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Abstract 

The coupled RELAPS/PANBOX code has been developed for the analysis of postulated nuclear plant 
accidents which Iead to significant changes in core reactivity and power distribution. The simple point 
kinetics model in RELAPS is replaced with the core simulation program P ANBOX, by using a general 
interface routine for RELAP developed at Siemens. Instead of the simple point kinetics model, 
RELAPS/PANBOX now solves the time dependent, three-dimensional multigroup diffusion equations to 
simulate the reactor core. With the new code, transients in which local or asymmetric reactivity 
contributions are important can now be more accurately analyzed. In order to be able to identify such 
transients, the option has also been created to examine reactivity contributions from separate physical 
effects. In particular, the reactivity contribution of the redistribution of the neutron flux can now be 
calculated. When this contribution is relatively !arge, it is necessary to use a three-dimensional neutron 
kinetics model. 

The main goal of this work was the development of a dimensionally adaptive neutron kinetics algorithm, 
that automatically and adaptively switches between three-dimensional, one-dimensional, and point kinetics 
models. In order to develop this algorithm, it was first necessary to develop point- and one-dimensional 
models that were consistent with the three-dimensional model. The point kinetics model which was 
implemented was taken directly out of the literature. Perturbation theory is used to calculate the core 
reactivity more accurately, and is formulated using the nodal expansion method (NEM) solution of the 
three-dimensional flux. The continuous form of the one-dimensional model is, similar to the point kinetics 
model, derived from the factorization of the three-dimensional flux into a shape function and a one­
dimensional amplitude function. The three dimensional neutron diffusion equations are then integrated over 
the plane perpendicular to the reactor axis. The resulting one-dimensional differential equations are then 
discretized with the NEM. Correction factors, which resemble the well-known heterogeneity or 
discontinuity factors, are defined in order to hold the one-dimensional solution equivalent to the three­
dimensional solution. 

The three-dimensional and one-dimensional models, and also perturbation theory, are closely tied with the 
NEM solution. It is therefore necessary to discuss the theoretical foundations of the NEM. Therefore, the 
consistency of the NEM is proved, and stability criteria for the different kinetics models are developed. 

Criteria for activation of the different kinetics models are also derived. The criteria for switching from the 
three-dimensional to the one-dimensional model and from the one-dimensional to the point kinetics model 
are determined with the time variation of the shape function. The criteria are motivated from the fact that 
the one-dimensional and point kinetics models are derived from the three-dimensional model using the 
adiabatic quasi-static approximation. The time variation of the shape functions can not be accurately 
determined during time periods in which a lower dimensional models is active. For this reason, the 
reactivation of the three-dimensional model is triggered by different complementary criteria. One criterion 
is determined from the extrapolation of the last known time derivative of the shape function. An error 
estimation procedure, adapted from those used for finite element methods for the NEM, is also derived. 
Additional criteria are developed which are based on the reactivity and absolute changes in the reactivity. 

Example calculations have shown that the adaptive algorithm produces satisfactorily accurate results, with 
from 30% to 70% less computation time then reference cases calculated with only a three-dimensional 
model. The transients which were used as examples were all characterized by a relatively large 
redistribution of the neutron flux. The dimensionally adaptive algorithm would likely use even less 
computation time for transients with less flux redistribution. The results generated by the adaptive 
algorithm were all slightly shifted in time in comparison to the reference calculations. If these shifts in time 
are tolerable, then the adaptive algorithm can be considered to deliver very accurate results. 



Ein effizientes und in den räumlichen Dimensionen adaptives 
Verfahren für neutronenkinetische Berechnungen im Rahmen 
von Reaktorsicherheitsanalysen 
Zusammenfassung 

Das gekoppelte Rechenprogramm RELAPS/PANBOX ist ftir die Analyse von postulierten Störfällen in 
Kernkraftwerken entwickelt worden, die zu signifikanten Reaktivitätsänderungen und Leistungsumvertei­
lungen im Reaktorkern fuhren. Über eine allgemeine von Siemens ftir RELAPS entwickelte Schnittstelle ist 
im Rahmen dieser Arbeit das einfache punktkinetische Modell von RELAPS durch den Kernreaktorsimula­
tor PANBOX ersetzt worden. Statt des einfachen punktkinetischen Modells löst jetzt RELAPS/PANBOX 
die zeitabhängige dreidimensionale Mehrgruppen-Neutronendiffusionsgleichung zur Simulation des Reak­
torkerns. Mit diesem Rechenprogramm können jetzt Störfälle, in denen lokale oder asymmetrische Reakti­
vitätsbeiträge wichtig sind, genauer analysiert werden. Um solche Störfälle identifizieren zu können, ist 
auch die Möglichkeit geschaffen worden, einzelne Komponenten der Reaktivität zu untersuchen. Insbeson­
dere kann der Reaktivitätsbeitrag der Umverteilung des Neutronenflusses berechnet werden. Wenn dieser 
Beitrag relativ groß ist, dann ist ein dreidimensionales neutronenkinetisches Modell notwendig. 

Das Hauptziel dieser Arbeit war die Entwicklung eines dimensional-adaptiven Kernmodells, das zwischen 
dreidimensionalen, eindimensionalen und punktkinetischen Modellen automatisch umschalten kann. Um 
das Verfahren zu realisieren, mußten zuerst punkt- und eindimensionale neutronenkinetische Modelle ent­
wickelt werden, die mit der dreidimensionalen Lösung übereinstimmen. Die hier implementierte Version 
des punktkinetischen Modells konnte direkt aus der Literatur übernommen werden. Die Störungstheorie, die 
verwendet wird, um die Reaktivität genauer zu bestimmen, basiert auf der Lösung des dreidimensionalen 
Flusses mit der Nodalen Entwicklungs-Methode (NEM). Die stetige Form des eindimensionalen Modells 
ist, ähnlich wie beim punktkinetischen Modell, durch die Separation des dreidimensionalen Neutronflusses 
in eine Formfunktion und eine eindimensionale Amplitudenfunktion gewonnen worden. Die dreidimensio­
nalen neutronenkinetischen Diffusionsgleichungen werden dann über die Ebene senkrecht zur Reaktorachse 
integriert. Die resultierenden eindimensionalen stetigen Gleichungen werden weiter mit NEM diskretisiert. 
Korrekturfaktoren, die den schon bekannten Heterogenitäts- oder Diskontinuitätsfaktoren ähneln, werden 
definiert, um die eindimensionale Lösung äquivalent mit der dreidimensionalen Lösung zu halten. 

Dreidimensionale und eindimensionale Modelle und auch die Störungstheorie sind eng mit NEM verbun­
den. Es ist deshalb erforderlich, die theoretischen Grundlagen von NEM zu erörtern. Insbesondere wird die 
Konsistenz von NEM hier bewiesen; auch sind Stabilitätskriterien ftir die verschiedenen kinetischen Mo­
delle entwickelt worden. 

Kriterien zur Aktivierung der verschiedenen Modelle sind auch entwickelt worden. Die Kriterien zur Um­
schaltung vom dreidimensionalen auf das eindimensionale Modell bzw. vom eindimensionalen auf das 
punktkinetische Modell werden durch die Formfunktionen festgelegt. Die Kriterien ergeben sich daraus, daß 
eindimensionale und punktkinetische Modelle durch die quasi-statische adiabatische Näherung aus der 
dreidimensionalen Lösung abgeleitet worden sind. Während der Zeit, in der eine niedrigdimensionale Lö­
sung aktiviert ist, kann die Zeitableitung der entsprechenden Formfunktion nur ungenau bestimmt werden. 
Deshalb kann die Wiedereinschaltung des dreidimensionalen Modells von verschiedenen sich ergänzenden 
Kriterien ausgelöst werden. Ein Kriterium wird durch die Extrapolation der letzten bekannten Zeitableitung 
der Formfunktion bestimmt. Auch ist ein Fehlerschätzer entwickelt worden, der von der Finiten Elemente 
Methode auf NEM adaptiert wurde. Zusätzlich sind Kriterien entwickelt worden, die auf absoluten und re­
lativen Änderungen der Reaktivität beruhen. 

Beispielrechnungen haben gezeigt, daß das adaptive Verfahren ausreichend genaue Ergebnisse liefert, und 
zwar mit 30% bis zu 70% weniger Rechenzeit Die Störfälle, die als Beispiele benutzt worden sind, werden 
alle durch eine relativ große Umverteilung des Flusses charakterisiert. Für Störfälle mit geringerer Umver­
teilung werden die Rechenzeiten vermutlich noch kleiner. Die Ergebnisse, die mit Hilfe des adaptiven Ver­
fahrens gewonnen werden, werden im Vergleich mit dreidimensionalen Referenzrechnungen meist zeitlich 
etwas verschoben. Sind diese Verschiebungen tolerierbar, können die Ergebnisse des adaptiven Verfahrens 
als sehr genau betrachtet werden. 

ii 
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111. Notation 
Lowercase Roman 

afgu' a~u' a}gu' a4gu - NEM flux expansion coefficients, for group g, direction u, and node 

m 

a'(}- the dimension of the node with index m, parallel to the u axis, u E {x, y, z, ~, rJ, r;} 

d;v d';R_- heterogeneity ('discontinuity') factors for node m, group g 

eg - absolute error in the flux 

t;r. t;'R- correction factors to force equivalence between 1-D and 3-D NEM for node of 

index m, group g 

J;i- 3-D model face averaged negative partial current of group g, on the nodal face e':J 
J:Ui- 3-D model face averaged positive partial current of group g, on the nodal face e:,. 
t- time 

r- position vector in 3-D space 

s; - eigenvalues of the matrix under discussion for the stability analysis 

v g - velocity for neutron group g 

x, y - Cartesian coordinates perpindicular to z 

z - axial coordinate 

Uppercase Roman 

A- matrix operator used for stability analysis 

A - combined neutron absorption and scattering operator, 
00 

AtjJ\r. E' f) 2 :E ,(j, E' t)tjJ ,\r, E' f) - I :E ,\r. E' ~ E' t)tjJ \r, E'' t)dE' 

0 

A0 - A for steady-state calculation 

Ag, Ag0- the multigroup form of A and A0 

B g - radial buckling coefficient for the axial kinetics model 

B, Bo, Bt - matrix operators used for the stability analysis 

C(At)- amplification matrix used for the stability analysis 

C;- precursor amplitude function for precursor group i 

C~- C; at time step j 
I 

CfK - precursor amplitude for the point kinetics equations 

Cfgu' C~gu' C~gu' C~gu - coefficients of the NEM outgoing partial current equation for the 

V 



3-D model, for group g, direction u, on the left side of the node (node index m is 

suppressed) 

cfgu' c~gu' c~gu• c~gu - as above, for right side of the node 

c lgV c2gb c3gV c 4gb c lgR• c2gR• c 3gR• c 4gR- coefficients of the NEM outgoing current 

equations for the 1-D model, see Appendix C. 

D - matrix operators used for the stability analysis 

D';- homogenized diffusion coefficient for the node of index m and energy group g 

E -energy 

F;
8

, - fission source operator for the node of index m, which gives the source of fission 

N, 

neutrons in group g from a flux ofneutrons in group g', F~, = "Lx{vii1; 
j=l 

G - matrix operator used for the stability analysis 

H- matrix operator used for the stability analysis 

I - the unit matrix 

liz, J~- continuous partial currents ofthe one-dimensional axial kinetics model 

J;_[, J:Z[- 1-D modelaveragenegative and positive partial currents of group g, on the left 

face of the node of index m 

Ti;m., Iizrm_ 1-D modelaveragenegative and positive partial currents of group g, on the right 

face of the node of index m 

L- neutron diffusion operator f4>(j, E, t) = V · D(J, E, t) VcjJ(J, E, t) 

L 0 - L for steady-state calculation 

L(At) 

N - matrix operator used in stability analysis 

Ng- envelope function or 'axial flux' of energy group g for 1-D model 

N';- the average of Ng for planem ofthe axial grid m E (1, ... ,Nz) in the 1-D NEM model 

N- number of nodes in the 3-D NEM discretization of S 

Na - number of energy groups 

N1 - number of neutron precursor groups 

N, - number of fissible isotopes in the core 

Nx - maximum number of nodes in the x direction 

Ny - maximum number of nodes in the y direction 

Nz - number of nodes in the z direction 

P - neutron amplitude function for the point kinetics equations 

pi- P at time step j 

vi 



P(At)- matrix operator used in stability analysis 
00 

N, f P- neutron production operator, Pf/J(j, E, t) = j~Xj(E) v~p. E', t>f/J(j, E', t)dE' 

P 0 - P for steady state calculation 

Q(At)- bounded matrix used in the stability analysis 

R - matrix operator used in stability analysis 

R - the space of real numbers 

S- the boundary of V 

T- total diffusion or transport operator T=P-A-L 
T 0 - T for steady-state calculation 

0 

T~n' T}Jb- user-requested minimum and maximum 1-D modelintegrationtime 

T~fn, T~- user-requested minimum and maximum PK model integration times 

W- weight function 

W g - weight function for energy group g 

wf- weight function for the precursor concentrations in the axiall-D model 

V- the domain of the neutron diffusion equation: the core and the reflector 

V m - an axial partition of V consisting of all the nodes Q in one axial plane, m E ( 1, ... , N.;) 

Lowercase Greek 

ß - total delayed neutron precursor fraction for the point kinetics equations 

ß i- delayed neutron precursor fraction for precursor group i for the point kinetics equations 

ß~- delayed neutron precursor fraction for precursor group i and isotope j 
I 

i=l 

yzr·.~- prolongation factor of the nodal face-averaged current for the node of index n, group 
g,IJ 

g, on the right side of the node in the z direction, prolonged from time ti to lj 

yzl,~- prolongation factor of the nodal face-averaged current for the node of index n, group 
g,ZJ 

g, on the left side of the node in the z direction, prolonged from time ti to lj 

op .t1<j>,y,J- calculated change in reactivity due to changes in flux shape, leakage, and 

normalization 

op ppm• op ft• op mt• op md• op other - calculated changes in reactivity from changes in boron 

ppm, fuel temperature, moderator temperature, moderator density, and other effects 

op ppmLJ<j>• op ft1</>' op mt.t1</>' op nu!Llif>' op othed<j> - higher order calculated changes in reactivity 

vii 



from the related effects and changes in flux shape, combined 

e - spectral radius of a matrix 

e0 - user-specified tolerable global error 

e~D-3D - user-specified tolerable global error for switching from lower dimensional model 

to 3-Dmodel 

E L- user-specified tolerable local error 

e g - relative error in the flux 

'YJ - the coordinate within a node parallel to the y axis, normalized by a'f' 

-(} k - vector of phase angles of mode k for the local mode stability analysis 

-{}u- the uth [with u E {x,y,z}] component of (}k, with the kindex omitted 

Km- the position vector of the node m, in terms of discrete co-ordinates: 

Km = (i,j,k) E (l..Nx, l..Ny, l..Nz) 

ll - eigenvalue of the stationary solution of the neutron diffusion equation 

ll i - decay constant of neutron precursor group i 

vj - number of neutrons released per fission for isotope j 

; - the coordinate within a node parallel to the x axis, normalized by a'ff 

;fK- precursor shape ftmction of precursor group i for the point kinetics equations 

; fD - precursor shape function of precursor group i for the axial kinetics equations 
-n 
; ki- amplitude of the kth mode of the ith precursor group at time step n for the local mode 

stability analysis 

p- reactivity, Po- reactivity from steady-state calculation 

Pmax- maximum absolute reactivity at which lower dimensional models can be active 

~ - the coordinate within a node parallel to the z axis, normalized by a'J: 
1> - neutron flux 

1> g - neutron flux of energy group g 

1>~ - nodal averaged flux in node m for energy group g 

cp~- polynomial expansion of the 3-D flux for energy group g and the node of index m, in 

the local normalized coordinates of the node. 

X~g- fraction of neutrons bom through fission in group g from fissionable isotope j 

X~g- fraction of neutrons bom in fission group g from precursor group i 

i kgLu- amplitude of the kth mode of the gth group of the partial currents on the left side of 

each node in the direction u 

i kgRu - amplitude of the kth mode of the gth grou p of the partial currents on the right side 
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of each node in the direction u 

'ljJ - flux shape function 

'1/Jo- flux shape function from steady-state calculation 

1/JfK- flux shape function of group g for the point kinetics model 

1/J}D- flux shape function of group g for the axial kinetics model 

ijJ ;g- amplitude of the kth mode of the gth group of the flux at time step n for the local mode 

stability analysis 

w"'- dynamic frequency found from the exponential transform method 

Uppercase Greek 

r- surface integral for perturbation theory calculations of the reactivity 

r~,ij - prolongation factor of the nodal averaged flux for the node of index n, group g, 

prolonged from time ti to fj 

ru·.~- prolongation factor of the nodal face-averaged flux for the node of index n, group 
g,IJ 

g, on the right side of the node in the z direction, prolonged from time Ii to fj 

rv"!. - prolongation factor of the nodal face-averaged flux for the node of index n, group 
g,lj 

g, on the left side of the node in the z direction, prolonged from time ti to fj 

Llt- time step size, Llt = t - t0 

AA,AL,AP,AT- changes in A,L,P,T since the steady-state calculation 

AAppm,ALppm,AP ppm- the respective contributions to AA,AL,AP from changes in boron 

concentration 

AAfi'ALfi'AP ft- the respective contributions to AA,AL,AP from changes in fuel 

temperature 

L1AmbL1Lm1,AP mt- the respective contributions to AA,AL,AP from changes in moderator 

temperature 

AAma,ALma,AP md- the respective contributions to AA,AL,AP from changes in moderator 

density 

AAothe,.,ALothe,.,L1P other- the respective contributions to AA,AL,AP from other changes 

Llp LJtf>- first order change in reactivity due to change in flux shape 

Llp LJT- first order change in reactivity due to change in the operator T 

Llp LJTLJtf>- higher order changes in reactivity due to changes in both the flux shape and T 

Llpy- change in reactivity due to a change of the normalization factor 

Llp + - maximum change in reactivity when reactivity is positive before reactivation of the 
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3-Dmodel 

LJp - - maximum change in reactivity when reactivity is negative before reactivation of the 

3-Dmodel 

A - neutron lifetime 

Ilhpq- prolongation factor for the node averaged precursor concentration of node index n, 

precursor group i, from time tp to tq 

.1'~- homogenized macroscopic removal cross section of node m and energy group g 

.1'~, - homogenized macroscopic scattering cross section of node m, for neutrons scattering 

from energy group g' to g 

.l'Jg":- homogenized macroscopic fission cross section of isotope j, node m, and for neutrons 

of energy group g', 

2- cross sections of the one dimensional model, see definitions (5.17) 

(9'{:1- the face ofnode Qm perpindicular to u E {;,q,e}, on the left side (u=O) ofthe node 

e'i},.- the face of node Qm perpindicular to u E -{;, fJ, e}, on the right side (u=1) of the node 

if>g - polynomial expansion of the 3-D flux for energy group g and the node of index m 

in the coordinates of V 

'Pgu - transverse integrated 1-D nodal expansion ftmction of the neutron flux, for energy 

group g, and direction u E {x,y,z, ;, rJ, ~} 

gp;- 1-D nodal expansion function for the neutron flux of the axial kinetics model, for group 

g and axiallevel m 

~· 1JPtr- values of lJ1'; at the left (u=O) and right (u=l) hand sides of the axiallevel of index 

m 

Q = (Q 1, ... ,QN), {Qm C S,m E J, 1:::;; m:::;; N}thesetofNnodesintowhichSis 

partitioned. 

am - the node of index m in the set Q 

Q':j- the member of Q which neighbours Qm on side ui 

Other Definitions 

lD lD 

( ~~) G , ( ~~) L - estimated rates of global and local error accumulation for the 1-D model 

PK PK 
( ~~) G , ( ~~) G - estimated rates of global and local error accumulation for the PK model 

X 



Additional Superscripts 

*- adjoint 

h- an approximation to the function without the h subscript 

3D- quantity from the reference 3D calculation 

AML - quantity from a calculation with the adaptive algorithm 
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1. lntroduction 
A major task in the safety analysis of nuclear power plants is the simulation of postulated 

accident scenarios. These seenarios hypothesize undesired disturbances or failures in ther­

malhydraulic systems, control systems, plant machinery, or the reactor core. It is the task 

of the safety analyst to assess the consequences of these initially local disturbances on the 

plant as a whole. Among the most serious of accident seenarios are those which cause the 

reactivity of the core to increase. lf the reactor becomes prompt supercritical, then the result­

ing rapid power excursion may ultimately cause fuel rods, and in the worst case, the reactor 

containment, to fail. A nurober of postulated accident seenarios which affect the core can 

be initiated in some other part of the power plant. The computer simulation and analysis of 

these accidents for light water reactors became possible with transient codes like RELAP, 1 

TRAC,2 and CATHARE. 3 The predecessors of the current versions of these codes were ini­

tially limited by the computer resources, and to a lesser extent by the available numerical 

methods, of the 1970s. For these reasons, the neutron kinetics models of these codes have 

remairred simplified point or one-dimensional neutron kinetics models until only recently. 

lnclusion of three-dimensional neutron kinetics models into such codes significantly extends 

their range of applicability, and can greatly improve their accuracy for postulated accident 

seenarios in which the power shape of the core varies signi:ficantly in time. Several codes 

capable of performing coupled three-dimensional neutron kinetics and plant thermalhy­

draulics now exist.4,5,6,7 

Despite the current state of the art in both numerical methods and computer hardware, the 

computational overhead of using a three-dimensional neutron kinetics model may still pro­

hibit its utilization. This is especially true if a code user deems that a point kinetics or one-di­

mensional model is accurate enough for the application at hand, or if many calculations must 

be performed for simulation times on the order of hundreds or thousands of seconds. Indeed, 

it is recognized that during many postulated transients, there are large periods of simulation 

time in which a three-dimensional neutron kinetics model is not necessary. During these pe­

riods, use of a point kinetics or one-dimensional kinetics model would be sufficient. An effi­

cient code would only activate the three-dimensional model when it was necessary, and 

would use a lower dimensional model during other periods of the transient. The goal of this 

dissertation is to develop an algorithm which automatically and adaptively switches between 

three-dimensional, one-dimensional, and point neutron kinetics models. 

Published methods for finding efficient approximations to neutron kinetics problems began 

in the late 1950s. In their classic textbook, Weinberg and Wigner8 present a derivation of the 

reactor kinetics equations. They begin with the time dependent neutron diffusion equation 
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for a bare homogeneaus reactor. Because of this simplified geometry, they were able to write 

the flux solution as a Superposition of orthogonal spatial modes. The time dependence of 

these modes form the reactor kinetics equations, which are in structure similar to the point 

kinetics equations. In the same year, Henry9 showed how the point kinetics equations could 

be derived directly from the time dependent transport equation, and presented a method for 

approximating the point kinetics coefficients from the stationary flux solution of a heteroge­

neaus core. Henry's method is based on the idea of separating the flux into a shape function 

and an amplitude function. The shape function is then approximated to be time independent. 

This procedure is refined and repeated by Henry in later works, 10•11 and has come to be 

known as the adiabatic quasi-static approximation. 

Computerhardware of the 1960's enabled the use offmite difference schemes to solve the 

space dependent neutron diffusion equation. However, with the technology available, only 

solutions of one-dimensional problems were at this time tractable, and time dependent prob­

lems in three dimensions remained far out of range for efficient simulation. To overcome 

this difficulty, flux synthesis methods were introduced by Kaplan et. al. 12 and Yasinsky.l 3 

These methods synthesized asymptotic flux shapes with time-dependent amplitude func­

tions. The time-dependent amplitude functions were generally found using either weighted 

residual methods or a variational principle. In the late 1960's, Ott14 and Ott and Meneley15 

significantly extended Henry's adiabatic quasi-static approximation method by recalculat­

ing the flux shape using either the quasi-staticl4 or the improved quasi-staticl5 approxima­

tion. In each of these cases, an equation for the shape function is derived from the time depen­

dent neutron diffusion equation: in the quasi-static case, the time derivative of the shape 

function is neglected; in case of the improved quasi-static method, the time derivative is con­

sidered, but the equation is integrated implicitly over large time steps. Quasi-static and flux 

synthesis methods were presented in a unified form in the note of Kessler16 which also seems 

tobe one of the earliest works analyzing space dependent reactor kinetics coupled with a 

space dependent fuel temperature model. 

In 1970, Reed and Hansen17 applied altemating direction finite difference methods to solve 

time dependent neutron kinetics problems in two dimensions. Although their computing re­

sources were still too inadequate to treat three-dimensional problems of large heterogeneaus 

cores, they did develop the exponential transform method, which is examined in chapter 3 

of this thesis. In 1973, Ferguson and Hansen 18 extended this method to three dimensions, 

and used a semi-implicit time integration scheme. With the computer technology of the time, 

this method was still too inefficient to be applied to production engineering applications. In 

the same year, Kang and Hansenl9 presented the first application of finite element methods 

to the time dependent neutron diffusion equation. With this method, they were able to direct-

2 



ly calculate transients in two spatial dimensions. In 1976, Buckner and Stewart20 presented 

another finite difference scheme for three dimensions: their work concentrated on the itera­

tive method which was used to solve the fmite difference equations. 

Despite the advances being made in computer technology, it was apparent in the 1970s that 

finite difference and even finite element methods were too expensive to be used for the accu­

rate analysis of transients in large reactor cores. For this reason, considerable effort was be­

ing made to develop accurate coarse mesh or so called 'nodal' methods. The origin and 

evolution of these methods is fully described in the detailed review article of Doming.21 The 

first coarse-mesh method efficient and accurate enough for general applications was the nod­

al expansion method (NEM) presented in 1975 by Finnemann.22 Furtherextensions to the 

NEM were presented in subsequent years by Finnemann et. al. 23·24·25 ldeas from the NEM 

were then later adapted by Lawrence and Doming26,27,28 in their development of the nodal 

Green's ftmction method. Both the NEM and the Green's function method are to this day 

considered state-of-the-art. They form the basis for dozens of other 'nodal methods' found 

in the literature. 

From the beginning of the 1980s, the development of more efficient methods to solve reactor 

kinetics equations in three dimensions became less focussed. Coarse mesh finite difference 

methods (CMFD) were developed at the MIT,29,30,3l,32 but their range of accurate applica­

tion remains questionable. Other approaches concentrate on simplifying the two-group dif­

fusion equations through various approximations. 33,34 Further developments of the quasi­

static approximation have been more of a theoretical nature, with no identifiable advantages 

in efficiency.35,36,37 (Integration of the improved quasi-static method into modern nodal 

codes does of course improve their efficiency. 38) Coarse mesh rebalancing39 and other mul­

ti-level methods40 have been extensively applied to aceeierate the convergence of the nodal 

methods.41 Time discretization procedures have also been improved: the stiffness confine­

ment method, developed by Chao and Risher42 is an extension of the exponential transform 

method developed earlier by Reed and Hansen.17 Crouzet and Turinsky43 have also recently 

developed an adaptive time-step method which selects optimal time step sizes based on the 

temporal truncation error of the implicit scheme. The parallelization of neutron kinetics 

codes has also demonstrated significant wall-clock speedups provided that several computer 

processors are available for a calculation.44,45,46 Finally, a totally different approach has 

been taken by Favorite and Stacey47 who have effectively developed second-order perturba­

tion theory expressions for the coefficients of the point kinetics equations. Their method is 

reasonably accurate and efficient provided that a pre-calculated sensitivity library has been 

generated and stored. 
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Critical examination of these recent advances in the efficiency of neutron kinetics codes 

shows that a reduction of 50% in the required computing time is a good achievement. Com­

bination ofthe efficient numerical methods, such as nodal methods, the improved quasi-stat­

ic approximation, multi-level coarse mesh rebalancing, adaptive time step selection, and 

code parallelization, can indeed result in an efficient code. Such an approach is highly advan­

tageous when compared to ernder approximation techniques such as the simplification of the 

two-group diffusion equations. These simplifications are only useful if the code knows 

when they are valid. By applying an adaptive approach to the adiabatic quasi-static approxi­

mation initially presented by Henry,9,lO,ll this thesis converts an outdated and not always 

applicable method into a useful tool for reactor safety analysis. 

As a starting point, the core simulation code PANBOX has been coupled to the best-estimate 

plant transient code RELAPS. The current version of the PANBOXcode system48 (PAN­

BOX 2) is capable of calculating three-dimensional neutron kinetics transients using various 

coarse mesh nodal methods, such as the polynomial23 and analytical49 nodal expansion 

methods. In--core thermalhydraulic conditions may be calculated by PANBOX using an in­

temal module based on COBRA 3-Pc.so Typically, one one-dimensional thermalhydraulic 

channel is defined per fuel assembly, although coarser channels may be used, and subchannel 

analysis may be performed for specified assemblies. The one-dimensional thermalhydraulic 

solution is augmented by a crossflow model between channels. The features of PANBOX 

make it an appropriate state of the art code system for the simulation and safety analysis of 

pressurized light water reactor cores. RELAPS is a code for the analysis of the thermal-hy­

draulic behaviour of light water systems. Originally designed for the analysis of loss-of­

coolant accidents (LOCAs) in pressurized water reactors, the range of validity of the code 

has over many years been expanded to cover a wide range of postulated accident scenarios. 

RELAPS models two-phase flow using a nonequilibrium, nonhomogeneous, six-equation 

model. Boron concentration and non--condensible gases may also be simulated with a sepa­

rate equation for each material. RELAPS also has the ability to simulate heat transfer to and 

from materials adjacent to the fluid. A one-dimensional temperature distribution in these 

materials is calculated by solution of the Fourier heat conduction equation. Equipment con­

trollers, balance-of-plant equipment (e.g., pumps and turbines), and lumped-parameter rep­

resentations of other processes may also be crudely simulated with the code. The neutron 

kinetics model in the currently released version of RELAPS is the point kinetics model. The 

point kinetics coefficients can be made dependent on the thermalhydraulic state of the core, 

thus perrnitting simulation of feedback between thermalhydraulic and neutron kinetic beha­

viour. It is this simple point kinetics model in RELAPS which is replaced by the three-di­

mensional multigroup model ofPANBOX. 
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Chapter 2 of this thesis describes the interface which has been developed between RELAPS 

and PANBOX. Three different coupling options are possible, depending on how the user 

wishes to use the COBRA modules internal to PANBOX. The usefulness of a three-dimen­

sional neutron kinetics capability is then demonstrated by the calculation of a boron dilution 

transient. Through a reactivity edit option, developed here for RELAP/PANBOX to aid in 

the explanation of transient phenomena, it is shown that changes in the flux shape can have 

a major effect on the evolution of a transient. Indeed, it is when the flux shape is changing 

that a spatially dependent model is needed. When the flux shape is not changing, however, 

then the point kinetics model is sufficient. This observation motivates the need for a dimen­

sionally adaptive algorithm. 

The three-dimensional neutron kinetics model ofPANBOX uses the NEM discretization of 

the multigroup diffusion equation. In later chapters, it will be seen that coefficients for the 

point and one-dimensional models are ultimately dependent on the three-dimensional flux 

solution found with the NEM. For the point kinetics model, perturbation theory expressions 

are derived from the nodal flux expansions of the NEM. The one-dimensional model is also 

discretized with the NEM. These observations show that the computed solutions of the NEM 

areessential to the adaptive algorithm. Therefore, the consistency and stability51,52 of the 

NEM are addressed in Chapter 3. 

The point kinetics model for the algorithm is developed in Chapter 4. Here, the point kinetics 

equations are derived in the classical manner from the three-dimensional multigroup neutron 

diffusion equation, as first done by Henry.9 Implementation of this point kinetics model di­

rectly in PANBOX allows the point kinetics coefficients to be calculated from the three-di­

mensional flux solution and the three-dimensional neutron cross section data base. The 

question of how perturbation theory can be used to calculate the reactivity is addressed, and 

a method is presented for how the operator formulation, originally identified by Cacuci et. 

ai.,53,54 of perturbation theory may be implemented with solutions of the NEM. This con­

trasts the methods proposed by previous authors,55,S6,57,SS,59,60 and rigorously examines the 

method sketched by Delmolino. 61 

Chapter 5 presents the one-dimensional axial kinetics model which has been derived for this 

dissertation. As per the point kinetics equations, the one-dimensional model is derived di­

rectly from the three-dimensional multigroup neutron diffusion equation. The NEM discre­

tization is applied to the continuous representation of the one-dimensional model, and 

correction factors are defined to force equivalence between the three- and one-dimensional 

solutions. These correction factors are compared to the heterogeneity or 'discontinuity' fac­

tors developed for homogenization procedures.62,63,64 In cantrast to previously existing 
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one- dimensional diffusion models in the literature,65,66,67,68,69 this is the only known model 

derived directly from the three-dimensional flux solution of a heterogeneaus core. 

The multi-level algorithm is developed and described in Chapter 6. The mechanics of 

switching from one model to another are detailed, and prolongation operators40 are defined 

for approximating the three-dimensional flux. Criteria for switching from three-dimension­

al to one-dimensional and one-dimensional to point kinetics models are derived. An error 

estimation procedure based on the work of Ainsworth and Oden 70,7l ,72 is developed to deter­

mine criteria for when the three-dimensional model should be reactivated. Some reactivity­

based switching criteria are also presented to complement the performance of the error esti­

mator. 

In Chapter 7, some sample problems are calculated. Through the calculation of control rod 

ejection, main steam line break, and boron dilution transients, it is shown that the adaptive 

algorithm can save 30%-70% of CPU time, while preserving much of the accuracy of a fully 

three-dimensional reference calculation. The accuracy is acceptable if the user can telerate 

small shifts in time of the calculated results. Conclusions and future work are presented in 

Chapter 8. 
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2. Coupled Thermalhydraulics/Neutron Kinetics 
Calculations 
2.1 Description ofRELAP5/PANBOX 

The first development version of the coupled RELAPS/PANBOX system was described by 

Knoll and Müller. 73 Further development in the coupling was necessary to bring the code 

system to a stage where it was user-friendly and applicable to a wider range of problems. 

Herein is briefly described the features of the version developed for use with this thesis. The 

coupling of the two codes is achieved via the interface EUMOD74 (Extemal User MODels), 

developed previously at Siemens AG. EUMOD is a set of subroutines which enables the user 

to link extemal codes to RELAPS. Under this system, PANBOX becomes a subroutine of 

RELAPS which is called at the end of every RELAPS time step. The flow logic is depicted 

in Figure 2.1. 

RELAPS 

Thermalhydraulk 
Calculation 

Interface level 

Subroutine 
EUMOD 

Transfer RELAP to 
EUMEL Variables 

Transfer EUMEL to 
RELAPVariables 

PANBOX 

1 Core 

Input 
Processing 

: Thermalhydraulks : 

: Neutron Kinetics : 
I I 

I • I 
1 Thermal Margms 1 
I I 

Figure 2.1: Illustration of available options of the coupled RELAPS/PANBOX system. 

The coupling of extemal codes to RELAPS via EUMOD is restricted in that the codes may 

be coupled only explicitly, i.e. extemal routines can be called only at the end of every RE­

LAPS time step, and no iteration is performed between the RELAPS solution and any itera-
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tive solution of the extemal user model. This coupling procedure is assumed to be accurate 

and stable for the selected time step sizes. The RELAPS time step size is chosen as the small­

est requested by either PANBOX or by the stability criteria intemal to RELAPS. The PAN­

BOX adaptive time step criteria is based on changes in the fast flux and the changes in fuel 

temperature. Additional stability-based time step restrictions for the NEM are derived in 

chapter 3 of this thesis. Thus, both neutranie and thermalhydraulic behaviour are considered 

for the selection of time step size, although the interplay between the phenomena is not con­

sidered. For the time step sizes of interest, no numerical instability problems have been de­

tected with this explicit coupling. 

In the first development version of RELAPS/PANBOX, only the core averaged thermalhy­

draulic boundary conditions of core pressure, inlet temperature, and inlet mass flow rate were 

passed from RELAPS to PANBOX. With these boundary conditions, PANBOX calculated 

core thermalhydraulics using its intemal COBRA-based modules. This option has been ex­

tended to pass the boundary conditions ofmore than one RELAP5 core channel to PANBOX. 

The boundary conditions are transferred to the appropriate COBRA channels by a mapping 

procedure, as illustrated in Figure 2.2 for a RELAPS nodalization that models the core using 

four channels. The power distribution calculated in PANBOX is collapsed back onto the RE-

Enthalpy 
and Flow Rates 

~ 3-D power distribution 
mapped to RELAP channels 

PANBOX/COBRA 
nodalization 

Figure 2.2: Depiction of the first coupling option for RELAP/PANBOX: cross section 
update from COBRA. 

LAPS nodalization with the same mapping procedure. This option has the advantage that 

feedback effects are simulated using a thermalhydraulic model which is very detailed spatial­

ly. Additionally, thermal margins such as DNB ratios may be calculated by the COBRA code. 

The problern with this coupling procedure is that the COBRA solution algorithm converges 
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quite slowly, leading to long computing times, and often diverges in low flow or low pressure 

conditions. This rendered the RELAPS/PANBOX system unable to calculate transients 

which began in, or evolved into these core conditions, such as after a small break LOCA 

event. 

To provide the user with a more flexible system, two more options were implemented in the 

interface routines of the codes. Option 2 utilizes no COBRA calculation at all. Rather, the 

thermalhydraulic and fuel temperature data from RELAPS are used to update the neutronic 

cross sections. This option is depicted in Figure 2.3 for a four channel RELAPS nodalization 

of the core. Because no COBRA solution is calculated, CPU demands for this option are sig-

RELAPcore 
nodalization 

Mapping between 
RELAP channels and 

fuel assernblies 
PANBOX 

nodalization 

Mapped to PANBOX 
/ fuel assernblies 

......,. Cross section update 

Fuel Temp. · · 
~Mod. Temp. 
'Mod. Density · 

..,..._________ 3-D power distribution 
mapped to RELAP channels 

t 

Figure 2.3: Depiction of the second coupling option for RELAP/PANBOX: no COBRA 
calculation, cross section update from RELAP data. 

nificantly less than for the other two options. The drawbacks of this method are that the feed­

back effects are simulated using only a very coarse thermalhydraulic mesh, and RELAPS has 

no inherent routines for calculating thermal margins. 

Option 3, depicted in Figure 2.4, also uses RELAPS data to update the PANBOXcross sec­

tions; however, the core boundary conditions and PANBOX power distributions are used in 

a 'parallel' COBRA calculation. This COBRA calculation has no influence on the neutron 

kinetic or RELAPS calculations, but is useful for computing thermal margins needed for 

reactor licensing. In future, this option can be extended so that the COBRA calculation is 

only activated only during those periods of the transient when safety margins need to be cal­

culated. 

The channel to fuel assembly mappings for the coupled calculations are input by the user. 

With these mappings, the three dimensional power profiles from PANBOXare collapsed 

onto the much coarser nodalization in RELAPS. The same mapping is used to transfer RE-
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Mapping between PANBOX/COBRA 
RELAP core RELAP channels and nodalization 

___ !19Q<!liz_a!i9!1 _______________ -~~~ ~s~~l!l~!i~~ ________________________ _ 

Exit 
Pressure 

Mapped to COBRA___. Fine channel COBRA 
channels thermalhydraulic calculation • • Thermal Margms 

__..,. Cross section update 

~ 3-D power distribution 
mapped to RELAP channels 

• 

Figure 2.4: Depiction of coupling option 3 of RELAP/PANBOX: cross section update 
from RELAP, parallel COBRA calculation for thermal margins. 

LAPS thermalhydraulic data to the neutronic nodes, and thermalhydraulic boundary condi­

tions to the COBRA channels. In addition to the radial mapping of channels, appropriate 

axial interpolation of data is performed automatically when the axial mesh sizes of the RE­

LAPS and PANBOX nodalizations differ. 

Not shown in figures 2.2-2.4 is the transfer of boron concentrations from RELAPS to PAN­

BOX. This is performed in a manner similar to the transfer of fuel temperature, with the add­

ed consideration that the total amount of boron in the core is conserved in the interpolation 

procedure. 

The new coupling options 2 and 3 involve a significant amount of data exchange between 

the two codes. The verification and validation of this data exchange was performed by using 

RELAPS/PANBOX to calculate cases Al and A2 of the NEACRP control rod ejection 

benchmark problem.75 The results of these calculations were presented in reference 76, and 

were found to agree quite weil with the reference solution 77 and the solution calculated with 

the coupled RELAP/NESTLE code.7 

2.2 Proofofthe Usefulness ofRELAPS/PANBOX: a sample calculation 

In this section, it will be shown why a 3-D neutron kinetics model is necessary for the calcula­

tion of some transients. To do this, a sample calculation of a boron dilution transient has been 
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selected; and a method for quantitatively explaining the phenomena of the 3-D neutron ki­

netics solution is also presented. 

In the simple point kinetics approximation of the standalone RELAPS code, coupling be­

tween the core and the thermalhydraulic system is achieved by the input of fuel temperature, 

moderator density and boron concentration reactivity coefficients. In contrast, with the RE­

LAPS/PANBOX code, coupling between the core and the thermalhydraulic system is accom­

plished via the dependence of the macroscopic cross sections on local thermalhydraulic 

conditions and boron concentrations. The point kinetics model produces results which are 

intuitively understandable: the contributions to the reactivity from fuel temperature, coolant 

density, and boron density are readily obtained and interpreted. In contrast, when the reactor 

kinetics are calculated using a three-dimensional multigroup neutron diffusion model, these 

reactivity contributions are no Ionger apparent . Thus, it was found that the incorporation of a 

three-dimensional kinetics model into RELAPS created a new challenge for the analyst to 

explain transient phenomena, despite the fact that the transient could be calculated with 

greater accuracy. 

To help explain transient phenomena, a 'reactivity edit option' was developed for PAN­

BOX. The option uses the neutron flux distribution at each time point to calculate the total 

core reactivity, as well as the contributions to this reactivity from changes in the core state. 

These changes include changes in fuel temperature, changes in moderator density, and 

changes in neutron flux distribution. In section 2.2.1, these contributions are derived from 

the general definition of reactivity. In section 2.2.2, it is described how these contributions 

are calculated in PANBOX. Finally, the method is demonstrated in section 2.2.3 with re­

sults from the calculation of a boron dilution transient. 

2.2.1 Dermition of Reactivity and Reactivity Contributions 

The general definition of reactivity is 1 O 

() 
< W(f,E),T(r,E,t)'tp(f,E,t) > 

pt=--"'-:--'-----'--:----'-.:......:....,.---__:__ 
< W(f,E),P(r,E, t)'tp(f,E, t) > 

(2.1) 

where P is the fission source operator, and T is the total diffusion- or transport- theory opera-

tor, 

T(f, E, t) = P(f, E, t) - A(f, E, t) - L(f, E, t) 

The operator A contains absorption and scattering terms and the operator L accounts for leak­

age effects. W is some weighting function (tobe chosen later), 7./J is the neutron flux shape, 

and < ·, · > denotes integration over all space and energy. The neutron flux shape is normal­

ized from the neutron flux through 
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'ljJ\r, E, t) = rpcr, E, t) 
(W(r; E), rpcr, E, t)) 

For an initial flux distribution rf>o, which satisfies the eigenvalue problern 

(0 - p 0)P0(1,E) - A 0(r;E) - L 0(r;E))<p0(r;E) = 0 

and the usual specified boundary conditions, equation (2.1) takes the form 

< wcr,E),T0(r;E)'ljJ0cr,E) > 
Po= < W(r;E),P0(r;E)'ljJ0cr,E) > 

(2.2) 

(2.3) 

which is stationary for all non-trivial choices of W. During a transient calculation, the opera­

tors P, A, and L all change due to changes in neutron cross sections. These changes can be 

expressed as contributions from various sources. For example, 

AP(r;E,t) = Pcr,E,t)- P0(r;E) = APppm + APft + APmt + AP md + APother 

AAcr,E,t) = A(r,E,t)- A0(r;E) = AAppm + AAft + AAmt + AAmd + AAother (2.4) 

AL\r,E,t) = Lcr,E,t)- L 0(r;E) = ALppm + ALft +ALmt+ ALmd + ALother 

where the subscripts stand for changes in boron ppm, changes in fuel temperature, changes 

in moderator temperature, changes in moderator density, and other changes, respectively. 

It is assumed here that these different contributions to the cross sections are separable effects, 

which is the approximation made in most three-dimensional neutron kinetics codes. For ex­

ample, if cross sections are determined by partial derivatives with respect to the various ef­

fects, then definitions (2.4) are valid. The goal of this section is to identify a quantitative 

measure of how these operator changes contribute to changes in reactivity. 

The total change in reactivity from the initial condition is equation (2.3) subtracted from 

equation (2.1 ): 

A () - () - < wcr,E),T(r;E,t)'l/Jcr,E,t) > 
LJP t = P t - Po - < wcr,E),Pcr,E,t)'l/Jcr,E, t) > 

< wcr,E),T0(r;E)'ljJ0(r,E) > 
< wcr, E), P 0cr, E)'l/J 0(r, E) > 

The expression on the right band side is conveniently divided into four main contributions 

Llp(t) = Llp LJrp(t) + Llp LJr(t) + Llp LJTLJrj> + Llpy(t) 

These are defined as 

_ < W(1, E), T 0(r; E)'l/Jcr, E, t) > < wcr, E), T 0cr, E)'ljJ0(r; E) > 
Ll p LJrj> ( t) = r.: r.: r.: r.: r.: r.: < W,r,E),P0,r,E)'ljJ,r,E,t) > < W,r,E),P0,r,E)'ljJ0,r,E) > 

(2.5) 

_ < wcr,E),AT(r;E,t)'ljJ0cr,E) > 
Llp LJr(t) = (7, < W(r;E),P r,E,t)'l/J(r;E,t) > (2.6) 
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A () = < W(f,E),AT(f,E,t)L1'1jJ(r,E,t) > 
LJP .dT.drp t - r.: r.: r.: < W,r,E),P,r,E,t)'ljJ,r,E,t) > 

(2.7) 

_ < W(f,E),T0(r,E)'I/J(f,E,t) > 
L1py(t) = y V, V, < W r, E), P 0(r, E)'I/J r, E, t) > 

(2.8) 

where 

1 + y = 1 
1 

+ < W(f,E),AP(f,E,t)'ljJ(f,E,t) > 
< W(f,E),P0(f,E,t)'I/Jif,E) > 

(2.9) 

The meaning of the frrst three tenns is clear: (2.5) is the reactivity change due only to changes 

in the neutron flux shape, (2.6) is the reactivity change due to direct changes in cross sections, 

and (2. 7) are the combined changes due to changes in cross section and flux shape. The 

meaning of the L1 (]y term becomes clear once a suitable weight function W is chosen. 

The goal in choosing the weight function is to make the different reactivity components (2.5) 

to (2.8), at least as strongly dependent on the changes in operators as on the changes in flux. 

It is seen directly from (2.6) and (2.7) thatL1(].dT and L1(].dT.dcf> already have this strong depen­

dence onL1T. Expanding (2.9) in a series, the leading terms ofy are 

< W(f,E),AP(r,E,t)'I/J(f,E,t) > < W(f,E),AP(f,E,t)'ljJ(J,E,t) >2 
y =- + -

< W(J, E), P 0(J, E)'I/J0(J, E) > < W(J, E), P 0(1, E)'f/10(1, E) > 2 

which shows that L1 (]y is also dependent on L1 P to first order. Therefore, only (2.5) does not 

have this first order dependence on the change in the operator. The natural choice for the 

weight function is therefore the solution to the adjoint of equation (2.2): 

[0- p0)P~(r,E)- A~(f,E)- L~(r,E)}P*(f,E) = 0 

(Appropriate boundary conditions must also be chosen for the adjoint problem.) When this 

weight function is used, equation (2.5) may be expressed as 

A - < T~(f, E)cjJ *(f, E), 'ljJ(f, E, t) > 
LJP .d,p(t) - *r.: *r.: r.: < P0,r,E)cjJ ,r,E),'IjJ,r,E, t) > 

=Po- Po 
=0 

< cjJ * (f, E), T 0(f, E)'I/J 0(f, E) > 
< cp*(f,E),P 0(f,E)'I/J0(f,E) > 

for all nontrivial cp * and '1/Jo. Thus, the use of the adjoint function as a weight function elimi­

nates the first order reactivity contribution due to flux change. This is indeed the usual argu­

ment for using the adjoint function as a weight function for perturbation theory calculations 

of the reactivity. The main difference between this method and perturbation theory lies in 

its intended use. The contributions calculated here serve to explain the physical phenomena 

of the transient; they do not serve to estimate the reactivity, which is known. The use of the 
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adjoint weight function additionally casts light on the meaning of L1 ey, which now may be 

written as 

L1py(t) = YPo 

= _ p < W(r,E),AP(f,E,t)1p(r,E,t) > + O(prf1P2) 
0 < W(f,E),P0(r,E)1p0(r,E) > 

That is, L1 (}y may be interpreted as a shift of the initial core reactivity eo due to a change in 

the production operator. When the initial core reactivity is zero, Aey is also zero. 

The two main reactivity contributionsL1eAT and L1(2ATA<J> may also be split up into contribu­

tions from the different core physics phenomena. Using (2.4) in (2.6), for example, the fol­

lowing different contributions are defmed: 

_ < W(f.E),L1Tppm(r,E,t)1p0(r,E) > 
Ap ppm(t) = r;: r:;: r;: < W~r,E),P,r,E, t)ljJ,r,E, t) > 

_ < W(r,E),ATJlf,E,t)ljJ0(f,E) > 
L1p ft(t) = V, (7, (7, < W r,E),P r,E,t)1p r,E,t) > 

< W(f,E),AT mt(j,E, t)1jJ0(i,E) > 
L1Pmt(t) = r;: r;: r;: < W,r, E),P,r,E, t)ljJ,r, E, t) > 

_ < W(f,E),AT md(j,E, t)'ljJ0(i,E) > 
Ap md(t) = (T, (J (T, < W r,E),P r,E,t)ljJ r,E,t) > 

< W(i,E),AT01he/.f.E, t)1jJ0(r,E) > 
Ap other(t) = wr:: E) pr:: E )~',~.: E ) < ,r, , ,r, , t 't'\r, , t > 

suchthat 

Ap A:r(t) = Apppm(t) + Apft(t) + L1Pmt(t) + Apmd(t) + Ap other(t) 

Similarly, using these contributions in (2.7) the second-order terms are defmed as 

< W(r, E),ATeffectV• E, t)L11jJ(f, E, t) > 
Ap effectA</t) = wr:: E) pt.: E )~"~.: E ) < ,r, , ,r, , t 't',r, , t > 

suchthat 

, effect E 

ppm 

ft 
mt 
md 

other 

The reactivity shift termAey is not separable because of its nonlinear terms inAP. However, 

if the fission cross sections do not change much during a transient, this term may be negligible 

compared to the others. 
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2.2.2 Implementation in PANBOX 

In PANBOX, equation (2.2) is solved with the nodal expansion method (NEM).23,24,41 Un­

der the NEM discretization, auxiliary variables are defrned for the neutron leakage f4>. 
Equation (2.2) is then discretized as the 'nodal balance equation' or 'zeroth moment equa­

tion' which has the form 

[ (1 - Po)P0 - A0 ]1; - "f:er.o = 0 (2.10) 

Here, the subscript m denotes the node number, and the vector notation denotes a vector of 
_,m 

multigroup fluxes and net leakages. J net,ois determined with the NEM outgoing current and 

auxiliary moment equations, as described in references 23, 24, and 41. What is important for 

the purposes of the implementation of the reactivity edit option, is that under the NEM discre­

tization, the L operator does not appear explicitly in equation (2.10). While the auxiliary 

NEM equations could be involved in this analysis - in order to isolate the reactivity contribu­

tions from changes in the L operator- it has instead been chosen to lump these different ef­

fects together. Thus, the following reactivity contributions have been defined for the imple­

mentation in PANBOX 

0 
= < W, [P 0 - A0]<j>(t) - J our(t) > 

'P .dif>,y,/t) - < W, P(t)<j>(t) > 

< W,AL(t)1p0 > 
= LJp .dif> + .1py - < W, P(t)1p(t) > 

- < W, [APeffect(t) - AAeffect(t)]l/Jo > 
op effect(t) = < W, P(t)1p(t) > 

< W,[Po- Ao11>o- lout,O > 
< W,Po<Po > 

< W,AL(t)LJljJ(t) > 
< W, P(t)1p(t) > 

ppm 

ft 

- < W, [LfPeffecit) - AAeffect(t)].11jJ(t) > 
op effectiJif>(t) = < W,P(t)1p(t) > 

, effect E mt 
md 

other 

Thus, the entire change in reactivity since the beginning of the transient is expressed as a sum 

of all the components: 

LJp(t) = op.dif>,rJ + opppm + opft + OPmt + opmd + OPother 

+ op ppm1if> + op ft1if> + op mtiJif> + op nuMif> + op othedif> 

In the next section, it will be shown how these reactivity components may be used to explain 

core phenomena during a boron dilution transient. Interpretation of these phenomena dem­

onstrates the usefulness of a coupled code system like RELAP5/PANBOX. 

2.2.3 Boron Dilution Calculation 

Under natural circulation flow conditions, boron dilution transients can exhibit a strong cou­

pling between the plant thermalhydraulics and core neutron kinetics phenomena. The reason 

15 



for this is twofold: firstly, the core power is the driving force of the coolant flow; and sec­

ondly, the local boron concentration in the coolant has a direct influence on the core reactiv­

ity. 

The postulated accident scenario evolves according to the following sequences. A small 

break loss of coolant accident (LOCA) has occurred, and the core is shut down with an auto­

matic scram. Steam which formed in the upper plenum of the reactor during the LOCA event 

is transported through the primary coolant system to the steam generators, where it recon­

denses. This steam entrains relatively few boron particles, and the subsequent condensate 

has a very low boron concentration. As all the steam condenses, a large slug of unboronated 

water forms in the primary coolant system. Eventually, decay heat from the core Ieads to the 

establishment of natural circulation conditions, and the slug of deboronated water is swept 

uniformly into all coolant channels of the core. As a hypothetical scenario, conditions are 

assumed such that the slug is large enough and has little enough boron so that the reactor will 

be rendered prompt critical. 
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Figure 2.5: Powerhistory and input reactivity of example transient. 

The calculated total power and reactivity (in pcm=l0-5) ofthe core are shown as functions of 

time in Figure 2.5. Figure 2.6 shows the important contributions to the change in reactivity 

over time. As expected, when the boron dilution begins, the largest contribution to reactivity 

is due to changes in boron concentration. When the reactor reaches a prompt critical state, the 

strong power surge gives rise to an increase in the fuel temperature and a reduction in the 
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moderator density. The feedback effects are seen in the strong negative reactivity compo­

nents during this time period. Of great interest are the reactivity contributions between times 

t1 and t2. The contributions are plotted along with the total reactivity in Figure 2.7. Reactiv-
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Figure 2.6: lmportant reactivity contributions of the transient. 
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Figure 2.7: Total reactivity and reactivity contributions. 

ity contributions are translated to zero at the time when the reactor first becomes critical so 

that the phenomena are more clearly examined. 

From Figure 2.7, it is possible to study which feedback mechanisms are most important in 

abating the power surge. As the time of maximum reactivity is approached (t3), increases in 

the fuel temperature decrease the core reactivity. There is also some reduction of reactivity 

due to changes in the moderator density, however this effect is somewhat delayed until the 

energy generated during the surge is transferred from the fuel to the moderator. At first sur-
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prising is the reactivity contribution due to boron between times t3 and t4. Despite the fact 

that the boron concentration in the core is decreasing, the reactivity contribution of boron also 

decreases. 

Figure 2.8 shows the separate contributions of O(]ppm' Of2ppmLJ<jJ translated to zero from the 

time of maximum reactivity (t3). lt is seen from Figure 2.8 that the reduction in reactivity 
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Figure 2.8: Separation of the reactivity contributions due to changes in boron 

concentration. 

contribution due to boron comes from the second order term Of2ppmLJ<jJ, which is the reactivity 

contribution of the change in boron concentration combined with the change in flux shape. 

Why this reactivity contribution is negative can be seen in Figure 2.9, where the core axial 

boron distribution and axial flux shape are plotted at times t3 and t4. The flux distribution in 

the core changes such that the net neutron absorption due to boron increases. Thus, the 

change in the flux shape is the primary phenomenon which abates the power surge. It is es­

sential to note that this effect could not be accounted for if only first order perturbation theory 

had been used to calculate the reactivities for a point neutron kinetics model, since O(]ppmLJ<jJ 

would be neglected in that case. Therefore, for some transients, changes in the neutron flux 

shape have a crucial influence on the reactivity of the core. In this case, the perturbation is 

largely uniform in the radial direction of the core, and a one-dimensional kinetics model 
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Figure 2.9: Axial flux and axial boron distributions at time of maximum reactivity 
and time of recriticality. 

would likely describe transient reasonably weiL However, three dimensional neutron kinet­

ics calculations would definitely be needed if the diluted boron slug entered only a fraction of 

the total number of channels in the core. 

2.3 Summary 

The simple reactivity edit option which has been developed here highlights the necessity of 

space dependent models for the Simulation of some postulated accident scenarios. In the case 

presented, the abatement of a power surge during a hypothetical boron dilution transient can 

be fully explained with the calculation of the various reactivity contributions. Here, it was 

shown that the change in the flux shape during the calculated boron dilution transient is the 

largest contribution which brings the reactor back to a subcritical state after the power surge. 

This observation identifies the importance that a space dependent neutron kinetics model be 

used to analyze such a transient; it also demonstrates the value of an analysis toollike RE­

LAPS/PANBOX. However, it would be wrong to claim that a three-dimensional kinetics 

model is necessary for the calculation of all postulated accident scenarios. In fact, even with 

transients that require a three-dimensional kinetics model during some time period, it may 

not be necessary to use this model the during the entire transient. When the flux shape is not 

changing, a point kinetics model can be used; when only the axial flux shape is changing, 

a one-dimensional model can be used. The previous calculation highlights the importance 
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of the flux shape, and changes in flux shape, on the development of the transient. This con­

cept will reappear in chapters 4, 5, and 6. 
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3. Consistency and Stability Considerations 
Before the adaptive multi-level algorithm is developed, this chapter will address some theoretical 

considerations of the numerical discretization method used in PANBOX, the NEM. Both 

consistency and stability of the NEM will be examined. The fact that the NEM is consistent will 

be used in the perturbation theory formulation found in Chapter 4. The consistency and stability 

of the NEM are furthermore fundamental to its convergence. 

It is weil known that a discretization of a partial differential equation (PDE) initial value problern 

(IVP) should be consistent, convergent and stable. Consistent discretizations reduce to the 

original PD Es in the Iimit as the discretized parameters are reduced to zero. Stahle schemes have 

solutions which are in some way bounded. When the solution of the discretized equations 

converges to the solution of the IVP as the discretized variables are reduced to zero, then the 

discretization is also convergent. Lax 's Equivalence Theorem states the following relationship 

between consistency, stability and convergence: 

'Given a properly posed initial-value problern and a finite-difference approximation 
to it that satisfies the consistency condition, stability is the necessary and sufficient 
condition for convergence. •51 

In this chapter, it will be shown that the NEM is consistent with the multigroup neutron diffusion 

equation. Furthermore, stability conditions will be derived for various neutron kinetics models, 

including the NEM. 

3.1 Consistency of the Nodal Expansion Method 

Huang and Zhang 78 have shown that the M2B2 variant of the NEM is a special case of the 

generalized primal hybrid finite element method. In this section, a simpler proof is presented that 

a more general dass of nodal expansion methods is consistent with the multigroup diffusion 

equation. i.e. the equations of the NEM converge to the continuous form of the multigroup 

diffusion equation as the mesh spacing is reduced to zero. 

3.1.1 Notation and Preliminaries 

Consider the NEM equations to be defmed on a simply connected Cartesian geometry domain 

VC R3 with a boundary SCR2 consisting of a fmite nurober of smooth planes. The position 

vector within this domain is (x,y,z)T E V. The domain V is partitioned into N subdomains Qm, 

{Qmcv, mEI, 1 s.ms.N}. The set ofthese subdomains is Q=(Q 1, ... ,QN). The subdomains 

are hereafter referred to as 'nodes'. The nodes are reetangular prisms, of dimension ( a';!, a';, a~), 

with vertices located in V at (xm,ym,zm), (xm + a'}!,ym,zm), 

(xm,ym + a'f,zm),(~,ym,Zm + a~), (xm + a';!,ym + a';,zm), (xm + a';!,ym,zm + a~), and 

(xm + a';!,ym + a'f,zm + a~). IneachnodeQmacoordinatespaceisdefinedby{(;,1J,s),Os. 

; S.l, 0 s. 17 s.J, 0 s. s s.J}. The coordinates in V and Qm are related by the transformation 

23 



Bach node has six reetangular boundaries, denoted by en, e~, e;l' l9f!" e~, and 89-- The 

boundary of a node Qm is denoted by aQm={Bfz, e~, e~, l9!J!" e~, ew. These boundaries 

are planes perpendicular to the coordinate direction indicated by the first subscript, and located 

at the left (u=O, u E [;, rJ, ~}) or right ( u=l, u E [;, rJ, ~}) side of the node, as indicated by the second 

subscript: l, or r, respectively. Anode may also have up to six neighbour nodes. Neighbour nodes 

ofnodeQmare denoted by Qn, Q~, Q~, Qf!" Q~, and Q~. { Qn, Q~, Q~, !Jf!r, Q~, Q~}CQ. 

The intersection of a node with its neighbour node is the nodal face: aQm n a!J7tf = e7tf, for 

u=~,rJ,~, i=l,r. The intersection of any two nodal faces is denoted by gmn = aQm n aQn, 

where gmn = em. if Qm. = Qn otherwise gmn = {0} The intersection of a node with s is 
m m ' · 

gmO := aQm n S. 

Within each node Qm, there is identified a set of system parameters: D7/, 2~ (g=l, .. ,Na), 2;
8

, 

and F~, (g=l, ... ,N0 ; g'=l, ... ,Na). 

For a general dass of nodal expansion methods, the following quantities are defined in each node: 

(a) the nodal averaged flux for group g, {g=l, ... ,Na}: ifJ'!/; 

(b) two nodal face-averaged partial currents for each group g and face ui: I:Ui· and i;uj, u E 

{;,rJ,~}, i E {l,r}; and 

(c) 1-D "transverse integrated" nodal expansion functions for each group g {g=l ... ,G} and 

direction u {u=~,rJ,~ }: 'IJf'!!u(u), O:s; u:::;; 1. These functions are continuous and possess continuous 

firstderivatives with respect to u on Qm. This means that they belong to the first Sobolev space 

of functions on Qnt, 'P'!/u E H 1. 

A general class of nodal expansion methods solves the following system of equations: 

nmd'Jfm (u)l g gu ·+m ·-m 
am du + 1 gul - 1 gul = 0 

u u=O 
(3.1) 

nmd'Jfm (u)l 
g gu ·+m _ ·-m -

am du + }gur }gur - 0 
u u=l 

(3.2) 
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1 I 'P']'u(u)du = 1>'; 
0 

~u(O) = 2[j:U[ + I;~!] 

~u(l) = 2[jgt~ + iiu~] 

Na [ ] 1 ·+m ·-m ·-m ·+m m m _ m m 1 m m I au[lgur - }gur + lgul - lgul] + L:rf!Pg - I L;gg4>g' + ;:Fgg'c/Jg' 
u=~,t],t; g'=1 

(where a~ = a';', etc. ). The solutions of individual nodes are coupled by 

}·+m _ 1·+n :ßor nn = gmuO gul - gur ' ;::,.: 

and 

·-m _ ·-n 
lgul - }gun for gn = !2:Q 

for u=~,1'J,~· Boundary conditions are given by 

j:U[ = 0, 'V er:z n s ~ {0} 

and 

j~~ = 0, 'V e~ n s ~ {0} 

for u=~,1'J,~· 

3.1.2 Consistency with the Multigroup Neutron Diffusion Equation 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

First it will be shown that the solutions of equations (3.1) to (3.6) reduce to the solution of the 

continuous variable multigroup neutron diffusion equation in the limit as the dimensions of the 

node go to zero. The 3-D nodal expansion function cp';(~, 'YJ, ~) is defmed on Qm as, 

This function obeys the relation 

1 1 

f I " d'P';u(u) 
au u · Vcp';dvdw = du , 

0 0 

u, v, w = cyclic(;,1'J,~) 

Substitution ofequation (3.12) into equations (3.1) and (3.2) yields 

1 1 

Dg I I u . Vcp';lu=odvdw + j:..r- r;.t = 0 

0 0 

and 
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(3.11) 

(3.12) 

(3.13) 



1 1 

Dg I I U · V!p;'lu~ldvdw + j;iu,- jg;,, = 0 

0 0 

Substitution ofthe 3-D expansion function (3.11) into (3.3) yields, 

Equations (3.13) through (3.15) may be substituted into equation (3.6), resulting in 

~ du[D8 j j U · V'l'~l.~ 1 dvdw- D8 j j U · V'l'~lu~odvdw] 
u f,IJ,q 0 0 0 0 

111 111 

(3.14) 

(3.15) 

H:g I I I 'l';'d/;drJ~ - % [l:~g' + fF~g·Jf I I 'l'';d/;drJ~ 
000 g

1 
000 

This equation is multiplied by the volume of the node. The first sum on the LHS of the equation 

is rewritten as a surface integral. The other integrals are written as volume integrals, yielding 

the result 

- D8 I S • V<P;'(x,y,z)dS + 1:,8 I <P~(x,y,::dV = (3.16) 

()Qm Qm _ ""' [ ~m 1 m J I n.m ( ) - L .4Jgg' + ).Fgg' 'Pg' x,y,z dV 
g'=1 

Qm 

where 

if>m( ) - m(X - xm Y - ym z - zm) 
g x, y, z = cp g am , am ' am · 

X Y Z 

(3.17) 

Because the expansion functions 'JI are smooth and continuous within Qm, so are the functions 

if>'J!. Therefore, the divergence theorem can be applied to equation (3.16) which becomes 

1 [- D 8 V · V<P;'(x, y, z) + 1: ,..<P~(x, y, <} 
8

%
1 

( 2~8, + f F~8,)<P';(x, y, z) ]dV = 0 

In the Iimit as the nodal volume goes to zero, this reduces to the multigroup diffusion equation 

in a homogeneaus region: 

- Dg'\1 · V<P;'(x,y,z) + I,8<P;'(x,y,z) -I (2;'", + fF~8.)<l>';(x,y,z) = 0 (3.18) 
g'= 1 (x,y,z) E Qm 

Since equation (3.18) has been derived for any homogeneaus node in general, it is equally valid 

for all nodes. 
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3.1.3 Consistency of the Interface Conditions 

The coupling conditions between the nodes are now examined. Integration of the expansion 

function (3.11) over the nodal boundaries yields 

and 

1 1 I I cp~l.~ 0dvdw ~ 'Pg'.(O) 

0 0 

1 1 

(3.19) 

I I qi;'l.~ 1dvdw ~ 'P.'u(l) (3.20) 

0 0 
u, v, w = cyclic(;,q,~) 

The 1-D expansion function boundary conditions, equations (3.4) and (3.5), along with the nodal 

interface conditions, equations (3.7) and (3.8) may be combined to find 

lflTu(O) = ~u(1) for Qn = il':J, u E {;, 'f/,~} (3.21) 

The 3-D nodal expansion function of the 'ul' neighbour node nn = il:Z is defmed as 

(3.22) 

Equations (3.19) to (3.22) are combined to yield the following interface condition in terms of the 

3-D expansion functions: 
1 1 1 1 I I cp~lu~odvdw ~ I I cp~l.~ 1dvdw (3.23) 

0 0 0 0 

By defining 4>~in the samemanneras 4>'; [see equation (3.17)], equation (3.23) may be written 

as 

I <P~(x, y, z) dS ~ I <P~(x, y, z) dS u = x,y,z (3.24) 

e':t = gmn e~r = gmn 

In the Iimit as the mesh size goes to zero, this becomes 

u = x,y,z (3.25) 

which is one of the two interface conditions of the multigroup diffusion equation between two 

regions. The other boundary condition can be found by combining the remaining 1-D expansion 

function boundary conditions, equations (3.1), (3.2), with the interface conditions, equations 

(3.7) and (3.8), to obtain 

=- for Qn = Qm Drg d'Jf'gu(u)l D~ d'Jf~u(u)l 
a'i} du u=O a~ du u= 1 ul 

(3.26) 

The relationship (3.12) is used in this equation to obtain 
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1 1 1 1 

D'!! I I u . Vcp'!!dvdw = v; I I u . Vcp;dvdw (3.27) 

0 0 0 0 
u, v, w = cyclic(;,q,~) 

In terms of x,y,z, this reduces to: 

I D'!!U · V<P'!!(x,y,z)dS = I v;U · V<P;(x,y,z)dS (3.28) 

~=~ ~=~ u = x,y,z 
As the mesh spacing reduces to zero, equation (3 .28) becomes 

which is the second interface condition of the multigroup neutron diffusion equation between two 

homogeneaus regions. 

3.1.4 Boundary Conditions 

Equations (3.1), (3.2), (3.4) and (3.5) may be combined to yield the following equations for the 

partial currents in terms of the 1-D expansion functions: 

·+m - 1 1 D';-d'l'';-u(u)' 
lgul - 4~u(O)- 2 am du 

u u=O 
(3.29) 

·-m _ 1 1 D';-d'Jf';u(u)' 
}gur - 4~u(1 ) + 2 am du 

u u=1 

These equations are substituted into (3.9) and (3.10) and then integrated over e':t and e~ 

respectively. The relationships (3.12), (3.19) and (3.20) can then be used to cast the boundary 

conditions in terms of the 3D expansion function, ifJ';-. The result is 

f[ ~<P'i! - ~'!! U • V<P'!! ]ds = 0, V e;;; n S "' {0} 

e;t 

(3.30) 

and 

I[ ~<P'i! + D! U · V<P'i! }s = 0, V ez; n S "' {0} (3.31) 

ez~ 

As the mesh size is reduced to zero, these equations reduce to 

(3.32) 

and 

(3.33) 
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Equations (3.32) and (3.33) are the zero-incoming partial current boundary conditions for the 

multigroup neutron diffusion equation. 

3.1.5 Summary 

It has been shown that in the Iimit as the mesh spacing reduces to zero, the goveming equations, 

interface conditions, and boundary conditions of the NEM equations reduce to those of the 

continuous neutron diffusion equation. 

The above derivation is quite general. It may be applied to many different nodal expansion 

methods: as long as the expansion functions meet the conditions given in section 3.1.1, any such 

expansion function may be used. While this derivation shows that a general class of NEMs are 

consistent with the multigroup diffusion equation, it says nothing about the accuracy of the 

solution when coarse mesh nodes are used. Accuracy estimates of the M2B2 variant of the NEM 

in slab geometry have recently been derived by Penland, Azmy and Turinsky. 79 While their 

analysis also proves consistency, it only does this for one specific form of the NEM, and only for 

slab geometry. The simple development performed here is more general, but gives no accuracy 

estimate. Regardless of the accuracy on coarse meshes, it is assured that the 3-D flux expansions 

converge to the solution of the multigroup diffusion equation in the Iimit as the mesh spacing is 

reduced to zero. 

3.2 Considerations for Stability Analysis 

Consider a linear discretization in which 1f1 represents the vector of dependent variables to be 

solved for at time step n, given the initial conditions at zf at time t=to. The difference equations 

foraone-steptime integration method may be explicitly written in matrixform as 

B
1
1f1+ 1 = B

0
1f1. (3.34) 

The matrices Bo and Bt have elements which will depend partly on the time step ..d t and, should 

the associated continuous variable problern be time and space dependent, the spatial 

discretization parameters. For the analysis of the numerical scheme, it is usually assumed that 

the spatial mesh size is functionalized to the time step size. For instance, in Cartesian geometry, 

it is usually assumed that (LJx,Lly,..dz)=[gJ(..dt),g2(LJt),g3(..dt)]. Supposing that Bt has an inverse 

(however, not supposing that the inverse is known explicitly), the amplification matrix may be 

defmed as 

C(At) = B1 -
1B0 

In this way, equation (3.34) may be written as 

1f1+ 1 
= C(At)1f1. 

(3.35) 

(3.36) 

Definition 3.1:51 The approximation C(~t) is stable over the integration period T, iffor some 

't > 0, the infmite set of operators 
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is uniformly bounded. 

0 < L1t :5 "t, 

0 :5 nLit :5 T, 
(3.37) 

Essentially, this means that for a stable scheme, there exists a maximum value to which any 

component in the solution can be amplified over the specified time period T, provided that the 

time step falls within the range of values between 0 and "t. This concept of stability was 

formulated particularly with conservative physical systems in mind, although it can be useful for 

analyzing non-conservative systems. Proof of stability follows automatically if the bound 

IIC(At)ll :5 1. However, in other cases the proof may be more difficult. Should the system contain 

fixed source terms, or should the physical system be non-conservative, as is the case with reactor 

kinetics, then the following theorem of Kreiss and Strang is useful. 

Theorem 3.1 [ The Kreiss-Strang Theorem ]:51 Ifthe difference system 

tt+ 1 
= C(At)"it (3.38) 

is stable, and Q(~t) is a bounded family of operators, then the difference system 

ü"+ 1 
= [C(At) + L1 tQ(At)]ü" (3.39) 

is also stable. 

The proof ofTheorem 3.1 is given in reference 51. It is a very useful theorem, since it allows 

for some growth of the solution over the time of integration T without the requirement that Qn 

be bounded. The growth, however, is bounded. Often it is possible to write an amplification 

matrix in the form of [C(At)+~tQ(At)], where it is easier to prove that C"(~t) and Q(~t) are 

bounded than proving that [C(At)+~tQ(At)]n is bounded. This will be demonstrated in sections 

3.3.1 and 3.3.2. 

Although Defmition 3.1 is a strict definition of stability, it is often impractical to apply it to 

engineering problems of interest (see, for example the discussions in references 51 and 52). A 

somewhat weaker definition of stability was originally formulated by von Neumann in 1938, and 

remains a powerful analysis tool to this day. 

Definition 3.2: Let Q be the spectral radius of the amplification matrix C(At). Then the von 

Neumannstability criterion is 

f2 :5 1 + O(L1t). (3.40) 

It is shown in reference 51 that the von Neumann stability criterion is a necessary condition for 

stability defined by Defmition 3.1. However, it is not always necessary and sufficient. Jt is 

necessary and sufficient when the amplification matrix C(At) isanormal matrix (a matrix Ais 

normal when AA*=A*A).51 

Nottobe confused with the von Neumann sufficient condition for stability is the von Neumann 

method for stability analysis. This method will be called the local mode analysis method, to avoid 

confusion with the von Neumann criterion. Local mode analysis may be performed on a linear 
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system of algebraic equations. Because of the linearity, error components of the solution obey 

the homogeneaus form of the system of equations. For example, consider the system of equations 

B1 ü"+ 1 
= B0ü" + q . (3.41) 

Here the vector u represents the exact solution of the discretized equations. Suppose only an 

approximate solution to (3.41) is known. This approximate solution, which is denoted as -d', has 

an error component e such that 

-n (.....h)n -n u = u + e (3.42) 

When the approximate solution is used to solve (3.41) for -d' at the time step n+ 1, i.e. ( )
n+l 

(
.....h)n+l (.....h)n _ 

B 1 u = B0 u + q , (3.43) 

then the error components will evolve according to the equation 

(3.44) 

It is because the operators Bo and Bt are linear that the error term can be separated out from the 

exact solution. The error can then be decomposed into a discrete Fourier series, provided that 

the boundary conditions are periodic. Then the evolution of Fourier modes may be analysed 

individually. The numerical scheme is stable when the growth of all Fourier modes is bounded. 

In practise, the local mode analysis is also used when nonperiodic boundary conditions are 

present: it is considered that the Fourier series representation is still good 'away from the 

boundary,' and in practical applications this approximate treatment of the boundary conditions 

does not usually detriment the validity of the stability criteria. 52 

In this chapter, three separate methods of deriving stability criteria will be considered. The first 

method utilizes Definition 3.1 and Theorem 3.1 to derive sufficient stability conditions for the 

point kinetics equations. Unfortunately, this method tums out to be too impractical to apply to 

one and three dimensional neutron kinetics models. The second method utilizes the von Neumann 

necessary conditions for stability, applied to the point kinetics equations. The third method, local 

mode analysis, applied to the discretized NEM equations, examines the equations only at an 

isolated (but general) node. It ignores the effects of boundary conditions and inhomogeneaus 

parameters. In sections 3.2.1 and 3.2.2, sufficient stability conditions are derived for the point 

kinetics equations. In section 3.3.3, necessary von Neumann conditions are derived using the 

matrix method. Section 3.3.4 compares these conditions to numerical experiments. It will be 

shown that the sufficient conditions yield time step sizes too conservative to be of practical use, 

and that the necessary conditions yield time step sizes adequate for practical use. This motivates 

the approach used in section 3.4, where local mode analysis is combined with the matrix method 

in order to derive necessary stability conditions for the one and three dimensional NEM models. 

Before these stability issues are addressed, the time discretization techniques ofPANBOX will 

be examined. 
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3.2.1 Time Discretization Techniques Used in PANBOX 2 

PANBOX makes use of the exponential transformation fully implicit time discretization method, 

which was originally developed for an altemating semi-implicit scheme for the multigroup 

diffusion equation in two-dimensional geometry by Reed and Hansen in the late 1960s.17 

The exponential transform technique as applied to the NEM is described in Appendix A. With 

this technique, the time derivative of the nodal averaged flux is approximated as, 

dl/J'J!(t) _ ( 1 + wmLJ t)f/>'J!(t) - ewmLJ.tf/>'J!(t0) 

dt - LJt 
(3.45) 

The discretized form of the neutron precursor equation is 

[ ~ ~ ] c'!l(t) = c'!l(t )e-.1,dt + l 1 - e-(wm+-1;)Llt 'V 'V ß~v2j.mrpm,(t) . 
1 1 0 A, 01 m + A,. L L 1 fg' g 

I g'= lj= 1 

(3.46) 

The dynamic frequencies, wm are determined in the iterative solution of the NEM equations by 

Na 

I f/>'J!(t) 
1 g=l 

wm =-ln----
LJt Na 

(3.47) 

L f/>'J!(to) 
g=l 

The exponential transform technique was adapted to the NEM by Finnemann24, however no 

theoretical stability analysis was performed for the discretization. Reed and Hansen 17 bad earlier 

performed a rigorous stability analysis of their altemating semi-implicit scheme using Definition 

3.1. It must be noted that the wm>s arenot constant in time. More importantly, due to the 

dependence of wm on the nodal averaged flux, the expressions (3.45) and (3.46) arenonlinear 

in the flux. Therefore, the scheme must first be linearized before a linear stability analysis can 

be performed. Reed and Hansen linearized their equations by assuming that the wm's remained 

constant in time. In a later paper,18 Ferguson and Hansen extended the alternating semi-implicit 

scheme to three dimensions, however they did not significantly extend the theoretical analysis 

performed by Reed and Hansen. They relied on numerical experiments to demoostrate the 

stability of the numerical scheme. Later, Buckner and Stewart20 applied the exponential 

transformation technique to a direct fmite volume discretization of the multigroup neutron 

diffusion equations in three-dimensional geometry. They attempted to generalize the theoretical 

stability analysis performed in reference 17, however, they were unable to prove stability in the 

general case or derive any kind of applicable stability criterion. 

It has often been assumed in the Iiterature that implicit treatment of the new independent variable 

[T in Appendix A] will yield a stable numerical scheme. The experimental computational 

evidence•l7,l8,20,24 certainly supports this assertion. These numerical investigations arefurther 

necessary to investigate the nonlinear effects which cannot be analysed in a linear stability 
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analysis. However, despite the presence of a large data base of experience with this method, 

theoretically-derived stability criteria are still highly desirable. Sections 3.3 and 3.4 give 

derivations of stability criteria for this time integration method applied to point kinetics and one 

and three dimensional NEM models. Of these neutron kinetics models, the sirnplest to analyze 

is the point kinetics. lt, therefore, is where the analysis will begin. 

3.3 Stability Analysis of the Point Kinetics Model 

The point kinetics equations with I precursor groups rnay be written in the form, 

where 

dP = (p - ß) p + + tl .c. 
dt A LI I' 

i=1 

i = 1, ... ,/. 

i= 1 

(3.48) 

(3.49) 

(3.50) 

In the rnost accurate representations, the terms p and ßi are dependent thernselves on P through 

thermalhydraulic coupling. This dependence rnakes the systern of equations (3.48) and (3.49) 

nonlinear. However, in the following analysis, the system of equations (3 .48) and (3 .49) will 

be linearized by treating the p and the ß; 's to be piecewise constant functions of time, independent 

ofP. 

3.3.1 Exponential Transform Method Discretization 

When the exponential transform discretization is applied to the point kinetics equations, 

equations (3.48) and (3.49) become 

6 

(w + l_)pi+ 1 _ ewL1t pi = (p - ß) pi+ 1 + ""'A .ci+ 1 (3.51) 
.Llt .Llt A L I i 

i= 1 
and 

c!+1 = c!e-Ä;Ltt + ß; 1- e-<w+Ä;)L1t pj+1 i = 1, ... ,6. (3.52) 
1 1 A w+k 

I 

Equations (3.51) and (3.52) rnay be written in matrixform as 
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[ 1 + ,1{0 - P ~ ß)] - LltA- 1 - LltA-2 ••• - LltA- 6 
pj+l 

_ ßt [ 1 - _-(w+Ä,)Jt] 
cj+I 

A w +A- 1 
1 0 0 

1 -

_ ßz [I -e -(w+A,)Jt] 
A w + A- 2 

0 1 0 cj+l 
2 

. 
_ ß6 [I -_-(w+Ä.)Jt] 

A w + A-6 
0 0 1 cj+l 

6 

eau1t 0 0 0 pj 

0 e -..1. 1Lit 0 ... 0 ä 
1 

0 0 e-Ä~t ... 0 cj 
2 (3.53) 

0 0 0 ä 
6 

Equation (3.53) may be written in the more compact notation 

A ..... j+ 1 B ..... j u = u (3.54) 
where the matrices A and Bare shown respectively in equation (3.53). 

3.3.2 Sufficient Conditions for Stability 

The frrst sufficient stability condition will be given by the following theorem: 

Theorem 3.2: Let the matlix R be defined as 

<1{o _P ~ ß) - LltA- 1 - LltA-2 - LltA-6 

- ß, [I -,-(w+Ä,)Jt] 
A w + A-; 

0 0 0 

R= - ßz [I -_-(wH,)J•] 
A w + A-; 

0 0 0 

. 

. 
_ ß6[ I -e-<wH,)Jt] 

A w + A; 
0 0 0 
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then the scheme given by (3.53) is stable if IIRII<l. 

Proof 

The proof will show that if IIRII<1, then Theorem 3.1 is satisfied. First, the difference system of 

equation (3.54) is cast into the form of (3.39), by writing (3.54) in the form of 

(3.55) 

For this case, the matrix A is relatively simple to invert- it may be done, for instance, by row 

reduction. However, direct inversion of A is not useful in this situation because it is difficult to 

show that the resulting matrix A-1B results in a stable system of equations. lnstead, since if 

IIRI1<1, then the inverse of A may be expressedas 

A-l = (I + R)- 1 

= I - R + R2 - R 3 + ... (3.56) 

The matrix B may be written in the form of 

B = I + LltP(At) (3.57) 

where Pis bounded (since Pis diagonal and its individual diagonal elements are all bounded). 

Therefore 

A -lß = I+ LltP(At)[I- R + R2 - R3 + ... ] + [- R + R2 - R3 + ... ] (3.58) 

In has an upper bound of 1 for all n, so it satisfies the stability requirements for the matrix C in 

equation (3.39), Theorem 3.1. What remains to be shown is that the remairring terms, 

LltP(At)[I- R + R2 - R3 + ... ] + [- R + R2 - R3 + ... ] (3.59) 

can be cast into the formLltQ(At), suchthat Q(At) is bounded. The matrix R can be written in 

the form 

R = LltN 
where 

(ro _P ;/) - A.l - ),2 ••• - ),6 

ß1 [ (w + A-1)Llt (w + A1)2L1t2 
] 

- A 1 - 2! + 3! - ... 0 0 0 

N= ßz [ (w + A2)Ll t (w + A2)2L1 t2 ] 
- A 1 - 2! + 3! - ... 0 0 0 

0 0 0 
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Let the bound of R be 

II R II = L1 t II N II = aL1 t < 1 (3.60) 

then 

II I - R + R 2 
- R 3 + ... II $ II I II + II - R II + II R 2 ll + II - R 3 ll + ... 

$ II I II +II R II +II R2 ll +II R3 ll + .. . 
$ II I II + II R II + II R 11 2 + II R 11 3 + .. . 
$ 1 + aLtt + (aL1t)2 + (aL1t)3 + .. . 

1 
= -1 --..::..aLt----,-t • (3.61) 

Therefore, the matrix series I-R+R2-R3+ ... is bounded if IIRII<l. Note also that the matrix series 

-R+R2-R3+ ... may be written in the form 

- R + R 2 - R 3 + ... = - R[ I - R + R 2 - R 3 + ... ] 

= - LI tN[ I - R + R 2 - R 3 + ... ] 

and 

= a 
1 - aLtt • 

i.e. II N [I-R+R2-R3+ ... ] II is bounded. Thus (3.59) may be written as 

LttP(At)[I- R + R 2 - R3 + ... ] + [- R + R 2 - R3 + ... ] 

= Ltt{P(At)[I- R + R 2 - R 3 + ... ] - N[I- R + R 2 - R 3 + ... ]} 
= LttK(At) 

(3.62) 

(3.63) 

The product of bounded matrices is bounded, and the sum of bounded matrices is bounded. Since 

(3.61) and (3.62) show that [I-R+R2-R3+ ... ] and -N[I-R+R2-R3+ ... ] are bounded, and since 

P(At) is bounded, then K(At) is bounded. Then, using (3.59) and (3.63) the difference system 

(3 .54) becomes 

uj+ 1 = (I + L1 tK(At) ]uj . (3.64) 

Since K(At) andIn are bounded, the difference system satisfies the conditions of the Kreiss 

-Strang theorem, Theorem 3.1, proving that the difference system is stable ifiiRII<l. 

0 

IIRII< 1 is therefore a sufficient condition for the stability of the difference system. We note that 

the choice of matrix norm here is 
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I 

II R II IRVl . [(Rv, RV)] 
2 

= max- = max -'----.----~ 
v~O IVJ v~O (V, V) (3.65) 

This norm is reasonably Straightforward to evaluate. It is 

II R II = Je<RTR) , (3.66) 
where g(RTR) is the spectral radius of the rnatrix RTR. The eigenvalues of RTR are determined 

as 

s6,s1 ~ !{b2 + ~<ci + df) ± [ 
6 ]

2 

6 6 } 
b

2 + ~(cf + df) + 4 ~ bf ~ df (3.67) 

where 

b "'Ll{ (t) - p _/) 

. = ßi [ 1 - e-(w+A.;).dt] 
c, A w + A.i 

di = L1 tA.i 

Thus, IIRII may be calculated directly, and it may be immediately determined if the sufficient 

stability condition IIRII<l is satisfied. 

3.3.3 Alternate Sufficient Conditions 

In the last section, a sufficient condition for stability was derived for the difference systern given 

by equation (3.54). The problern with sufficient conditions isthat they rnay specify a time step 

which is too small to be of practical value. The ideal condition is both necessary and sufficient. 

Arriving at such a condition, however, is not always possible when the arnplification rnatrix (in 

this case A-1B) is non-unitary (as is true in this case). Instead of trying to fmd a necessary and 

sufficient condition for stability, an alternative sufficient condition will be derived here which 

tums out to admit larger time steps than the one derived in the last section. 

Theorem 3.3: Let the matrix S be de:fined as 

0 
-L1tA.J 

S= 

0 
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then the difference system (3.54) is stable if 

II s II< 1 
and 

Q) - (p ~ ß) > 0 . 

are satisfied. 

Proof 

First the matrix A is written in the form 

A = D(l + S) 
where 

1 +L+O- (p ~ß)] 0 

D= 0 0 
0 0 

0 ••• 0 

0 0 
0 0 

0 0 0 ... 0 

Then the difference equation (3.54) may be rewritten as 

Üj+l = (I+ S)- 1D- 1B Üj • 

D-1 is found by direct inversion, and the matrix D-1B is given by 

ewLJt 
0 0 

1 + Llt[w - (p~ß)] 
0 e -Ä.~LJt 0 

n- 1B = 0 0 e-Ä.~t 

0 0 0 

0 

0 

0 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

The exponential terms may be expanded in series expansions and the matrix n-1B is split into 

the form 

where 

38 



1 

1 + L1 t[ w - (p ;;-ß)] 0 0 ... 0 

0 1 0 0 

G= 0 0 1 0 

0 0 0 ... 1 

Here, His bounded and G0 is bounded for positiven due to the inequality (3.69). By expanding 

(I+S)-1 in the same way as (I+R)-1 is expanded in equation (3.56), the amplification matrix 

becomes 

A -tB =(I+ S)- 1(G + L1tH) 

= (I- s + S2 - S3 + ... )(G + L1tH) for II s II < 1 

= G + L1 t(I - s + s2 - s3 + ... )H + (- s + s2 - s3 + ... )G (3.72) 

Following the same argumentforSthat was made for R in section 3.3.2, the matrix T can be 

defined by 

T = lts. 
Then the norm of S is given by 

II s II = L1 t II T II = bL1 t < 1 (3.73) 

and the following relationships hold: 

- s + s2 - s3 + ... = - L1tT[I- s + s2 - s3 + ... ] (3.74) 

11 T[ 1 - s + S2 
- S3 + ... ] II ~ 1 _h bL1 t 

II I - s + sz - s3 + ... II ~ 1 _! bL1 t 

Using (3.74) in (3.72), the amplification matrix becomes 

A -tB = G + L1t[(I- S + S2 - S3 + ... )H- T(l- S + S2 - S3 + ... )GJ. 

Since (I-S+S2-S3+ ... ), H, T(I-S+S2-S3+ ... ) and Gareall bounded matrices, then the matrix 

L(At) is defmed as 

L(At) = (I - S + S2 - S3 + ... )H - T(I - S + S2 - S3 + ... )G 

which is also a bounded matrix. Then the difference system of equation (3.54) may be written 

as 

üj+l = [G +L1tL(At))üj. (3.75) 

It has therefore been shown that, if the inequalities (3.68) and (3.69) are satisfied, then Gn is 

bounded for positiven and L(At) is bounded. Therefore, under these conditions, the difference 

system (3.75) [and hence (3.54)] satisfies the conditions of the Kreiss-Strang Theorem (Theorem 
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3.1) and the difference system is stable. 

0 
Remark: The bound of S is calculated from the spectral radius of sTs, the same way as in 

equation (3.66) for R. The eigenvalues of STS are 

s1 = s2 = s3 = s4 = s5 = 0 

6 

s6= LJt2 22:-1-J 
[ 1 + L1t( 0) - (p~ß))] i=l 

s = ~(ßi)2[1 -e-(w+Ä.;).1t]2 
7 L A w +Ai 

i-1 

Thus, the su:fficient stability condition is inequality (3.69) combined with max(ls6l,ls71) < 1. 

3.3.4 Von Neumann Necessary Condition for Stability 

To apply the von Neumann stability criteria to the exponential transform discretization of the 

point kinetics equations, the matrix method52 will be used. Equations (3.51) and (3.52) are 

rewritten as 

n+l 
(1 + wL1t)IÜ - ewLltJlt +1 

S
.....n 

L1t 
where the matrix S is here defined as 

S= 

(p- ß) 
A 

ß1 [e-(w+A.t).1t- 1 J 
A L1t(w + A1) . 

Al 

1 + wL1t- e<w+A.t).1t 
L1t 

0 

= u 

0 

1 + wL1 t - e<w+A.6).1t 
L1t 

(3.76) 

Let the eigenvalues and eigenvectors of S be s; and jli, respectively. The vectors it and zt+ 1 

can be decomposed into linear combinations of the eigenvectors jli, in the form 

and 

Since 

-j+l _ I d+l­u - V'. II. i rz 
i 

S- -u.=s.u. rz zrz 

the amplification of a single component of Ü may be written as 
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( 1 + wL1 t)b~ + 1 - ewLJtb~ 
I I = Sb~+1 

LJ f I I 

+1 ewLit 
~ b~ = b~ 

1 1 + LJ f(W - S;) 1 (3.78) 

If (w-s;) > 0 then the amplification factor satisfies. 

b~+1 V ::;; 1 + O(L1t). 
I 

lf (w-s;) < 0, then provided that IL1 t(W-si)l < 1, the denominator of the right hand side of (3.78) 

can be expanded in a Taylor series. Then, 

bf!+ 1 
I 

bl! 
I 

::;; 1 + O(L1t) (3.79) 

This is equivalent to the von Neumannstability criterion, Definition 3.2. The necessary stability 

criteria are therefore summarized as 

Llt ::;; 
1 

1 
1 

for (w - s;) < 0 
W-S; 

0 ::;; L1t::;; oo for (w - si) ~ 0 

(3.80) 

Note that the eigenvalues of S are most practically found through numerical solution methods. 

The condition (3.80) must obviously apply for all eigenvalues. 

3.3.5 Comparison of stability criteria versus numerical experiments 

In order to verify the stability criteria derived in sections 3.3.1-3.3.3, the stability boundaries 

predicted in these sections are compared agairrst some numerical experiments. In all cases, the 

problern is solved using the precursor coefficients shown in Table 3.1, a delayed neutron lifetime 

ofA=2.345E-5 s, and variable reactivity. These values are typical of a PWR. 

i ßi Ai(s-1) 

1 3.802 2.060E-4 

2 1.4005 8.070E-4 

3 0.3268 2.085E-3 

4 0.1241 9.990E-4 

5 0.0315 1.119E-3 

6 0.0128 1.620E-4 

Table 3.1: Point Kinetics Coefficients 

The stability boundaries using the frrst sufficient condition (Theorem 3.2, section 3.3.2), the 

second sufficient condition (Theorem 3.3, section 3.3.3) and the von Neumann necessary 

condition (section 3.3.4) are shown in Figure 3.1. Time step sizes to the left of the curves are 

predicted by the respective criteria to be stable. Numerical tests were performed by using 
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equations (3.51) and (3.52) to integrate the point kinetics equations over a finite time interval. 

The initial condition was a steady state condition, found with p=O.O and P=l.O. The transients 

were initiated by using an instantaneous insertion of reactivity at time t=O.O s, and time steps 

fromL1t=O.Ol s toL1t=l0.0 s were used to integrate the equations (3.51) and (3.52). 

,.-... 

""" '-" 

0 ...... 
> ·.p 
~ 
<I) 

~ 

1.0 

0.5 

0.0 

-0.s 

-1.0 

10-1 

Time step size (s) 
10 

ß Numerical test - unstable 

X Numerical test- stable 

Figure 3.1: Maximum time step size to satisfy stability criteria. 

In analyzing the numerical solutions, it can be difficult to identify when instability effects begin 

to occur. In centrast to the behaviour of unstable schemes for hyperbolic problems, the difference 

between stability effects and accuracy effects are difficult to identify with this discretization of 

the point kinetics equations. The criterion chosen here was that when the solution of P at the end 

time differed by more than 50% from the solution using the next smallest time step, then the 

scheme was deemed unstable. As can be seen from Figure 3.1, the von Neumann necessary 

conditions for stability agree well with the stability regime which was found numerically. The 

sufficient stability conditions are seen to be too conservative, and would Iead to excessive 

computation time if implemented in a production code. 

3.4 Local Mode Analysis for the 1-D and 3-D NEM 

In this section, stability conditions for the one and three dimensional forms of the NEM are 

derived. Section 3.3 demonstrated that although sufficient stability conditions can be derived for 

the exponential transform discretization of the point kinetics equations, these conditions yield 

admissible time steps which are often too small to be of practical value. It was also shown that 

the von Neumann necessary conditions are adequate for predicting an admissible time step size. 

This is also the experience found by other authors in a wide spectrum of examples. 52 For these 
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reasons, and for the fact that the calculation of sufficient conditions would be far too 

compute-intensive, only the von Neumann stability conditions are derived for the NEM 

discretization of the time dependent neutron diffusion and delayed precursor equations. 

The time dependent NEM-M2 equations are a coupled system of nonlinear equations. The 

nonlinearities come into play not only from the dynamic frequencies in the discretization of the 

time derivative, but also from the higher order moment equations, which are derived through the 

use of several nonlinear approximations. The higher order flux moment coefficients, a3gu and 

G4gu• of the NEM-M2 discretization can be treated as corrections to the outgoing current 

equations of the NEM-MO discretization. In the NEM-M2 formulation, the current equations 

take the form of 

·-m _ CL (A,.m,n + m,n) + cL ·+m + CL ·-m _ cL m,n J gul - lgu 'Y g a 4gu 2gul gul 3gul gur 4gua3gu 

·+m _ eR (A,.m,n + m,n) + eR ·+m + eR ·-m + eR m,n J gul - lgu 'Y g a 4gu 3gul gul 2gul gur 4gua3gu 

(3.81) 

whereas in the NEM-MO formulation, they take the form of 

·-m _ cL A,.m,n , CL ·+m + CL ·-m 
1 gul - lgu'Y g 1 2gul gul 3gu}gur 

(3.82) 
·+m _ eR A,.m,n + eR ·+m + eR ·-m 1 gur - lgu'Y g 3gul gul 2gul gur 

The approximationwill be made here that the coefficients terms a3gu and G4gu aresuchthat they 

can be considered as small corrections to (3.82), and that these corrections are linearly dependent 

on the nodal averaged flux. This approximation enables consideration of the moments equations 

tobe left out ofthe stability analysis, and the outgoing current equations (3.81) may be written 

as 

·-m _ cV A,.m,n + CL ·+m +CL ·-m 
1 gul - lgu'Y g 2gul gul 3gul gur 

(3.83) 

·+m _ eR! A,.m,n + eR ·+m + eR ·-m 
)gur - lgu'Yg 3gulgul 2gulgur 

with 

CL (rt>m,n + am,n) _ CL am,n 

C
L! _ lgu g 4gu 4gu 3gu 

lgu = r/>~,n 
(3.84) 

CR (rt>m,n + am,n) + CR am,n 
Rl _ lgu g 4gu 4gu 3gu 

clp = r/>~~ 

For the stability analysis, the approximation is made that the coefficients Cf~ and Cf~~ are 

constant in time. Furthermore, as in section 3.3, the approximation is made that the dynamic 

frequencies are constant in time. These approximations linearize the NEM equations to the form 

of the NEM-MO approximation, which is written as equations (3.83) along with 
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(1 + mL:I {)</>m,n _ ewLJtcpm,n-1 
g g + 2 t/>m,n = """' 2 cpm,n 
V At r g L gg' g' 

g<-1 g<g' 
G G 

+ 1 """' "'(1 ßA j o};j A.m n + """' i A m n + """' 1 [ ·+m ·-m + ·-m ·+m] I L L - ·JXpgv. fg''f' i LXdg l;, Lau lgul - lgul ]gur - ]gur 
g' = 1 j= 1 i u 

(3.85) 

and 

(3.86) 

N ow the procedure of local mode analysis is applied. This method approximates that all 

coefficients are not spatially varying, and ignores the effects of boundary conditions. Despite 

these approximations, it is the most practical method of finding stability criteria for space 

dependent problems. The dependent variables are expanded as Fourier series: 

cp~,n = I VJ~giek·iCm cf'n = I $;;ei1Jk.;m 
k k 

1·-m - "'x- eiek·iCm 1·+m = "'x- iek·iC'" gul - L kgLu gur L kgRu (3.87) 
k k 

IJu[ = IxkgLueiOk·iCm(e-iOku) Jiu'J! = LXkgRuiek·iCrn(eiOku) 
k k 

Here, the summationisover all Fouriermodesand the ijJ, x, and $ coefficients are the amplitudes 

- -of the respective modes k. ()k is the vector of phase angles for the mode: ()k ranges from 

(- n,- n, - n)to (n,n,n)for the 3-D NEM, with discrete steps of (n/Nx, 0, 0), (O,n/Ny, 0) 

and (0, 0, n/N J. Km is the position vector ofthe node, Km = (i,j, k). Further clarification of the 

method of local mode analysis may be found in Hirsch. 52 

The following terms are now defined to simplify the development: 

2Fgg' = 2gg' + ± L(1 - ß~X~gv2~g' 
j 

2 . = l """'ßiv2j ( 1 - e -(w+A.)Llt) 
Czg A. L i fg m + A.. 

j I 

The Fourierexpansions (3.87) are substituted into the neutron and precursor balance equations 

[(3.88) and (3.85)]. With the utilization of the orthogonality property of the Fourier modes, the 

amplitude equations for one mode ( omitting the subscript of the mode, k) may be written as 

-n LI -n-1 
(1 + CUL:f f)'I/J g - eW f1jJ g -n _ """' -n """' i -n 

vgLlt + 2rg1/Jg- "72Fgg''I/Jg' + fXdgA.l,i 

+ I du [x;Lu<e-iOu - 1) + x;Ru<eiOu - 1)] (3.89) 
u 
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and 

(3.90) 
g 

Similarly, the partial current equations (3.83) may be solved for the amplitude of the current 

modes in terms of the amplitude of the flux modes: 

{ 

Cf;u C~gue- iOu + Cf;u ( 1 - C~gueiOu) } -n 

X gRu = ( . . ) 1/J g 1 - CL elOu + eR e-zOu + CL eR - CL eR 
3gu 3gu 3gu 3gu 2gu 2gu 

-n = RgRu(Ou)'l/J g 

These expressions may be substituted into the balance equation. With further manipulations the 

nodal balance and precursor equations may be written as 

(1 + WLlf)1j);- eW~~;- 1 
-n _ "'\ -n "'\ j -n "'\ n 

V At + L:rg'l/Jg - Lg' L,Fgg''l/Jg' + LI. Xd/'-f,; + LLgu(Ou)1}Jg 
g'-' u (3.91) 

and 

(3.92) 

with the definition 

Lgu(Ou) = }u [RgLu(Ou)(e-iOu- 1) + RgRu(Ou)(ei0u - 1)] 

Most PANBOX data bases for PWR analysis use two energy groups and six precursor groups. 

For these cases, the vector of mode amplitudes is defmed as 

Lf = [1})~,1})~,~~_€~, ... ,~~]T 
and equations (3.91) and (3.92) may be written as 

-oll 1!:1 -.n - 1 
(1 + wLI t)u - ew 1u = 

8 
Lf 

Llt 
(3.93) 

where the matrix S is defmed by 
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au a12 VlAl V1A2 vlA.6 

a21 a22 0 0 ... 0 

bu bl2 Cl 0 0 

S= 
b21 b22 0 c2 0 

0 0 

an = v{~>2u(8u) -1.',2] 
C· = [ 1 + au1 t - e<w+A.i0t] 

l L1t 

e<w+A.;}1t I . 
b· = Czg 

zg L1t 

The procedure shown in section 3.3.4 is now applied to equation (3.93). The eigenvectors and 

eigenvalues of S are given as Si and jli, respectively. The vectors lt and lt -l can be 

decomposed into linear combinations of the eigenvectors jli, in the form 

li=Id{ili 
i 

and the amplification of the eigenmodes are given by 

. ewLlt . 1 d~ = d'-
1 1 + L1t(w - si) i 

The stability criteria are derived as in section 3.3.4, and are summarized as 

L1 t s; 
1 

1 
1 

for ( w - s i) < 0 
(J) - Si 

0 s; L1t s; oo for (w - si) ~ 0 

(3.94) 

(3.95) 

These criteria are calculated for each material region of the data base. Because of the different 

bumup histories and thermalhydraulic conditions of materials within the core, this usually means 

that the stability criteria must be evaluated for each coarse mesh node. For a full core calculation, 

calculation of the stability criteria involves finding the eigenvalues of several thousand 7x7 

matrices. To save computation time, stability criteria for all the nodes is evaluated only at the 

firsttime step. The least stable nodes are then identified as the ones for which the criteria (3.95) 

admit the smallest time step. During the transient calculation, the stability criteria is recalculated 

only for these least stable nodes. 
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3.5 Summary 

In this chapter, some theoretical foundations for the numerical methods used in this thesis have 

been set. In section 3.1 it was shown that the NEM is consistent with the multigroup neutron 

diffusion equation. Section 3.2 introduced stability analysis and time integration techniques used 

in PANBOX. Section 3.3 derived three separate stability criteria for the PANBOX time 

integration method applied to the point kinetics equations, and compared these criteria to 

numerical experiments. From the results of these experiments, it was concluded that the 

necessary stability criteria are appropriate for practical use. Section 3.4 builds on the analysis 

of section 3.3 to derive necessary stability criteria for the NEM by using local mode analysis. 

Because the numerical methods are stable and consistent, it is expected that the solutions which 

will be calculated are also convergent to the solutions of the PDEs which are being modelled. 

Furthermore, the consistency of the NEM is used in the next chapter to develop an operator 

formulation of perturbation theory. 
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4. Point Kinetics Model 
The point kinetics equations, already presented in section 3.3, areweil known as the simplest ki­

netics model of a nuclear reactor. The derivation of the point kinetics equations in this chapter 

is similar to that of Henry9 who seems to be the frrst person to have derived the point kinetics 

equations by separating the neutron flux into a shape function and an amplitude function. Henry's 

formulation was later used by Ott14 to formulate the quasi-static approximation, which has prov­

en to be an efficient and accurate method for approximating the solution to the time-eiependent 

neutron diffusion equation.l5,35 ·36,80 While some variant forms of the point kinetics equations 

have been proposed (see for example, Becker81), the advantages of these methods arenot neces­

sarily relevant to this thesis. For this reason, the classical textbook formulation of the point kinet­

ics equations will be derived. 10•11 •82 The derivation is included in section 4.1, and not in the 

appendix, for reasons of continuity. 

During many accident scenarios, the reactivity of the core is the greatest varying parameter in 

the point kinetics model. Aceurate determination of the core reactivity is crucial to achieve an 

accurate description of the transient. It is well known that first order perturbation8·83 or sensitiv­

ity theory53,54 can be used to make reasonably accurate approximations of the reactivity. What 

was not known, until recently, were the technical details of how perturbation theory approxima­

tions can be implemented in a code utilizing the NEM. This is the main technical contribution 

of this chapter, and will be presented in section 4.2. 

4.1 Derivation of the Point Kinetics Equations 

Derivation of the point kinetics equations begins with the space....:.time continuous multigroup 

neutron diffusion equations, coupled with the delayed neutron precursor equations: 

where 

and 

r/Jg = rpg(f, t) 

ci = clf,t) 

N, 

g = 1, .. ,N0 

i = 1, .. ,N1 

:Epgg' = XL X~/1 - ty)v:E~, 
j=l 
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(4.1) 

g = 1, ... ,N0 

i = 1, .. ,N1 (4.2) 



NI 

lfl=I~ 
i=l 

The flux is separated into a time dependent amplitude function P and a time and space dependent 

shape function 'lfJfK 

,P gV• t) = 7/J:Kv, t)P(t) (4.3) 

and the neutron precursor concentrations are separated in a similar way, 

(4.4) 

Equations (4.3) and (4.4) are substituted into (4.1). The neutron diffusion equation is then multi­

plied by a weight function (see the next section for the choice of a weight function) Wg, and inte­

grated over the volume of the core. 

a [ I ~ Wg(r)'l/J~K(r; t) ] fp(t) - ß(t)] ~ PK I ~ ; PK 
at P(t) ~ vg dV = A(t) P(t) + ~~)·;C; (t) ~ W8(r)Xdg;i (r, t)dV 

V g-1 z-1 V g-1 (4.5) 

where the reactivity is defined as 

(4.6) 
the delayed neutron fractions are defined as 

I.~ w,(r)[± .t~x~,ß{v2~,w:!'}v 
ßlt) = __ v ______________ _ 

J %, w,(r) .~J2pgg' + f ~%x~,ß{•Ij,}:,KdV 
I 

ß(t) = Iß;(t) 
i= 1 

(4.7) 

and the neutron lifetime are defmed as 

A(t) = [ J '~ w,(r) l[2pgg' + ± ~j~x~fl1v2~}:fdVr (4.8) 

The separation of variables ( 4.3) and ( 4.4) admits non-unique solutions of P, 7fJfK, cfK, and ;fK. 
In order to admit a unique solution, the following constraints are applied to the shape functions: 
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J I Wg(r)x~lfK(r,t)dV = 1 
g=l 

V 

These constraints reduce equation ( 4.5) to 

ß 
NI 

dP = p(t) - (t) P(t) + "V). .cfK(t) 
dt A(t) !--- I I 

1=l 

(4.9) 

(4.10) 

(4.11) 

which is the first equation of the point kinetics model. The precursor equations of the point kinet-

ics model are derived by multiplying equation ( 4.2) by W gV• t) X~g' summing over the energy 

groups, and integrating over all space. The result yields 

:~[cfK(t) J I Wg(iJx~g~fK<f, t)dV] = ~;g~ P(t) - ;,;efK<t) J I WgV>X~g~fK<f, t)dV 
g=l g=l 

V V 

which, upon application ofthe constraint (4.10), becomes 

dCPK ß (t) 
_i_ = _i_P(t) - ). .cfK(t) 

dt A(t) I I 
(4.12) 

Equations (4.11) and (4.12) are the weil known point kinetics equations. They are ordinary dif­

ferential equations which may be integrated in time, given initial conditions and the time-depen­

dent coefficients p, ß;, Ai andA. Initial conditions may be found from an initial three dimensional 

solution by multiplying (4.3) and (4.4) byWg(r)/vg and Wg(r)X~g respectively, summing over 

all energy groups, and integrating of the volume of the core. Due to the normalizations ( 4.9) and 

(4.10) the initial conditions become, 

and 

J I
N G W g(r)<p gV. to) 

P(t0) = V dV 
g 

g=l 
V 

cfK<t0) = J I Wg0X~gc;v.t0)dV 
g=l 

V 

(4.13) 

(4.14) 

The point kinetics parameters are found by approximating the integrals in equations ( 4.6) to ( 4.8). 

The main approximation used in this calculation is the adiabatic quasi-static approxirnation, in 

which the flux shape function is approximated to be slowly varying in time, such that 

(4.15) 
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The weight function which is chosen is the solution of the equations adjoint to the time-indepen­

dent neutron diffusion equation, so that the reactivity is detennined using perturbation theory. 

The implementation of perturbation theory within the NEM is the subject of the next section. 

4.2 Adjoint method of sensitivity theory for the NEM 

There is been some confusion in the literature55,56,57 58,59,60 about how perturbation or sensitivity 

theory formulations can be implemented in codes wbicb use variants of the NEM. The authors 

of these papers bave all distinguisbed between the so called mathematical and physical adjoint 

equations of the NEM, tenns wbich were posed by Lawrence in 1984.55 The physical adjoint 

equations were deemed as the equations adjoint to the differential multigroup diffusion equa­

tions, discretized with the NEM. The mathematical adjoint equations was the name given to the 

adjoint of the discretized NEM equations. 

The terminology physical and mathematical adjoint is misleading, because all equations are in­

berently mathematical. The problern which confronted Lawrence was in fact first solved in 1980 

by Cacuci et. al.,53 when they observed that in general, two different classes of adjoint equations 

could be formulated from a set of discretized equations. They defined two different formulations: 

the operator formulation is based on the discretization of the equation adjoint to the forward dif­

ferential equation; and the matrix formulation is based on the ad joint of the discretized equations. 

For the example of the thermalhydraulic equations studied by Cacuci et. al.,53 both adjoint for­

mulations were consistent with the continuous variable adjoint equation, bowever tbe formula­

tions did bave different truncation errors. 

Although in some cases it is favourable to use the matrix formulation, some serious difficulties 

bave arisen with this fonnulation applied to tbe NEM. The first difficulty was that it took nine 

years from Lawrence's identification of the matrix fonnulation55 before someone found a con­

vergent iterative solution scbeme for bis equations.59,60 Furtherproblems occur because there 

are many variants of the NEM: the original NEM-M2B2 variant developed by Finnemann23 has 

its own characteristics which are not addressed in the solution scheme for the variant developed 

by Yang, Taiwo and Khalii.59,60 The main advantage of the operator fonnalism, on the other 

band, is that the existing NEM solution scheme may be applied without having to wait nine years 

before it converges. None of the earlier works55,56,57 5S,59,60 which developed a matrix perturba­

tion theory fonnulation for the NEM properly considered the possibility of using the operator 

formulation. Most of these authors recognized the fact that the perturbation theory formulas in­

volve dot products of flux gradients integrated over the nodes, and that the use of the nodal aver­

aged fluxes to approximate these gradients would be too inaccurate. 55,56,60 However, wbat 

previous authors did not recognize is that the NEM solution provides not only average nodal 

fluxes, but also flux expansions within the node. It was shown in chapter 3 that these flux expan­

sions converge to the solution of the multigroup neutron diffusion equations as the mesh spacing 

reduces to zero. Therefore, they can be used in an operator theory fonnulation. 

52 



It must be noted that a very similar formulation to the one presented here has been recently pub­

lished in the doctoral dissertation of Delmolino.61 Delmolino implies that the use of flux expan­

sions is necessary only in the implementation of generalized perturbation theory, and he uses 

simple inner products of the nodal averaged flux to determine perturbations in the reactivity. 

However, he shows no results for perturbations in the diffusion coefficient: it is this type of per­

turbation in which the accuracy of his proposed method breaks down. Delmolino also does not 

identify how the inner products of the gradients are calculated in his formulation. Additionally, 

he does not make the important theoretical connection that the flux expansions converge to the 

solution of the multigroup neutron diffusion equation. Without this consistency consideration, 

blind use of the operator formalism can be erroneous. The methods presented in the next section 

were developed independently of Delmolino's findings, and the differences described above dis­

tinguish this work from his. 

4.2.1 Operator Formulation for the NEM 

Here, the eigenvalue perturbation expression is derived from the differential multigroup forward 

and adjoint equations. As suggested by Delmolino 's results,61 the methodology may also be used 

with more general perturbation and sensitivity theory analyses. The initial, unperturbed forward 

multigroup neutron diffusion equation is written in compact form as 

- 1 -V· D80\lrf>80 - Ag0~o + ÄoF g0~o = 0, g = 1, ... ,Nc. (4.16) 

Here, the vector of multigroup fluxes is 

(4.17) 

and the operators Ag and Fg are given as 

Na 

Ag0lPo = ~rgci/>go- I ~gg'O~g'O (4.18) 
g' = l,g' ~g 

and 

Na 

FgolPo = Xg I v2fg'O~g'O (4.19) 
g'=l 

The perturbed forward equation is 

...... 1 -
V· D8V~8 - A~ + ;:F~ = 0, g = 1, ... ,Nc. (4.20) 

The perturbations are thus defmed as 

(4.21) 
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The unperturbed adjoint equation is 

where 

g'=l,g'~g 

* Na 

F;ifio = v~fgO I X8,,p;'o 
g'=l 

An exact expression for the perturbation in the eigenvalue may be obtained by multiplying equa­

tion ( 4.20) by ,Pg *, summing over all groups g, and integrating over the volume of the core. The 

result is 

-I.~ <P;o[ V · D,\'4>, - AJ + l.F J ]dV 
o(f) = _v ______ _ 

I.~ <P;oF JdV 
V 

(4.23) 

The adjoint equation (4.22) is now multiplied by ,Pg, summed over all groups g, and integrated 

over volume. The right hand side of the resulting equation is still equal to zero, and thus may 

be added to the numerator of equation ( 4.23) without any loss of generality. Using the definitions 

of the operators in ( 4.21), the exact expression for the perturbation becomes 

-I .~J<P;ov · n,vq,, -<J>,V · D,0v<P;o -<P';cPAJ + f<P;tPFJ]dV 
o(f) = v (4.24) 

I.~ <P;of'JdV 
V 

Using the vector relation 

f\1 . g = \1 . lfi> - (\lj) . g ' 
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where 

I.~ n, · [<i>;oD.w.- </>,D,oW;o]dA 
~..... ()Q 

F(f/>g,f/>g) = ------------

I% <l>;oFJdV 
V 

The first o~d] I{~o:;:~t~o~;:::·;;;;0b: ;:~:;~0 ]dV 
..... a(f) =-v --------­

I% <l>;oF g0;odV 

* ..... - F(1> gO· 1> gO) 

V 

(4.26) 

(4.27) 

The first tenn of equation ( 4.27) is the commonly used perturbation theory expression which can 

be found in most textbooks on reactor core analysis.S·10,82 The second tenn, r, is an integration 

over the boundary of the volume being considered, and over all interface surfaces on which the 

fluxes or currents are discontinuous. While the true solution to the PDE does not have such dis­

continuities, an approximation to the solution may possess such discontinuities. In the operator 

formulation, these possible discontinuities must be considered. 

The first tenn of equation (4.27) involves the inner product of forward and adjoint flux gradients, 

and the inner product of forward and adjoint fluxes. It is assumed that all coefficients do not vary 

over the volume of a coarse mesh node. This assumption neglects higher order bumup84 or con­

trol rod corrections,24 where the cross sections are approximated as polynomials or piecewise 

constant functions within the node. The integrals over the entire reactor volume in equation 

( 4.27) may be represented as sums of integrals over nodal volumes. For example, 

(4.28) 

where the superscript m denotes the node index, and N is the total number of nodes in the discreti­

zation of the core. Similarly, the expression for the dF operator is 

(4.29) 

and the expression for the F operator has a form similar to (4.29). From equations (4.28) and 

( 4.29) it is seen that the inner products of the forward and adjoint fluxes must be evaluated over 

nodal volumes. Additionally, because of the first tenn in the numerator of (4.27), the inner prod­

ucts of the forward and adjoint flux gradients must also be evaluated over the nodal volumes. 

These integrals can all be approximated by expanding the nodal flux in a series expansion, using 

the one-dimensional flux expansions of the NEM. In Cartesian geometry, the nodal flux then 
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takes the form 

(
x - xm) (y - ym) (z - zm) 1> gO,Qm = lPT(x, y, z) = lfPtx ax 

0 + lJPty ay 
0 + "lfiTz az 

0 
- 2</>T ( 4.30) 

for the forward flux, and 

(
x - xm) (y - ym) (z - zm) </>;oiQm = l]J;m(x,y,z) = IJf;': ax 0 + IJf;'; ay 0 + 'P*g'J} az 0 - 2</>;m(4.31) 

for the adjoint flux. The functions lJI are the one-dimensional transverse integrated flux expan­

sions of the form 
4 

tJP;u(u) = 1>;0 + L a~uh;(u) (4.32) 

i=l 
for the forward expansion functions, and 

4 

'P*g'l}(u) = 1> ;0 + L a;~hi(u) (4.33) 
i=l 

for the adjoint expansion functions. The NEM polynomials h; are given in Appendix B. It was 

shown in chapter 3 that when the functions lJI are determined with the NEM, then the flux expan­

sions of equations ( 4.30) and ( 4.31) reduce to the solution of the forward and adjoint multigroup 

diffusion equations, as the nodal mesh spacing is reduced to zero. These expansions are therefore 

consistent with the solution to the continuous equations used to derive the perturbation expression 

of equation ( 4.27). lf the expansions are used to evaluate the integrals in ( 4.27), then the result 

of the integration will converge to the true result of ( 4.27) as the mesh spacing is reduced to zero. 

The gradients of ( 4.30) and ( 4.31) are evaluated to be 

a'Jfm apm alJim 
Vl/Jm = _gx + _2!." + ---E" 

g ax ay y az z ' (4.34) 

and 

alJI"":.m alJI"":.m alJI"":.m 
""" *m = ___!!!__ " + __§!_ " + ~ " 
V'Pg ax x ay Y az z · (4.35) 

With these expressions, the necessary integrals over the nodal volumes are evaluated to be 

(4.36) 

and 
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IT(r/J",;o,rpgQJ =' f dV(v<P;m · V<P:;'j = 

Qm 

_ "" { 1 [4am m* + 12am m* 36 m m* 36 m m* J} (4 37) - axayaz !--- a~ lgualgu 2gua2gu + 5a3gua3gu + Ta4gua4gu • 
u-x,y,z · 

The next step in this development is the evaluation of r, definition ( 4.26). The NEM continuity 

conditions between two neighbouring nodes n and m are such that the following equations are 

satisfied by the flux expansions: 

f l]Jm dA - f l]Jn dA g - g (4.38) 

gmn gmn 

and 

(4.39) 

Because of these interface conditions, F=O provided that the boundary conditions of the adjoint 

problern are appropriately chosen. It should be emphasized that the interface conditions ( 4.38) 

and (4.39) may not be met by all 'nodal' schemes. Very likely, they arenot satisfied by many 

finite element schemes. Also, care should also be taken when constructing the expansions ( 4.30) 

and (4.31) in the case where the 3-D NEM method uses discontinuity factors. In all ofthese cases, 

it may be true that r is non-zero. 

With the assumption that F=O (as is true in this case) and that the coefficients are constant within 

a node, equations ( 4.36) and ( 4.37) may now be used in equation ( 4.27) to calculate frrst-order 

accurate eigenvalue responses. The final form of (4.27) then becomes 

(4.40) 

The form of ( 4.40) is particularly convenient to calculate during a point kinetics calculation, since 

the integrals If(l/J;m, lP';,) and I2(lP;m, lP';) may be calculated and stored at the beginning ofthe 

period during which the point kinetics model is to be used. 

4.3 Example Calculations Using the Operator Formulation 

An appropriate method to test the accuracy of the above formulation is to use the exact expression 

for the perturbation, given by ( 4.25). In this case, the perturbed forward flux is recalculated, and 

equation ( 4.40) may be expressed as 
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(4.41) 

The result of ( 4.41) can be compared with the known change in eigenvalue between the unper­

turbed and the perturbed forward calculations. lf the flux expansions were exactly the flux solu­

tions of the PDE, then there would be no difference between ( 4.41) and the change in eigenvalue 

calculated from the forward solutions. Thus, comparison of (4.41) with the known perturbation 

of the eigenvalue indicates how accurately the operator fonnulation perlonns with the selected 

NEM mesh size. This method of calculating exact changes in the eigenvalue is known as 'exact 

perturbation theory,' and is described by Williams. 85 

The methodology described above has been implemented into the PANBOX code. The calcula­

tions presented here have been made using a 2-group NEM calculation for a typical PWR core 

database in octant symmetry. Both the adjoint and forward NEM solutions were calculated with 

a convergence criteria of 10-s for both nodal fluxes and eigenvalue. The calculations were per­

formed as follows: first a critical boron concentration search was made in a hot full power core 

condition, and all necessary components of the forward solution were stored. Then the physical 

adjoint solutionwas calculated, and the results from that calculation were also stored. Perturba­

tions in cross sections were made in the input deck by selecting nodes and cross sections to be 

perturbed. The changes in the cross sections were then used with the forward and adjoint solu­

tions to estimate the first order response, as described in the last section. A second forward cal­

culation was made to calculate the new eigenvalue. Finally, an exact perturbation theory 

calculation using the fust tenn of equation ( 4.41) was made. 

Perturbation A. detennined A. detennined A. detennined 
in 10 selected by the operator by second by equation 
nodes. fonnulation forward calculation (4.41) 

-40% 1.00020993 1.000291 1.00029111 
-30% 1.00015748 1.000198 1.00019896 
-20% 1.00010502 1.000122 1.00012195 
-15% 1.00007880 1.000088 1.00008798 
-10% 1.00005257 1.000056 1.00005639 
+10% 0.99994767 0.999951 0.99995106 
+15% 0.99992144 0.999929 0.99992877 
+20% 0.99989522 0.999908 0.99990791 
+30% 0.99984276 0.999870 0.99986959 
+40% 0.99979031 0.999836 0.99983543 

Table 4.1: Results of perturbation of the diffusion coefficient in 10 selected nodes. 
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Fig. 4.1: First order perturbation theory results for perturbation of the 
diffusion coefficient in 10 selected nodes. 

40 

Table 4.1 shows the results of perturbations made in the diffusion coef:ficient. Of particular inter­

est here are the exact perturbation theory calculations: the agreement is excellent, and this con­

firms that the method of approximating the nodal fluxes and flux gradients is accurate in this 

instance. The first order perturbation theory calculations are also compared against the perturbed 

forward calculations in figure 4.1. 

4.4 Summary 

In this chapter, the point kinetics model was derived from the multigroup neutron diffusion equa­

tion by separating the neutron flux into a shape function and an amplitude function. The main 

technical contribution of this chapter was to show how the operator formulation of sensitivity 

theory, as originally defined by Cacuci et. al.,53 can be implemented with the solution of the NEM 

equations. The contributions are distinct from those of Delmolino,61 who laid down no theoreti­

cal foundations with respect to the consistency of the NEM, and did not properly consider the 

potential importance ofther term ( 4.26). 
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5. Axial Kinetics Model 
In this chapter, a one-dimensional approximation to the time-dependent multigroup dif­

fusion equation is derived. The continuous variable representation of this one-dimen­

sional model is then discretized with the NEM. The resulting discretized equations, here­

after referred to as the 'axial kinetics model,' are purposely cast into forms resembling 

the NEM discretization of the three-dimensional multigroup diffusion equation. In this 

way, existing numerical solution algorithms and PANBOX subroutines can be used to 

solve the equations of the axial kinetics model. 

5.1 Continuous variable derivation 

A review of the recent literature65,66,67,68,69 shows a common trend in the development 

of one-dimensional kinetics models for coupled neutronics/thermal-hydraulic code sys­

tems. The axial kinetics models are generally derived from a one-dimensional form of 

the differential multigroup neutron diffusion equation6S,66,67 and implemented in the 

thermalhydraulics code. Then the users of the program are obliged to devise a method to 

choose one-dimensional coefficients suchthat an agreement exists between the one-di­

mensional solution and a three-dimensional solution from a core analysis or design 

code.68,69 This approach is unsatisfactory from two perspectives. Firstly, it requires 

that the user spend time and resources to develop a methodology to produce appropriate 

coefficients for the one-dimensional model. Secondly, it increases the possibility that the 

user will obtain unrealistic results, because modified coefficients may not be correct coef­

ficients. 

It will be shown in this chapter that if the three-dimensional solution is considered in the 

derivation of the one-dimensional model, then agreement between the three- and one-di­

mensional solutions can be imposed automatically. Not only does this save user time and 

resources, but it also eliminates the chance that unwanted errors are introduced in the pro­

cess of coefficient generation for the axial model. 

5.1.1 Governing Equations 

In accordance with the above discussion, the starting point for the derivation of a one-di­

mensional model in the axial direction are the space-time continuous multigroup neutron 

diffusion equations, coupled with the delayed neutron precursor equations: 

a<j> Na Na NI 

V~ a/- V. DgV</>g + I;rtf>g = L 2;gg,<f>g' + L J;pgg'</>g' + LX~gAzCi, (5.11) 
g'=l g'=l i=l 

g = l, ... ,N0 
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where 

f/Jg == f/Jg(r, t) 

ci == ci(r,t) 
N, 

g = l, .. ,N0 

i = 1, .. ,N1 

Ipgg' == ± Ix~g(l - /P)vi~, 
j=l 

NI 

jP == Iß{ 
i=l 

i=1, .. ,N1 (5.12) 

A one-dimensional model may be formally derived by separating the neutron flux into a 

shape function '1/JlD(r, t) and an envelope function Ng(z, t) as follows: 

iflg(f,t) = Ng(z,t)'I/Jlf(r,t) (5.13) 

It should be noted that this separation involves no ansatz. The shape function '1/JlD(r, t) 

may vary as a function of z, so the flux is not assumed to be separable in the z direction. 

The purpose of this Separation will become apparent later, when the one-dimensional 

analogue of the adiabatic quasi-static approximation is made, and 'ljJ~(r, t) is approxi­

mated to vary weakly in time. 

The neutron precursor concentrations are separated in a way similar to the neutron flux: 

(5.14) 

The expressions (5.13) and (5.14) are now substituted into equations (5.11) and (5.12). 

Equation (5.11) is multiplied with a weight function Wg(r) and integrated over the plane 

perpendicular to the z axis, represented as A f-• Integration yields: 

1 [aN8 J w J a'lfJin ] vg at Wg(r)'ljJ8 (r, t)dAf- + N8 (z, t) W8(r)a{dAf-

A" A" 

-f Wg(i')V · ( D81J!}0 0~8 )dA, - f W8(r)V · (NgD,V1Jl}0 )dA, + 2,gN8 ~ 
A" A" 

NG NG NI 

= I I 88N
8

, + I Ip88N
8

, + Ix~;.pJD(z,t) (5.15) 
g' = 1 g' = 1 i= 1 
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Equation (5.12) is also multiplied by a weight function wf and also integrated over At-, 

giving 

ac;D I c lD lD I c as fD -at wi 0si (r;t)dAt- + ci (z, t) wi 0---atdAt- -

Al- N Al- I I G 

= J;
1 

~8N 8, - ~ A.pfD<z, t) wf0s fvcr; t)dAt-

A .. 

(5.16) 

The new coefficients defmed in this process are as follows: 

- -I lD 2r8(r; t) = W8(r)2r8(r; t'Jl/Jg (r, t)dAI-

At-

2: gg' (i'. t) = I w ,(r):E gg' (i'. t)tp !P (i'. t)dA, 

At-

- -I lD ~P88,(r, t) = W8(r)2P
88

,(r, t'Jl/J 
8

, (r, t)dAt-

AI.. N, 

~8t(r, t) = ± wf(r) j~ß1v2j8,(r, t)1/J~P(r, t)dAt-

A .. 

(5.17) 

~. = I x~,w.~lv\r.t)dA, 
At-

Equations (5.11) and (5.12) have been transformed from a set oflinear equations with a 

unique solution to a set of nonlinear equations. While the solution of the neutron flux 

should remain unique, the individual functions '1/JJD(r, t), Ng(z, t), sfD(r, t) and C{D(z, t) 

are no Ionger unique. In order to impose a unique solution upon the envelope functions 

Ng and CJD, the following constraints are imposed on the shape functions: 

I w ,(r)tp 1D (i'. t)dA, ~ I 

At-

I wf(r)W\r, t)dA, ~ 1 

(5.18) 

At-

These constraints are effectively normalizations of the shape function. They reduce the 

one-dimensional model equations (5.15) and (5.16) to 
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and 

ac~D I a;~n No . 1 + + cfD(z,t) wf(r)-itdAI- = g/;
1
Zpg'Ng'- i~;.icJD(z,t) 

A, 

(5.20) 

For the development of the one-dimensional model, the adiabatic quasi-static approxi­

mation is made which approximates the shape fimctions tobe so slowly varying in time 

that the time derivatives of the shape functions are negligible. Mathematically, this 

approximation is expressed as 

ol/J}n 
--at=O 

a;~n 
-~-=0 at 

which reduces equations (5.19) and (5.20) to 

(j) ® 
J, 0~8 

- I w 8\r) V · ( D 8'/J}D 
0~8 

·+Ae - I w 8\r) V • (N8D 8 V'/J}D)dAe 
A, A, 

No No NI 

+ 2:r8N8 = I 2:88N 8 , + I 2P88 ,N8, + I~;.,pJD(z,t) 
g' = 1 g' = 1 i= 1 

and 

ac~n 
-~-= at 

(5.21) 

(5.22) 

Terms (j) and ® from equation (5.21) must now be further evaluated. Assuming that the 

diffusion coefficient is homogeneous in the z-direction (this assumption will be justified 

in section 5.2), term (J) becomes 
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Term® may be written as, 

The radialleakage coefficient is defmed in Cartesian coordinates as 

(5.23) 

The freely chosen weight function is now restricted to have no z- dependence. Then, 

equation (5.21) may be written as 

J. d~g- !2+• 1 WgDg1jJ.fldA,] + BgNg(z,t) 

No No NI 

+ 2rgNg = I 2gg,Ng, + I 2pgg,Ng, + I~;p[D(z,t) (5.24) 
g' = 1 g' = 1 i = 1 

Most one-dimensional models in the Iiterature implicitly make the assumption that the 

shape function has no z dependence. In this case equation (5.24) reduces to the simple 

form of 

1 aNg _ a2Ng (- _ ) 
v--at - Dg-2- + B8 + 2rg Ng(z,t) = 

g az 
N0 N0 N1 

= I 2gg,Ng, + I 2pggNg' + I~;p}D(z,t) (5.25) 
g'=1 g'=1 i=1 

where 

- -f r.:., lD r.:., Dg = Wg,rJDg'l.jJg ,rJdAi-

A, 

However, as indicated by equation (5.13), the shape function is dependent on z in the 

general case, and thus the discretization of the continuous variable equations must begin 

from equation (5.24) and not equation (5.25). 
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5.1.2 Boundary and Interface Conditions 

The interface conditions of the diffusion approximation are that the neutron flux and the 

component of neutron current normal to the interface are continuous for all energy 

groups. This is equivalent to stating that positive and negative partial currents are contin­

uous across the interfaces. The partial currents in the z direction are given by 

·- _ rp8 + D 8 arp8 
lgz- 4 2az 

The partial currents of the one-dimensional axial model are defined as 

liz = 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

Definitions (5.28) and (5.29) are a crucial part of the derivation. Continuity of the partial 

currents of the three dimensional model also implies that these one-dimensional model 

partial currents must be kept continuous across any interfaces. The one-dimensional 

model expressions for the partial currents, equations (5.28) and (5.29) have an additional 

term in comparison to the expressions for the partial currents of the three dimensional 

model, equations (5.26) and (5.27). The extra term accounts for the varying z-depen­

dence of the shape function. This term arises from the explicit treatment of the three-di­

mensional flux shape in the one-dimensional model, and is the primary distinguishing 

feature of this derivation from that of other works.65,66,67 

Boundary conditions of the three dimensional model are treated in a similar way: where 

incoming partial currents are required to be zero, the corresponding condition must also 

hold true for the incoming partial currents of the one-dimensional model. Boundary con­

ditions on surfaces normal to the z-direction are considered implicitly in the radialleak­

age coefficient, equation (5.23). 

5.2 Nodal Expansion Method Discretization 

Discretization of the continuous variable form of the one-dimensional model with the 

NEM follows the general procedure outlined in references 23, 24, and 25. Here, the 

parts of the derivations distinct to the axial kinetics model are described. Details external 
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to the distinct features of the axial kinetics model may be found in Appendix C and the 

references.23·24,25 The full set of discretized equations which describe the M2-B2 variant 

of the NEM include the nodal balance equation, the outgoing partial current equations, 

and the moments equations. Derivation of each of these equations is described below in 

separate subsections. 

5.2.1 Nodal Balance Equation 

The NEM shares characteristics of both finite volume and finite element methods. The 

discretization requires that the integral of equations (5.22) and (5.24) be satisfied over 

homogeneous regions called nodes. The nodal averaged axial :fluxes and precursor con­

centrations are defined as 

Zm 

~(I) = Ll~m I N8(z,t)dz (5.30) 
Zm-1 

Zm 

cr(l) = Ll~m I c)D(z, t)dz (5.31) 

Zm-1 

Here, Zm-1 and Zm are the lower and upper coordinate boundaries of the homogenized 

node in question, and .Özm = Zm-Zm-1· Equations (5.22) and (5.24) are integrated over 

the axial node to yield, 

(5.32) 

and 

1 dN'g 1 a [ I D wdA ] 1 a [N I w wdA ] 
Vg dt - Llzm az Ng A, Wg g'I/Jg e ,~,. + Llzm az g A, gDg1/Jg e ,~, __ , 

NG NG NI 

+ <~ + B';)N'g = I ~Ni + I Z:gg'Ni+ I~;icj(t) (5.33) 
g' = 1 g' = 1 i= 1 

Equations (5.28) and (5.29) can be used to cast the leakage terms of equation (5.33) in 

terms of the partial currents of the axial model. The incoming and outgoing partial cur­

rents of a node of index m are defined by 
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(5.34) 

(5.35) 

The partial currents on the left band side of the node, J;t and r;;1m, are similarly de­

fmed, except that they are evaluated at z = z m _ 1 instead of z = z m· From these defini­

tions, it can be seen that the relationships 

(5.36) 

and 

(5.37) 

hold. 

Using equations (5.36) and (5.37) in equation (5.33), the time dependent axial nodal bal­

ance equation is derived as 

dNm 
1 g + 1 (J-m + j+m j+m J-m) + ('~ + B=fn)Nm V-d ~ gut gur - gut - gur ~rg g g = 
g t LJZm 

Na Na NI 

= I J!;gN'; + I ~g'N';+ Ix~I-Pi 
(5.38) 

g' = 1 g' = 1 i= 1 

Equation (5.38) is discretized in time using the exponential transformation method out­

lined in the Appendix A. The result yields the following expression for the time deriva­

tive 

dN'g = (1 + wmLJt)N'g(t) - ewmLJfN'g(tÜ) 

dt Llt 
(5.39) 

which may be substituted into the balance equation (5.38) to yield the following implicit 

equation for the node-averaged flux: 
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1 (J-m j+m 1 +m 1-m) ('~ + B=#I)Nm --:;--- gut + gur - gut - gur + ~Rg g g -
LJZm 

Na Na NI 

= I ~N;. + I x;ggN;. + Ix~;Pi<t) + sT 
(5.40) 

g' = 1 g' = 1 i= 1 

where 

.f"' = (1 + wmLJt) +I 
Rg - V LI t rg 

g 

w"l<''t 
sm = _e -Nm(t ) 

g V Llt g O g 

The advantage to have the nodal balance equation in this form is that it retains the same 

structure as the nodal balance equation of the three dimensional mode1.23,24,25 Thus, ex­

isting solution routines may be used once the coefficients and the e:ffective source terms 

have been determined. 

The time discretization of the precursor equations is shown in Appendix A. 

5.2.2 Outgoing Current Equations 

The second stage in the NEM discretization of the one-dimensional model is the deter­

mination of the outgoing current equations. Tobegin the derivation, Ng(!,, t) (referred to 

as the axial flux) is expanded in the NEM polynomials to a degree of fourth order 

4 

Ng(Z, t) = tJP;(u, t) = NT(t) + L a~(t)hi(u) , (5.41) 
i= 1 

where 

- z- zm-l 
u- Llzm (5.42) 

In the rest of this subsection, the time dependence of the variables will be suppressed. 

The first two expansion coefficients a'I;; and a~ are given as follows: 23·24,25 

pm - pm 
gr gl 

a~ = 2 
(5.43) 

'fiT,. + pmt 
m Nm g 

a2g = g - 2 (5.44) 
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where 

lJP;,. = qp;(u = 1) = N 8(zm) 

~ = qp;(u = 0) = Ng(Zm-I) 

Expressions for the higher order expansion coefficients, a~ and a~, are derived in the 

following section. The firstderivative of (5.41) may be evaluated at Zm and Zm-1 to ob­

tain the following expressions: 

The following factors /gL and /gR are defmed: 

fgL = [J WIJg ~r dA,] 
Zm-1 

fgR = [J WIJg ~r dA,] 
Zm 

Then the partial currents of the node of index m may be written in the form, 

+m = (1 _ fgL) _ Dg8Ng' 1 gzl 4 2 lJfgl 2 az 
Zm-1 

1gz-lm = (1 fgL) Dg8Ng' 4 + T lJfgl + Taz 
Zm-1 

( 
!. ) D aN I (5.46) 1-m = 1 + gR 1Jf. + __!_~ 

gzr 4 2 gr 2 az 
Zm 

J+m = (1- fgR)IJf. _ Dg8Ng' 
gzr 4 2 gr 2 az 

Zm 

Equations (5.43) , (5.44), and (5.46) may be substituted into equations (5.45) to arrive at 

the following coupled equations for the partial currents: 

IJ; [ ljfgl m m] 1;1 - 1;1 = - L1zm - 2lJfgr - 4 f~L + 6Np - 6a3g + 6a4g 

J +m _1-m = IJ; [4lJfgr 2'rr 6 1t.nn 6 m 6 m] gzr gzr - L1zm f~R + r gl + lVg - a3g + a4g 

(5.47) 

here, the new coefficients are defined as 
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!. / = 4 
L-

g 4- A~gL 
Dg 

(5.48) 

Equations (5.47) look similar to the equations which are used to derive outgoing current 

equations using heterogeneity factors, or so called 'discontinuity factors' to force agree­

ment between solution of heterogeneous assernblies and the solutions of the homoge­

neous problems derived from them. 64 If dgL and dgR are the heterogeneity factors, then 

the corresponding partial current equations in the heterogeneity factor formulation take 

the form of 

j+m - 1-m = - -- - 2- - 4- + 6N'!:' - 6am + 6am 11; [ lJI gr lJigl ] 
gzl gzl Azm dgR dgL g 3g 4g 

J1; [ lJI gr lJigl m m ] li;J!l- Jg;;n = - ~ 4d- + 2-d + 6N;- 6a3g + 6a4g 
LJZm gR gL 

(5.49) 

Both sets of partial current equations (5.47) and (5.49) involve correction factors to the 

'standard' partial current equations of the NEM. It is instructive to compare how equa­

tions (5.47) and (5.49) have been derived. Equations (5.49) stem from the 'equivalence 

theory' developed by Koebke62,63 and Smifu.64 Using the equivalence theory, extra de­

grees of freedom are introduced in the nodal solution of a homogenized reactor region so 

that the leakage and reaction rates can be forced to match that of the solution to the corre­

sponding heterogeneous problem. Equations (5.47) also stem from a homogenization 

process - the process of collapsing a three-dimensional model to one dimension. The 

definitions of the partial currents of the one dimensional model, defmitions (5.28) and 

(5.29), contain an extratermnot found in the defmition ofpartial currents for the three 

dimensional model [ equations (5.26) and (5.27) ]. It isthisextra term that gives rise di­

rectly to the 'correction factors' in equation (5.47). In contrast, the heterogeneity factors 

of equations (5.49) have been introduced in almost an ad hoc manner, to provide extra 

degrees of freedom with which to match two solutions. 

PANBOX has the built in capability of solving the NEM equations with or without heter­

ogeneity factors. Therefore, it is advantageous to relate the two sets of factors, and then 

calculate heterogeneity factors from the correction factors. The heterogeneity factors can 

then be used in the existing PANBOX routines without them having tobe changed. 

Equations (5.47) and (5.49) will have the same solutions provided that the heterogeneity 

factors satisfy the following relationships: 
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(5.50) 

The heterogeneity factors are calculated with equation (5.50), during the inner iterations 

of a time step. This yields results equivalent to those as if the partial current equations 

(5.47), with the correction factors, were solved for the outcoming currents. The common 

industry practice is to hold heterogeneity factors constant in time during a transient cal­

culation. While Gehin and Henry32 proposed to update heterogeneity factors periodically 

during a transient calculation, their method relied on recalculating the heterogeneous 

problern to do so. In contrast, a relationship between the standard heterogeneity factors 

used in the industry and a more rigorously derived correction factor based on the shape 

function is used here to update the heterogeneity factors. 

The fmal form of the outgoing current equations is found by eliminating one outgoing 

partial current from each of equations (5.47) to yield two equations which take the form: 

1;! = c~L(Ng + a~) + c~LJ;[ + C';gLJg;;n- c~La';g 

Ji;;n = c~R(Ng + a~) + C';gJ!;! + C~J!g;;n + c~#';g 
(5.51) 

The constants C~s' i=l , .. ,4; s=L,R; are given in Appendix C. These equations, like the 

nodal balance equation (5.38) also retain the sameform asthat of the three dimensional 

model. 

5.2.3 Moment Equations 

If a';g=a~=O, then equations (5.38) and (5.51) form the MO approximation ofthe NEM, 

in which the flux is expanded in quadratic polynomials across the nodes. To achieve 

greater accuracy, auxiliary equations must be derived to determine the higher order flux 

moments a';g and a~. These moments appear as small correction terms in the outgoing 

current equations (5.51). Forthedetermination ofthe higher orderaxial flux moments 

a';g and a~, the polynomial expansion ofthe axial flux [equation (5.41)] is substituted 

into equation (5.24), to yield 

72 



1 alJf; 02 [ J w J · vg --al- az2 'Pg' A> WgDg1/Jg 'dA> + Lg(z) 

Na Na I 

+ ~rg~ = I ~gg'IJ!i + I ~pgg'IJ!i + I~;ici(z,t) (5.52) 
g' = 1 g' = 1 i = 1 

The radialleakage BgNg(z,t) is here approximated as a quadratic polynomial Lg(z), in 

keeping with the B2 transverse leakage approximation of the NEM. Furthermore,Jor the 

moments equations, the approximation is made that the shape function is not a strong 

function of z locally within the node, so timt the second orderpartial derivative with re­

spect to z is approximated as 

(5.53) 

Since approximation (5.53) may introduce some small inconsistencies between the 3-D 

and 1-D discretized solutions, these inconsistencies are corrected by adjusting the correc­

tion factors derived in subsection 5.2.2. This procedure offorcing an equivalent solution 

between the 3-D and the 1-D model solutions is described in section 5.3. 

Using approximation (5.53), the one dimensionallocal diffusion equation may be written 

in terms of u as 

1 otJ7 rt; azlJI; 
v---:lt - A 2-2- + Lg(u) + ~rg~Jf'F = 

g u LJZ oU 
Na Na NI 

= I ~gg'lJ'i + I ~pgg'lJ'i + L~fiC/u,t) (5.54) 
g' = 1 g' = 1 i = 1 

In terms of the NEM polynomials, Lg(z) may be written in the following form: 

where 

and 
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LJzm-1-srzNm + iJzm-srz-1Nm-1 
L - g g g g 

gl - iJzm -1 + LJzm 

LJzm+1-srzNm + LJzm-srz+lNm+1 L - g g g g 
gr - LJzm + 1 + iJzm 

This formulation is consistent with the M2-B2 variant of the NEM.23,24,25 

iJIJig/ at and Ci(z, t) are approximated in the standard way for the moments equations (see 

Appendix C), and the resulting time-discrete moment equation is multiplied by the 

weight function h1 (u), and integrated over the node. This gives rise to the first discrete 

moment equation, 

[ 

=l1l ] 
Dg =:m 

60 LJzZ + l:g a]g = 

(5.55) 

Multiplying the time-discrete moment equation by the weight function h2(u) and inte-

grating over the node gives rise to the second discrete moment equation, 

The new coefficients '!!; and .E;gg' are given in Appendix C. 

5.3 Restrietion of Variables and Coefficients 

In this section, the details of computing the one-dimensional coefficients and initial con­

ditions of the axial kinetics model are described. The procedure is outlined in Figure 5.1. 

The prerequisite to the activation of the 1-D axial kinetics model is the calculation of the 

3-D kinetics model prior to that period. Thus, the beginning of every axial kinetics time 

integration period begins with a solution of the 3-D NEM equations for the first time 

step. The purpose of this first 3-D kinetics calculation is to calculate the shape function, 

the initial conditions ofthe axial model, and the correction factors for the 1-D model. 

N odal averaged quantities for the 1-D model are calculated by using the nodal averaged 

quantities of the 3-D model. Let Vm be the set of the 3-D model nodes belanging to ax­

ial plane m of the 1-D model. cp;, c? and w;, Qn E V m are respectively the nodal aver-
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Beginning of time step 
ß.t=t-t0 

Beginning Yes Calculate time step~ Calculate nodal averaged envelope and 
of 1-D calculatio with 3-D model shape functions from 3-D variables; 

eriod? calculate 1-D partial currents 

No 
r/Jg __". Ng, '1/Jg 

r/Jg,o __". Ngo 
Calculate effective 1-D cross sections jgzs --'>-]gzs 

from 3-D data base 

~g--'>-~ t 
Calculate effective 1-D cross sections 

from 3-D data base 
Solve for Ng by calculating time step ~g--'>-~ 
with the 1-D model NEM equations 

+ 
Solve for heterogeneity factors, dgL Solve for heterogeneity factors, dgL 

and dgR during the iteration procedure, and dgR• and from them fgR' fgL'. 
using the time-mdependent values of 

fgR' fgL'· 

... 
1 Next time step 1 

~ , ' 
Figure 5.1 Outline of the strategy for detennining 1-D coefficients from 3-D data. 

aged fluxes, precursor concentrations and weight functions on the mesh of the 3-D NEM 

model. The 3-D model nodal areas transverse to the z direction are given as A ~, 

Qn E V m . Then the shape function is detennined by 

'1/J~ = ifJ'g , 'V Qn E V m 

I WiifJ~A~ 
l,Q1ES111 

The axial model neutron flux and precursor concentration functions are initially deter-

mined by 

NF = I WgifJiA~ 
l,Q1ESm 

and 

er= I Wgc~A~ 
l,Q1ES111 

These discretized expressions are consistent with the continuous variable derivation, 

75 



equations (5.13), (5.14) and (5.18). The partial currents of the one-dimensional model 

are determined through the use of defmitions (5.28) and (5.29) to give 

The one-dimensional cross sections and diffusions coefficients are all determined in a 

similar way according to 

X: = I Wg 1/J~E~A ~ 
l,{21ES111 

or 

~I= I Wgpi,J;~,A~ 
1,{21ESm 

depending on whether the coefficient acts on the in-group or out-of-group flux, respec­

tively. When the above restriction procedure is performed, the one-dimensional nodal 

balance equation (5.40) is satisfied automatically to within the same accuracy as the origi­

nal 3-D model equations are solved. However, it is not true that the outgoing current 

equations (5.51) together with the moment equations, (5.55) and (5.56), will be automati­

cally satisfied. They can be satisfied if 

(a) the NEM-MO approximation is used in both 3-D and 1-D models and the correction 

factors (5.48) are accurately determined; or 

(b) the NEM-M2 approximation is used in both 3-D and 1-D models and the correction 

factors (5.48) are adjusted so that the satisfaction ofthe equations (5.51), (5.55) and 

(5.56) is forced. 

Condition (a) is unsatisfactory from the point of view of computation costs: the 

NEM-MO (quadratic expansions) approximation is not accurate enough tobe used in 

coarse mesh approximations to model reactor cores. Use of finer meshes may be too ex­

pensive for general applications. NEM-M2 (quartic expansions) is the preferred method, 

and it has been demonstrated in the past that it is accurate enough for many coarse mesh 

applications. Adjustment of the correction factors eliminates the inconsistencies 

introduced by assumption (5.53) for the moments equations. Method (b) is therefore cho­

sen and the correction factors (5.48) are adjusted so that all of the axial kinetics model 

equations are satisfied at the time of transition from the 3-D to the 1-D model. After this 

time of transition, the adjusted correction factors are approximated as constant in time, 
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although the heterogeneity factors are updated by (5.57). Calculation of the correction 

factors is described in the following subsection. 

5.3.1 Calculation of Correction Factors 

At the time oftransition from the 3-D to the 1-D model, the correction factors f;l_' and 

j8~' must be determined so that the restricted one-dimensional model parameters N';, 

+ 1;;;, and Cj satisfy the one-dimensional model equations (5.51), (5.55) and (5.56). 

This is done by substituting (5.43) and (5.44) into the moment equations (5.55) and 

(5.56) and using the resulting equations with (5.49) [ from which equations (5.51) are de­

rived ] to form a system of 4G equations with 4G unknowns for each axial node. The un­

knowns are d~v d':R_, a%u• and a4gu' g=l , ... ,Na. For the usual practical case of No=2, 

solution of these equations involves inverting an 8x8 matrix which can be performed effi­

ciently by direct inversion techniques, for instance through L-U decomposition.90 

Equations (5.50) can then be used to calculate t;'i and t;; from the heterogeneity fac­

tors d;L and d':R_. This procedure is repeated for each axial node. 

5.4 Solution Procedure 

Once the shape function, correction factors, and initial conditions of the one-dimensional 

model have been generated at the time of transition from the 3-D model, subsequent time 

steps are calculated using these quantities to generate coefficients for the one-dimension­

al model. Equations (5.40), (5.51), (5.55) and (5.56) are the NEM equations which must 

be solved in these subsequent time steps. 

The one-dimensional NEM model equations have been purposely constructed to retain 

the same form as the NEM equations of the three-dimensional model. This has the dis­

tinct advantage that the same solution algorithms may be used for the one-dimensional 

model as have been developed for the three-dimensional model. As previously reported 

for the three-dimensional model, a coarse mesh rebalancing scheme greatly improves the 

convergence rate of the one-dimensional model equations. In the one-dimensional case, 

the coarse mesh rebalancing scheme described by Finnemann et. al.41 immediately re­

duces to a tridiagonal system of equations on the first coarse mesh rebalancing grid. 

These equations can be solved directly, so that iterative solution schemes are unnecessary 

on the coarse mesh rebalancing grid. 
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5.5 Test Cases and Discussion 

Three test cases will be presented in the following subsections. For the first test case, the 

solution ofthe axial1-D modelwill be compared against the analytical and 3-D model 

solutions of a homogeneaus reactor in slab geometry. The two subsequent test cases use 

real PWR databases with both axially uniform and local perturbations to initiate the tran­

sient. Results of the 1-D axial model using both heterogeneity and correction factors are 

compared against the 3-D PANBOX model. 

5.5.1 Analytical Test Case 

The first suitable test ofthe 1-D model is to calculate a case where the solution has only one­

dimensional dependence. Forthis case, a 3-D data base was generated with reflective bound­

ary conditions in the radial direction, zero incoming current boundary conditions in the axial 
direction, and with spatially constant cross sections throughout the core. No thennalhydraul­
ic coupling was used, and a critical condition was imposed so that the solution remained sta­

tionary in time. For the PANBOX calculation, the 3-D NEM model was first used to generate 

Node index 
I Centre 

Group 1 nodal averaged flux Group 2 nodal averaged flux 

height (cm) Analytical 3DNEM 1DNEM Analytical 3DNEM 1DNEM 

1 I 15.0 2.427 414656 2.4303 2.4303 0.6898091435 0.6861 0.6861 

2145.0 6.434524059 6.4350 6.4350 1.828526974 1.8289 1.8289 

3 I 75.0 10.16707516 10.1670 10.1671 2.889222383 2.8892 2.8892 

41 105.0 13.46581459 13.4660 13.4660 3.826640129 3.8267 3.8267 

5 I 135.0 16.18997574 16.1911 16.1910 4.600776672 4.6011 4.6011 

6 I 165.0 18.22334099 18.2269 18.2260 5.178606987 5.1796 5.1794 

7 I 195.0 19.47912407 19.4835 19.4826 5.535468102 5.5367 5.5365 

8 I 225.0 19.90376091 19.9078 19.9072 5.656138897 5.6573 5.6571 

9 I 255.0 19.47912407 19.4828 19.4821 5.535468102 5.5365 5.5363 

10 I 285.0 18.22334099 18.2260 18.2253 5.178606987 5.1794 5.1792 

11 I 315.0 16.18997574 16.1904 16.1904 4.600776672 4.6009 4.6009 

12 I 345.0 13.46581459 13.4655 13.4655 3.826640129 3.8266 3.8266 

13 I 375.0 10.16707516 10.1667 10.1668 2.889222383 2.8891 2.8891 

14 I 405.0 6.434524059 6.4347 6.4348 1.82852697 4 1.8288 1.8289 

15 I 435.0 2.427414656 2.4302 2.4302 0.6898091435 0.6861 0.6861 

Table 5.1 Comparison of analytical, 3D-NEM and ID-NEM solutions of a one-dimensional 
two group diffusion problem. 
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a steady-state solution and initial conditions. Several time steps were integrated with the 

3-D NEM modeland then the 1-D NEM modelwas activated. During time integration 

of both the 3-D NEM and the 1-D NEM models, the flux distribution does not change 

appreciably. Axially averaged fluxes of both calculations are compared against the ana­

lytical solution in Table 5.1. 

The correction factors for the 1-D-NEM model were all calculated to be equal to 1.0, 

within the accuracy of the convergence criteria (here 10-6). This result is exactly as ex­

pected, because for the truly one dimensional solution, the shape function has no z-de­

pendence, and correction factors, which account for the z-dependence of the shape func­

tion, should be equal to unity. 

5.5.2 Transient Initiated by a Radially Uniform Perturbation 

This section compares a 3-D calculation with two separate 1-D calculations. The first 

1-D calculation uses time independent correction factors, while the second uses time in­

dependent heterogeneity factors, as they are described in section 5.2.2. The initial condi­

tion of the transient is a critical PWR reactor core operating at 1000 MW thermal power 

with all rods out. The initial power is peaked heavily towards the top of the core. The 

transient is initiated at t=0.5 seconds by decreasing the boron concentration from 1050 

ppm to 950 ppm at the core inlet. An infmite slug of 950 ppm boronated water is as­

sumed to traverse the core at a steady rate until it reaches the core exit at 10.5 seconds. It 

is noted that this transient is not realistic, since the actual transport of the boron-diluted 

slug would occur at the (much faster) speed of the coolant. However, the example is a 

good one for demonstration and discussion of the 1-D axial kinetics model. 

In the case of the 1-D calculations, the axial kinetics model was activated at time t=0.5 

seconds- at the beginning of the perturbation- and not reactivated. Tables 5.2 and 5.3 

show the correction and heterogeneity factors, respectively, of the two axial model cal­

culations. These factors are based on the steady-state flux shape, since the axial model is 

initialized as the transient is initiated. Important to note is the fact that the factors are 

here not equal to unity, as was true in section 5.5.2, because the shape function now has a 

z-dependence. Furthest from unity are the factors of the second energy group in the node 

at the top of the core. Here, the shape function is strongly varying due to the control rod 

tips protruding into the top of the core. 
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Node index/ Group 1 correction factors Group 2 correction factors 
Centre height (cm) Left Right Left Right 

1 I 15.0 1.00000 1.00000 1.0000 1.0000 

2145.0 0.995397 1.00263 0.999137 1.00821 

3 I 75.0 0.999094 1.00074 0.997651 1.00130 

4 I 105.0 0.996862 1.00226 0.996047 1.00240 

5 I 135.0 0.997396 1.00156 0.997278 1.00157 

6 I 165.0 0.996421 1.00007 0.999602 1.00022 

7 I 195.0 0.999780 1.00015 0.995955 1.00036 

8 I 225.0 1.00021 0.999830 1.000 1.00001 

9 I 255.0 1.00059 0.999020 1.00032 0.999380 

10 I 285.0 1.00186 0.997402 1.00154 0.997545 

11 I 315.0 1.00204 0.997280 1.00191 0.996726 

12 I 345.0 1.00029 0.999690 1.00057 0.999041 

13 I 375.0 1.00219 0.996905 1.00408 0.992661 

141405.0 1.00087 0.998051 1.00596 0.999892 

15 I 435.0 0.999412 1.00000 0.923327 0.919940 

Table 5.2 Correction factors for 1-D model ofboron dilution transient. 
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Figure 5.1: Total Power and Axial Offset During a Boron Dilution Event 
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Figure 5.1 shows the total core power and the relative axial power offset as a function of 

time during the transient for an three calculations. The two 1-D calculations are nearly 

indistinguishable, indicating that both the methods of using heterogeneity and correction 

factors are comparable in this case. The total core power of the 3-D model calculation 

differs from that of the 1-D model calculation, although the qualitative prediction of the 

transient by the 1-D model calculations is quite good. This is most likely due to the 3-D 

dependence of feedback effects in the heterogeneous core, as the deviation between the 

results does not occur until 2.5 seconds from initiation of the transient. 

The 1-D models do predict the relative axial power offset quite wen. In addition, the ax­

iany averaged power shapes, shown in figure 5.2 are very similar for all three calcula­

tions. The good agreement between the axial power shapes of the 1-D and 3-D models 

is expected for this kind of transient, since the perturbations (excluding feedback effects) 

are uniform in the radial directions.results does not occur until 2.5 seconds from initiation 

of the transient. 

Node index/ Group 1 correction factors Group 2 correction factors 
Centre height (cm) Left Right Left 

1/15.0 1.00000 1.00000 1.00000 

2/45.0 1.01421 0.995830 1.009596 

31 75.0 1.00184 0.998547 1.004246 

4/105.0 1.00605 0.995280 1.007241 

5/135.0 1.00470 0.996421 1.004851 

6/165.0 1.00053 0.999703 1.000695 

7/195.0 1.00041 0.999666 1.000809 

8/225.0 0.999596 1.00035 1.00004 

9/255.0 0.998482 1.00166 0.999108 

10 I 285.0 0.995691 1.00465 0.996224 

11 I 315.0 0.995540 1.00505 0.995339 

12 I 345.0 0.999416 1.00063 0.998649 

13/375.0 0.995765 1.00643 0.991449 

14 I 405.0 0.998495 1.00483 0.992059 

15/435.0 1.00078 0.996705 1.107997 

Table 5.3 Heterogeneity factors for 1D model ofboron dilution transient. 

5.5.3 Transient Initiated by Local Perturbations 

Right 

1.00000 

0.988799 

0.997027 

0.994628 

0.996342 

0.999481 

0.999285 

0.999927 

1.00102 

1.00426 

1.00570 

1.00170 

1.01417 

1.00545 

0.691086 

The third transient is similar tothat of section 5.5.2. In this case, the initial conditions is 

that of a critical PWR core operating at 1000 MW power with two rod banks inserted 
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Figure 5.2: Axial Power Shape During a Boron Dilution Event 
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fully in. This is obviously also not a realistic Operating condition, but serves as a good 

comparision with the previous transient. At time t=0.5 seconds, the rod banks begin to be 

steadily withdrawn, until they reach the upperstop at t=10.5 seconds. The heterogeneity 

and correction factors are not shown for this calculation, as they do not qualitatively dif­

fer from those of section 5.5.2. The total core power and relative axial power offset of 

the 3-D and 1-D calculations are shown in figure 5.3. Again, there is no large difference 

between the two 1-D calculations. This indicates that holding either heterogeneity or 

correction factors constant in time is a good approximation relative to the approximation 

made that the shape function remains constant in time. As was true of the transient de­

scribed in section 5.2.2, the power prediction ofthe 1-D model in this calculation is qual­

itatively good compared to that of the 3-D model. It is seen, though, that the relative ax­

ial power offset and the axial power shapes (shown in Figure 5.4) calculated by the 1-D 

models diverge from that of the 3-D model. 
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Figure 5.3: Total Power and Axial Offset During a Rod Withdrawal 

The larger differences between the axial power shapes of the 1D and 3-D models is ex­

pected in this case. This is because the shape functions change more strongly with the 

local perturbations of a bank withdrawal, as compared with the radially uniform perturba­

tions of the transient in section 5.5.2. 
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Figure 5.4: Axial Power Shape During a Rod Withdrawal 

84 



5.6 Summary 

In this chapter, an axial kinetics modelwas developed from the three-dimensional neu­

tron multigroup diffusion equation. The distinguishing feature of this development was 

the separation of the three-dimensional neutron flux into a shape function and an enve­

lope function. This parallels the derivation of the point kinetics model in chapter 4, 

where the model was derived by separating the flux into a shape function and an ampli­

tude function. The NEM equations of the axial kinetics model were kept in the same 

form as that of the NEM equations for the 3-D model. To force equivalence between the 

3-D and 1-D model solutions, correction factors were introduced. These correction fac­

tors were compared with the heterogeneity factors used for coarse mesh homogenization 

in most industry codes. In the transient calculations performed, no significant differences 

could be found between the results of the 1-D calculations using either correction factors 

or heterogeneity factors. 

85 





6. Adaptive Multi-Level Algorithm 
The previous two chapters derived point and one-dimensional (axial) neutron kinetics mod­

els which, together with the three-dimensional NEM model in PANBOX, form the three 

'Ievels' of the adaptive multi-level algorithm. This chapter first considers how the algorithm 

will switch from one Ievel to another. Secondly, criteria will be derived for when such switch­

ing should occur. The purpose of switching to lower dimensional models is to save computa­

tion time, while the purpose of switching back to the three dimensional model is to retain or 

restore accuracy. Switching from one model to another essentially entails finding initial con­

ditions for the newly activated model. These initial conditions can be found from the pre­

viously activated model. In addition to initial conditions, it is necessary at all time steps to 

have an approximation of the three-dimensional multigroup flux. The flux is used to deter­

mine the power distribution in the core, which is then passed as a heat generation term to the 

thermalhydraulic models. Because it is always necessary to have an approximation of the 

three dimensional flux, it is convenient to consider alllevel-to-level switching modes [ de­

picted in Figure 6.1(a)] as combinations of switching between the three-dimensional kinetics 

model and either the axial or point kinetics models. Thus, a switch from the axial to the point 

kinetics models is calculated as a switch first from the axial to the three-dimensional model, 

and then an immediate switch from the three dimensional to the point kinetics model. The 

reduced set of switching modes is depicted in Figure 6.1 (b ). 

Point kinetics model 

-~ J !_--Axial (1-D) kinetics model--'~_-­
'~ 

'~ ,, 
3-D kinetics model 

f ,, 

(a) possible modes of switching (b) reduced set of switching 
modes 

Figure 6.1: Modes of switching for adaptive multi-level algorithm. 

6.1 Mechanics of Switching Between Models 

An adaptive calculation always begins from the three dimensional model. This is necessary 

because the respective flux shape functions for the point and axial kinetics models are deter­

mined from the three-dimensional multigroup flux. A switch to either of the lower dimen-
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average flux quantities of the lower dimensional model. The y prolongation factors are the 

factor changes in the z component of the net currents. During a 1-D model calculation time 

the r factors are computed by 

Nm(t) 
r~,ij = N~(t~) , 'V Qn E V m 

Jm+(t) + Jm-(t) 
ro·!! = gzr J gzr J 'V Qn E V 

g,IJ Jm+(t·) + Jm-(t·)' m gzr 1 gzr 1 
(6.3) 

Jm+(t) + Jm-(t) 
rzJ·~ = gzJ J gzt J 'V Qn E V 

g,IJ Jm+(t·) + Jm-(t·)' m 
gzl I gz[ I 

and the y prolongation factors are 

Jm+(t) _ 1m-(t) 
zr,n = gzr j gzr j 'V Qn E V 

Y g,ij Jm+(t·) _ Jm-(t·)' m 
gzr 1 gzr 1 

(6.4) 

Jm+(t) _ Jm-(t) 
zl,n = gzl J gzl J V Qn E V 

Y g,ij Jm+(t·) _ Jm-(t·) • m 
gzl I gzl I 

(6.5) 

During a PK model calculation time, these prolongation factors are determined by, 

P(t) 
r n _ ru,n _ rzt,n - yzr ,n - yzl,n - J \.J nn E V g E {1 N } (6.6) 

g,ij - g,ij - g,ij - g,ij - g,ij - P(t;)' V ;:,~ ' ' ••• ' G 

The 3-D fluxes are prolonged with the equation, 

(6.7) 

The partial currents in the radial direction are prolonged in the same way. For Cartesian ge­

ometry, the prolongation of the partial currents in the radial direction is given by 

j~ffi(t) = F~,ijj~ffi(t;). V u E {x,y}, s E {l, r} (6.8) 

In the z direction, changes in the net axial currents and nodal face averaged fluxes are pro­

longed to the 3-D grid, resulting in the following equations for the partial currents: 

(6.9) 

'V s E {r, l} 

J·n- (t) = 1 [ (rzr·.~ _ yzr·.~)1·n + (f.) + (rzr·.~ + yzr·.~)1·n- (f.)] (6.10) gzr } 2 g,lj g,lj gzy I g,lj g,lj gzy I 

Equations (6.7) to (6.10) prolang the changeintime of either lower dimensional models to 

the average fluxes and partial currents of the 3-D NEM model. This prolongation procedure 

is consistent with the separation of the flux into shape and amplitude or envelope functions, 
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(4.3) or (5.13), as weil as with the definition of the 1-D modelpartial currents (5.28) and 

(5.29). For the point kinetics model, equations (6.9) and (6.10) reduce to the form of (6.8). 

In addition to proionging the 3-D fluxes and currents, the 3-D precursor concentrations must 

also be prolonged. This is done in the same fashion as the nodal averaged flux. The precursor 

prolongation factors are defined as 

(6.11) 

for the point kinetics model and 

C~D,m(t) 
Iln -' p\..1 S 

i.pq - JD ' v n E m ' C. ,m(tq) 
I 

(6.12) 

for the 1-D model. The 3-D nodal averaged precursor concentrations in the NEM discretiza­

tion are prolonged by 

(6.13) 

The prolongation ofthe precursors, equation (6.13), is consistent with the separation of the 

precursors into a shape function and an amplitude or envelope function, equations ( 4.4) or 

(5.14), respectively. 

The prolongation methods described above provide an approximation to the 3-D flux Solu­

tion which is based on the flux shape from the last known solution ofthe 3-D NEM model 

and the current solution of either the 1-D or point kinetics model. This approximation to the 

3-D flux can be used to recalculate nodal averaged powers, to perform interpolations of fuel 

pin powers, or to approximate new initial conditions for the 3-D model. Additionally, in sec­

tion 6.3, it will be shown how this approximate reconstructed 3-D solution is used to estimate 

the error made by the 1-D or point kinetics models. These errors accumulate if the lower 

dimensional models are activated during time periods in which the quasi-static approxima­

tion does not hold. Before this aspect is examined, criteria will be developed to determine 

when the quasi-static approximation of the lower dimensional models is satisfied. This will 

motivate criteria for the activation of the lower dimensional models. 

6.2 Adaptivity from Higher to Lower Dimensional Models 

In both derivations of the point and the axial kinetics models, the approximation is made that 

the time variation of the shape functions,1J'fK(r, t) and 1/J~D(r, t), is negligible. Formost tran­

sients in real postulated accident scenarios, the shape functions will very rarely be time inde­

pendent. The heterogeneity of both the reactor core and disturbances to the core will cause 

the shape functions to vary in time during most transient periods. lf a lower dimensional 

model is activated during a time when the shape function does vary strongly in time, then 
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the approximation of the 3-D flux solution found with the lower dimensional model will di­

verge from the flux solution which would have been calculated with the 3-D NEM kinetics 

model. Todetermine when a switch to the 1-D model is allowable, iJtp~D(J, t)/ at is moni­

tared during calculations of the 3-D model. From the value of ift/Jf?(i, t)/ at, an estimate can 

be made of how quickly the flux solution from the 1-D model would accumulate error should 

it be activated. From this estimated rate of error production, the code can calculate the time 

period after which a user-given error tolerance E would be exceeded by the 1-D model. If 

this calculated time period, T!ft, exceeds the user-selected minimum 1-D integration period, 

T:i, then the 1-D model can be activated. Otherwise, the 3-D model must remain active. 

This idea is illustrated in Figure 6.2. Similar criteria will also be developed for the switch 

from the 1-D axial to the point kinetics model. 

1-D 
Model 

@ T!ft ;:::: T:i Switch to 1-D 

4Extrapolate when error -r:r::--
1\!:} tolerance E would "-"' 0 Extrapolate when error 
I be exceeded by 1-D /,; tolerance E would 
\ model. / be exceeded by 1-D 

3-D 
1 1 1 1 1 1 

model. 
Model 

Q) Calculate 

a1./J~D jat 

@Calculate 
ift/J~D jat 

Time )lila 

Figure 6.2: Illustration of switching criteria from 3D to 1D models. 

6.2.1 Criterion for Activating the Axial Kinetics Model 

Consider a situation in which the 1-D kinetics model has been activated for n time steps. 

The approximation to the 3-D flux is given by 

(6.14) 

The superscript h denotes that the flux and envelope function solutions are only approxima­

tions of the solution which could have been calculated by the 3-D NEM neutron kinetics 

model. Had the 3-D NEM solution been calculated, it could be separated into a shape and 

envelope function as 

cj>8(J, tn) = 1./J~D(J, tn)Ng(Z, tn) 

The space dependent error of the 1-D model is defined as 
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(6.16) 

The approximation is made that the shape function 7fJ1D(f, t0) is close to '1fJ1D(f, t) so that the 

axial kinetics model coefficients are accurate enough that N~ :::::: N g· Then 

eg(f,tn):::::: N~(z,tn)['tfJ1D<7,tn)- '1fJ1D<7,to)] 

'1/J~D(f, tn) is expanded in the following Taylor series: 

07fJ1D 
lDr::- ) lDr::- ) g A + 'l/Jg ~_r,tn ='1/Jg ~_r,t0 +----at LJtn ... 

fo 

With (6.18), equation (6.17) may be written as 

0'1/JJD 
e g<f, t n) :::::: N~(z, t n)-ft- L1 t n 

The relative error in the flux is therefore 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

to first order in iJ'IjJ~D / at. Using equation (6.20), the rate of accumulation of global error in 

an L2 norm is defmed by 

(~~): ~ [vLa .~ f ( wln mpt r dVr (6.21) 

and the rate of accumulation of local error in an LI norm is 

1D [ 1 d'I/JJD] (~~t = max '1/J~v--ft- (6.22) 

Let the user-selected tolerable local LI relative error be EL and the tolerable global L2 rela­

tive error be Ec· Definitions (6.21) and (6.22) can be used to approximate the time periods 

TW and TiD after which the errors Ec and Ev respectively, would develop. The time period 
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after which an error Ea would develop is therefore approximated as 

rw = E /(ae) w 
G G ()t G 

(6.23) 

and the time period after which a local error E L can develop is approximated as 

1D 

Tf = € ~I ( ~~ t (6.24) 

The smallest time period after which either of the tolerable error bounds can be exceeded is 

therefore 

riD = min(Tw riD) 
est L ' G (6.25) 

Therefore, T~ft is the estimated allowable integration period for the 1-D model. Determina­

tion of T~ft relies on knowing (d'l/J~D lat)I'I/Jt. Because the time dependence ofthe shape 

function is not known when the 1-D model is activated, (d'l/J~D lßt)I'I/J~D can be tracked only 

during the periods when the 3-D model is activated. lf ß'ljJ~D I at is a slowly varying function 

in time, the behaviour of ß'l.jJ~D I at during a 3-D model integration period can be used to infer 

its behaviour during the subsequent 1-D model integration period. If 

TID > TJD 
est - min (6.26) 

for a number of consecutive time steps on the 3-D Ievel, then the 1-D model can be activated 

and the 3-D model deactivated. An altemate statement of criterion (6.26) is, using (6.23) 

and (6.24), 

1D 

(ae) TlD < 
dt G min - Ea 

(6.27) 

and 

1D 

(as) ri~ < E (6.28) 
()f L mrn- L 

T~lfn is the minimum 1-D integration period, selected by the user. It should be chosentobe 

greater than the maximum allowable time step size. A value of T:1tn on the order of the time 

step size will mean that the algorithm will switch often back and forth between the 3-D and 

1-D models. Larger values of T:1tn will reduce the frequency of transitions between models, 

and will tend to activate the 1-D model only as the transient approaches an asymptotic state. 

The algorithm implemented in PANBOX activates the 1-D model if (6.26) is fulfilled for 

three consecutive checks. Then, the 1-D integration period is defined by 

TJD = min(r~ft, TWax) (6.29) 

T!fax is the user selected maximum 1-D integration period. Its selection ensures an occasion-
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al return to the 3-D model. This is useful, for example when 

(ae)w (ae)w = 
at G ' at L 

0 (6.30) 

lfthe 1-D model is activated at timet = t0, then the 3-D modelwill be reactivated at time 

t3D = to + Tw. 

6.2.2 Criteria for Activating the Point Kinetics Model 

The criteria for switching to the point kinetics model are similar to those developed in the 

last section. In this case, the point kinetics shape function can be written in terms of the 1-D 

model shape and amplitude functions as, 

PK _ N8(z, t)1/J~D(j, t) 
1/J 8 (r', t) - P(t) 

The 1-D/PK shape function is defmed as 

?illD/PK( ) = Ng(Z, t) 
"~' g z, t - P( t) 

so that 

The point kinetics analogue of equation (6.17) is 

eg(j, tn) = ph(tn)[1/J:K(r, tn) - 1/J:K(r, to)] 

so that the relative error is approximated as in (6.20) by 

Using equation (6.33), a1jJ:K / at may be expressed as 

a1fJfK(r, t) a1jJ!D/PK(z, t) JDr;: lD/PK a1jJ~D(r, t) 
at = at 1/J 8 ,r, t) + 1/J g (z, t) at 

Thus, 

94 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 
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The approximated rate of accumulation of global error in an L2 norm is given by 

and the rate of accumulation of local error in an LI norm is approximated as 

(
ae)PK - 1 i:)'ljJ~D/PK EL 
7ft L = max 1/J~D/PK at + TlD 

The smallest time perlad after which an error Ea can develop is therefore 

TPK = E /(ae)PK 
G G at G 

and the smallest time perlad after which a local error E L can develop is 

TPK = E /(ae)PK 
L L at L 

(6.38) 

(6.39) 

(6.40) 

(6.41) 

The smallest time perlad in which neither one of the errar bounds can be exceeded is 

TPK = min(TPK TPK) 
est L ' G 

Similar to the crlterla presented in the last subsection, if 

T.PK > T.PK 
est - min 

(6.42) 

(6.43) 

for three consecutive calculations of Tflf, then the point kinetics model can be activated and 

the axial kinetics model deactivated. An altemate expression of (6.43) is, 

PK 
(as) TP~ :::;; E 

at G mm G 
(6.44) 

and 

PK 
(de) TPK < i:)t L min- EL 

(6.45) 

The point kinetics integration perlad is defmed by 

TPK = min(Tflf, T~~) (6.46) 

T~~x is the user selected maximum PK integration period. If the PK model is activated at 

time t = t 1, then the 3-D madel will be reactivated at time t3v, given by 
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(6.47) 

The algorithm presented here requires the axial kinetics model always to be activated before 

the point kinetics model is activated. This requirement, combined with criterion (6.43), are 

the criteria for activation of the point kinetics model. 

6.2.3 Alternative Adaptive Criteria 

The adaptive criteria presented in sections 6.2.1 and 6.2.2 are by no means unique. For exam­

ple, different criteria were presented in reference 92. The tolerable errors in sections 6.2.1 

and 6.2.2 are measured according to the norm 

1 

(e)a = [v1a ~ f ei\r,t)dVr 
for the global error, and according to 

(e)L = max[e8(r; t)] 

for the loca1 error. In contrast, the measures presented previously92 were in norms 

and 

(e)' = 
G 

Na f 
~ e~{Y,t)dV 

V 

Na f 
~ ifJ~(Y, t)dV 

V 

1 max[ e 8(Y, t)] 
(e) = -.....;:...__-_..:. 

L </J 

1 
2 

(6.48) 

(6.49) 

(6.50) 

(6.51) 

Since eg = e8 j<jJ8 , these measures arenot completely dissimilar. The error measures of 

(6.48) and (6.49) weight relative errors more strongly than absolute errors, whereas the mea-

sures (6.50) and (6.51) weight the absolute errors more strongly. The strongly weighted rela­

tive criteria from sections 6.2.1 and 6.2.2 were chosen because the error measures to be evalu­

ated tend to be smoother functions of time than those of ( 6.50) and ( 6.51 ). Additionally, the 

criteria presented earlier92 approximated that the time dependence of the 1-D shape function 

'ljJ~D was completely negligible by the time the point kinetics model is switched on. For more 

generality, this approximation has not been made in subsection 6.2.2. 

96 



6.3 Adaptivity from Lower to Higher Dimensional Models 

In addition to detennining when the lower dimensional kinetic models should be activated, 

the criteria developed in section 6.2 estimate a time point t3v when the 3-D kinetics model 

should be reactivated. The time t3v is determined mainly by how rapidly the shape functions 

are evolving, but it can also be limited by the maximum user-requested integration periods 

Tifax and T~Ifx.. Unfortunately, the time dependence of the shape function is not known dur­

ing time periods when the 3-D model is deactivated. During a time period in which the lower 

dimensional models are calculated, the time-dependent behaviour of the shape function is 

inferred from the previous period in which the 3-D model was used. While this inference 

may be satisfactory when the neutron flux evolves asymptotically, it may not be true if the 

neutron cross sections are strongly perturbed during a period in which the lower dimensional 

models are activated. 

With the use of a coupled thermalhydraulics/neutron kinetics simulator like RELAPS/PAN­

BOX, such perturbations are expected during some part of most postulated accident scenar­

ios. Changes in fuel temperature, moderater density and temperature, poison concentration, 

and control rod position all perturb the neutron cross sections. The effects of such perturba­

tions must somehow be assessed, so that the 3-D model can be switched back on when the 

lower dimensional models become too inaccurate. This concept is illustrated in Figure 6.3. 

1 .. 
rw --------~ 

1-D ------------•--~·~~·~~•.-~•~-.•---~~t--Model ___ ...,... 

3-D 
Model 

Extrapolated --------- t3v 
ID period---- Stron~ local -- ~ ."...- perturbation in 

/
",."........ cross sections gives 

. h . ,,,ID 
1 nse to c ange m'Yg 

• • • • t • • 
Calculate 3-D model reactivated 
07p~D j at before end of Tw 

Time ---:l)llo~ 

Figure 6.3: Illustration of reason to switch from lD to 3D models earlier than t3D· 

The following sections deal with estimating the error during integration of the lower dimen­

sional models. When the error becomes too great, the 3-D kinetics model must be switched 

backen. 
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NI 
""" . ewA t /g = f=!Xd/'v,-clr, t) + vg!Jt</>g(f, t0) (6.55) 

Errors in the precursor concentrations, ef, and the neutron flux, eg, from a previous time step 

will cause equation (6.53) to Iook like 

Na NI 
h h - """ h """ i C eWLI t -V. Dg"V</>g + 2Rg</>g- gf;:l2Tgg'</>g' + /g- rg + f=!Xdi'iei + vg!Jteg (6.56) 

These errors are neglected for the following reasons: 

(a) Errors in the precursor concentrations will tend tobe very small compared to the precur­

sor concentrations themselves. This is especially true if the initial conditions of the transient 

are at operating power, because then the initial precursor concentrations will be relatively 

high. Errors in the flux are transferred over into errors in the precursors, but it takes time 

on the order of the precursor half-life before the relative errors are noticeable. Transients 

beginning from low power with a subsequent power increase will be influenced much more 

by the errors accumulating in the precursor concentrations. 

(b) The last term ofequation (6.56) also tends tobe small in comparison to/g. The term 

becomes more important the higher the reactivity, and the smaller the time step. 

( c) To consider these last two terms, the spatial dependence of the error must be known. 

Calculation of this spatial dependence is too expensive. 

For these reasons, only the error in the time--discrete form of the diffusion equation is to be 

estimated, with equation (6.54). Section 6.4 presents a method for how the error accumula­

tion in time can be approximated. 

6.3.2 Mathematical Preliminaries 

Recalling the notation introduced in chapter 3, Iet V C R3 be an open bounded domain with 

a boundary SCR2 consisting of a finite nurober of smooth planes. The domain V is parti­

tioned intoNnodesQk,[Qkcv, kEI, 1 ~k~N}. The setofthesenodes isQ=(Ql, ... ,QN). 

The boundary of a node Qkis denoted by ()Qk, and the intersection of two nodes is given by 

gkl = aQk n aQ1. The intersection of a node with S is gkO = aQk n S. The unit nor­

mal on e"1, is denoted as ii, and points from the node with the lower index to the node with 

the higher index. The partition Q is such that 

l.N<oo. 

2. V= Q. 

3. If Qk ;C Q1 then Qk n Q1 is empty. 

4. Qk are Lipschitzian domains with piecewise smooth boundaries aQk. 
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Let the function space T be defmed as 

TC [H0(P)]Na n [H1(.Q)]Na,u E T~D~au~~~ = D~au~~~ , g = l, ... ,N0 . (6.57) 
an gtk an gtk 

Here, u: is the g-th component of the restriction of u to the single node Qk. H 0 and H 1 are 

the first and second Sobolev spaces with the usual norms. It is noted that Ainsworth and 

Oden 70,7l ,72 worked with the frrst Sobolev space [H1(P) ]No instead ofT. However, it has 

not been shown that the solution to the multigroup diffusion equation in a heterogeneaus me-

dium belongs to [H\P) ]Na: this is due to the fact that the partial derivatives of the flux are 

not required to be continuous across interfaces. Introduction of T does not, however, change 

the results of Ainsworth and Oden. This is because all of the equations in their development 

which deal with the continuity of au I an have a D g term as a multiplier of the au I an. There­

fore, introduction of T merely extends the range of applicability of their method since 

[H1(P)]Nac T. 

Let X C T, Y C T and B : X X Y .- R denote the bilinear form 

1 Na { Na } 
B(u, w) = I Vw8 • D8Vu8 + 2R8w8u8 - I 2r

88
,w8u

8
, dV 

g= 1 g'=l s 

where u = (u 1, ••• ,uN)• w = (w1, ... , wN
0
). Let L: Y .- R be 

L(w) = 1 8~/gWgdV s 
where /g is a function given on V. 

The time-discretized form of the multigroup diffusion equation, (6.52), 

Na 

-V . DgVif>g + 2Rgif>g = I 2Tgg'if>g' + Jg 
g'=l 

has boundary conditions 

aif> g 
- = 0 on sl ah ' 

if> g = 0 ' on s2 
and interface conditions 
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(6.64) 

Assuming that there exists a unique solution if> E X of 

B(if>, w) = L(w), V w E Y (6.65) 

then the solution of (6.65) is the weak solution of equations (6.60) to (6.64). 

For general values of the coefficients Dg, IRg and ITgg'• no proof of existence of a unique 

solution of (6.65) is available. Kang and Hansen19 give a flawed argument: they rationalize 

that since B(if>,if>) is positive for subcritical systems, then B(u, v) is positive definite. How­

ever, their argument contradicts the defmition of positive defmiteness, and thus does not 

prove existence of a solution. Dautray and Lions analyze the problern more rigorously. 96 

They are able to show that unique solutions exist for sufficiently subcritical systems, but not 

for the general case. Their analysis examines the coercivity of the bilinear operator B( u, v ). 
The concept of coercivity is important not only for the proof of existence of a solution, but 

also for the application of the error estimation theorems developed by Ainsworth and 
Oden_70,71,72 

The bilinear operator B( u, w) is said to be weakly coercive on X x Y if there exists a positive 

constant y such that 

B(u, w) I II 
sup II II ~ r I w r , 
uEX U X 

1 1 

V u E X,w E Y (6.66) 

Here II u llx= [ (u, u)xf: and II w lly= [ (w, w)yy:, where ( ·, · )x and ( ·, · )y areinner prod-

ucts onX and Y. Many residual-based error estimation methods93,94,95,70,7l,72 require condi­

tion ( 6.66), because it can be used as a starting point to find a strict upper bound of the error. 

For example, consider that if>h E Xis the approximation to if>. Then the error e = if> - if>h 

satisfies 

B(e, w) = L(w) - B(if>h, w), V w E Y 

If ; E Y is defined so that 

(;, v)y = B(e, v), 

then it can easily be shown 71 that 

II e llx~ t II; llr 

VvEY 

(6.67) 

(6.68) 

(6.69) 

Inequality (6.69) shows that estimating an upper bound of II; IIY is equivalent to estimating 

an upper bound of II e llx· Although the original bilinear operator B(u,w) is non-symmetric, 
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estimation of the upper bound of II; IIY is practical, because the inner product ( ·, · )y is a 

symmetric positive definite bilinear operator and the RHS of (6.68), given by (6.67), is 

known. 

The difficulty in applying this error estimation procedure to the neutron diffusion equation 

lies in finding appropriate inner products ( ·, · )x and ( ·, · )y suchthat the coercivity condi­

tion (6.66) is satisfied. While possible for highly subcritical cores, (6.66) is not readily ful­

filled for geometries and coefficients Dg. 2Rg and 2Tgg' that reflect real physical situations. 

The approach taken here is to divide B(u,w) into a symmetric and non-symmetric part. The 

symmetric part of B( u, w) becomes the nonn in which the error is estimated. The asymmetric 

part will be treated as an additional residual source term, using a local approximation tech­

nique. With this method, the error estimate is no Ionger a rigorous upper bound of the true 

error. 

6.3.3 Approximation of the Asymmetrie Terms 

The operator B(u,w) is split into two operators, 

where 

and 

B(u, w) = a(u, w) - b(u, w) 

Na 

a(u, w) = L ag(u, w) , 
g=l 

a,(u, w) = f [vw, · D,Vu, + L".,w,u,)dV 

s 

f 
Na Na 

b(u, w) = g~ ~12Tgg'wgug,dV s 
An equation similar to (6.67) is now written as 

a(e, w) = L(w) - B(ifJh, w) + b(e, w), V v E Y 

The strong form of (6.73) is 

(6.70) 

(6.71) 

(6.72) 

(6.73) 

Na 

-V· DgVeg +2Rgeg =fg +V· DgVifJ~ -2RgifJ~ + L2Tgg'(cp;, + eg') (6.74) 
g'=l 

with boundary and interface conditions on e as in (6.61) to (6.64). The bilinear operator 

a(u,w) is symmetric and positive definite. Because of this, if the right hand side of (6.74) 

is known, then an upper bound of a( e,e) may be estimated according to the method presented 

by Ainsworth and Oden.72 However, the right hand side of (6.74) can only be found if the 
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local values of the error e are first known. Direct calculation of the error e is of no practical 

value, since it is as expensive as solving the NEM equations of the 3-D model. In fact, if 

the error e was known, there would be no value in estimating a(e,e), because a(e,e) is simply 

a conveniently calculated measure of e. lf e were known exactly, then any measure of the 

error could be constructed quite easily. 

The method of Ainsworth and Oden 72 solves partial differential equations on a local basis 

using the residuals of the elliptic equations as source terms. The solutions of these partial 

differential equations are then used to calculate local error indicators, the sum of which is 

the global error estimate. The local residuals, r;, are given for the neutron diffusion equation 

by 

r~ = {]g + V · Dg Vif>~ - :ERgif>~ + I :ETgg'if>~,} 
g'=l Qk 

(6.75) 

The approach taken here is to first approximate e locally, in order to fmd an approximation 

ofthe right hand side of (6.74). This local approximation of e is denoted as eh. With eh, the 

augmented residual is defined as 

R~ = r~ + {I :ETgg'e~,} 
g'= 1 Qk 

(6.76) 

so that the strong formulation of the error equation (6.74), is approximated as 

-V · DgVeg + :ERgeg = R~ (6.77) 

Given the augmented residuals, an upper bound of a( e,e) may be estimated according to the 

procedure described in reference 72. 

Determination of eh is performed by node-wise group rebalancing. The procedure of group 

rebalancing solves for the nodal averaged flux with the approximation that either 

(a) the leakage term is accurate, 

8}' = f V · D8VtpgdV = f V · D8Vtp;dV (6.78) 

Qk Qk 

or (b) the leakage term is accurate relative to the flux, 

8 2
/ =-\ f V· D8Vtj>8dV = -.l,; f V· D8Vtj>~dV 

if> g Qk ( if>~) Qk 

(6.79) 

In case (a) the group rebalanced fluxes are found by solving 
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Na 

2Rg;p; = L 2Tgg';p;' + !g + E}, g = l, ... ,NG (6.80) 
g'=l 

for ?J; in each node. In case (b) the group rebalanced fluxes are found by solving 

Na 

(2Rg- s~)~ = L 2rgg'~' + Jg. g = l, ... ,NG (6.81) 
g'=l 

for ;p! in each node. The two different methods are used because equation (6.81) tends to 

be accurate in fue1ed regions, but is very sensitive to rounding errors in unfueled regions. 

Equation (6.80) is less accurate in fueled regions, but does not exhibit the singular-like beha­

viour of (6.81) in unfueled regions. To avoid overprediction ofthe local errors by equation 

(6.81), the group rebalanced flux for any given node is taken tobe the minimum of the two 

different solutions: 

;r;reb = . (~ A!') 'Y 8 mm 'Y 8 , 'Y 8 
(6.82) 

and the approximate error is determined according to 

h - ;r;reb - .r~.h eg - 'Yg 'Yg (6.83) 

Results of equation (6.83) are used in (6.76) to determine the augmented residuals, RKg-

The group rebalancing procedure has been developed here to provide a local estimate of the 

error for the purposes of detennining the augmented residuals. The global flux problem, giv­

en by equations (6.60) to (6.64), is reduced to a series of isolated nodal problems by approxi­

mating that the leakage is good, and that any error in the approximate solution lies in the way 

the flux is distributed between the different energy groups. The augmented residuals are then 

used in equation (6.77), and the method of Ainsworth and Oden is used to find a global error 

estimate of ag(e,e). In cantrast to the group reba1ancing procedure, estimation of ag(e,e) 

decouples the global problern into a series of local problems through the proper choice of a 

Lagrangian multiplier (see reference 72). The two methods are here combined to comple­

ment one another: the local group rebalancing finds the augmented residuals and decouples 

the group dependence of the global estimate; the global estimate provides an upper bound 

of the error, only provided that the R:'s are accurate. 

6.3.4 Global Error Estimate 

The development of the global error estimator is fully described in reference 72. Here, only 

the details distinct to this application are discussed. The residuals of the neutron diffusion 

equation are found by expanding the approximation to the nodal flux, </>;, and the source tenn 

/g in the NEM polynomials. Theseexpansionsare used in (6.75), which is subsequently used 
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in (6.76) to find a polynomial expansion for the augmented residual R:. The expansion is 

given as 

4 

R~(r) = I I riguhi( ~J 
u=x,y,zi=O 

(6.84) 

It is noted that for this application, the nodal boundary residuals (defmed in reference 72) 

are equal to zero, because the approximation of the flux 1>~ exactly satisfies the interface con­

ditions (6.63) and (6.64). This greatly simplifies the choice ofboundary conditions for the 

local error indicator problems. The local problems are given as: 72 

(a) on nodes Qk : aQk n S 1 ;e 0, find r: E H 1(Qk) such that 

- V2r~ = R~ in Qk 

ark g 
on a!Jk\S1 -=0 

an 

r~ = 0 on aQk n sl 

(b) on nodes Qk: aQk n S1 = 0, fmd r: E H 1(Qk) suchthat 

- V2r~ = {R~- I r 08u} in Qk 
u=x,y,z 

The local error indicators are given by 

(6.85) 

(6.86) 

H<P,l r ~ I{ri/·. P, + 2~ (v. P, + RK.l'}dV (6.87) 

Qk 

where 

(6.88) 
The global error estimate is 

N 2 

a8(e,e) :5 I(11~) (6.89) 
k=l 

The origins of equations (6.85) to (6.89) are found in reference 72. Using the polynomial 

expansion of equation (6.84), problems (6.85) and (6.86) have been solved analytically. The 

analytical solutions may be substituted into (6.87) to yield: 
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(a) Oll nodes Qk : i)Qk n Sl ~ 0, 

H<P,) r = f{ ~/, . P, }dV 
Qk 

_ V k "\:' { l ,2 + 1 ,2 + 1 2 + 1 2 + 1 ,2 - D L. 3 Ogu 30 lgu 210'2gu 70'3gu 770 4gu 
gu=x,y,z (1 1 1 1 ) 

- ()'lgu- 30'2gu + l0'3gu + 70'4gu 'ogu 

3 1 } 2 + 70'lgur3gu- 210'2gur4gu au 

and (b) Oll nodes Qk: iJQk n Sl = 0, 

H<P,) r = f{rigPg. Pg + .l'~g[ 'f. rogu]

2

}dV 
Qk u x,y,z 

12 12 12 12 
30'lgu + 210'2gu + 70'3gu + 770' 4gu 

The relative global error estimate is defmed to be 

eest = max 
g=l, ... ,NG 

ag(e, e) 

ag(f/Jh, ifJh) 

(6.90) 

(6.91) 

(6.92) 

When eest ;::: elf~3D, then the error produced by the lower dimensional kinetics model is 

too great, and the 3-D kinetics model must be reactivated. Here, e~D~3D is the tolerable 

error before a switch from lower dimensional to 3-D kinetics models is necessary. e~D~3D 

is distinct from e 0 presented in section 6.2, because of the different measures of error which 

are used. However, the measures do produce qualitatively similar results and elf~3D = e0 

has been used quite successfully with this algorithm (c.f. Chapter 7). 

6.4 Reactivity Based Criteria 

The error estimator developed in the last section neither accounts for error accumulation in 

time, nor does it provide a true upper bound measure of the time-discrete error. For these 

reasons, further switching criteria are developed to act as an accuracy safeguard for when the 

performance of the error estimator is poor. These criteria are all based on the reactivity, and 
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are therefore treated here together. Section 6.4.1 describes how the error accumulation in 

time is approximated. Section 6.4.2 describes criteria based on changes in reactivity, and 

section 6.4.3 describes an absolute reactivity criterion. 

6.4.1 Approximation of the Time Dependence of the Error 

To account for the time dependence of the error, it is recognized that the error in the precursor 

concentrations has not yet been considered. Errors in the approximate neutron flux will prop­

agate to the precursor concentrations, which then reappear as slowly decaying error sources 

in the neutron diffusion equation. This implies that the time dependence of the error in the 

precursor concentration, and its influence on the neutron flux, must be estimated. The sirn­

plest model for analyzing the interplay between the flux and precursor concentrations is the 

point kinetics equations. 

The approximation is made that the relative error in the reactivity is equal to eest• the result 

ofthe global error estimator of section 3.3. Although it is obvious from section 6.3 that eest 

is not a measure of the error in the reactivity, it is a relative measure of the error in the flux. 

Since it is the error in the flux shape which gives rise to any possible error in the reactivity, 

use of eest is not completely unjustified. Most importantly, eest has already been calculated, 

so use of it spares computing time needed to calculate some other measure of the error. 

During a period where either the 1-D or point kinetics models is activated, two additional 

systems of point kinetics equations are also integrated: each set of equations uses the calcu­

lated reactivity of the core plus or minus a factor of e est· These systems of equations are 

and 

d~L = [(1 - ee;;)p - ß] pL(t) + ±).iCf(t) 

i= 1 

dCl: ß· 
-

1 = __! pL(f) - ). .cf: (t) 
dt A I I 

d~tH = [(1 + e~t)P- ß] pH(t) + ±).iC~(t) 
i= 1 

dCl! ß· 
_I = __! pH(t) - ). .Cf! (t) 
dt A I I 

The initial conditions of these equations are determined at time t=to, using 

pL(to) = pH(to) = P(to) 

Cf(to) = C~(to) = cfK(to) 

where equations (4.13) and (4.14) are used to fmd P(t0) and cfK(t0). 
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The systems of equations (6.93) and (6.94) are used to try to bracket the real value of P(t) 

with pL(t) and pH(t). The relative error in the reactivity is approximated as Best• found by 

the global error estimate at each time point. 

The time-accumulated error at any time t is approximated by 

1 I H L IPH - pL' 
8 est,t = 2P(t) P (t) - P (t)j = pH + pL (6.96) 

If e est t ;;:::: c~D-3D, then the accumulation of the error is too great, and the 3-D model must 
' 

be reactivated. 

6.4.2 Criteria Based on Changes in Reactivity 

Because a PWR core is heterogeneous, even uniformly distributed cross-section perturba­

tions can give rise to a significant change in the shape function. The magnitude of a core 

perturbation can be measured quite weil by the change in reactivity Llp(t) = p(t) - p(t0). 

As an extra safeguard to preserve the accuracy of an adaptive calculation, the code user can 

specify a maximum Llp during a lower kinetics period. Once the reactivity has changed by 

Llp, the 3-D model is reactivated. Because, from a reactor safety standpoint, changes in reac­

tivity are less important when the core is subcritical than when the core is supercritical, two 

separate user parameters are specified: Llp + and Llp-. The 3-D model is reactivated when 

IL1p(t)l > LJp+, V p ~ 0 

IL1p(t)l > Llp-, V p < 0 

6.4.3 Criteria Based on Absolute Reactivity 

(6.97) 

In addition to the above criteria, it is supposed that there is some threshold reactivity above 

which the user always wishes to use a 3-D model. For example, as the core approaches a 

prompt-supercritical state, the 3-D model should always be activated to fully capture the 

rapid evolution of the evolving spatial modes. The user can specify a maximum reactivity, 

Pmax. so that when p > Pmax, the 3-D model is reactivated and stays activated. 
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7. Example Calculations 
In the following sections, several postulated accident seenarios are calculated to demonstrate 

the performance of the algorithm. The transients calculated with the dimensionally adaptive 

algorithm are compared with a calculation using only the 3D neutron kinetics model. Both 

the required CPU time and the accuracy of the adaptive algorithm with respect to the 3D ref­

erence are examined. The behaviour of the adaptive algorithm is also examined according 

to how the adaptive parameters presented in the last chapter are chosen. 

The adaptive algorithm is controlled by the following parameters: Ea, Ev r!ftn' rM?w T~lfn, 
Tf:z~, E~D-3D, Pmax. iJp +, and iJp-. To reduce the number of variant adaptive algorithms 

to be tested, the following conventions relating the parameters have been chosen. 

r . = r1I? = rP~ mm mm mm 

T - rw _ rPK max = max - max 

For both the adaptive and reference calculations, the nodal averaged fluxes are stored on disk 

as a function of time, and these fluxes can be compared according to the following measures: 

ERR0 = 

max (<P~) - (<P~) I 
3D AMLI 

ERRMAX = N 
N G 3D 

_1 "'\:"' "'\:"' (<Pm) vm 
Vror L L g 

m=lg=l 

I 
2 

These errors are compared against the errors predicted by the error estimator, although it is 

important to note that the measures of error are not the same. 

7.1 Control Rod Ejection Transients 

The rapid ejection of a single control assembly is a postulated accident scenario which is not 

characterized by strong coupling between plant and core phenomena. For this reason, a 

coupled program system like RELAPS/PANBOX is not necessary to calculate such tran­

sients. lndeed, the standalone PANBOX core simulator can be used to calculate such tran-
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sients, and the PANBOX calculations of the NEACRP control rod ejection benchmark prob­

lem75 recently produced good results.77 The NEACRP benchmarkproblern was calculated 

with the RELAPS/PANBOX system to verify the data exchange between the two codes.76 

A control rod ejection problern also serves as a good test of the adaptive algorithm, because 

the transient is characterized by very strong local perturbations in the flux shape as the control 

rod is ejected out of the core. Following the ejection, the power increase in the core gives 

rise to a global, non-uniform increase in fuel temperature, which also perturbs the cross sec­

tians through the Doppler effect. ldeally, the algorithm should select the 3D model during 

the movement of the control rod, and lower dimensional models should be selected in the 

asymptotic period of the transient. 

Calculations of cases Al and A2 of the NEACRP control rod ejection problern are presented 

here. Case Al is the ejection of a fully inserted central control assembly from a reactor core 

at bot zero power conditions. Case A2 is the ejection of a partially inserted assembly from 

a reactor core at hot full power conditions. It is known that the results of case Al are highly 

sensitive to mesh size and time step size, whereas case A2 is in comparison not so sensitive. 

7.1.1 Control Rod Ejection from Hot Zero Power Conditions 

Because rod ejection transients require relatively little computing time, and because the 

strong local and global perturbations serve as a good test for the algorithm, the sensitivity 

of the results of case A 1 to some of the adaptive algorithm parameters has been examined. 

The calculated results of this study are depicted in Appendix D. Here, the last calculation 

shown in Appendix D is described in detail. Table 7 .1.1 presents the parameters chosen for 

this calculation. 

€G 0.15 

EL 0.20 

Tmin 0.1 s 

Tmax 5.0 s 

Pmax $2.0 

LJp+ $0.1 

L1p- $10.0 

Table 7.1.1: Parameters for case Al of the NEACRP control rod ejection transient. 

The calculation was performed from a restart of a 100 s calculation used to generate a con­

verged stationary condition. This restart calculation begins at 100 seconds without any per­

turbations; between 101.0 and 101.1 seconds, the central control assembly is ejected from 

the core. The calculation is continued to 111.0 seconds, when the transient is in an asymptotic 
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state. The total core power, maximum nodal power peaking factor, and axial offset of the 

adaptive calculation is compared with those of a 3D reference calculation in figure 7 .1.1. 

It is seen that the adaptive algorithm models the transient quite weil. 

Total Power (MW) 
>f-- Reference 
a--Adaptive 

4000 _ ............................................................................. , ............................................................................. '[ ...................................... 

1 

.................. . 

3000~----~-+--------~------+-------~-------+--~ 

2000 i ' ' ' 

1008- -- ~, -- -~-- -- -1- - -~---1 
0~~rM~J~+rMM~~M~~~rM~+rMM~~~~~~rM~+r,~ 

100 

3 

2 
100 

Axial Offset 

102 

102 

104 106 108 110 

I 

104 106 
I 

108 
I 

110 

_:.: ~ ~~:~ ~ ~-~-~;~F:=- ::F --I-- --i 
-0.2~---+---+--------~------+-------~-------+--~ 

-0.3~~~MM1 ~+rMM~1~rMhM~rM~~MM~,~~,hM~rM~+rMM~ 

100 102 104 106 108 110 
Time <s> .. 

Figure 7.1.1: Comparison of Adaptive and Reference Calculation of HZP Rod Ejection 

Figure 7 .1.2 shows which models are activated at various periods of the transient. It is seen 

that first the 1 D and then the point kinetics model is activated at the beginning, stationary 
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part of the calculation. The 3D model is reactivated when the rod is ejected. The algorithm 

switches back to the lower dimensional models once the rod is out of the core, but makes 

frequent retums to the 3D model until the transient reaches an asymptotic state, where the 

point kinetics model is activated during most time steps. 

Total Power (MW) :::: ~ ~ ~ r~ ~ ~- r :~=-- - ~ ==:~l--1 
2000~----~++--------~------+--------r------~--~ 

1000 ~ ................................... 1·············································································1··············································································1··················1 

0 J ; 
I 1 I I 

100 102 104 108 108 110 

100 102 104 108 108 110 
Time (s) .. 

Figure 7 .1.2: Dimension of Model Activated by Adaptive Algorithm During HZP Rod 

Ejection Transient 

Figure 7 .1.3 shows the power, model dimension, errors, and error estimate of the adaptive 

calculation between times 101.0 seconds and 102.0 seconds. When the rod ejection begins, 

the adaptive algorithm is using the point kinetics model. The error estimator detects some 

of the error generated by the movement of the control rod during the point kinetics calcula­

tion, but does not quantitatively detect the error which develops. It is the change in reactivity 

criterion, LJp + which fmally reactivates the 3D model. Once the 3D model is reactivated, 

the rate of change of the flux shape function is so great that the lower dimensional models 

are not reactivated until after the control rod has stopped moving. For the next 0.9 seconds, 

the lower dimensional models are activated with brief retums to the 3D model when the error 

estimator predicts that the error is too great. It is noted here that the retum to the 3D model 

does not correct the actual errors which are developing. This is because the errors are primar­

ily in the amplitude of the flux, and not in the shape of the flux. lt is seen in the power plot 

offigure 7.1.3 that the adaptive algorithm predicts the power surge to occur approximately 
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0.012 seconds later than that of the reference model. It isthistime discrepancy, due to the 

Total Power (MW) 

,._._ Reference 
e--Adaptive 

t :::: r.~.-~ ... r~.~~.~-.!~:zt::.T .. ~.; ... l 
101.0 101.2 101.4 101.6 101.8 102.0 

Dimension of Model Activated 

t : i:5::~i:~~~~1~~::f .. -:1:::::?:::1:::~~i3 
101.0 101.2 101.4 101.6 101.8 102.0 

ERR-G 
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t ::: H~ I .:.-1~: ' :: ' :.~1 ' :: ' :;:Li:~. l::: ' :~. j 
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t._.~r--J •.. . .l .... ,l 
101.0 101.2 101.4 101.6 

Ti11e <s) 
101.8 ., 102.0 

Figure 7.1.3: Behaviour of Adaptive Algorithm During HZP Rod Ejection Transient 

delayed activation of the 3D model during the rod ejection, which is the main source of the 

calculated error. Figure 7 .1.4 shows the powers and global errors, with the results of the 

adaptive algorithm shifted -0.012 seconds in time. This demonstrates that the results of the 

adaptive algorithm are actually very close to that of the 3D calculation. lf a slight delay in 
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the calculation of the power surge is acceptable, then the adaptive algorithm yields good re­

sults. The savings in CPU time in this case was 74.1 %. 

Total Power (MW) 
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Figure 7.1.4: Global Error when the data from the adaptive calculation is shifted -0.012 

seconds in time. 

Table 7.1.2 presents selected results of the sensitivity study of this problern from 

Appendix D. In all of these cases, Tmax=5.0 seconds and .!Jp- = $10.0. T min• Ec, .!Jp +, 

and pmaxare all varied. The CPU times and savings in CPU are presented in the table, along 

with the peak maximum calculated error after the retum to power. Here, all the calculations 

exhibit a behaviour similar to the adaptive calculation presented above, in that most of the 

error is due to a shift in time of the power peak. Regardless, the maximum error ERRMAX 

in the time period after the retum to power is also shown in the table. The strong peak of error 

which occurs during the actual rod ejection is not considered: because it occurs at near zero 
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Parameter Case 1 Case 2 

Ec 0.15 0.05 

EL 0.20 0.15 

Tmin 0.1 s 0.1 s 

Tmax 5.0 s 5.0 s 

Pmax $2.0 $2.0 

LJp+ $0.1 $0.1 

L1p- $10.0 $10.0 

Table 7 .1.3: Parameters used for Case A2 of the NEACRP rod ejection transient. 

)(-- Reference 

t 
Total Core Power (MW) ... -Adaptive 

···· :~==T~:~:~~=r: : =r= -=F: ~~1=:~--~::1 
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0.00~~~~~~~~~~~~~~~~~~~~~~~~ 
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Figure 7.1.5: Behaviour of adaptive algorithm during transient initiated by a rod 

ejection from hot full power. Ea=0.15 
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7.2 Main Steam Line Break at Hot Zero Power 

The hot zero power main steam line break is a postulated accident scenario in which a main 

steam line on the secondary coolant loop breaks completely at the exit of a steam generator 

nozzle. This causes rapid depressurization of all four steam generators which feed the main 

steam mixing header. Flow through the three intact steam generators is eventually stopped 

through the closure of isolation valves, however the steam generator with the broken line will 

continue to release steam. This results in a relatively fast depressurization and asymmetric 

cooling of the primary coolant system, and hence the reactor core. The cooling of the reactor 

fuel rods gives rise to an increase in reactor reactivity through the moderater temperature co­

efficient and the Doppler effect. For conservative evaluations, these postulated accident sce­

narios are analyzed with the most reactive control rod stuck out of the core. Additional con­

servatism is applied by offsetting the initial reactivity of the subcritical core. 

The asymmetric cooling of the core, as weil as the presence of the stuck control rod, can give 

rise to large changes in the neutron flux shape during the MSLB event. It is for this reason 

that a program system like RELAPS/PANBOX is useful for analyzing this accident scenario. 

The greater accuracy afforded by the 3D neutron kinetics models can replace some of the 

conservatism used in the point kinetics calculations. For example, Feltus has shown that if 

the HZP MSLB is calculated with a 3D neutron kinetics code, then the 3D kinetics do not 

predict recriticality of the core; however, a point kinetics calculation with conservatively 

chosen coefficients usually does predict a recriticality. It remains a licensing question as to 

whether or not Iifting some of the conservatism becomes an acceptable practise when a 3D 

kinetics code is used. 

In the series of calculations presented here, the conservatism has been included so that a re­

criticality is predicted by the calculation of the MSLB. This means that the averaged neutron 

flux changes by orders of magnitude, with a significant change in the flux distribution over 

the course of the transient. It is thus an appropriate test for the adaptive algorithm. Table 

7 .2.1 shows the parameters which were used for the adaptive algorithm. Cases 1 to 3 test the 

algorithm with varying values of Ec· Tmin and Tmax are set to 4.0 and 15.0 seconds respec­

tively. These are much larger than the periods for the rod ejection case, because the transient 

evolves more slowly and is calculated for a Ionger period of simulation time ( 400 seconds 

in this case). Pmax is set to 0.9, which yielded accurate results for the case of the rod ejection, 

but reduced potential savings in CPU. The total core power, maximum nodal power peaking 

factor, and axial offset of the adaptive calculation are compared with the respective values 

of the 3D reference calculation in figure 7 .2.1. 
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Parameter Case 1 Case 2 Case3 

ea 0.15 0.10 0.05 

EL 0.20 0.15 0.10 

Tmin 4.0 s 4.0 s 4.0 s 

Tmax 15.0 s 15.0 s 15.0 s 

Pmax $0.9 $0.9 $0.9 

LJp+ $10.0 $10.0 $10.0 

Llp- $10.0 $10.0 $10.0 

Table 7.2.1: Adaptiveparameters for HZP main steam line break. 
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Figure 7.2.1: Adaptive vs. 3D Reference calculation for HZP MSLB. 

119 

400 

400 

400 



Figures 7.2.2 and 7.3.3 shows how the algorithm switches from Ievel to Ievel as the value 

of Ea is varied. The case with Ea=0.15 activates the lD and point kinetics models for Ionger 

periods than the other two cases. AsEais decreased from 0.15 to 0.10, the point kinetics 

model is deactivated approximately 5 seconds sooner before the initial power surge. With 

€ 0 =0.05, there is a continuous switching process between the 1D and 3D kinetics models, 

until the flux shape ftmction starts to evolve strongly as a ftmction of time, beginning at 
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Figure 7 .2.2: Model Dimensions chosen by the adaptive algorithm during the first 50 
seconds of the HZP MSLB transient for different values of EQ. 
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approximately t=6.5 seconds. After the initial power surge has occurred, and Pmax drops be­

low the $0.9 threshold, the adaptive algorithms switch back to the 1D model. The 3D models 

are occasionally reactivated with a frequency which decreases as e0 increases, and the point 

kinetics model is reactivated only by the e0 =0.15 calculation at about t=43 seconds. As the 

transient becomes asymptotic (Figure 7.2.3), the e0 =0.10 and 0.05 calculations also activate 
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Figure 7 .2.3: Model Dimensions chosen by the adaptive algorithm during the start of the 
asymptotic period of the HZP MSLB transient for different values of Ea. 
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error before the retum to power is not important for safety calculations, it has been included 

here to show how the errors increase with increasing Ea for this case. In all cases, the maxi­

mum error after the retum to power occurs during the first power surge, where the shift of 

the peak in time is the greatest source of error, as it was with the transient initiated by the 

control rod ejection at HZP. 

Global Error Maximum Greatest Actual Greatest Actual 
CASE Criterion Error Criterion Global Error Maximum Error 

Adaptive - Case A 0.15 0.20 18.6% 10.1% 26.2% 10.7% 

Adaptive - Case B 0.10 0.15 5.9% 11.1% 7.2% 11.9% 

Adaptive - Case C 0.05 0.10 1.7% 5.0% 1.1% 5.0% 

Table 7 .2.2 Error Criteria and Maximum Actual Errors over Transient for Adaptive Main 

Steam Line Break Calculation 

The performance of the error estimator is similar for all three cases, so only the first case will 

be examined here. Figure 7 .2.5 depicts the total core power, the dimension of the model 

which is activated, ERRa, ERRMAX· as well as the error estimate for the first 40 seconds of 

this case. The point kinetics model is activated for about the first 15 seconds of the simula­

tion. At time t3v=14.76 seconds, the 3D model is reactivated due to the end ofthe lower ki­

netics period. The error estimate at this time is 13.6%, compared with a global error of 

18.6%. From this point in the transient until the power surge, the lower kinetics models are 

not reactivated due to the strong temporal changes in the shape function. After the power 

surge, the 1D model is activated. The error estimator predicts a development of the error 

which is qualitatively matched by the development in time of ERRo and ERRMAx· This re­

sults in an occasional reactivation of the 3D model, occurring less frequently as the transient 

approaches an asymptotic state. 

The total savings in CPU as well as the savings in CPU of only the neutron kinetics routines 

are shown in Table 7 .2.3 for the three different adaptive cases. Total savings of 36.9% to 

50.6% were achieved for this parameter range. 

GlobalErrar Total CPU Savings in CPUused by Savings in 
CASE Criterion time total CPU neutranies neutronics 

(s) (s) CPU 

Reference 3D - 2.687E+4 - 2.298E+4 -
Adaptive - Case 1 0.15 1.328E+4 50.6% 0.945E+4 58.9% 

Adaptive - Case 2 0.10 1.502E+4 44.1% 1.110E+4 51.7% 

Adaptive - Case 3 0.10 1.695E+4 36.9% 1.305E+4 43.2% 

Table 7 .2.3 Savings in CPU tim es for Adaptive Main Steam Line Break Calculations 
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7.3 Boron Dilution Transient 

The event sequence of a postulated boron dilution transient has been described in section 

2.2.3, where it was demonstrated that spatially dependent kinetics models are needed to accu­

rately model this kind of event. The boron dilution transient differs from that of the MSLB 

transient in that in this case, the perturbations to the cross sections are to a large extent axially 

uniform. Thus, it is expected that the adaptive algorithm would make efficient use of the ID 

kinetics model during the traversal of the deboronized slug through the core. Table 7.3.1 

shows the adaptive parameters for the two adaptive cases which were calculated. In these 

cases, Pmax is decreased with €a to select the 3-D model more often. 

Parameter Case 1 Case2 

€G 0.15 0.05 

€L 0.20 0.10 

Tmin 4.0 s 4.0 s 

Tmax 15.0 s 15.0 s 

Pmax $0.95 $0.9 

LJp+ $10.0 $10.0 

Llp- $10.0 $10.0 

Table 7.3.1: Adaptiveparameters for boron dilution transient. 

Figure 7.3.1 shows the total power, maximum nodal power peaking factor, axial offset, and 

core averaged boron concentration for the whole transient. The differences between the ref­

erence and adaptive calculations are difficult to see on this scale, so the same quantities dur­

ing the power surge, between times t=5338.0 s and t=5345.0 s, are shown in Figure 7.3.2. 

The results of the adaptive cases compare quite weil with the reference: as seen for both the 

rod ejection and the MSLB calculations, the main discrepancies are a slight shift in time. 

Figure 7.3.3 shows which models are selected by the adaptive algorithm during the transient. 

It is seen in both cases that the point kinetics model is selected for the first part of the boron 

dilution, with occasional retums to the 3-D model. As the reactivity of the core increases, 

the algorithm stops switching from the 1-D model to the PK model: this happens earlier for 

the € 0 =0.05 case than for the € 0 =0.15 case. During the power surge, the 3-D rnodel is se­

lected more and more frequently to update the shape functions. Figure 7.3.4 shows the core 

power, the relative error in the average flux, ERRo, the error estimate, and the chosen model 

dimension for Case 1. It is seen that the error in the average flux follows that of ERRo. This 

implies that the errors are not due to errors in flux shape, but rather the magnitude of the flux. 

Again, this is due to a small shift of the results in time. Figure 7.3.5 shows a detail of the 
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Figure 7.3.2: Detail of Adaptive vs. 3D Reference Calculation for boron dilution transient. 
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Figure 7.3.5: Detail of the power peak during the boron dilution transient.. 

power peak for the reference and two adaptive cases. If the small shifts in time can be toler­

ated, then the algorithm is quite accurate for these cases. 
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8. Conclusions 
The coupled RELAPS/PANBOX code has been developed for the analysis of nuclear plant 

accidents in which the reactivity of the core changes significantly. With this code, accidents 

in which local or asymmetric positive reactivity contributions occur can now be more accu­

rately analyzed. A reactivity edit option has also been developed to help explain transient 

phenomena: in particular, it can identify when changes in flux shape are important during 

a transient, and thus whether or not RELAPS/PANBOX is useful for the transient being cal­

culated. 

Consistent point and one-dimensional kinetics models have also been developed. The point 

kinetics model uses perturbation theory for accurate determination of the reactivity, and a 

method for using the operator formulation of perturbation theory with the NEM has been de­

veloped. The one-dimensional axial kinetics model has been developed directly from the 

three-dimensional neutron kinetics equations using an approach unified with the develop­

ment of the point kinetics model. Cerreetion factors have been defined so that the discretiza­

tion of the axial kinetics model provides equivalent solutions to the three dimensional NEM 

model. 

Adaptive criteria have been developed to determine during which times of a transient the var­

ious models should be activated. Criteria for switching from the three dimensional to the one 

dimensional and the one dimensional to the point kinetics models are based on the shape 

function. These criteria were motivated from the observation that both lower dimensional 

models employ the adiabatic quasi-static approximation. Criteria for switching back to the 

three dimensional model are based on a global error estimation procedure developed for fi­

nite element analysis and also on changes and absolute values of reactivity. 

Calculations show that the algorithm can produce quite accurate results, while decreasing 

total CPU time by roughly 30% to 70%. The calculated examples were all for transients 

where significant three-dimensional changes do occur in the core. For calculations of more 

benign transients, the savings will be greater. The results of the adaptive algorithm tend to 

be slightly shifted in time compared to the results of the respective reference calculations, 

which are calculated totally with a 3D model. lf these shifts in time can be tolerated, then 

the algorithm may be considered very accurate. 

Future work should concentrate on improving the performance of the error estimator, or even 

the whole adaptive strategy. Development of a newly improved quasi-static method would 

also augment the performance and the accuracy of the algorithm: an improved quasi-static 

method would serve to reduce some of the error which accumulates in time in the precursor 
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concentrations, and would also peimit !arger time step sizes during time periods when the 

three-dimensional kinetics model is primarily selected. 
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Appendix A: The Exponential Transformation 
The exponential transform methoct17 isatime discretization technique in which the node av­

eraged flux is transformed according to 

(A.l) 

The mm is called a dynamic frequency, and is calculated according to equation (3.47). The 

partial derivative of the flux with respect to time is therefore expressed as 

dcpm dTm(t) 
_g = 01 m""m(t) + ew"'(t-t0) g 

dt 'f'g dt 

Equation (A.2) is discretized with the first order Euler implicit method, yielding 

dt/>m rm<t) - rm(t ) 
_g = 01m""m(t) + ew"'(t- t0) g g 0 

dt 'f'g LI t 

(1 + wmLJ t)</>~(t) - ewL1tfj>~(t0) 
=----~--:-----~-Lit 

The precursor equations may be expressed in integral form as 
t 

c'f(t) = cj(t0)e--t,1t + ± L Lß{Jv2jg,</>;,(t')~;(t'-t)dt' 
g' j 

fo 

Substitution of the exponential transform, equation (A.1 ), into (A.4) yields 

t 

(A.2) 

(A.3) 

(A.4) 

cj(t) = cj(t0)e--t,1t + ± L Lß{Jv2jg,ew"'(t'-to)~;(t'-t)Tg,(t')dt' (A.5) 
g' j 

fo 

Approximation of the integral yields, 

c'!l(t) = c'!l(t )e --t,1t + l"" ""ß~v2j 1 - e -(w"'+A;).dt fj>l11,(t) (A.6) 
1 1 0 A. L L 1 fg' 01 m + A.. g 

g' j I 
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Appendix B: The NEM Polynomials 
The NEM22,23,24 polynomials are given as 

h0(u) = 1 

h1(u) = 2u - 1 

h2(u) = 6u(l - u) - 1 

h3(u) = 6u(1 - u)(2u - 1) 

hiu) = 6u(1 - u)(5u2 - 5u + 1) 

These polynomials obey the following integral relationships: 

1 1 1 

f h,{v)dv = 0 i = 1, ... ,4; f hj(v)dv = i f h~(v)dv = ~ 
0 0 0 

1 1 1 1 

f h~(v)dv = 3~ f h~(v)dv = 3~ f -I h1h3dv- S f h2h4dv = 
0 0 0 0 

1 1 1 1 

f h 1h2dv = f h1h4dv = f h2h3dv = f h3h4dv = 0 

0 0 0 0 

and the following differential relationships: 

dh1 dh2 
du = 2; du = - 6h1; 

d2h 
--2 = - 12· 
du2 ' 

d2h3 d2h4 - = - 36h . - = 60h2 - 12 
du2 1' du2 

The transverse integrated :fluxes, expanded as 
4 

lJigu = L aiguhi(u) 
u=O 

therefore have a second derivative equal to 

d2lJigu 
du2 = - 12(a28u + a48) - 36a38uhl + 60a48uh2 
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Appendix C: Details of the Axial Kinetics Model 
C.l Coefficients of the Outgoing Partial Current Equations 

The coefficients of the outgoing partial current equations are found to be 

where 

6Dgz[ Dgz] 
ClgR = DET 1 + 4dgL 

6Dgz [ Dgz] 
C lgL = DET 1 + 4 dgR 

1 [( Dgz)( Dgz) D~z ] C2gR = DET 1 + 8 d 1 - 8 d + 16 d d 
gL gR gL gR 

1 [( Dgz)( Dgz) D~z ] C2gL = DET 1 + 8 d 1 - 8 d + 16 d d 
gR gL gL gR 

- SDgz 
C3gR = d DET gL 

- SDgz 
C3gL = d DET gR 

6Dgz[ Dgz] 
C4gR = DET 1 + 12 dgL 

6Dgz [ Dgz] 
C4gL = DET 1 + 12 dgR 

- Dg 
Dgz =­az 

and the node index m has been suppressed. 
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C.2 Approximations and Abbreviations of the Moments Equations 

The time derivatives ofthe 1D flux expansions are approximated by 

(JIJfm 1 dNm 
g g 'lfl!! 

Tt = Nm ----af g 
g 

which, upon using the exponential transform method (see Appendix A) yields 

1 alJI'; 1 [ N';(to) Ii'! J 
Vg Tt = vgJt wL1t + 1 - N';(t) ew t lJI'; 

The same approximation is made for the lD precursor concentrations 

which yields 

G . 

I Ißg'lJii 
g'=l 

Ci(u, t) = C'j-G---

L~gN'; 
g'= 1 

(C.3) 

(C.4) 

(C.S) 

(C.6) 

Using these expressions in equation (5.54), the new coefficients in (5.55) and (5.56) become 

zn = zn + 1 + wL1t _ N';(to) ewli'lt 
8 8 vgJt N';(t) vgJt 

(C.7) 

and 

(C.8) 

146 



Appendix D: Parameter Study of Rod Ejection 

t :::: i~: :.-ti:-:.·: .]--.:~::J::·::·. -: r~~~: :l :-!~aptive 
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i : : i ' ' ' ' t. ' ' ' l: I ' ' ' ' I ' ~ ' ' ' ' ' ' I ' ' ' ' ' ' >' ' I ' ' ' ' ' ' ' ' ' I 
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Llp + = 10.0 

Llp- = 10.0 
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T min = 1.0 

Tmax = 5.0 

t:0 = 0.05 

106 108 110 

(ERRmax)max t = 5.4% , 

CPU Savings = 14.9% 

Figure D.1: Case 1 of Control Rod Ejection Transient from Hot Zero Power 
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Llp + = 10.0 T max = 5.0 (ERRmax)max,t = 10.3% 

Llp- = 10.0 Ec = 0.05 CPU Savings = 24.9% 

Figure D.2: Case 2 of Control Rod Ejection Transient from Hot Zero Power 
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4

~ ,' j l' l 1 ~ i: ="~·= .+~ .x~:::. :::: .i::.L:.,:~: .:, i .. :. 
100 102 104 106 108 110 

.~ 1 t I ~ I ~ 
:; 

1 

1 i i .g , : ....... I= .............. ·i .•••••••••••.•.... I 
G 100 102 104 106 108 110 

i : l .... f .;t ...... I ... ;.;;.; I.;.; .. ; .. I ......... I 
100 102 104 106 108 110 

Q) 

~ 

i : l .... : .. L ...... I:.: ...... I ... : ..... I ......... I 
100 102 104 106 108 110 

Time (s) .... 
Pmax = 0.9 T min = 1.0 €L = 0.20 
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Figure D.3: Case 3 of the Control Rod Ejection Transient from Hot Zero Power 
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Figure D.4: Case 4 of the Control Rod Ejection Transient from Hot Zero Power 

150 



r:: 1 ...... fi ..... :. I ... :.: .. : I ... : .... : I ......... ~ 
p., 100 102 104 108 108 110 

~;.. 

ii :1 .. :: El ......... 1: ......... :J .~: ..... t ......... r 
100 102 104 108 108 110 

100 102 104 108 1 es 110 

t :•: r::-[K[~j-.-.~:J:~~:~r- :: .. -:J 
C!J Hl0 102 104 108 108 110 

E: 1 .. :. I~ E ...... I ......... I ......... I ......... I 
100 102 104 108 108 110 s 

~, , ~ ...... --~ --- --~(- .-... -.......... ! ........... ~. --·-~~~ 
b0.e~ ''~'''''''' '"'' • • •• ,,,,, 
~ 100 102 104 108 108 110 

Time (s) ... 

Pmax = 2.0 T min = 1.0 EL = 0.10 

JJp + = 10.0 T max = 5.0 (ERRmax)max,t = 16.1% 

JJp- = 10.0 Ea = 0.05 CPU Savings = 42.2% 

~3D 

G--Adaptiv 

~3D 

G-- Adaptiv 

Figure D.S: Case 5 ofthe Control Rod Ejection Transient from Hot Zero Power 
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Figure D.6: Case 6 of the Control Rod Ejection Transient from Hot Zero Power 
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Figure D.7: Case 7 ofthe Control Rod Ejection Transient from Hot Zero Power 
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Figure D.8: Case 8 of the Control Rod Ejection Transient from Hot Zero Power 
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