8 82,00
3800 55,2

 
  

 
Table 2.5 Some characteristic of polders on the Upper Rhine (ICPR, 1997) 

 

correspond to the flood stages in the river. As the highly developed valley is very 
sensitive to flooding and the environmental situation along the river needs 
substantial improvement the decision was made to construct a large number of 
retention basins with a total capacity of 240 mil. m3. In this way flood protection can 
be raised from a 1 : 100 to a 1 : 200 year floods event (Integriertes Rheinprogramm 
des Landes Baden-Württemberg). Table 2.5 indicates some figures of the flood 
plain areas on the Upper Rhine according to the Rhine Integrated Programme of 
State Baden-Württemberg and the Fig. 2.9 shows the ,,Old’’  Rhine at Isteiner Klotz. 
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A socio-economic assessment of this programme showed not only its high efficiency 
but also the demand for additional flood plain management measures. The residual 
damage potential amounts to more than 12 bn German Marks. This figure is a 
convincing proof that flood plain management is a must for sustainable 
development. Indeed, flood events exceeding the design standard of the defence 
structures are rare, but when they occur they cause regional catastrophes. Without 
any precautionary measures this could lead so structural breaks in the economy of 
the affected area. At the moment such effects are not included in cost-benefit 
calculations. Disaster impact analysis is a very new field of research which has to be 
noticed to a broader extent. Several large scale disasters have shown that regional 
economies have not the adsorptive capacity to recover within a short time so that 
prosperity damage is an adverse effect of major importance. 

Along the Upper Rhine in Germany, retention areas – large polders besides the 
river, which inundate only at the time of flood – are being created. Table 2.5 
indicated some characteristics of the polders and their locations are showed in the 
Figure 2.10. 

 

 
 

 
Figure 2.9  The Old Rhine at Isteiner Klotz 

 
(Peter Birmann, 1820) 
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Figure 2.10  Floodplain restoration on Upper Rhine (Modified after Ministerium für 

Umwelt und Forsten, RheinlandPfalz, 1998) 
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2.3.3 Flood Retention Areas on the Lower Rhine 
 

These retention basin will  store up to 270 million cubic metres of water and are also 
planned in the state of Nordrhein-Westpfalen. About 100 million cubic metres of 
capacity is already available, and was first utilized during the high-water episode of 
1988. The major objective is to re-establish natural hydrological conditions on the 
site, but also to integrate the land use in a sound way in parts of the area. Table 2.6 
shows some characteristics of polders on the Lower Rhine (MURL, 2000) and their 
locations are showed on Figure 2.11. 

 

Nr. Polders Km Phase A (ha) V(106m³) E (m + NN)

Nordrhein-Westfalen:
1 Siegmündung 657,5 plan 250 50,00
2 Niederkassel 665,0 operation 60 1,0 47,50
3 Köln-Langel (Lülsdorf) 672,0 construction 100 10,0 46,00
4 Worringer Bruch 708,0 construction 650 13,0 39,00
5 Monheim 712,0 construction 220 8,0 38,00
6 Dormagen 717,0 plan 415 36,50
7 Urdenbach 718,0 operation 600 30,70
8 Itter-Himmelgeist 727,0 construction 140 2,0 35,00
9 Illvericher Bruch (Meerbusch 753,0 construction 600 25,0 30,00

10 Lank 760,0 plan 280 30,00
11 Mündelheim 767,0 plan 250 5,0 28,00
12 Binsheim 788,0 plan 505 20,00
13 Orsoyer Land 803,0 operation 220 10,0 18,50
14 Mehrum 807,0 plan 170 20,00
15 Wallach 809,5 plan 60 21,00
16 Ginderich 815,5 plan 250 20,00
17 Flüren 817,5 plan 400 20,00
18 Bislicher Insel 823,0 operation 1000 50,0 15,00
19 Lohrwardt 834,0 plan 670 20,0 17,50
20 Löwenberg 844,0 plan 125 16,00
21 Grietherbusch 846,5 operation 1200 16,10
22 Bylerward 848,0 construction 1500 30,0 16,00
23 Salmorth 862,0 plan 1000 13,70

10665 174,0
 
 

 
 

Table 2.6 Some characteristics of polders on the Lower Rhine (MURL, 2000) 
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Figure 2.11 Floodplain restoration on Lower Rhine (Modified after MURL, 2000) 
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3 The Hydrodynamic-Numerical Model 
of  the River Rhine (HN-Model Rhine) 

 
 
 

Based on the computer CARIMA programme which is developed by SOGREAH 
(Prof. Cunge, France), the Hydrodynamic-Numerical Model of the River Rhine (HN-
Model Rhine) is constructed. It includes 500 km length of the river from Iffezheim, 
the last weir on the Upper Rhine, to Lobith, the hydrological station at the border 
between Germany and The Netherlands and the main important tributaries of the 
section including Neckar, Main, Nahe, Lahn, Moselle, Ahr, Sieg, Ruhr and Lippe.  

For simulating the actual and the future situations of  the River Rhine with different 
flood regulation measures, the HN-Model Rhine is able to predict the response of 
the river to imposed changes. It can give a whole picture of the variation of the water 
levels effected by these changes and the advices for flood management purpose. 
Depending on the studies required, the entire model or simply a part of it may be 
used for different simulations. The HN-Model Rhine has been used for the projects 
of assessing the effects of dyke displacements and polder systems on the whole 
Rhine into flood situation and given many practical results. 

 
 
3.1 Description of the Numerical Method for River Bed 
      and Floodplain Simulation 
 
 
3.1.1 Physical Foundations 
 

A mathematical model of a river can be built using two general categories of simple 
schematisation elements.  
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One-dimensional schematisation 
 

That part of the river having one-dimensional flow characteristics, i.e. where flow 
velocities perpendicular to the main flow direction are negligible, is divided into 
elementary sections separated by computation points. The friction coefficient 
defines the roughness. 

 

At each computational point, the cross section, the elevation and the abscissa of 
that point are sufficient data to describe the geometry of the river. 

  

At each of these points, the water level, discharge and velocity are calculated. The 
computation points are connected by one-dimensional links which are either 
standard links characterised by free surface flow and the complete Barré de Saint-
Venant equations with all the inertia terms, or special links (weir law, lateral inflow, 
lateral outflow, siphon, etc.). Figure 3.1  is an example of a one-dimensional looped 
network. 

 
 
 

computational reaches

computational point

 
 
 

Figure 3.1 One-Dimensional Looped Network 
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The equations of Barré de Saint-Venant for one-dimensional unsteady river flow are 
written as follows: 
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Where: 

x     =    local coordinate [ ] m

t      =    time coordinate  [ ]s
y     =    water level [ ]m  

B     =   width of water surface [ ] m

Q    =    discharge [ ] sm /³

A     =   the wetted cross sectional area [ ]²m  

K     =   specific discharge [ , calculation with Strickler factor  ]sm /³

g     =   gravitational acceleration [ ]²/ sm  

 

These equations are solved using the Preissmann implicit method (Ligget, et.al., 
1975). 

 

Two-dimensional schematisation 
 

Those parts of the river having two-dimensional flow characteristics, i.e. where the 
velocity component perpendicular to the main flow direction is no longer negligible, 
are divided into elementary cells defined by the relationship between the variation in 
their volume as a function of the water level in the cell.   

 

The cells are interconnected and, in some cases, linked with one-dimensional 
computation points by various types of two-dimensional links: 

 . Standard links satisfying the dynamic Barré de Saint-venant equations  
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           without inertial terms. 

 . weir, etc. 

 

The programme calculates the water level at the centre of the cell and the exchange 
flow between this cell and another cell or one-dimensional computation points. 

The association of these one-dimensional points and two-dimensional cells from the 
basic mathematical model of the river enable flows to be simulated. 

 
Figure 3.2  is an example of a two-dimensional flood plain zone adjacent to a river; 
the arrows indicate possible flow paths between cells and the river. 
 
 

flood plain limit
flood plain limit

 
 

Figure 3.2 Two-Dimension Flood Plain Cell Model 
 

Two-dimensional flow calculation is based on continuity of volume for each cell and 
non-inertial flow laws between cells. 

 

Continuity of volume in a flood plain cell is expressed as: 
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With: 

     Vj   =   volume of water in the cell j 

     Qij  =   discharge from cell i to cell j 

      n  =   number of cells which communicate with j 

 

Weir flow between cells is computed without inertia, as follows: 

 

Flooded:           Q = µB 2g  (yus - yweir) (yus - yds)½                                     (3.4) 

Free-flowing:     Q = µB 2g (yus - yweir)
3/2

                                                        (3.5) 

 

With: 

       µ      =  discharge coefficient 

       B      =  weir width 

       yus    =   upstream water level 

       yds    =   downstream water level 

       yweir  =   weir crest elevation 

 

Channel-type flow linking two flood plain cells is computed using, for example, the 
Strickler resistance law, as follows: 

 

               Q =  
kAR

2/3
 [

x
yy dsus

∆
− ]

1/2
                                                        (3.6) 

With: 

     K    =   Strickler roughness coefficient [
s
m 3/1

] 

     A    =   channel cross-sectional area 

     R    =   hydraulic radius 

    ∆ x  =   longitudinal distance between cell centres 

 

In addition to these basic equations, CARIMA uses comparable formulations for flow 
through orifices, flood gates, hydroelectric plants, flow regulation, etc. The channel 

  



40                                        The Hydrodynamic – Numerical Model of the River Rhine                     

flow equations are integrated in time and space using the Preissmann implicit 
method (Preissmann, 1961). The other flow relations are solved in such a way that 
at the end of each time step the equation for the discharge is satisfied. 

 
3.1.2 Numerical Solutions  

The equations (3.1) and (3.2) represent a hyperbolic system of two partial 
differential equations. The arguments in this set of equations are the time coordinate 
t and the local coordinate x, which are independent variables the flow Q(x, t) and the 
flow through cross section area A(x, t) or the water level y(x, t). Because the set of 
equations is not analytically solvable, the solution takes place by means of a finite 
difference method, i.e. the derivatives in the equations (3.1) and (3.2) become 
approximated by difference quotients. With the assigned procedure it concerns 
around an implicit finite difference method after Preissmann (Cunge, 1980). The 
formation of the difference equations appear in the following form: 
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where θ  is a weighting coefficient, 0<θ <1, introduced in the time derivative in the 
numerical solutions, ƒ is describled in (3.14) 
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Figure 3.3 Preissmann´s Scheme  
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From (3.7) and (3.8) the following difference quotients result: 
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For B (width), A (surface), and K (specific discharge) in the equation (3.1) and (3.2) 
a substitution with the following structure is made: 

 

f(x,t) ≈  
2
θ  (f  + f ) + 1

1
+
+
n
j

1+n
j 2

1 θ−  (f  + f )                                                     (3.14) n
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After substitution of the derivatives by the difference quotients a further substitution 
takes place in the next step, proceeding from the following general relationship. 

 

f   =  f  + f                                                                                              (3.15) 
1+n n

∆
n

 

Transferred to the flow Q and the water level y the equations develop: 
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              Q  =  Q + Q                                                                                  (3.16) 
1+n n

∆
n

 

              y   =  y   + y                                                                                  (3.17) 1+n n ∆
n

 

By using the equations (3.9) to (3.14) in the equations (3.1) and (3.2) and following 
shaping in accordance with the equations (3.16) and (3.17) one obtains 2 equations 
of the following forms: 

 

A y  + Bj

n

∆ 1+j

n

j

n

∆Q  = C1+j

n

j

n

∆ y  + Dj

n

j

n

∆Q  + G                          (3.18) j

n

j

n

 

A´ y  + B '
j

n

∆
n

1+j j

n

∆Q  = C '
n

1+j j

n

∆ y  + D '
j j

n

∆Q  + G '                            (3.19)  
n

j j

n

 

The coefficients A to G and A’ to G’ can be determined due to geometry of a 
transverse profile as well as the specification of a Kst value and are thus well known, 

the quantities y , y ,  ∆ j

n

∆ 1+j

n

∆Q and j

n

∆Q  are to be calculated. For a 

system with n points of calculation one receives 2n-2 equations. The solubility of the 
sets of equations requires an initial condition and the specification of the time 
simulated by boundary conditions (water level, discharge) over the duration.  

1+j

n

 
 

3.2 Model configuration 
 
3.2.1 Data 
 
3.2.1.1 Hydrological data 
 

Some of the following data sets were used on the computation:  

 

•   Water levels for seven relatively constant discharge levels (permanencies). The 
water levels were measured in the period 1988-1995 and cover the complete range 
from low to flood levels. 
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•  Discharges of the important tributaries downstream of Karlsruhe-Maxau including 
Neckar, Main, Nahe, Lahn, Moselle, Ahr, Sieg, Ruhr and Lippe for the mean 
discharges (MQ) and flood discharges of March 1988, December 1993 (HQ93) and 
February 1999. 

•   Stage discharge relations for the gauging stations Maxau, Worms, Mainz, Kaub, 
Andernach, Bonn, Cologne, Duesseldorf, Ruhort, Rees, Emmerich and Lobith. 

•   Equidistant time series of water levels and corresponding discharges at the 
gauging stations in the river reach between Maxau and Lobith. The discharges were 
calculated using the stage discharge relations. 

•   Time series of discharges in the nine tributaries during the flood periods of March 
1988, December 1993 and February 1999. 

 

These hydrological data were obtained from different sources following the list 
below:  

 ° Federal Institute of Hydrology  

 (Bundesanstalt für Gewässerkunde BfG-Koblenz).  

 ° State Agency for Environment Protection of Baden-Württemberg  

 (Landesanstalt für Umweltschutz Baden-Württemberg LfU). 

 ° State Office for Water Resources Management of Rheinland - Pfalz  

 (Landesamt für Wasserwirtschaft Rheinland – Pfalz) 

 ° Water and Navigation Administration South-West 

 (Wasser- und Schifffahrtsdirektion Südwest) 

 ° Water and Navigation Office Cologne (Wasser und Schiffahrtsamt Köln) 

 ° State Ministry for Environment & Agriculture of North Rhine-Westphalia  

 (Ministerium für Umweltschutz und Landwirtschaft Nordrhein-Westfalen).  

 ° Navigation Administration of North Upper Rhine  

 (Gewässerdirektion Nördlicher Oberrhein).  

 ° Navigation Administration of South Upper Rhine  

 (Gewässerdirektion Südlicher Oberrhein). 

 ° Navigation Administration of South West Upper Rhine  

 (Gewässerdirektion Südwest Oberrhein). 

 ° State Agency of Environment Bonn (Staatliches Umweltamt Bonn) 
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 ° Ruhr Association Essen (Ruhrverband Essen) 

 ° Lippe Association (Lippeverband) 

 

Some of the gauging stations showing the river Rhine’s characteristics are given in 
Table 3.1. Table 3.2 indicates some of the main tributaries’ figures. 

 

Rhine PNP AE 0 MQ MHQ HQ Time
Km ( m + NN) (km2) (m3/s) (m3/s) (m3/s) Series

Maxau 362,3 97,79 50196 1250 3070 4400 31/94
Speyer 400,6 88,52 53131 ~ ~ ~ ~
Worms 443,4 84,16 68827 1410 3340 5600 31/90
Mainz 498,3 78,43 98206 1580 3950 6950 31/93
Kaub 546,2 67,66 103488 1630 4110 7200 31/93
Koblenz 593,5 57,67 109806 ~ ~ ~ ~
Andernach 613,8 51,47 139549 2010 6030 10000 31/93
Bonn 654,7 42,66 140901 ~ ~ ~ ~
Cologne 688,8 34,97 144232 2090 6200 9950 31/93
Düsseldorf 744,2 24,48 147680 2120 6230 9780 31/93
Ruhrort 780,8 16,09 152895 ~ ~ ~ ~
Wesel 814,0 11,22 154210 ~ ~ ~ ~
Rees 837,4 8,73 159300 2260 6410 10200 84/93
Lobith 862,2 ~ ~ ~ ~ ~ ~

Gauge

 
 

Table 3.1 Some Specifications of Flood for selected gauges in the Rhine basin*  
 

* (Deutsches Gewässerkundliches Jahrbuch 1994) 
 
 

3.2.1.2 Topographic Data 
 

An accurate model requires detailed topographic mapping to properly represent the 
configuration of the flood plain and the river bed. The topographical map scale 
1:5000 was used for defining the flood plains and obtained from: 

 

 ° State Office for Land Surveying Baden - Württemberg) 

 (Landesvermessungsamt Baden - Württemberg) 

 ° State Office for Land Surveying Rheinland - Pfalz 

 (Landesvermessungsamt Rheinland – Pfalz) 
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 ° State Office for Land Surveying Nordrhein - Westfalen 

 (Landesvermessungsamt Nordrhein - Westfalen) 

 

Rhine PNP Distance to AE 0 MQ MHQ HQ Time

Km (m + NN) Rhine (km) (km2) (m3/s) (m3/s) (m3/s) Series
Murg Rotenfels 130,54 17,0 469 15,5 252 603 17/94
Neckar 428,2 Heidelberg 120,04 26,1 13783 134 1150 2690 51/94
Main 496,8 Raunheim 90,64 27,0 24849 190 907 1850 66/94
Nahe 529,1 Grolsheim 84,63 7,4 4013 31,6 431 1140 73/94
Lahn 585,8 Kalkofen 135,00 25,1 3571 31,6 284 746 36/94
Mosel 592,3 Cochem 77,00 51,6 27088 313 2050 4170 31/94
Ahr 629,3 Altenahr 0,00 0,0 746 6,88 107 214 73(94
Sieg 659,3 Menden 1 49,34 8,4 2825 52,8 562 1050 65/94
Ruhr 780,2 Hattingen 60,37 56,0 4118 69,2 559 907 68/94
Lippe 814,5 Schermbeck1 20,68 22,4 4783 45,4 247 361 65/94

Tributary Gauge

 
 

Table 3.2 Characteristics of collected tributaries of the Rhine* 

* (Deutsches Gewässerkundliches Jahrbuch 1994) 

 

The cross sections of the river  bed and partly flood plains were received from: 

 

 ° State Ministry for Environment & Agriculture of North Rhine-Westphalia  

   (Ministerium für Umwelt, Raumordnung und Landwirtschaft des Landes  

    Nordrhein-Westfalen) 

 ° Navigation Administration of Northern Upper Rhine  

    (Gewässerdirektion Nördlicher Oberrhein) 

 ° Water and Navigation Administration South-West  

    (Wasser- und Schifffahrtsdirektion Südwest) 

 ° Federal Administration for Water and Navigation  

     (Wasser- und Schifffahrtsverwaltung des Bundes) 

 ° Water and Navigation Office Freiburg  

     (Wasser und Schifffahrtsamt Freiburg) 

 ° Water and Navigation Office Mannheim 
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     (Wasser und Schifffahrtsamt Mannheim) 

 ° Water and Navigation Office Mainz (Wasser und Schifffahrtsamt Mainz) 

 ° Water and Navigation Office Bingen (Wasser und Schifffahrtsamt Bingen) 

 ° Water and Navigation Office Cologne (Wasser und Schifffahrtsamt Köln) 

 
 
3.2.2 Construction of the Model 
 
3.2.2.1 Model network 
 

The model includes the free flowing section of the river Rhine and its floodplains, 
beginning from Maxau, the first gauging station of the free flowing section on the 
Upper Rhine, to Lobith, the hydrological measuring station on the border between 
the Netherlands and Germany. The total length of the model is 500 kilometres. It 
contains the nine main important tributaries of this part, including Neckar, Main, 
Nahe, Lahn, Moselle, Ahr, Sieg, Ruhr and Lippe. The model is constructed with 
different elements, such as: points, reaches and cells, the tributaries are modelled 
as lateral inflows. 

 

Calculation points are initially defined at each point with one or more particular 
characteristics: 

  . points with stage-discharge relationship; 

  . points with flood recorders; 

  . sites of future man-made structures (dam, spillway, power plant); 

  . singular head-loss sections (natural sills, narrows); 

  . points corresponding to storage polders; 

  . boundaries and upstream boundaries of tributaries; 

  . confluences and bifurcations; 

  . measured cross-sections. 

 

And these points may be simulated in the model as: 

- one-dimensional (1-D) calculation points, with assigned water leve 
anddischarge varying with time, hydraulically defined by its geometric cross 
sectional shape and roughness characteristics as a function of elevation; 
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- nodal-points (1-D), a fictitious points of confluence of different sections; The 
nodal points are only used to associate (1-D) points or simple (2-D) points 
(confluences). 

- two-dimensional (2-D) points, calculation points with assigned water level 
varying with time. 

 

Reaches: The intervals between the above mentioned points are further divided into 
reaches. Considering the purpose of the model (flood wave simulation) it was 
decided to adopt a space step of the model of about 1000 m. The resulting grid is 
sufficiently dense for operational flood wave simulations and does not exclude 
application of the model for other purpose (e.g. low flow for navigation control). 
Space steps shorter than 1000m are envisaged locally to guarantee that grid points 
are located at gauging stations, confluence points with tributaries and at the special 
constructed across river sections (e.g: bridge etc.). 

 

These reaches may be described as: 

 

- one-dimensional reach, which connects two consecutive one-dimensional 
fluvial points. This type may either be real (river-type reach or weir) when 
connecting two calculation points or fictitious when connecting a calculation 
point with a nodal point. A one-dimensional link is defined by the names of 
the points connected (upstream and downstream), length of the reach and 
the coefficient of weighting of the head losses in the reach; 

- two-dimensional fluvial link with assigned discharge varying with time, which 
connects two cells (2-D), or a cell with a fluvial point in which the flow is river 
type. The flow in two-dimensional links is assumed to be inertia’s. For 
definition of two-dimensional links analogous data as for one-dimensional 
have to be supplied; 

- weir links, one and two-dimensional type, allow flow simulations which do 
not obey Strickler´s law. It is, thus, possible to represent natural sills in the 
river bed and flow over dykes, roads or dunes. Such links are mainly used to 
join two-dimensional cells between themselves or with one-dimensional 
fluvial points. 

 

(2-D) cells: Areas in which the inertial term is not taken into account are divided into 
(2-D) cells limited according to the topography and the direction of flows. They act 
as storage volumes with assigned water levels varying with time, defined by the 
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area of water surface in function of elevation. A (2-D) cell may serve as a node, but 
a cell can be attached to a nodal point only through the intermediary of a simple (2-
D) point. 

 

A ‘standard’ for spacing of computational points mainly depends on two conditions: 

 

 ° Propagation time of small waves and hence the depth of water. 

 ° The computational time step ∆ t.  

 

In order to avoid numerical errors in the calculation of steep waves, it is appropriate 

to choose a relationship 
∆
∆

x
t  as close as possible to the length which corresponds to 

the wave propagation criterion gh . Since the overall computational time step was 
estimated to be in the order of 15 minutes, the intervals between the definition 
points x should be around 1000 m ( with the changing of water depth bigger than 
4 m). Figure 3.6 indicates the construction of the model. 

∆

  
3.2.2.2 Hydraulic roughness 
 

The division of each cross section in three different parallel sections (main, left and  
right floodplain) allows for allocation of different hydraulic roughness values for the 
separate section. According to experience gained with the CARIMA-Model for the 
Lower Rhine in Germany, the hydraulic roughness is incorporated as follows: 

•   River bed: Hydraulic roughness values are represented by the Strickler values. 
They are given for any point on the network. In between two points the Strickler 
values are interpolated linearly. The Strickler values are changing from 33 to 40 

[
s
m 3/1

] . 

• Flood plain section: Depending on the vegetation cover conditions, the chosen 

  Strickler values are changing from 15 to 30 [
s
m 3/1

].  

In Table 3.3 the Strickler values applying for the river reach are presented. The 
trend of the distribution along the river bed and flood plains can be seen in Fig. 3. 5 

 



The Hydrodynamic – Numerical Model of the River Rhine                                       49  

 

Table 3.3 The Strickler value of the flood plain and river bed 

River-bank River-bed Reach
Maxau (362,3) 362 - 425 20 35 3620 - 4250
Worms (443,4) 426 - 470 25 38 4260 - 4700
Mainz (498,3) 471 - 526 18 33 4710 - 5260
Kaub (546,2) 527 - 556 15 33 5270 - 5560
Koblenz (593,5) 557 - 593 15 35 5570 - 5930

594 - 600 15 33 5940 - 6000
Andernach (613,8) 601 - 630 25 37 6010 - 6300
Bonn (654,7) 631 - 659 15 33 6310 - 6590
Cologne (688,8) 660 - 693 30 42 6600 - 6930

694 - 700 25 33 6940 - 7000
Düsseldorf (744,2) 701 - 750 20 35 7010 - 7500
Ruhrort (780,8) 751 - 780 25 33 7510 - 7800
Wesel (814,0) 781 - 825 15 33 7810 - 8250
Emmerich (852,0) 826 - 862 20 33 8260 - 8620

Strickler Coefficient kStGauge Rhine-km

 
 

[
s
m 3/1

] 

 

Figure 3.4 The distribution of Strickler value 
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Figure 3.5 Hydrodynamic-Numerical Model of the River Rhine 
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3.3 Model Calibration 
 
Calibration and verification of the constructed flow model are required to derive 
model coefficients and to prove that the model capable of simulating appropriately 
the water movement in the modelled river reach. The model is assumed well 
calibrated when agreement between measured and simulated water level or 
discharges can be achieved without unrealistically high or low hydraulic roughness 
values. If agreement can only be achieved by adopting unrealistic roughness 
values, boundary conditions and or numerical parameters, the geometry of the 
model should be reviewed critically and adjusted when required. 

 

After calibration of the model the performance of the model should be additionally 
tested in one or more verification runs. In these runs simulation results are 
compared to measurements from historical events which were not used previously 
for calibration of the model. 

 

For calibration and verification of the constructed flow model two different data sets 
are applied: 

•   Water levels in the river in periods of relatively constant discharge, called           
permanencies (in German called: Wasserspiegelfixierungen). 

•   Water levels and corresponding discharges at the gauging stations in the reach 
for three flood periods: March 1988, December 1993 and February 1999. 

 
 
3.3.1 Steady Flow Calibration 
 
 
3.3.1.1 Boundary conditions 
 

The boundary conditions for the calibration runs of the steady flow conditions are 
shown in Table 3.4 and Table 3.5. At the upstream boundary (Maxau) and at the 
confluences discharges were defined. At the downstream boundary (Lobith) the 
stage discharge (Q~H) was applied (Table 3.5). 
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Q (m³/s) 773 1000 2001 3004 3999 5000

Q (m³/s) 5998 7004 7994 8999 10013 11016

Q (m³/s) 11996 13008 14003 15000  

H (m+NN) 7,01 7,60 9,40 10,90 12,06 13,01

H (m+NN) 13,84 14,55 15,08 15,54 15,97 16,35

H (m+NN) 16,68 17,003 17,31 17,62  

 
 

Table 3.4 Boundary condition at Lobith (BfG, Daten Bank) 
 
 

River Rhine-km MQ (m³/s) HQ93 Gauge 

Rhine 362,30 1259 1480 Maxau 

Neckar 428,20 135 2690 Heldelberg 

Main 496,70 196 1400 Raunheim 

Nahe 529,30 50 1150 Grolsheim 

Lahn 585,60 51 591 Kalkofen 

Ahr 629,30 26 210 Altenahr 

Sieg 659,30 54 443 Menden 1 

Ruhr 780,10 102 472 Hattingen 

Lippe 814,50 68 255 Schermbeck 1 

 
 

Table 3.5 Boundary conditions of steady simulation (BfG Daten Bank) 
 
 

3.3.1.2 Steady flow calibration 
 

For the steady flow calibration, the permanency of water level for the mean 
discharge (MQ) and flood discharge of December 1993 (HQ93) with the value for 
every 100 m of the river length were used.  
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The results of steady flow calibration are shown in Figure 3.6 to Figure 3.12 The 
difference between computed and measured water level can be seen in Table 3.6. 
The trend of the computed water level corresponds well with the measured one. 

 

Reach Rhine -km ∆H*MQ (m) ∆H*HQ93 (m) Trend 

Maxau-Worms 362,20-443,40 0,12 0,18 good 

Worms-Mainz 443,40-498,30 0,17 0,23 good 

Mainz-Kaub 498,30-546,20 0,05 0,12 good 

Kaub-Andernach 546,20-613,80 0,05 0,08 good 

Andernach-Cologne 613,80-688,00 0,09 0,07 good 

Cologne-Ruhrort 688,00-780,80 0,05 0,09 good 

Ruhrort-Lobith 780,80-862,20 0,09 0,05 good 

* Maximum difference between computed and measured water level  

  
 

Table 3.6 The result of steady flow calibration 
 

Figure 3.6 Steady flow calibration (reach Maxau – Worms) 
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Figure 3.7 Steady flow calibration (reach Worms – Mainz) 
 

 
Figure 3.8 Steady flow calibration (reach Mainz - Kaub) 
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Figure 3.10 Steady flow calibration (reach Andernach - Cologne) 
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Figure 3.9 Steady flow calibration (reach Kaub - Andernach) 
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Figure 3.11 Steady flow calibration (reach Cologne - Ruhrort) 

 
Figure 3.12 Steady flow calibration (reach Ruhrort - Lobith) 
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3.3.2 Unsteady flow calibration 

 

n, the flood wave simulation of December 1993 was 
sed. The flood event 1993/1994 occurred in two waves which can be considered 

flood wave December 1993 is depicted in Figure 3.13 for the 
ver Rhine. The graph is based on the discharges and shows distinctly the surges in 

  

3.3.2.1 Boundary conditions 
 

For the unsteady flow calibratio
u
as a hydrological entity. Generally, the first surge (Christmas flood) brought the 
higher discharges. So, the peak of the first wave at Andernach was associated with 
a recurrence interval of about 65 years, while that of the following wave peak was 
just around 5 years. At Koblenz, the two peaks of Rhine and Mosel met with a little 
time difference, that means the wave of the river Mosel came a bit in advance of the 
Rhine wave. It caused in the river Rhine a maximum wave that was exceeded only 
once in this century. 

 

The advance of the 
ri
discharges in the river Rhine near Koblenz due to River Mosel confluence. 

 
Flood 15.12.1993 - 12.01.1994 

 
Figure 3.13 The flood discharge of December 1993 
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The discharge series at the gauging stations were used for unsteady calibration 
ecause of the following reasons: 

iegelfixierungen) representing the flood wave of 
993 (HW93) are based on flood marks left behind after the events. Connecting the 

 sides of the river. It 
as found that during the flood events the local transverse water surface slope can 

ere carried out in periods with relatively 
onstant discharge, changes in the river discharge are inevitable during the water 

Tributary Gauging station 
Distance to 

confluence (km) 
Measuring 
frequency 

Time lag 
(hours) 

b

 

•   The permanencies (Wassersp
1
maximum water levels does not produce an actual steady state backwater curve, 
but an artificial one which never really occurred (BfG, 1997). Using this measured 
backwater curve for calibration may hamper proper calibration. 

 

 •   The flood marks of the events 1993 were measured on both
w
be quite significant (the differences of water level is about 0.2 m). The mean water 
levels were applied for the location. It should however be realised that the accuracy 
of the resulting mean water levels is limited. 

 

•   Although the water level measurements w
c
level survey. This is especially true when the measurement carried out on different 
days and during flood periods.  

 

Neckar Heidelberg 26,10 hourly 04,0 
n aunheim 27,00 houry 04,0 

Nahe Grolsheim 07,40 hourly 01,0 
Lahn Kalkofen          106,40 hourly 16,0 
Mosel Cochem 51,60 hourly 08,0 
Ahr Altenahr 30,00 hour ly 04,0 
Sieg Menden1 08,40 hourly 01,0 
Ruhr  Hattingen 55,80 hourly 10,0 
Lippe k1 Schermbec 22,40 hourly 04,0 

 
 

ischargTable 3.7 Time lag d e series tri s 
 
 

or the tributaries, the time series of discharges at the confluence with the Rhine 
ere used. As the discharges in the tributaries determined at the gauging stations 

butarie

Mai R

F
w

 



The Hydrodynamic – Numerical Model of the River Rhine                                       59  

some distance upstream of the confluence with the river Rhine, a certain time lag 
should be taken into account. Such a time lag should be based on the distance 
between gauging station and confluence and an adopted velocity of the flood wave.    

In table 3.7 the adopted time lag for the main tributaries are given based on an 
estimated flood wave velocity of 1.5 m/s. 

 

.3.2.1 Unsteady flow calibration 

dy flow calibration with the flood wave of 
ecember 1993 show that the differences between measured and computed peak 

 
 
3
 

The results obtained from unstea
D
discharges never exceed 300 m³/s. In addition it can be seen that the computed and 
the observed travel times of the flood wave are in good agreement. The difference 
between computed and measured travel time at the gauging stations were smaller 
than 8 hours. But there are still exsiting some differences between computed and 
measured discharge during the rising or falling limb and at the begin of computation 
time, especially for the gauge Rees. The sources of errors will be analysed in the 
next section. The detain investments of the dynamics of the model can be seen in 
Figures 3.14 to 3.18, Figure 3.19 shows the difference between computed and 
measured discharge at selected gauges. Table 3.8 indicate the results obtained 
from the first calibration runs. 

Figure 3.14 Model calibration Worms, December 1993 

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700 800

T [hours]

Q [m3/s]

measured calculated

  



60                                        The Hydrodynamic – Numerical Model of the River Rhine                     

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700 800

T [hours]

Q [m3/s]

measured calculated

 
 

 
Figure 3.15 Model calibration Bonn, December 1993 

 

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700 800

T [hours]

Q [m3/s]

measured calculated

 
 

Figure 3.16 Model calibration Cologne, December 1993 
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Figure 3.17 Model calibration Düsseldorf, December 1993 
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Figure 3.18 Model calibration Rees, December 1993 
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Figure 3.19 Discharge differences in calibration simulation, flood 1993  

 
 
 

Gauge Maxau Worms Andernach Bonn Cologne Duesseldorf Rees 
∆Q 

(m³/s) 
0 73 198 237 298 256 157 

∆T 
(hours) 

0 0 6,25 0 1,25 1,75 7,75 

 
 

Table 3.8 The discharge difference between computed and measured , event 1993 
 
 

3.4 Analysis of Sources of Errors 
 
The differences between calculated and measured discharges show a small 
overestimation of the calculated water levels and discharges in the peak of the flood 
waves. This observation may be explained by a combination of different factors. In 
this chapter the following possibilities will be discussed.   
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3.4.1 Structural Errors Rating Curves 
 

The observed events are generally recordings of water stages for different steady 
state conditions; discharges are normally measured only in order to construct rating 
curves at a limited number of stations along the river. These rating curves are nearly 
always defined as single valued relationships between discharge and water stage, 
and are not always representative of real life. In order to obtain continuous 
discharge series, measured water level and the calibrated rating curves are used 
(BfG, 1997). When the condition (e.g. geometry) of the river changes, the rating 
curve also changes and should be revised. On the river Rhine, some reaches are 
subject to quicker changes , such as ongoing bed erosion (Upper Rhine), 
submergence (Duisburg) or rise. In consequence the rating curves are continuously 
changing and in consequence also the difference between the derived discharges 
and the real discharges.  

 

In order to assess the reliability of the rating curves at the gauging stations, water 
balances were made for the flood of 1988, 1993, using the generated discharge 
series, here called measured discharges (BfG, 1997). For most stations the mean 
measured discharge agrees well with the discharge according to the water balance. 
Only for the stations Cologne, Wesel and Lobith larger differences are found. For 
Wesel this difference is most probably due to the unfortunate location of the gauging 
station, only 400 m upstream of the confluence with the Lippe. Due to backwater 
effects the discharge of the Lippe can influence the water level at Wesel and thus 
the calculated discharge. For this reason the discharges at Wesel are considered to 
be less reliable (Adler, 1996). The same could be true for Mainz as this station is 
situated only 1,6 km downstream of Main confluence, and Ruhrort is also located 
only 0,6 km downstream of the confluenceof the Ruhr. The average measured 
discharge at Düsseldorf appears to be about 80 m³/s lower than the measured 
discharge at Cologne. The same tendency of underestimated discharges at Lobith 
also can be observed.     

 

However, the uncertainties in rating curves are not the only explaination of the 
observed difference between calculated and measured discharges. Errors in rating 
curves would result in over or under-estimation of the measured discharges.  
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3.4.2 Hysteresis Effect 
 

Due to non-uniformity of the flow, the rating curve (stage-discharge curve) in a flood 
wave differs from the curve valid for steady, uniform flow. The single curve for 
steady uniform flow transforms into a loop under unsteady conditions. When the 
Q(y) relationship is plotted at a given station during the passage of a flood wave, a 
multi-valued curve is observed; for a single peak flood wave the curve takes the 
shape of a loop as shown schematically in Figure 3-20. 
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Figure 3.20 Unsteady flow Q(y) relationship 
 

Where: 

(a) Schematic representation of flood hydrograph 

(b) Associated rating curve:  

1 Steady flow relation 

2 Unsteady flow relation 

 

Also for the river Rhine the hysteresis effect is expected to play a role. In 
verify this supposition, continuous discharge measurements are envisaged
periods of quick rise or fall. Up to now such measurements are not carr
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(Engel, 1997).  One example of the hysteresis effect at gauge Andernach of the 
flood event 1988 is showed in Figure 3.21.  

Histeresis Effect Andernach 1988 
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Figure 3.21 Hysteresis effect at Andernach, flood of March 1988 

  
 
 3.4.3 Backwater Effects of Tributaries 
 

When the water levels in the Rhine river are high, the discharge contribution from 
tributaries to the Rhine river can be temporary hindered due to backwater effects.  
The water being hold up, should be temporary stored in the tributary or storage 
areas. This means that the discharge time series measured at the gauging station 
outside the reach influenced by back water effects, can deviate from the discharge 
time series at the confluence. During high water levels in the Rhine river the 
contribution of tributaries may be reduced. After passage of the peak water level, 
the temporary stored water will increase the discharge from the tributary at the 
confluence. In the CARIMA simulations the discharge time series from the gauging 
stations in the tributaries are applied with some time shift as lateral inflows (Table 
3.8). If backwater effects are present, the discharge in the simulations can be 
overestimated during the  rising limb of the flood wave in the river Rhine and 
underestimated in the falling limb. This effect corresponds to the observed 
difference between calculated and measured river discharges. 
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The effect of high water levels in the Rhine river on the effective discharge from the 
tributaries has been estimated using available data from measuring stations as well 
as from field experience available in Germany. Main emphasis has been put on the 
main tributaries: 

Neckar: One of the main tributaries on the Upper Rhine, only the discharges 
measured at Heidelberg (26.1 km upstream of  the confluence) are available. From 
Heidelberg to the confluence there are 3 weirs along the river and they were opened 
during the flood. More or less the application of the flood discharge curve at 
Heidelberg for the confluence may lead to the difference between computed and 
measured water level. The flood peak of the Neckar during December 1993 was 
2400 m³/s. This high discharge may lead to a back water effects for the river Rhine 
at the confluence of the river. 

 

Main: The nearest gauging station available is Raunheim (17 km upstream of the 
confluence). The flood peak of the Main during December 1993 was 1400 m³/s. The 
back water effect of the river Main also should be considered. 

 

Nahe: The discharge at the gauging station Grolsheim is used (7,4 km upstream of 
the confluence). The flood peak of the Nahe during December 1993 was 1370 m³/s. 
This high discharge may lead to the back water effects for the river Rhine at the 
confluence of the river. 

 

Mosel: The measured discharges at Cochem are used (51,6 km up stream of the 
confluence). The peak of discharge during the flood event 1993 was 4170m³/s. It 
caused a big surge flood for the Rhine downstream of Koblenz. Because of the back 
water effect at the confluence, the discharge can not be derived directly from the 
water stage at the gauging station Koblenz - 1.2 km downstream of the Mosel 
confluence (BfG, 1997).  

 

Sieg:  Only the discharges measured at Menden (8.4 km upstream of the 
confluence) are available. During flood events the area behind the road crossing the 
Sieg near the confluence, is also flooded. Although the flooded area and flooding 
depth are not exactly known, the volume of water stored is expected to be restricted 
(Engel, 1997). The influence on the Sieg discharge at the confluence is therefore 
assumed to be small.  
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Ruhr: Discharges are measured at Hattingen (55.8 km upstream of the confluence) 
and at Mülheim (13 km upstream of the confluence). The discharges at Hattingen 
are estimated using the rating curve. At Mülheim an acoustic measuring device is 
used (BfG, 1997). Due to higher turbidity of the water during flood events, the 
discharges at Mülheim can be measured up to about 650 m³/s so that the 
discharges at Hattingen should be used for computation. In Fig. 3-22 the discharges 
at Hattingen and Mülheim are presented for the 1993 flood event. The development 
of the discharge  in time is similar for both stations. Clearly a time shift can be 
observed as well as an increase in discharge at Mülheim. This can be explained by 
the additional catchment area contributing to the Ruhr discharge between Hattingen 
and Mülheim. Both catchment area and river discharge at Mülheim are 
approximately 9% higher than at Hattingen (BfG, 1997).  
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Figure 3.22 Observed Ruhr discharges at Hattingen and Mülheim (December 1993) 

 

Lippe: The confluence of the Lippe is just 400m downstream of the gauging station 
Wesel. The stage discharge relation for Wesel was found to be less reliable, 
especially for the periods in which the Lippe discharge is high, the influence on 
measured water level may be significant (BfG 1997). 
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3.4.4 Regional Precipitation 
 

The flood of December 1993 has been caused by lasting abundant precipitation. 
There is no protection embankment on the Rhine stretch from km-529 to km-710 
(the Middle Rhine). In this region, the Rhine flows between rock mountains. All the 
raining water  was concentrated in the slope area, approximately 90 km², and 
comes directly to the Rhine. The amount of water was not considered in the model, 
so that can cause some differences between computed and measured water level 
on the gauges  Andernach, Bonn and Cologne. 

 
 
3.4.5 Ground Water  
 

Exchange of water between the river and the groundwater is an ongoing process in 
most rivers. During flood events the river water level changes rapidly creating a 
large head difference between the river and the ground water level. This results in a 
loss of river water to the groundwater reservoir due to which the river discharge 
reduces and the ground water level rises. During the falling limb of the flood wave 
the river water level can drop below the groundwater level, due to which the 
groundwater flows towards the river. The amount of water exchange between river 
and groundwater mainly depends on the following factors: 

 

 River geometry: wetted perimeter and its development in time 

 Soil: hydraulic conductivity, porosity, initial soil moisture content 

 Hydraulic conditions: water level and its time derivative,  

                                            duration of flood wave. 

 

In order to assess the temporary storage of water in the groundwater, several 
measuring sections are operated at the Rhine River in Germany. In these 
measuring sections the development of the groundwater volume is continuously 
monitored. One of these permament measuring sections is located near Urmitz (km-
602,4), approximately 11 km upstream of Andernach. In the flood reports for 1988 
and 1993 the groundwater at the Urmitz is presented. Figure 3.23 shows that during 
these flood events, the groundwater volume increased rapidly during the rising limb 
of the flood wave and decreased slowly after the peak. The measurements show 
that the withdrawal of water to the groundwater reservoir can be as large as 3 m³/s 
per kilometre river length.   
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In addition a study was carried out by the BfG on the interaction between river flow 
and groundwater in the river reach Bonn-Cologne (Giebel, 1995). The study showed 
that for eight flood events in the period 1983 to 1991 the average loss of river water 
during the rising limb varied between 0,6 and 1,1 m³/s/km. The maximum withdrawal 
at peak flow could have been as high as 5,5 m³/s/km. This reduction in discharge 
through bank storage means that during floods the water stage in river Rhine is 
lower than it would be without this phenomenon. This effect has been computed for 
the gauge Andernach to reduce the water stage on average by 1,5 cm during its 
highest level. In the rising phase of the flood, the values of up to 2,9 cm caused 
even bigger differences in water level, which occurred during the events examined 
for this between 3 to 4 days before the arrival of the flood peak.  
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Figure 3.23 Groundwater Storage at Urmit, flood events 1988 and 1993 (BfG, 1997) 
 

These study results clearly indicate that temporary groundwater storage can 
definitely play an important role in reducing the river discharges in the rising limb 
and increasing the discharges in the falling limb of the flood wave. 
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3.4.6 Flooding of the Cities 
 

From km-529 to km-710, the dykes  are absent (Fig. 2.7). In this reach the extent of 
flooded area is determined by the natural valley slope. During the flood events of 
1993 many cities on the bank of the river Rhine were flooded. They included the 
cities of Königswinter (km-646), Bonn (km-655), and Cologne (km-688). Due to the 
relatively steep valley slopes the flooded areas were restricted to relatively narrow 
belts. The water volume stored in these flooded areas did therefore not considerably 
contribute to the difference between calculated and measured discharges.  

 
3.4.7 Schematization  
 

The CARIMA-Model is a one dimensional representation of the three dimensional 
prototype. In this section some items are discussed which may explain some of the 
differences between simulations and observations.  

 

For construction of the model representative cross-sections per river reach have 
been generated. Besides discretization errors introduced in this process, local but 
important variations in geometry are smoothened due to the selected space step of 
1000 m. This may lead to local differences between measurements and simulations. 

 

Another uncertain aspect concerns the flow conveying width on the floodplains. The 
boundary has been defined using the cross-section profiles and sound engineering 
judgement through topological  maps of the scale 1:5.000. One can imagine that in 
reaches having complex geometries – such as the reach Wesel – Lobith with its 
wide flood plains and numerous secondary channels – the flow area is difficult to 
assess. In addition the methodology adopted, provides a single vertical boundary 
between flow area and storage area. In reality the flow width may increase with 
higher water levels. 

 

In many summer dykes gates have been constructed. These can be opened during 
flood conditions so as to reduce the water level difference over the summer dyke. 
This may prevent damage to the summer dyke, when the crest level of the summer 
dyke is over -topped. Operation of these gates is the responsibility of the local 
government. At present no overview is available how this operation has been during 
the simulated flood events. Most likely the operation has been even different during 
subsequent events. In the simulation it has been assumed that the gates remained 
closed. This means that the storage capacity in the simulations may have been 
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used later than that was the case in reality. This may lead to an overestimation of 
the water levels in the rising limb of the flood waves. 

 

All these possible imperfections of the model may lead to direct errors in the 
calculated water level, but may additionally lead to under- or overestimated travel 
times of the flood waves. Especially during periods with large water level gradients 
(quick rise or fall) even small errors in travel  time may lead to considerable errors in 
water level. 

 

Finally some restrictions of the one-dimensional model should be mentioned, which 
may cause differences between measurements and simulations: 

 

• One-dimensional models are sensitive to abrupt changes in geometry (e.g. sudden 
bottle-necks). In general the local water movement is not properly represented if 
extreme geometrical relations are present. It is expected that this aspect is not very 
important for the present Rhine model. 

 

• In a one-dimensional model the river is represented as a straight channel. During 
flood events the course of water over the floodplain may be shorter than the river 
measured along the channel axis. Such a reduction of the river length can only be 
simulated artificially. For example by changing the hydraulic roughness of the 
floodplain. 

 

• At the boundary between main river and floodplain momentum exchange between 
the high velocity main river and the low velocity floodplain cannot be simulated 
directly in a one-dimensional model. A possibility is to include the effect in the 
hydraulic roughness. 

 

• Lateral slopes (e.g. in river bends) are not simulated in a one-dimensional model.   

 
 
3.4.8 Other Causes 
 

Apart from the previously described possibilities for explaining the differences 
between calculated and measured water levels and discharges, other causes shall 
briefly be given in this section. In this respect the water level distribution through the 
cross section of the river, time dependent hydraulic roughness and morphological 

  



72                                        The Hydrodynamic – Numerical Model of the River Rhine                     

changes, lateral discharge causing by floodplain and other storage pockets could be 
mentioned. The water level distribution is different through the cross section of the 
river, especially where the river is meandering or curved. The maximum of the 
difference is up to 20 cm  (Fig. 3.24) at the flood of December 1993 (following the 
measured water level). On the model, the mean water levels are used. It should 
however be realised that the accuracy of the resulting mean water level is limited. 

 

During the flood events sediment transport increases and special bed forms (ripples 
and dunes) may develop. The dimensions of these bed forms can be different 
during the rising and falling limb of the flood wave. As these bed forms influence the 
hydraulic roughness, the hydraulic roughness may change during the event. In flood 
events sediment transports and morphological changes are the largest. If the 
riverbed changes during an event, water levels before and after the event can be 
different. Unfortunately no information on short term morphological changes during 
the event for the Rhine river are available. However, on long time scales an average 
river bed degradation can be observed up to 0,02 m/year (BfG, 1997). 
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Figure 3.24 Difference of measured water level across the cross section 
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The floodplain and other storage pockets along the river may cause the lower water 
level during the rising limb and the higher water level during the falling limb of the 
flood. Within the model in the case of without flood retention polders, such storage 
volumes are not taken in to account. This may explain the difference between 
computed and measured water level in some locations.   

      

 
3.5   Final calibration of the Model 
 
In the previous section the CARIMA-model has been calibrated using measured 
steady state conditions and measured discharges during the flood event of 
December 1993. The errors which appeared on the previous calibration have been 
analysed in the section 3.4, in which the back water effects of tributaries and the 
groundwater play an important role during flood event. 

 
 
 

Strickler Coefficient kSt 
[m1/3/s] Gauge Rhine-km 

Old New           Old          |        New  
Maxau (362,3) 362 - 425 20 15 35 32 
Worms (443,4) 426 - 470 25 15 38 40 
Mainz (498,3) 471 - 526 18 10 33 35 
Kaub (546,2) 527 - 556 15 10 33 30 
Koblenz (593,5) 557 - 593 15 15 35 35 
  594 - 600 15 30 33 35 
Andernach 
(613,8) 601 - 630 25 30 37 35 
Bonn (654,7) 631 - 659 15 30 33 35 
Cologne (688,8) 660 - 693 30 33 42 38 
  694 - 700 25 25 33 35 
Düsseldorf 
(744,2) 701 - 750 20 25 35 33 
Ruhrort (780,8) 751 - 780 25 35 33 43 
Wesel (814,0) 781 - 825 15 30 33 33 
Emmerich 
(852,0) 826 - 862 20 25 33 35 

 
 

Table 3.9 The new Strickler value application for the final calibration  
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For obtaining satisfactory agreement between calculated and measured water 
levels, the hydraulic roughness values of the river bed and floodplains can be 
varied. In addition corrections of the river geometry in the model can improve the 
simulation results.  

 

After many simulation runs, the following Strickler values were chosen (Table 3.9). 
On the Upper reach, the smaller Strickler value were chosen. In the reality, in the 
flood plain forests are existing.  

 

Table 3.11 shows the differences between the computation and measurement after 
final calibration at some collected gauges. It indicated that there is good agreement 
between computed and measured discharge. The difference never exceeds 300 
m³/s in case of discharge and 6 hours in case of time. 

 
 
Gauge Maxau Worms Andernach Bonn Cologne Duesseldorf Rees 
∆Q 

(m³/s) 
0 35 98 153 235 178 117 

∆T 
(hours) 

0 0 1,78 0 1,25 1,75 5,25 

 
 

Table 3.10  The difference between computed and measured discharges 
 

Comparison the results obtained from the first calibration (Table 3.9) and final 
calibration computation (Table 3.10) shows the remarkable improvement: The 
difference of the computed peak discharge in comparison with the measured once 
now is only 235 m³/s at the hydrological gauge Cologne (Qmax = 11.000 m³/s). 
Approximately equal to 2% of the highest discharge, it is a very good result in 1-D 
hydraulic computation. 
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4     Model Verification 
 
 
 
 
 

After final calibration simulation, the model has been improved with the combination 
of changing hydraulic roughness and geometry characteristic in some reaches on 
the Middle Rhine. The model obtained better agreement with the observed 
discharges and time series. In this section these choices are further verified using 
water levels measured during the events of March 1988 and February 1999. 

 
4.1 The flood of March 1988 
 
The flood event of March 1988 caused the highest water levels in the considered 
part of the Rhine since 1926 (BfG, 1997). The high rainfall causes two flood peaks 
of which the latest one (end of March) produced the highest water levels. Figure 2.3 
shows the river discharges at the gauging stations on the river reaches in March 
and April 1988. 

Similar to the previous calibration for the flood event of December 1993, the 
measured discharge at Maxau has been applied  as the upstream boundary 
condition. The discharges time series of the tributaries with time lag were applied as 
the lateral discharges at the confluences. The stage discharge relation for Lobith 
has been used for the boundary at downstream. The Strickler values were used as 
in final calibration run. 

Figure 4.1 – 4.8 show the results of calibration at gauging stations. Figure 4.9 is 
demonstrating  the difference between computed and measured water level.  
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Figure 4.1  Model verification - Worms, March 1988 
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Figure 4.2  Model verification – Mainz,  March 1988 
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Figure 4.3  Model verification – Andernach,  March 1988 
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Figure 4.4 Model verification – Bonn,  March 1988 
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Figure 4.5  Model verification – Cologne,  March 1988 
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Figure 4.6  Model verification – Duesseldorf,  March 1988 
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Figure 4.7  Model verification – Ruhrort,  March 1988 
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Figure 4.8  Model verification – Emmerich,  March 1988 
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Figure 4.9  Differences between computed and measured water level,  March 

1988 

In Fig. 4.9 is demonstrated that the differences between computed and measured 
water level during flood discharge were never over 0,20 m. The differences between 
computed and measured water level, time can be seen in Table 4.1.   

 
  
Gauge Worms Mainz Andernach Bonn 

 Peak I Peak II Peak I Peak II Peak I Peak II Peak I Peak II 

∆H (m) -0,1 0 0,02 -0,03 -0,07 0,09 -0,04 0,01 

∆ T (h) 0 0 0 -1,25 3,25 0 2,75 0 

 
Gauge Cologne Duesseldorf Ruhrort Emmerich 

 Peak I Peak II Peak I Peak II Peak I Peak II Peak I Peak II 

∆H (m) 
 

0,06 0,20 0,04 0 0,02 0,02 0,02 0,17 

∆ T (h) 1,75 0 0 0 0 1 0 -5 

 
 

Table 4.1 Differences between computed and measured water level, time, 1988 
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The difference between calculated and observed travel time of the highest flood 
wave of 1988 appears to be negligible. As far as the second and highest peak is 
concerned, the differences between computed and measured peak water levels 
generally fall below a maximum of 0,10 m. For the first flood wave the computed 
water levels fit very good with the measured water levels. For the second peak, the 
differences appeared to be higher at Cologne and Emmerich. A possible explanation 
could be the inflow from inundation areas located upstream Cologne and upstream 
Emmerich. These kinds of inundation areas are not simulated in the first run of the 
model.  

 
 
4.2 The flood of February 1999 
 
 
The flood of February 1999 was caused by strong rainfall and snow melting in many 
upper regions. In Upper Rhine some of the retention polders along the Rhine were 
active at the first time after construction. At Cologne, the water level was 8,88 m 
when in 1993, the water level was 10,60 m CW (Cologne Water level). Although the 
peak river discharge was much lower than in the 1988 and 1993 events, the flood 
wave provides good opportunity for additional verification of the model. Main reason 
for this is that many summer dikes are being overtopped at this event. This flood 
wave thus can give insight whether the geometry of the one-dimensional flow is a 
good representation of the prototype. Figure 2.6 shows the river Rhine discharges at 
the gauging stations and also the tributaries discharges at the selected gauging 
stations. It was the high flood, especially for the Upper Rhine leading to the attention 
concerning the protection of the Rhine and that the flood precaution works were to 
be strengthened.  

The inflow discharges of the tributaries and the stage discharge relations for Lobith 
have been applied for the model boundary. 

The results obtained from computations show a very attractive picture: The time 
when the peak water level appeared in computation and observation is the same. 
During the rising limb, the computed water levels were lower than the measured 
ones, during the falling limb, the computed water levels were higher the measured 
ones. This difference can be explained by losing water during the rising limb of the 
flood wave over the summer dikes and infiltration into ground water and the return of 
the water during the falling limb. Figure 4.10 and 4.11 show the results obtained 
from the simulation run. The differences between computed and measured water 
levels can be seen in Figure 4.12. The detail results are presented in Table 4.2. 
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Figure 4.10  Model verification, Upper Rhine, February 1999 
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Figure 4.11  Model verification, Lower Rhine, February 1999 
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As it was shown in the results, the differences between computed and measured 
water levels never exceeds 0,10 m, the time when the peak water level appeared is 
smaller than 2 hours. Table 4.2 shows the results obtained from verified calibration 
simulation with the flood wave of 1999.  
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Figure 4.12  Differences between computed & measured water level, 1999 
 

 
Gauge Maxau Worms Bonn Cologne Duesseldorf 

∆H (m) 0 -0,09 -0,09 0,04 -0,02 

∆T (h) 0 0 1,75 0 0 

 
 

Table 4.2 Differences between computed and measured water level & time, 1999 
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4.3 Conclusions and remarks 
 
• A Hydrodynamic-Numerical Model of the river Rhine has been developed that 
simulates the December 1993 flood on the river Rhine from Maxau to Lobith. 
Calibration of the model was carried out and modelled discharges were within the 
target error of 235 m³/s (Table 4.2). 

 
 

Gauge Maxau Worms Andernach Bonn Cologne Duesseldorf Rees 
∆Q 
(m³/s) 

0 73 198 237 298 256 157 

∆Q* 
(m³/s) 

0 35 98 153 235 178 117 

∆T 
(hours) 

0 0 6,25 0 1,25 1,75 7,75 

∆T* 
(hours) 

0 0 1,78 0 1,25 1,75 5,25 

* After final calibration 

 
Table 4.3 Differences between computed and measured time and discharge 

 

• Using discharges time series obtained from rating curves may cause some 
difference between computation and measurement. Therefore the verified 
calibration of the water stage time series were used.  

• The model was verified using data from the flood of March 1988 and February 
1999. The results obtained very good agreement between computed and measured 
water levels. The differences between computed and measured water levels never 
exceed 0,20 m. The time when the peak water levels appeared in computation and 
measurement were almost the same. 

• The model, however, requires accurate estimation of the time lag concerning 
inflows from tributaries for both calibration and verification run. 

• The storage of water in the plains and other sources may cause an effect on the 
water level but only at the rising and falling limb. 
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5   Model Simulation 
 
 
 
 
 

5.1 Impact of the retention polders along the Rhine 
 
Along the Rhine in Germany, retention areas – large polders beside the river, which 
inundate only at times of flood – are being created. These will be able to store up to 
270 million cubic metres of water and are planned in the state of Baden-
Württemberg, Rhineland-Pfalz, Hessen and North Rhine-Westphalia. About a 100 
million cubic metres of capacity is already available, and was first utilized during the 
high water episode of 1988. By diverting water into these retention areas, it was 
possible to reduce the water level downstream.  

The flood event of 1988 caused one of the highest water levels in the considered 
part of the Rhine since 1926. The high rainfall caused two flood peaks of which the 
latter one (end of March) produced the higher water levels. Figure 2.3 shows the 
river discharges at the gauging station of the Rhine in March and April 1988. 

In order to assess the effects of a polder system along the river with respect to flood 
regulation, the model was simulated with all the polders along the Rhine (polders 
already existing, polders under construction and in planning stage as have been 
shown in Table 5.1).  The flood event of March 1988 was used for computation. The 
results obtained can be seen in the Figures from 5.1 to 5.7 

The effects on water levels were small because during the flood event 1988 only 
some of the polders were active. In the Upper Rhine the effects were small. The 
summary results obtained from computation are showed in Table 5.2.  
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Nr. Polders Km Construction Area (ha) V (106 m3) Elevation 
 (m + NN) 

1 Bellenkopf/Rappenwört 357,0 plan 510       14,0      106,50 
2 Elisabethenwört 382,0 plan 400       11,9 98,00 
3 Rheinschanzinsel 390,5 plan 210         6,2 96,00 
4 Daxlander Au 358,0 plan 200  5,1      105,50 
5 Neupotz/Wörth 364,0 plan 250       10,0      104,00 
6 Mechtersheim 388,0 plan 500  7,4 97,00 
7 Flotzgrün 392,0 plan 300  5,0 95,00 
8 Kollerinsel 409,0 plan 500  6,1 94,00 
9 Waldsee/Altrip/Neuhofen 412,0 plan 500  8,1 93,50 
10 Petersau/Bannen 434,0 plan 200  1,4 91,00 
11 Mittelbusch (Worms II) 438,0 plan 150  2,3 90,00 
12 Bodenheim/Laubenheim 492,0 plan 700  6,0 84,00 
13 Ingelheim 518,0 plan 500  3,8 82,00 
14 Siegmündung 657,5 plan 250  50,00 
15 Niederkassel 665,0 operation  10  0,2 47,50 
16 Köln-Langel (Lülsdorf) 672,0 construction 500  6,0 46,00 
17 Worringer Bruch 708,0 construction 600       29,0 39,00 
18 Monheim 712,0 construction 200  8,0 38,00 
19 Dormagen 717,0 plan 415  36,50 
20 Urdenbach 718,0 operation 600  30,70 
21 Itter-Himmelgeist 727,0 construction  60  2,0 35,00 
22 Illvericher Bruch (Meerbusch) 753,0 construction 400      15,0 30,00 
23 Lank 760,0 plan 280  30,00 
24 Mündelheim 767,0 plan 150  5,0 28,00 
25 Binsheim 788,0 plan 505  20,00 
26 Orsoyer Land 803,0 operation 220       10,0 18,50 
27 Mehrum 807,0 plan 170  20,00 
28 Wallach 809,5 plan  60  21,00 
29 Ginderich 815,5 plan 250  20,00 
30 Flüren 817,5 plan 400  20,00 
31 Bislicher Insel 823,0 operation   1100       50,0 15,00 
32 Lohrwardt 834,0 plan 275       15,0 17,50 
33 Löwenberg 844,0 plan 125  16,00 
34 Grietherbusch 846,5 operation   1100       25,0 16,10 
35 Bylerward 848,0 construction 720       30,0 16,00 
36 Salmorth 862,0 plan   1000  13,70 

 
Table 5.1 Polder system along the Rhine used for model simulation 
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Figure 5.1 Water level comparison, Worms 
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Figure 5.2 Water level comparison, Düsseldorf 
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Figure 5.3 Water level comparison, Ruhrort 
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Figure 5.4 Water level comparison, Emmerich 
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Gauge Andernach Bonn Cologne Düsseldorf Ruhrort Emmerich 

∆H (m) 0,05 0,05 0,06 0,09 0,09 0,012 

∆T (hour) 0 0 5,25 5,75 10,25 11,50 

 
 

Table 5.2 The effect of polder system along the Rhine 

 
 
5.2 Impact of the retention polders on the Lower Rhine 
 
The flood of December 1993 due to the large contribution of the Neckar, Nahe and 
Moselle was one of the biggest floods in the past 120 years causing the most 
serious consequences for the Lower Rhine.  

The simulation of the model with all 23 polders situated on the Lower Rhine (already 
existing, in construction and in plan – see Table 2.5) for the flood event December 
1993 will give us the whole picture of how the polders on Lower Rhine should act 
during flood events. 

 

Figure 5.5 to 5.7 are demonstrating the results obtained from the simulation. The 
summary of results can be seen in Table 5.3. 
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Figure 5.5 Discharge comparison, Duesseldorf 
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Figure 5.6 Discharge comparison, Cologne 
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Figure 5.7 Discharge comparison, Emmerich 
 
 
 

  
 



Model Simulation                                                                                                   91 

Gauge Bonn Cologne Duesseldorf Emmerich 

∆H (m) 0,08 0,06 0,07 0,06 

∆T (hour) 4,25 5,75 5,55 7,75 

∆Q (m³/s) 136 178 192 275 

∆T (hour) 3,75 4,25 4,25 10,25 

    
 

Table 5.3 The effect of a polder system (according to Table 2.6) on Lower Rhine 
 
 

5.3 Impact of the retention polders on the Upper Rhine 
      to the water lever on the Lower Rhine 
 
5.3.1 Model simulation 
 

As mentioned in chapter 4, the flood of February 1999 was caused by strong rain 
fall and snow melting in many upper regions. In the Upper Rhine some of the 
retention polders along the Rhine were active at the first time after construction.  

In order to assess the effect of polder system on the Upper Rhine into flood 
regulation, the model is simulated with the case of all polders situated on the Upper 
Rhine from Maxau (Rhine km-362,20) to Bingen (Rhine km-528,40) and for the flood 
situation of February 1999. 

In Figure 5.8 to Figure 5.13 the results obtained from simulation run can be seen. It 
is very clear that with the effects of the polders from Upper Rhine, the water levels 
at the gauging stations were reduced up to 20 cm at the peak water level. The time 
where the peak water level appeared were also up to 12 hours later in comparison 
with the case simulation without polders. They also show that the impact of the 
polder system on the Upper Rhine is not only acting for the local area but also for 
the region downstream of the area. 

The water level during the rising limb curves was always lower than the water level 
in case without polders because when the water level on the Rhine was going up to 
a certain level (e.g. above summer dike crest), the filling of the polders is beginning. 
The opposite can be seen during the falling limb because when the water level on 
the Rhine is going down to a certain level (e.g. smaller than the water level in the 
polder), the water from polder is beginning to come back to the Rhine. These results 
show the effect of polder systems more clear. 
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In Table 5.4 the summary of the effectiveness of polders from Upper Rhine on flood 
regulation is given.    
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Figure 5.8 Water level comparison with and without polder, Worms 
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Figure 5.9 Water level comparison with and without polder, Mainz 
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Figure 5.10 Water level comparison with and without polder, Kaub 
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Figure 5.11 Water level comparison with and without polder, Bonn 
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Figure 5.12 Water level comparison with and without polder, Cologne 
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Figure 5.13 Water level comparison with and without polder, Düsseldorf 
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Gauge Worms Kaub Mainz Bonn Cologne Düsseldorf 

∆H (m) 0,18 0,18 0,14 0,20 0,20 0,18 

∆T (hour) 7,25 9,75 9,25 10,25 11,75 11,50 

* Including the polders: Kulturwehr Kehl, Polder Altenheim I+II and Manöver up stream of 
Iffezheim 

Table 5.4 The impact of polders on the Upper Rhine*, flood event February 1999 
 
 
5.3.2 Conclusions and remarks 
 

Polder systems in the Upper Rhine can help to reduce the peak water level up to 20 
cm at the downstream of the gauging stations. 

The time where the peak water level appeared is up to 12 hours later in comparison 
with the case model simulation without polder. 

Due to the operation of the polders, the water level at the rising limb was always 
lower than in the case without polders and the opposite sight is shown at the falling 
limb.   

 

5.4 Impact of the types of the flood retention polders 
 

In order to assess the effect of the type of polder systems on flood regulation, the 
comparison between the three following cases were carried out: without polder, with 
flood polder and with summer polder. 

 

Flood polder means the polder acts as a storage basin connected to the river. It is 
thus assumed to fill up or empty without any time lag with respects to the river water 
level. There are two conditions imposed at the end point i and (i+1) of the reach: 

 

a. Water level at both points is assumed equal: yi = yi+1 

The continuity condition requires that: 

 Qi = Qi+1 +Q  p
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 Q p  = s
t
yi
∂
∂           if  y i >   y  f

 Q p = 0                if  y i <   y   f

With :  y  : elevation of the bottom of the basin entrance f

          S : free surface of the basin )( yi

b. The free surface is assumed horizontal and water elevation in the basin is equal 

    to the water stage in the river. 

 yreservoir = yi = yi+1 

 

Summer polder:  The polder connected with the river by a fix crested weir is called 
summer polder. Figure 5.14 shows the schematic sketch of a polder controlled with 
summer dyke.  

The calculation of the flow characteristics as for a rectangular weir is based               
on the classical equations: 

                     Flooded:            Q = µB 2g (yus - yweir) (yus - yds)½                   (4) 

  Free-flowing:     Q =   µB 2g (yus - yweir)3/2                                (5) 

 

With: 

  µ =   discharge coefficient 

  B =   weir width 

  yus       =   upstream water level 

  yds       =   downstream water level 

  yweir     =   weir crest elevation 

 
 
Those equations are satisfied at the end of each time step. 
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The flood case occurs if: 

 

 Yds – yw  <  2
3

(yus – yw)  

 

There is no discharge if yus <  yw. The free flowing case occurs if none of the above 
conditions is satisfied. 

 
 

 

BHW

HW

MW

River
Flood Plain Polder

Main Dyke

Summer Dyke

 
 

Figure 5.14 Controlled polder with Summer dyke 
 

The above formulation assumes that the weir discharge is not dependent on the 
approach and exit velocities. The upstream velocity is neglected and there is no 
head loss between the upstream section and the weir crest. This is valid if velocities 
are lower than some 1 m/s. 

In the flooded case, it is assumed that the kinetic energy between the weir crest and 
the downstream section is totally dissipated and that the water level is the same at 
the weir crest location and downstream. 
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Figure 5.15 The weir cross section of the summer polder  

 
 

Figure 5.15 shows the computed weir cross section. It is a suggest taken from pre-
studying the Lower Rhine with respect to the natural and ecological conditions (Minh 
Thu, 1996). Based on it, the crest of the weir should be lower than the permitted 
flood water level BHW (m+NN) by 2 meters and it should have 10 meters with the 
elevation equal to the elevation of the polder. With this design, it allows the water to 
come into the polders as soon as it is over Polder elevation. It gives more possibility 
for recreating the alluvial areas which are an ecological entity with the Rhine river. 

 

The computation was carried out with the flood event of December 1993 for the 
Lower Rhine with eleven polders as shown in Table 5.5. Figure 5.16  shows the 
result obtained from simulation. It is very clear that with the construction of a weir 
connected with the polder (summer polder SP), the impact of the polder system on 
flood regulation is better than in the case of flood polders (without construction of a 
flood polder FP) and of course with the case without polder (OP).  
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Polder Rhine-km Area (km²) Approximately 
Elevation 
(m+NN) 

BHW (m+NN) 

Niederkassel 644,0-665,0 0,35 47,50 51,69 

Koeln-Langel 669,2-672,5 5,00 46,00 49,98 

Worringer Bruch 705,4-708,5 6,00 39,00 42,99 

Monheim 708,2-713,2 2,00 38,00 42,35 

Itter-Himmelgeist 723,8-729,0 0,60 35,00 39,57 

Illvericher Bruch 750,5-753,5 6,00 30,00 34,23 

Muendelheim 767,0-767,5 1,50 28,00 31,54 

Orsoyer Land 797,5-803,3 2,20 18,50 25,62 

Bislicher Insel 819,0-823,2         11,00 18,50 22,59 

Lohrwardt 827,0-834,8 5,00 17,50 21,15 

Bylerward 845,0-850,0 7,20 16,00 19,16 

 
 

Table 5.5 Some characteristics of 11 polders on the Lower Rhine 
 
Further investigation has been done with fourteen flood waves (see Table 5.6) and 
for the cases without polder, with flood polder (approximately 96.85 km² - the polder 
Salmorth was not yet taken into account, see Table 2.5) and with 11 summer 
polders (approximately 46.85 km² - Table 5.5).  

 
The results are shown in Table 5.6. For the flood of December 1993, the water level 
at the model outflow is approximately 5 cm lower than in comparison with the case 
flood polder and about 12 cm lower than with the case summer polder. The 
discharge is reduced approximately 160 m³/s in case of flood polder and 
approximately 290 m³/s in case of summer polder. 
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Figure 5.16 The effect of flood controlled structure 
 

 
 

 
Waves 

 
Q  max

(m³/s) 

  
Q outflow   

  
 

 
H   outflow

 

  OP FP TP OP FP TP 
D/J 1925/26 10595 10369 10191 10074 17,39 17.31 17.26 
Dec 1993 10800 10594 10428 10308 17.49 17.42 17.37 
Apr 1983 9372 9182 9069 9041 16.88 16.83 16.81 
Apr 1983-1 5875 5763 5737 5760 15.42 15.41 15.42 
Apr 1983-10 8892 8714 8616 8614 16.67 16.67 16.63 
Apr 1983-100 11709 11471 11330 11284 17.87 17.81 17.79 
M/J 1983 9670 9501 9391 9321 17.01 16.97 16.94 
M/J 1983-1 6049 5967 5931 5964 15.50 15.49 15.50 
M/J 1983-10 9175 9016 8916 8889 16.80 16.76 16.75 
M/J 1983-100 12082 11869 11731 11678 18.04 17.98 17.95 
M/A 1988 9415 9299 9227 9158 16.93 16.90 16.86 
M/A 1988-1 5902 5836 5819 5835 15.45 15.44 15.45 
M/A 1988-10 8933 8824 8760 8834 16.72 16.69 16.67 
M/A 1988-100 11764 11616 11527 11534 17.93 17.89 17.89 

 
 

Table 5.6 The result of computation with HQ – waves 
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Table 5.6 continue: 

  OP: Without retention measures (polders) 

  FP: The polders act as flood storage volume only (without control 
                   structures 

  TP: Summer polders (with control structures) 

 
  
 
5.5 Conclusions and remarks  
 
 
The polder with control measures has better effects on flood regulation in 
comparison with the polder without once. 

Polder systems in the Upper Rhine may help to reduce the peak of water level 
locally and also down stream of the gauging stations by up to 20 cm. The time 
where the peak water level appears is up to 12 hours later in comparison with the 
model simulation without polders on the flood event of February 1999. 

Polder systems on the Lower Rhine may help to reduce the flood peak of the flood 
event December 1993 up to 300 m³/s, and the delay time when the peak discharge 
appears by up to 10 hours in comparison with the case without polder system. 
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6   Polder Grietherbusch 
 
 
 
Besides the use for studying the effects of flood regulation measures along the river, 
the HN-Model of the river Rhine is also used for investigating the effects of the 
operation of the polders themselves along the river where necessary.  

Following the contract with the Ministry of Environment, Regional Planning and 
Agriculture of State North Rhine-Westphalia (MURL), study of Polder Grietherbusch 
on the Lower Rhine is selected as one example.  

 
 
6.1 Approach 
 
 
Polder Grietherbusch is situated on the right bank of the Rhine between Rhine km 
842.50 and Rhine km 847.50. The polder extends in maximum about 4 km from the 
Rhine bank towards inland and consists of three single polders (Lower Polder, 
Upper Polder and Grietherbuscher Polder) which are separated by overflow dams 
and over flowing reach (e.g. passage DN 500) among themselves and to the Rhine. 
Into these overflow dams the hydraulic connection links (regulated and unregulated 
overflow weirs, sluices,etc.) are integrated. Towards the inland the polder is 
separated by the main dyke, which runs mostly along the Bienener Old Rhine.  

The total area of the polder amounts to approx. 1,200 ha. Figure 6.1 shows the 
layout of the entire polder area and the adjacent Rhine. The polder surface is 
predominantly used for grassland agriculture and there is a set of farms which are  
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Figure 6.1 Layout plan of polder Grietherbusch 
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settled on flood free ground. The area is generally flat and scarcely structured, apart 
from the Old-Rhine arms opened for gravel pits. 

 
There are two old Rhine arms going through the polder, the Bienener Old Rhine and 
the Grietherorter Old Rhine which is situated next to the river. While the 
Grietherorter Old Rhine, which is situated outside of the overflow dam is heavily 
silted up both in its underflow and especially in its head flow and has no surface 
water connection to the Rhine. In addition, because it is situated higher than the 
water level of the Rhine at mean discharge, a flow is generally not given. 

The polder is equipped with summer-dykes which separate it from the Rhine and 
represent the boundaries of the partial polders among themselves. The contour 
lines of the summer-dykes are not uniform, so that the crests of the lower situated 
dykes are overtopped earlier in the case of flood than those of the higher situated 
dams. Various control structures are integrated into the summer-dykes such as 
sluices with sliding gates, stop logs or stem gates or also tube passages.  

Based on the already available investigations for the HN-Model of the river Rhine, 
an optimum flooding strategy as well as the necessary structural measures for 
polder Grietherbusch are developed. The target was to combine a protection of the 
polder surface during smaller floods with an optimal retention effect. At the same 
time the ecology of the area should be preserved or improved where it was possible. 
The work was executed in close co-operation with the Schulze Engineer GmbH, 
Düsseldorf. 

 
 
6.2 Methodology 
 

For the simulation and optimisation of the in and outflow conditions, an exact 
knowledge of the water-surface levels was necessary for the polder Grietherbusch. 
One part of the HN-Model of the river Rhine was used for investigating these 
information. Different elements for the description of the topology of the respective 
system can be built on the model using CARIMA aspects. There are one-
dimensional river sections which connect nodal points (transverse profiles) and 
quasi two-dimensional elements which are composed of connected cells, as well as 
retention areas, which are not flown through and whose water level communicates 
directly with the river. Quasi 2-D currents are simulated as (1-D) currents through 
so-called cells which can be connected among themselves. Contrary to many other 
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processes both the local and the convective accelerations are considered, so that 
this procedure can be used also with temporally fast variable processes (e.g. waves 
due to hydro power station operation).  

Since with the available HN-model Rhine which has been used, the profile distances 
of 1000 m were too large for the necessary accuracy, these had to be compressed 
to 100 m. The river-sections necessary for these calculations extend from approx. 
Rhine-km 835 to Rhine-km 852. First of all, stationary water-level calculations were 
executed for different discharges. With the help of this, water level and discharge 
relations could be determined for practically every point of the examined Rhine 
section. On the basis of these data and the comparison with the contour lines of the 
summer-dyke the boundary conditions for the polder inflow could be determined.  

After creation of a model containing the Rhine section, the flood plain and the 
polders, the unsteady calculations were executed, with which the intake and 
discharge of the polder, the distribution between the three partial-polders as well as 
the respective water levels as a function of the time could be obtained. From this, 
the necessary improvement of the management of the polder could be determined, 
which resulted in the necessary modifications of the structures.  

 
 

6.3 Model calibration 
 
6.3.1 Construction of the model 
 

For the available investigations the following documents were used: 

 

° HN-Model Rhine from km-835 to km-852 

° “Deutsche Grundkarte” M 1:5,000  

° Rhine transverse profiles km 840.000 – 850.000 (100 meter distance)  

°Summer-dykes system including constructions within the area of the polders  

° Flood lengthen profile of the Lower Rhine M 1:100,000 / 50  

° “Deutsches Gewässerkundliches Jahrbuch“ (1993) 
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Figure 6.2 The model construction of the polder Grietherbusch 
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The topology of the model of the polder Grietherbusch used for the available 
calculations is represented in Fig. 6.2. The system covers primarily the Rhine 
between km 835.000 and km 850.000, whereby within the particularly important 
range between km 840 and km 850 the transverse profiles are integrated with a 
distance of 100 m between them and the transverse profiles of the others are only 
considered every 1000 m. The Grietherorter Old Rhine is connected to the Rhine at  
km 844 and km 847 while the flood plain which is situated between them is defined 
as cell. The three polders (Grietherbuscher Polder, Lower Polder and Upper Polder) 
are likewise defined as cells, whereby the Lower Polder is connected to the 
Grietherort Old Rhine with the Grietherbusch sluice and the Flooding sluice and is 
furthermore connected to the Upper Polder via the bridge on the road K19, where 
separated the Upper polder and the Lower polder. The summer-dykes surrounding 
the polders are defined as fixed weirs with overflow. The further items as the sports 
port at km 842 and the quarry pond at km 844 are attached to the Rhine.  

 

The substantial polders are summarized in the Table 6.1.  

 
 

Polder Area* (km²) Volume* (106 m³) Middle elevation 
(m+NN) 

Grietherbuscher 1,76 3,60 15,60 

Lower Polder 3,89 11,80 14,60 

Upper Polder 5,19 13,70 16,00 

*  related with the maximum water level of the polder  

 
Table 6.1 Areas and volume of the polder Grietherbusch 

 
 
The development of polder volume following with the water level can be seen in Fig. 
6.3. The data was obtained from State Environment Agency Krefeld, Nordrhein-
Westfalen (Staatliches Umweltamt STUA Krefeld). 
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Figure 6.3 Polder volume, Grietherbusch  
 
 

Generally the summer dykes existing in the area do not have constant crest 
elevations. Therefore middle decisive length and elevations were determined for the 
hydraulically effective overflow reaches which are summarized in Table 6.2. 

 
 

Construction Length (m) Crest (m+NN) 

Old Rhine–Lower Polder   600 17.30 

Grietherbuscher-Lower Polder 2000 17.20 

Lower –Upper Polder (K-19)  500 17.60 

Old Rhine-Grietherbuscher         700;500          17.50; 17.55 

Grietherbuscher-Upper Polder  500 17.30 

Rhine-Upper Polder (K-18)  300 17.90 
 

 
Table 6.2 Characteristic of some overflow reaches  

 

On the available model only the most important structures were considered. These 
are summarized with the hydraulically relevant dimensions in the following table 
(Table 6.3). 
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Construction Width (m) High (m) Elevation (m+NN) 

Grietherorter Sluice 4.04 3.00 11.67 

Weir DN 500 0.50 0.50 13.30 

Flood Sluice 80.20 - 16.00 

Bridge 5.00 5.10 11.90 
 

 
Table 6.3 Some construction characteristics  

 
 
6.3.2 Boundary conditions 
 

The flood of December 1993 was taken as the upstream boundary condition of the 
model after an agreement with Public Environment Agency Krefeld (Staatliches 
Umweltamt STUA Krefeld). For the steady flow calibration the water level along the 
Rhine with Q = 10.800 m³/s was used. The stage discharges at gauging station 
Emmerich (Rhine km-851,90) were used as downstream boundary condition (see 
Table 6.4). 

 

Q (m³/s) 720 1001 1801 2553 3200 4061 

H (m+NN) 8,28 8,96 10,37 11,46 12,30 13,26 

Q (m³/s) 4761 5191 6000 6805 7507 8295 

H (m+NN) 13,97 14,37 15,02 15,57 15,94 16,34 

Q (m³/s) 9009 9991 10824 11678   

H (m+NN) 16,67 17,08 17,40 17,71   
 

 
Table 6.4 The stage discharges, Emmerich 

 
 
 6.3.3 Model calibration 
 

On the previous calibration, the HN-Model Rhine has been calibrated with very good 
agreement between computed and measured water level.  In this simulation, the 
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profiles have been chosen for every 100 m length that is why the calibration should 
be done again.  

In the present case the observed water levels of the flood from December 1993 (Q = 
approx. 10.800 m³/s) was considered as the calibration water level, since also the 
further calculations are based on this event. In Fig. 6.4 the Rhine water levels 
between km 835 and km 852, calculated with a steady discharge of 10.800 m³/s, 
were confronted with the ones observed in nature. For the calculation Strickler 
coefficients were set as before both for the river bed and for the flood plain (see 
Table 3.3 ) . As can be seen, with this combination – incidentally already used with 
comparable investigations for the river Rhine - the measured water level is quite well 
achieved. The partially existing deviations are about 10 cm. In the nature 
observations of this difference can already be determined from the water levels on 
the right and the left bank of the Rhine (about 20 cm). 

  

'

'

' ' ' ' ' ' ' '
' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' '

840 842 844 846 848 850

Rhine (Km)

17,00

17,50

18,00

18,50

19,00

19,50
H (m+NN)

Measured
Computed

'

 
          
            

Figure 6.4 Model calibration, Grietherbusch – 1993 flood event 
 
 

 6.4 Model simulation – Variation 33 
 

For the unsteady calculations the flood wave from December 1993 was taken as a 
basis. This wave is characterized by the peak discharge of approx. 10.800 m³/s with 
the hydrograph represented in Fig. 6.4. As can be taken further from Fig. 6.4, at 
Rhine km 847 a peak water level of approx. 17,93 m+NN corresponds to the chosen 
discharge.  

In the following it is assumed that, at the beginning the Upper Polder and the Lower 
Polder indicate a pre-filling at the water level position of 13.20 m+NN, and Polder 
Grietherbusch with the level of 13,80 m+NN. After pre-filling the control devices 
(Grietherbuscher sluice, Flood sluice and passage DN 500) are closed, until the 
wave vertex is exceeded and the emptying of the polder begins. 
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Target of the flood retention measures is in general to reduce the peak of the flood 
wave as far as possible. That means the max. supply to a polder should occur at the 
time of the peak of the wave. In case of a polder flooded by over flowing it follows 
that the polder may be filled at this time only by rushing over dike when the wave 
vertex occurs (see Fig. 6.6). 
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Figure 6.5 HQ – December 1993, Rhine km-847  

 

The amount of discharge q per 1m length is calculated by formula 6.1  

 

 
 

 
Figure 6.6 Schematisation of the water filling into polder over an overflowing reach 
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   q = 2
3

2
3
2 hgµ                                                                          (6.1) 

and the volume V of the flow into the polder per 1 m weir length is 

 dV = dtthg
t

t

2
32

1

)(2
3
2µ∫                                                                 (6.2) 

 Where   

         µ :  Overflow coefficient 

 g:  Gravity coefficient  

  t1: Time at beginning of polder filling   

   t2: Time at which the peak discharge occurs 

 
If the maximum supply occurs with the wave vertex, the water level in the polder 
may cross the crest of the overflow dam but only insignificantly. That means, up to 
this point the volume of water flows into polder has to correspond with the existing 
volumes between the crest of overflow dam and polder’s bottom. Therefore the 
goals must be, the overflow dams and other control structures should be equip for 
regulating the inflow in such away that the conditions are complied with the design 
wave. It is clear that a complete filling of the polders up to the  vertex level of the 
water level in Rhine for this case is not possible.  

 
 6.4.1 Variation 33 
 

After many different simulation tests, a remark suggestion was finally compiled, 
which should consider the following criteria:  

• Beginning of the filling discharge into polders with a Rhine discharge of approx. 
10.000 m³/s  

• Beginning of the filling in the order Lower polder - Upper polder and 
Grietherbuscher Polder  

• Achievement of a clear discharge reduction within the area of the wave vertex  

• Use if possible the entire potential  volume for the retention  
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• Avoidance of harmful flow rates within the polder  

In order to achieve these above conditions, the following measures for the 
overflowing dams were made:  

• Design of the overflowing dams between Old Rhine and Grietherbuscher  Polder 
at a critical Rhine discharge of approx. 10.000 m³/s  

• Design of the overflowing dams between Old Rhine and Lower  Polder at a critical 
Rhine discharge of approx. 10.200 m³/s  

• Extension of the overflowing dams between Rhine floodplain and Upper Polder 
and vice versa at a critical Rhine discharge of approx. 10.400 m³/s  

• The Overflowing dams between the polder are maintained unchanged. 

 
After investigation of some different variations, the variation 33 finally resulted in the 
best compromise regarding the above demands. The distribution of the assumed 
crest of the summer dike for the remark suggestion (variation 33) are represented in 
Fig. 6.7.  

Here should be noted that the HN - Model Rhine only consider on the horizontal 
crested weirs, so that the certain simplifications were necessary. In the 
computations, the inclination parallel to the water level of the Rhine should be taken 
into account. For the variation 33, the assuming characteristic of the overflowing 
dams are  summarized in following table (Table 6.5). 

 
  

Overflowing dam Length (m) Crest (m+NN) 
Old Rhine–Lower Polder 600 17.60 
Grietherbuscher-Lower Polder 2000 17.20 
Lower –Upper Polder (K-19) 500 17.60 
Old Rhine-Grietherbuscher 700,500 17.80, 17.85 
Grietherbuscher-Upper Polder 500 17.30 
Rhine-Upper Polder (K-18) 300, 700 18.65, 18.20 
 

 
Table 6.5 Some data for an overflowing dams, Polder Grietherbusch  
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Figure 6.7 Water level and summer dike discharge, variation 33 

 
 

Figure 6.8 represents the results of the calculations for the variation 33, and one can 
see from Figure 6.8, a reduction of the Rhine discharge over the entire vertex area 
of the HQ wave taken place, which leads to an amount of approx. 200m³/s at the 
point in time T = 120 h. 

 
Additionally the filling takes place as desired from the Lower polder (Figure 6.9). The 
filling begins with the Lower polder at the point T = 95 h with a Rhine discharge of 
approx. 10000 m³/s and a starting filling of 13.20 m+NN (Figure 6.10) over the 
overflow dam at Rhine km 846.5.  

The max. water level is achieved at the point T = 140 h at the elevation 17,76 
m+NN, from which for the Lower polder a retention Volume of approx. 9 millions m3 
may be achieved (see Figure 6.3).  
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Figure 6.8 Model out flow comparison, variation 33 
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Figure 6.9 Filling discharge at Lower polder , variation 33 
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Figure 6.10 Polder water level, variation 33 
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Figure 6.11 Filling discharge, Upper polder, variation 33 
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Figure 6.12 Filling discharge, Grietherbusch polder, variation 33 

 

The filling discharge into the polders begins from Lower polder over the summer 
dike at the Rhine km-846,5, the time T = approx. 95 h (Fig. 6.10), the Rhine 
discharge Q = 10.000 m³/s and the initial water level of the polder of 13.20 (m+NN). 
The maximum water level of the polder appears at the time T = approx. 140 h with 
the level of 17.76 (m+NN), see Fig.6.10, with the volume of approx. 9 millions m³ 
(see Fig. 6.2).   

The following is the filling discharge into the Upper polder. At the beginning, the 
water flows under the bridge at the road K19 (that run between the Lower polder 
and Upper polder), the time T = approx. 95 h, the Rhine discharge Q = approx. 
10.000 m³/s and the initial water level of 13.20 (m+NN). At the time T = approx. 110 
h and the Rhine discharge of 10.400 m³/s, the filling discharge begins over the 
summer dike at the Rhine km-840 and km-844. At this time the water level in the 
polder is approx. 15.70 (m+NN). The maximum polder water level reaches 17.76 
(m+NN) at the time T = approx. 140 h with the volume of approx. 11.4 millions m³. 

 
The filling of Grietherbuscher polder begins over the summer dike from the Rhine 
km-845 to km-846, at the time T = approx. 100 h and a starting filling of the polder 
water level of 13.80 (m+NN) and the Rhine discharge of approx. 10.200 m³/s. When 
the water level in the Lower polder reaches the level of 17.20 (m+NN), approx. at 
the time T = 120 h, the filling discharge from Lower polder into Grietherbuscher 
polder over the summer dike begins. The maximum polder water level reaches 
17.76 (m+NN) at the time T = approx. 140 h with the volume of approx. 3.2 millions 
m³. 

The total retention volume of the three polders amount therefore for the variation 33 
with consideration of the respective pre-filling approx. 24 millions m³.  
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Figure 6.13 Discharge comparison, variation 33 

 
 

Fig. 6.13 indicates the discharges at the downstream of polders Grietherbusch at 
the Rhine km 848 in the vertex area of the flood wave of December 1993 for the 
most important examined variations. Herein the radically differences are 
recognizable clearly in the wave process with different flooding strategies.  

In the case of early flow (variation 0, variation 31) the discharge in the front part of 
the wave vertex is strongly reduced (Figure 6.13) while the actual vertex discharge 
is reduced only little, since the polder is filled at this time already and works 
therefore only as tide flood polder. This type of the flow effectuation has no strong 
reduction of the discharge point, leads however after experiences with other 
calculations to a relatively strong delay of the wave propagation. 

In the case of relatively late flow (variation 2, variation 33) it is possible to reduce the 
discharge over the entire vertex area so that the actual flood peak can be clearly 
reduced. But the delay effect is smaller in this case, according to experiences. 
Additionally, the usable retention volume is slightly smaller, since the polder may be 
not completely filled at the wave of the flood peak. However the advantages of an 
effective reduction of the discharge within the entire vertex area are very important 
and in addition, the later flow affects the use of the polder area opportune(Goebel,  
1997) .  
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Table 6.6 is summery results obtained from the simulations. 

 
 
No. Points Construction Rhine-

km 
Width 
(m) 

Heigth 
(m) 

Overflow 
begin 
(m³/s) 

Direction qmax (l/sm)

1  

RA37-
CA31 

OldRhine-Lower 
Polder 

846,50  600 17,60 10.000 RA37→CA31 

RA37←CA31 

246 

  30 

2 RA27-
CA22 

OldRhine-
Grietherbuscher P. 

846,00  700 17,80 10.200 RA27→CA22   38 

3 RA18-
CA22 

OldRhine-
Grietherbuscher P. 

845,30  500 17,85 10.200 RA18→CA22   10 

4 C844-
CA15 

Rhine-Upper Polder 844,50  300 18,20 10.400 C844→CA15  0,8 

5 N840-
CA15 

Rhine-Upper Polder 840,00  700 18,65 10.400 N840→CA15   34 

6 CA31-
CA15 

Lower P.-Upper P. 845,00  500 17,60  CA31→CA15 

CA31←CA15 

  31 

  11 

7 CA31-
CA22 

LowerP.-
Grietherbuscher P. 

845,00-
846,50 

2.000 17,20  CA31→CA22 

CA31←CA22 

 19 

   4 

8 CA15-
CA22 

UpperP.-
Grietherbuscher P. 

845,00   500 17,30  CA15→CA22 

CA15←CA22 

10 

30 

 
 

Table 6.6 Some characteristics of flow through the connection construction of polder 
Grietherbusch  
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6.4.2 Conclusions and remarks  

 

Based on the above investigations, an optimal flow strategy as well as the 
necessary measures for polder Grietherbusch have been compiled in the available 
study for the polder. The objective was to connect here as large as possible the 
protection of the polder surfaces with smaller flood event with an optimal retention 
effect. At the same time, the ecological priority of the area should be reserved or to 
be increased where possible.  

After discussion with the client (STUA Krefeld), a remark suggestion was finally 
compiled, which considers the following criteria:  

• Beginning of the filling at a Rhine discharge of approx. 10000 m³/s  

• Beginning of filling in the order Lower - Upper - Grietherbuscher polder  

• Achievement of a clear discharge reduction within the area of the wave vertex  

• Use if possible the entire potential volume for the retention  

• Avoidance of harmful flow rates within the polder  
 
Around these targets regarding the overflowing reach, the following measures are 
suggested:  

• Design of the overflowing reach between Old Rhine and Lower polder for a critical 
Rhine discharge of approx. 10.000 m³/s  

• Design of an overflowing reach between Old Rhine and Grietherbuscher polder for 
a critical Rhine discharge of approx. 10.200 m³/s  

• Extension the overflowing reach between Rhine floodplain and Upper polder and 
design at a critical Rhine discharge of approx. 10.400 m³/s  

• The Overflowing reaches between the polders and among themselves are 
maintained unchanged.  
 
In such a way one obtains relatively flow delay and it is possible in contrast to the 
present status to reduce the discharge over the entire vertex area so that the actual 
flood peak is clearly reduced. However the usable retention volume is slightly 
smaller than in the present status, since the polder may be not completely filled with 
the run of the flood wave. The maximum water level is achieved at the point in time 
T = approx. 140 h and at the level of 17,76 m+NN, from which the total retention 
volume of the three polders for the variation 33, with consideration of the respective 
pre-filling, is about 24,6 millions m3.  
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7     Conclusions and  Remarks 
 
 
 
7.1 Conclusions 
 
A hydrodynamic – numerical model of the river Rhine (HN-Model Rhine) has been 
developed that simulates the 1993 flood on the Rhine River from Maxau to Lobith 
with good agreement. Calibration of the model was carried out and computed water 
levels were within the target error of plus or minus 0,10 m in steady flow simulation. 
In the unsteady flow simulation, the peak discharges were never exceeding 300 
m³/s and the time when the peak discharge appeared at the gauging stations never 
greater than 6 hours. 
 
The model was verified using data from the floods of 1988 and 1999. With those 
simulations the model also obtained very satisfactory water levels. The differences 
between computed and measured water levels were always smaller than 0,10 m in 
both flood event simulations and the time when the peak water levels appeared 
were almost the same. 
 
The model required accurate estimation of un-gauged inflows from tributaries for 
both calibration and verification simulation in order to obtain the exactly  delay times 
from the gauging station to the confluences on the Rhine River. 
 
The effects of floodplain restoration measures along the Rhine with respect to flood 
regulation in case of flood event 1988 were small while during this time not all the 
floodplain restoration measures were in implementation and not all the existing 
,,polders’’ in operation. The effects were clearer downstream of the river reach. 
 
The effects of floodplain restoration measures on the Lower Rhine showed a higher 
consequence downstream of the river. In case of flood event 1993, at the gauge 
Emmerich the computations resulted in a reduction of 300 m³/s discharge and the 
time when the peak discharge appeared was approximately 12 hours later.    
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In case of flood event 1999 with the activation of the ,,polder system’’ on the Upper 
Rhine, the water levels on the Lower Rhine at the gauging stations were reduced up 
to 20 cm and the time delay were up to 12 hours. 
 
The effects of polders on flood regulation have clearly increased in case of the 
polders with flood control devices (e.g. flood controlled gates, etc.).   
 
Besides using for the investigation the whole river system with imposed changes, 
the HN-Model Rhine also can be used for studying separate reaches of the river for 
many purposes. For example, the studying of the effects of polders themselves with 
different flowing strategies along the river into flood regulation.  
 
The results obtained from the model can be used for different engineering works. 
They are also the boundary conditions for 2-D,  3-D or physical models. And the 
water levels obtained from simulation run are very important data for the application 
of GIS on water resources management. 
 
 
7.2 Remarks 
 
Knowing that the river will respond to any human intervention, the fundamental 
principle applied is that modification at one point must not be allowed to create a 
problem elsewhere. It is important that action undertaken in the rivers´ upper 
reaches is coordinated with that undertaken in the lower reaches. Therefore, to 
supplement the landscape planning of the river Rhine, a number of integrated 
studies of the river and its tributaries should be performed to identify which 
measures for increasing river capacity will be possible and necessary in the future 
and where such measures should be implemented. 
 
* HN-Model of the river Rhine is a simple river flow recommendation for the aims of 
management and restoration of floodplain ecosystem study.  
 
* HN-Model Rhine is an analysis of types of river restoration and of the roles they 
are playing in their implementation.  
 
* HN-Model Rhine contributes to the development of a scientific methodology for 
determining the flow characteristics for many engineering works.  
 
* HN-Model Rhine creates effective links between the scientific understanding of the 
functioning of flood plain areas (riparian ecosystems) and the institutional 
mechanisms by which river management for conservation and restoration occur. 
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