
Structural Measures for Games and Process Control

in the Branch Learning Model

Matthias Ott�

Universit�at Karlsruhe

Frank Stephany

Universit�at Heidelberg

Abstract

Process control problems can be modeled as closed recursive games. Learn-

ing strategies for such games is equivalent to the concept of learning in�nite

recursive branches for recursive trees. We use this branch learning model

to measure the di�culty of learning and synthesizing process controllers.

We also measure the di�erence between several process learning criteria,

and their di�erence to controller synthesis. As measure we use the infor-

mation content (i.e. the Turing degree) of the oracle which a machine need

to get the desired power.

The investigated learning criteria are �nite, EX -, BC -, Weak BC -

and online learning. Finite, EX - and BC -style learning are well known

from inductive inference, while weak BC - and online learning came up

with the new notion of branch (i.e. process) learning. For all considered

criteria | including synthesis | we also solve the questions of their trivial

degrees, their omniscient degrees and with some restrictions their inference

degrees. While most of the results about �nite, EX - and BC -style branch

learning can be derived from inductive inference, new techniques had to

be developed for online learning, weak BC -style learning and synthesis,

and for the comparisons of all process learning criteria with the power of

controller synthesis.

1 Introduction

Kummer and Ott [13] have developed a theoretical model of learning winning

strategies for closed recursive games [7]. Closed recursive games are games of

in�nite duration and a special kind of Gale-Stewart games (see e.g. [28]). These

kind of games are especially interesting since process control problems can be

interpreted as such games [18, 27, 29]. The closed games correspond to the

control problems with safety conditions, which say that the process may never

reach a \bad" state [30]. An example of such a control problem is a temperature

controller which has to hold the temperature in a room between tmin and tmax.

�Institut f�ur Logik, Komplexit�at und Deduktionssysteme, Universit�at Karlsruhe, D-76128

Karlsruhe, Germany, Email: m ott@ira.uka.de. Supported by the Deutsche Forschungsge-

meinschaft (DFG) Graduiertenkolleg \Beherrschbarkeit komplexer Systeme" (GRK 209/2-96).
yMathematisches Institut, Universit�at Heidelberg, D-69120 Heidelberg, Germany, Email:

fstephan@math.uni-heidelberg.de. Supported by the Deutsche Forschungsgemeinschaft
(DFG) grant Am 60/9-1.

1

Luzeaux, Martin and Zavidovique[17, 19, 20] have developed a di�erent

theoretical model of learning to control processes. An advantage of the game

approach is that the setting can be shown to be equivalent to branch learning

[13]. Here the learner has to �nd an in�nite recursive branch of an in�nite

recursive tree. This yields a very easy model which allows a clearer theory.

A further di�erence between the two models is that Kummer and Ott use

the standard model of data input and the well known learning criteria from

inductive inference while Luzeaux et al. introduce new settings for this.

The classical approach to process control is synthesis [8]: First, develop a

complete mathematical model of the process. From this model compute the

corresponding controller. The e�orts to write chess programs, for example, can

also be classi�ed as a synthesis problem, since the rules of the game (i.e. a

program for the game tree) are completely known in advance. The synthesis

problem has also been investigated theoretically for in�nite games, e.g. in [4,

12, 15, 21, 29]. This classical approach fails for the control problems appearing

in modern applications from, for example, robotics and manufacturing [2, 16,

23, 31]: E.g. very often the tasks to be controlled are too complex or just

not completely known (e.g. robots in unknown environment, a chemical plant

where not everything is accessible to measurement or completely modeled, : : :)

so that a complete mathematical model cannot be developed. Additionally, the

synthesis of controllers only works well for more easy control problems. This

has led to the application of machine learning techniques in process control

[2, 22, 26, 31], taking into account that one can get more and more data over

time about the processes to control.

Our concern is the theoretical foundation of these phenomena, i.e. the power

of learning in process control, and the comparison of learning and controller syn-

thesis. Here, the game model | or even better the more easy and equivalent

branch learning model | allows a rigorous mathematical study of these phe-

nomena. In recursion theoretic terminology controller synthesis is called uni-

form computation (Uni). In [13] it was shown that to uniformly compute and

to (EX -)learn controllers are incomparable tasks. Moreover, there are processes

for which one can learn controllers, but it is not possible to learn a complete

model of the process, and vice versa. But how big is the gap between learn-

ing and uniform computation? Is there a possibility to measure the di�erence

between these two constructive approaches?

In this paper we answer these questions in terms of oracle measures [9, 14].

Oracles improve the power of machines. Which information content do oracles

need such the oracle learning machines capture uniform computation, and vice

versa? The information content of a oracle is just it's Turing degree. We study

this question for di�erent learning criteria: �nite (FIN -), EX -, BC - and Weak

BC - (WBC -) style learning. The above are o�ine versions of learning, i.e.

the learner outputs programs intended to control a process. We also study an

online version of process learning | introduced in [13] | in which the learning

machine directly outputs control actions.

Besides the comparison of di�erent criteria | like uniform computation ver-

sus learning, or o�ine versus online learning | we also investigate the classical

question of oracle learning: which oracles are trivial, i.e., which oracles do not

2

help; which oracles are omniscient, i.e., which allow to �nd an in�nite recursive

branch on every tree which has one; how do the inference degrees look like, i.e.,

for which A and B does Crit [A] � Crit [B] hold. (For the meaning of Crit [A]

see the de�nitions below in this paper). Many learning criteria have direct

counterparts in branch learning. The inference degrees of the counterparts of

FIN and EX are very similar to the original ones. But this is already di�erent

at BC : BC has two counterparts (BranchBC and BranchWBC) and further-

more the inference-degrees of both are a very di�erent from that of BC : Other

than BC none of them has a low omniscient oracle and BranchWBC has even

only recursive trivial oracles. The new criteria BranchOnl behaves similar as

�nite learning. For Uni and BranchWBC new techniques had to be developed

to answer the above questions.

It is fundamental that uniform computation is not captured by learning,

since the identity function is trivially computable, while it is one of the most

fundamental problems of learning (namely, the REC 2 Crit? problem). This

is con�rmed by our results by giving exact oracle measures: We show for all

learning criteria that if it is possible to capture uniform computation by using

an oracle, then this oracle has to be very powerful: It is impossible for �nite

and online branch learning at all. For EX - and BC -style branch learning we

need oracles which are omniscient for this branch learning criteria. And in the

case of Weak BC -branch learning the oracles have to be omniscient for the class

BC in the classical setting of learning functions.

On the other side EX -, BC - and WBC -learning are not included in uniform

computation for more involved reasons. We will see that an ;0-oracle, which is a

whole Turing jump below the omniscient Uni-degree, su�ce to capture EX and

BC -style learning. Nevertheless, this also shows that the advantage of learning

over computation can be measured to correspond to a whole Turing jump.

And weak BC-learning is in fact so powerful, that the distance correspond to

two Turing jumps, which means that only omniscient oracles give synthesizing

machines as much power.

We have already mentioned the technical advantage of the branch learning

model [13]. Therefore the body of this paper is written in the terminology of

branch learning. The relation between branch, game and process learning is the

following: game learning is just a mathematical model of process learning, and

branch learning is equivalent to strategy learning for closed recursive games.

The following �gure shows the correspondence between the di�erent notions:

Problem: Process Game Tree

Solution: Controller Strategy Branch

The problem of �nding in�nite recursive branches of recursive trees is of inde-

pendent interest in recursion theory [7, 24]. In [11] it is studied to which extend

(in the sense of so called k-selectors) in�nite recursive branches of trees can

be computed uniformly. This approach was combined with inductive inference

in [5]. Here the learner receives input/output examples of f and as additional

information an index of a tree T such that f is a branch of T .

3

2 Notation and De�nitions

The natural numbers are denoted by !. We identify sets A � ! with their

characteristic function. #A denotes the cardinality of A � !.

We are using an acceptable programming system '0; '1; : : : ; the function

computed by the e-th programwithin s steps is denoted by 'e;s. We := dom('e)

is the e-th recursively enumerable set. We write We;s for dom('e;s)\f0; : : : ; sg.

REC is the set of all total recursive functions. Turing reducibility is denoted

by �T . If A is a set, then A0 is the halting problem relative to A, that is

fe : 'Ae (e) #g. The halting problem ;0 is denoted by K. A is high i� K0 �T A
0.

A is low if A0 �T K. A is called PA-complete relative to B if every partial

B-recursive 0; 1-valued function has a total A-recursive extension. For B �T ;

this is equivalent to the original de�nition which states that A is in the Turing

degree of a complete extension of Peano Arithmetic (see [24]).

For strings �; � 2 !�, � � � means that � is an initial segment of � .

ja1 : : : anj = n denotes the length of a string a1 : : : an 2 !�. Strings � 2 !�

are identi�ed with their \code numbers" according to some �xed coding of !�.

Total Functions f : ! ! ! are identi�ed with the in�nite string f(0)f(1) : : : .

We write f�n for the string f(0) : : :f(n� 1).

T � !� is a tree if T is closed under initial segments. If T � f0; 1g� then

T is called a binary tree. Elements of a tree are called nodes. If M � !� [!!

is a set of �nite and in�nite strings, then the pre�x closure Pref (M) := f� �

� : � 2 Mg is a tree. We often will de�ne trees by only specifying such a set

M . � 2 !! is an in�nite branch of T , if f� : � � �g � T . In this paper we are

only interested in the class TREE of all recursive trees which have an in�nite

recursive branch. Note that according to our conventions an in�nite recursive

branch of T is just an recursive function f with ff�n : n 2 !g � T .

The branch learning model in [13] uses binary trees. One can show that the

theory remains the same if it is based on recursive trees over !:

Theorem 2.1. For all criteria Crit1; Crit2 which we consider in this paper

and all oracles A;B, if Crit1[A] 6� Crit2[B], then there is a class of recursive

binary trees witnessing this fact.

The proof will be given in Section 8. Since we have discovered that it makes

the proofs in this paper more simple, we base the de�nitions on arbitrary trees.

EX , FIN , and BC denote the classes of sets S � REC which are identi�able

by explanation, �nitely identi�able by explanation and behaviorally correctly

identi�able, respectively. The exact de�nitions for the di�erent learning criteria

are the direct counterparts to those given shortly in the context of branch learn-

ing. For background from inductive inference see e.g. [3, 9, 10, 25]. Remaining

recursion theoretic notation is from [24].

3 Finite and Online Branch Learning

At �rst we de�ne the notion of branch learning machines [13]. In the world of

process control you may think of a learner which has two copies of the process

4

to control. The �rst one is for experimentation (PE) the second for application

of the guessed controllers. We are considering machines without time and space

bounds. Therefore we can assume that the machine may in the limit try all

possible action sequences in�nitely often on PE . A sensor signals the respond of

Pe to the learner. PE may respond in di�erent ways on the same action sequence

due to indeterminism or disturbance by the environment. As a kind of fairness

condition we assume that as long as there are possible respond sequences these

will eventually appear. As a consequence we can assume that the learner gets

an enumeration of all action/respond-sequences as input.

This assumption may seem a little bit strong, since the learner gets in the

limit the whole information about the process. But note that the main content

of our theorems is that something is not learnable. Thus, the signi�cance of

these results even grow if we base them on this strong input model.

While games such as chess and Go have �nite game trees, these game trees

are too large for exhaustive search. Thus, one has to come up with a strategy by

only inspecting some part of the game tree. Similarly, the following de�nitions

�x the question whether one can �nd a controller by only inspecting a �nite

amount of the process' behaviour (i.e. the corresponding in�nite game tree).

We emphasize again that by the equivalence theorems in [13] in the following

de�nitions the in�nite recursive trees correspond to control problems (or in�nite

games), and the in�nite recursive branches to the correct controllers (or winning

strategies).

De�nition 3.1. As learner we consider Turing machinesMA which have access

to an oracle A and converge for every oracle and every input. These machines

are intended to learn an in�nite recursive branch of a tree T 2 TREE . As

input we feed the characteristic function of T into MA such that MA outputs

a sequence of guesses h0h1 : : : , where each hn is computed from f � n, i.e.,

hn =MA(T�n). The guesses hn should describe some in�nite recursive branch

of T according to the given learning criterion. The machine may also output a

special symbol \?" to indicate that it has yet not seen enough data to make up

its mind.

In the o�ine versions of branch learning (e.g. BranchFin below) the output

of the learner is interpreted as a program for an in�nite recursive branch of

T , while in the online version the output is directly interpreted as nodes of an

in�nite recursive branch of T :

De�nition 3.2. MA �nitely A-branch learns a tree T if on input T the machine

MA produces a sequence of guesses ? : : :?eee : : : such that 'e is an in�nite

recursive branch of T .

A class of trees C is �nitely A-branch learnable (C 2 BranchFin[A]) if there

is a machine MA which �nitely branch learns every T 2 C.

We write BranchFin for BranchFin[;]. Analogously, for the other criteria con-

sidered in this paper we write Crit instead of Crit [;].

De�nition 3.3. MA online A-branch learns a tree T if on input T the machine

MA produces a sequence of guesses ? : : :?b0? : : :?b1? : : : such that b0b1 : : : is an

5

in�nite recursive branch of T . We will say that the machine enumerates the

branch b0b1 : : : .

A class of trees C is �nitely A-online learnable (C 2 BranchOnl [A]) if there

is a machine MA which online branch learns every T 2 C.

The following observation holds for all criteria which we consider in this paper,

since queries to an oracle A can be simulated by any oracle B �T A. But we

only state it explicitly for BranchOnl :

Fact 3.4. A �T B =) BranchOnl[A] � BranchOnl [B].

From [13] we know that BranchFin � BranchOnl . The following theorems show

that this relation relativizes. This also indicates that online learning behaves

in some sense similar as �nite learning.

Theorem 3.5. BranchFin[A] � BranchOnl [B] () A �T B.

Proof. Assume A �T B and C 2 BranchFin[A] via MA. Then the following

procedure online A-branch learns every T 2 C which implies C 2 BranchFin[B]

by Fact 3.4:

On input T�0; T�1; : : : wait until MA outputs it's �rst real guess e.

Then enumerate the branch 'e.

For the other direction consider the class of trees

C := fxT : T 2 TREE ^A(x)! is an in�nite branch of Tg:

Clearly, C 2 BranchFin[A]: Having seen x output a program for xA(x)!. Now

assume that C is in BranchOnl [B] via MB. We claim that the following proce-

dure decides A in B:

On input x apply the tree T := x(0! + 1!) to MB. Wait until MB

enumerates the second node b1. Output b1.

Since T 2 C the machine MB will eventually enumerate a second node b1.

Then the output b1 is correct, i.e. b1 = A(x): Otherwise MB would fail on

some tree x((1� A(x))n + A(x)!) which is in C.

From Theorem 3.5 it follows that the BranchFin and BranchOnl inference de-

grees coincide with the Turing degrees:

Corollary 3.6. A �T B () BranchFin[A] � BranchFin[B] ()

BranchOnl[A] � BranchOnl [B]

Proof. If BranchFin[A] � BranchFin[B] or BranchOnl [A] � BranchOnl[B]

then BranchFin[A] � BranchOnl [B] by Theorem 3.5 and again by Theorem

3.5 we get A �T B. The other implications follow from Fact 3.4.

Thus, the trivial degree of BranchFin and BranchOnl is the degree of ;.

In contrast to Theorem 3.5 there is no oracle A such that BranchFin[A]

captures BranchOnl. This demonstrates that besides some similarities online

learning is still a much more powerful concept than �nite learning:

6

De�nition 3.7. For f 2 REC let Tf := ff(0)f(1) : : :g be the tree which

consists exactly of the in�nite branch f .

Theorem 3.8. BranchOnl 6� BranchFin[A] for all A � !.

Proof. The theorem follows from inductive inference since fTf : f 2 RECg is

in BranchOnl : Given T�(n+ 1) such that n codes the string b0 : : : bk, enumer-

ate bk if T (n) = 1, otherwise enumerate \?". But from fTf : f 2 RECg 2

BranchFin[A] it follows that REC 2 FIN [A] which is known to be impossi-

ble.

As a corollary from Theorem 3.8 it follows that BranchFin has no omniscient

degree.

4 Uniform computation

In this section we study the synthesis of controllers from complete models of

the processes:

De�nition 4.1. In�nite recursive branches can be computed uniformly in A

for a class C � TREE (C 2 Uni [A]), if there is a partial A-recursive function g

such that

(8e)(8T 2 C)[T = 'e =) g(e) # ^ 'g(e) is an in�nite branch of T]:

In [13] it was shown that BranchOnl is strictly included in Uni . We now prove

that it is impossible to overcome this gap by any oracle A. For the proof we

introduce certain families of trees which we will use also later in this paper:

De�nition 4.2. For f 2 REC we de�ne the tree

Rf := fef(e)a0a1 : : : an : (8m � n)[am = �s['e;s(m) # = f(m)]]g:

For S � REC we set B(S) := fRf : f 2 Sg. Note, that eb is in Rf i� b = f(e).

Lemma 4.3. For every f the tree Rf is recursive and has in�nite recursive

branches extending e i� 'e = f . Indices for f , Rf and in�nite recursive

branches of Rf can be computed uniformly from each other. Moreover, enu-

merations of f and Rf can be translated e�ectively into each other, i.e., there

are computable functions g1; : : : ; g4 such that f(n) = g1(Rf�g2(n)) and Rf(n) =

g3(f�g4(n)).

Theorem 4.4. Uni 6� BranchOnl[A] for all A � !.

Proof. From Lemma 4.3 it follows that B(REC) is in Uni . If B(REC) were in

BranchOnl[A] via MA then REC would be in FIN [A] by the following algo-

rithm, which yields a contradiction:

From the input f(0)f(1) : : : compute an enumeration of Rf and

feed it into MA. Wait until MA enumerates the �rst node b0 of an

in�nite recursive branch of Rf . Output b0.

7

By Lemma 4.3 the output b0 is an index of f .

Thus, like �nite learning, BranchOnl also has no omniscient degree.

Compared to BranchFin[A] uniform computation behaves similar as online

learning, at least for A � K:

Theorem 4.5. For all A �T K: BranchFin[A] � Uni [B] () A �T B.

Proof. The proof of BranchFin � Uni in [13] relativizes for A �T B.

So, it remains to show the only if part. Since A �T K, by the Limit

Lemma there exists a computable u : !2 ! ! such that A = �x: lims!1 u(x; s).

Consider the class C of all trees Tx where

Tx := fxia0a1 : : : an : i 2 f0; 1g ^ a0 < a1 < : : : < an ^

(8m � n)[u(x; am) = i]g:

Obviously, C is in BranchFin[A]. Now assume C 2 Uni [B] via some partial

B-recursive function g. We choose an h 2 REC with Tx = 'h(x) for all x. Then

�x:'g(h(x))(1) decides A relative in B.

The omniscient degree of Uni has already been solved in [13]:

Fact 4.6. TREE 2 Uni [A] () A �T K
0.

The more di�cult part ()) follows also from Theorem 7.8 below.

A corollary of Theorem 4.5 is that the degree-structure of Uni below K

coincides with the Turing degrees:

Corollary 4.7. If A �T K then: Uni [A] � Uni [B] () A �T B.

This result can even be strengthened as the following Theorems show:

Theorem 4.8. (1) Uni [A] = Uni () A recursive.

(2) If B 6�T K then: Uni [A] � Uni [B] () A �T B.

Proof. Since (1) follows from (2), we only have to prove (2):

((): Follows from Fact 3.4.

()): Since every Turing degree contains a retracable set, we assume w.l.o.g.

that A is retracable. Now, to get A �T B it su�ces to show that A is r.e. in

B. We set

Tx;y := fxy0s : y 62 Ksg [fxyz
! : z > 0 ^ y 2 Kzg

and consider the class

C := fTx;y : (x 2 A ^ y 62 K) _ (x 62 A ^ y 2 K)g:

C is in Uni [A]:

From an index e of a tree Tx;y 2 C �rst extract x and y. If x 2 A

then we know that y 62 K. Thus xy0! is an in�nite recursive branch

of Tx;y. If x 62 A it follows y 2 K. Then xyz! with z = �s[y 2 Ks]

is an in�nite recursive branch of Tx;y.

8

Since Uni [A] � Uni[B] the class C is also in Uni [B] via some (partial) ma-

chine MB . We choose an computable h : !2 ! ! with (8x; y)['h(x;y) = Tx;y].

Consider the set

X := fx : (9s; y)[y 2 Ks ^ xy0 � 'MB
s (h(x;y));s]g

of all x such that for some y 2 K the machine MB on input Tx;y outputs a

branch (or a partial function) beginning with xy0. X is recursively enumerable

in B. We claim that A = X :

If x 62 A then for all y 2 K the machine MB will on input Tx;y output a

branch beginning with xyz for some z > 0 since Tx;y 2 C and Tx;y has no in�nite

branch beginning with xy0. Therefore x is not in X . It follows that X � A.

Now let x 2 A. Then for all y 62 K the machine MB will on input Tx;y
output a branch beginning with xy0 since Tx;y 2 C and xy0! is the only in�nite

recursive branch of Tx;y. Assume that there is no y 2 K such thatMB on input

Tx;y outputs an i with xy0 � 'i. Then K = fy : (9s)[xy0 � 'MB
s
(h(x;y));s]g and

thus K is r.e. in B. Since K is r.e. it follows K �T B which contradicts the

assumption K 6�T B. Hence, there is an y 2 K with xy0 � 'MB(h(x;y)) which

implies x 2 X . We get A � X which completes the proof of A = X .

Thus, A is r.e. in B and, since A is retracable, A is in fact Turing reducible

to B.

By using di�erent trees the above proof can be adapted to cover the case

A;B �T K:

Theorem 4.9. For all A;B �T K: Uni [A] � Uni [B] () A �T B or

B �T K
0.

Proof. ((): Follows from Fact 3.4 and Fact 4.6.

()): Assume that B 6�T K
0 and w.l.o.g. that A is retracable. We de�ne

T e�n := fkn : #We;n < kg;

T einf := f0a0a1 : : : an : (8m � n)[#We > m ^ am = �s[#We;s > m]]g;

Te := T e�n [T
e
inf :

T e�n has an in�nite recursive branch i�We is �nite and T
e
inf has an in�nite branch

i� We is in�nite. Thus, all Te have an in�nite recursive branch. Moreover, if �

is an in�nite recursive branch of Te then �(0) = 0 i� We is in�nite.

Set Tx;y := xyTy. Fin := fe : We �niteg and Inf := fe : We in�niteg are

the index sets of the �nite and in�nite r.e. sets, respectively. We consider the

class

C := fTx;y : (x 2 A ^ y 2 Fin) _ (x 62 A ^ y 2 Inf)g:

C is in Uni [A]:

From an index e of a tree Tx;y 2 C �rst extract x and y. If x 2 A

then we know that y 2 Fin. Since A �T K, we can use a K-oracle

to compute a number k with (8n)[#Wy;n < k]. Then xyk! is an

in�nite recursive branch of Tx;y. If x 62 A it follows that y 2 Inf .

Then xya0a1 : : : with am = �s[#Wy;s > m] for m = 0; 1; : : : is an

in�nite recursive branch of Tx;y.

9

Since Uni [A] � Uni [B] the class C is also in Uni [B] via some (partial) machine

MB. We choose an computable h : !2 ! ! with (8x; y)['h(x;y) = Tx;y]. Since

Fin is r.e. in K there is a B-recursive approximation (Fins)s2! of Fin. Consider

the set

X := fx : (9s; y)[y 2 Fins ^ xy0 � 'MB
s (h(x;y));s]g

of all x such that for some y 2 Fin the machine MB on input Tx;y outputs a

branch (or a partial function) beginning with xy0. X is recursively enumerable

in B. We claim that A = X :

If x 62 A then for all y 2 Fin the machine MB will on input Tx;y output

a branch beginning with xyk for some k > 0 since Tx;y 2 C and Tx;y has no

in�nite branch beginning with xy0. Therefore x is not in X . It follows that

X � A.

Now let x 2 A. Then for all y 2 Inf the machine MB will on input Tx;y
output a branch beginning with xy0 since Tx;y 2 C and xy0! is the only in�nite

recursive branch of Tx;y. Assume that there is no y 2 Fin such thatMB on input

Tx;y outputs an i with xy0 � 'i. Then Inf = fy : (9s)[xy0 � 'MB
s (h(x;y));s]g

which implies that Inf is r.e. in B. Since Fin is r.e. in K, and thus r.e. in B,

it follows K0 � Inf �T B which contradicts the assumption K0 6�T B. Hence,

there is an y 2 K with xy0 � 'MB(h(x;y)) which implies x 2 X . We get A � X

which completes the proof of A = X .

Thus, A is r.e. in B and, since A is retracable, A is in fact Turing reducible

to B.

In summary, except the case (AjTK ^ B �T K), we were able to prove that

Uni [A] � Uni[B] i� A �T B or B �T K0. The following theorem shows that

this proposition indeed does not hold for arbitrary A;B:

Theorem 4.10. There are oracles A and B not above K0 such that Uni [A] �

Uni [B] but A 6�T B. In fact, even A 6�T B
0 can be achieved.

Proof. There are uncountably many Turing degrees above K which are

hyperimmune-free relative to K, i.e., every total function computed relative

to such a degree is dominated by a total function computable relative to K.

Thus there is some oracle A0 which is hyperimmune-free relative to K but is

not below K00. A0 is (Turing equivalent to) the jump of some oracle A by the

jump inversion Theorem [24, Theorem V.2.24]; moreover, this A can be chosen

such that A0 �T A�K. Thus, A 6�T K
00 since otherwise A0 �T A�K �T K

00.

By an relativization of the Low Basis Theorem to K [24, Theorem V.5.32]

there is an oracle B such that B is PA-complete relative to K and K <T B <T
K0. Now these oracles A and B satisfy the required properties:

(i) A and B are not above K0: K0 and any degree above it are hyperimmune

relative to K; thus A 6�T K. Furthermore B 6�T K
0 by the choice of B.

(ii) A 6�T B: This also follows from the choice of A and B. A is not below

K00 by the choice of A and since B �T K
0, A is not below B and also not below

B0.

(iii) Uni[A] � Uni [B]: Let C 2 Uni [A] via a partial A-recursive function.

Then this function has a total extension f relative to A0. By the choice of A0,

10

f has a K-recursive majorant g. Thus, every tree T 2 C given as 'e has an

in�nite branch with an index below g(e). Now let

h(i; s) = maxfx : (8y < x)['i;s(y) #]^ 'i�x 2 'eg:

Note that 'i is an in�nite branch of T i� h(i; s) converges to 1 for s ! 1.

Since B is PA-complete in K, the oracle B has an algorithm B(e; j) which

solves the following problem:

B(e; j) outputs always a number i � j such that h(i; s) converges

to 1 whenever some index below j has this property.

So B(e; j) �nds always an index of some in�nite branch of T whenever this tree

has such a branch with index below j. Taking now B(e; g(e)), this algorithm

outputs an index for an in�nite branch of 'e whenever some index below g(e)

identi�es such a branch| and this is true for all trees 'e 2 S. Thus, S 2 Uni [B]

and Uni [A] � Uni [B].

From Theorems 3.5 and 4.5 we get:

Corollary 4.11. For all A �T K: BranchOnl[A] � Uni [B] =) A �T B.

We will now show that the other direction in Corollary 4.5 does not hold in

general, i.e. that the inclusion BranchOnl � Uni from [13] does not relativize.

The intuitive reason is that the Uni-machine can only ask �nitely many queries

to its oracle while the BranchOnl-machine may ask in�nitely many queries

during the enumeration of a branch.

Theorem 4.12. For all PA-complete A: BranchOnl[A] � Uni [B] ()

K0 �T B, i.e. TREE 2 Uni [B].

Proof. Kummer and Stephan [14] have constructed a family of 0; 1-valued func-

tions f'g(i)gi2! (g 2 REC) such that

� 1i0 � 'g(i),

� 'g(i)(x) is unde�ned for at most one x,

� if Wi is �nite and 'e is a total extension of 'g(i) then e � #Wi.

For every i we de�ne a recursive binary tree Ti according to

Ti := fa0 : : : an : 1
i0 � a0 : : :an ^ (8m � n)[:('g(i);n(m) # 6= am)]g:

Note that the only in�nite recursive branches of Ti are the total recursive 0; 1-

valued extensions of 'g(i).

Consider the recursive function f(i; �) which checks simultaneously whether

the subtrees above �0 or �1 in Ti are �nite and outputs (1� j) if it detects �rst

that the subtree above �j is �nite for j 2 f0; 1g. f(i; �) is unde�ned if none of

the two subtrees is �nite.

11

Since A is PA-complete there is a 0; 1-valued A-recursive extension h of

f(i; �). Thus, we have for all �:

f� 2 Ti : � � �g in�nite =) f� 2 Ti : �h(i; �)� �g in�nite:

Now, C := fTi : i 2 !g is in BranchOnl [A] via a machine MA which simply

follows the A-recursive function h after it has decoded i from the beginning of

the input tree.

Assume now that C is in Uni [B] via some partial B-recursive function .

Then the index set Inf := fi 2 ! : Wi in�niteg is r.e. in B, since Inf =

fi : (9s)[#Wi;s > (u(i))]g where u 2 REC with (8i)[Ti = 'u(i)]. Note,

that range(u) � dom(). If Wi is in�nite then clearly there is an s with

#Wi;s > (u(i)). And if there exists an s with #Wi;s > (u(i)) then Wi must

be in�nite since ' (u(i)) is a total extension of 'g(i).

It remains to show that Fin = fi : Wi �niteg | the complement of Inf |

is also r.e. in B. It is well known that Fin is r.e. in K. Therefore it su�ces to

prove K �T B.

Let Wv(x) := fs : x 62 Ksg (v 2 REC). Then for all x the Uni [B]-procedure

 computes an index e := (u(v(x))) for an in�nite recursive branch of Tv(x)
with:

x 2 K () Wv(x) �nite () #Wv(x) � e () x 2 Ke.

5 Uniform Computation via Total Functions

In the de�nition of Uni [A] (De�nition 4.1) we allowed the uniform computation

procedure to be partial, i.e. the procedure may not converge on inputs which are

not indices for a tree in the class under consideration. Certainly, this is a natural

approach since it abstracts from strange inputs. Actually, for the class Uni (i.e.

A recursive) there is no di�erence if we require that the uniform computation

procedures should be total. In this case, every uniform computation procedure

is simply a computable program transformation, which can always be made total

by using, e.g., the Smn -Theorem. But for non-recursive oracles the two notions

does not coincide as we will see shortly. We also give further examples in this

section which show that the variant of Uni , where the uniform computation

procedures are required to be total, behaves very di�erently than Uni .

De�nition 5.1. C � TREE is in TUni [A] if C 2 Uni [A] via some total A-re-

cursive function.

Let us �rst write down some simple observations:

Fact 5.2. (1) TUni[A] � Uni [A],

(2) TUni = Uni,

(3) Uni [A] � TUni [A0].

12

(3) holds since for every partial A-recursive function g one can check relative

in A0 whether g(e) # .

The following theorem shows that the omniscient degree of TUni is one

Turing jump higher than that of Uni :

Theorem 5.3. TREE 2 TUni [A] () A �T K
00.

Proof. ((): By Fact 4.6 the class TREE is in Uni [K0] via some partial function

f �T K
0. We set

g := �e:

(
0 if f(e) ",

f(e) otherwise.

Then, g is total, recursive in K00 and g uniformly computes in�nite recursive

branches for TREE .

()): De�ne

Te := fka0 : : :an : (8m � n)[am = �s[fk; : : : ; k +mg 2 We;s]]g:

Te contains in�nite recursive branches i� We is co�nite. Moreover, if � 2 REC

is an in�nite branch of Te then maxWe < �(0). It follows that C := fTe :

We co�niteg is a subclass of TREE . Assume, that TREE 2 TUni [A] via the

total function f �T A. Then, we have also C 2 TUni [A] via f . De�ne g 2 REC

according to 'g(k) := �m:�s[fk; : : : ; k+mg 2 We;s]. Thus, maxWe < k i� 'g(k)
is total. We choose an h 2 REC with (8e)['u(e) = Te]. Now, if We is co�nite

then 'f(u(e)) is an in�nite recursive branch of Te, thus, k := 'f(u(e))(0) is de�ned

and 'g(k) is total. Otherwise, if We is coin�nite then either k := 'f(u(e))(0) is

unde�ned or, if it is de�ned, then 'g(k) is not total. At all we get

(8e)[We is co�nite () k := 'f(u(e))(0) is de�ned and 'g(k) is total:]

The test on the right side is recursive in A�K0. Note, that we use the totality

of f here. But K0 is Turing reducible to A by Fact 4.6, since TREE is also in

Uni [A] via f , i.e. A � K0 �T A. At all we get K00 �T fe : We co�niteg �T
A�K0 �T A.

It follows from Theorem 5.3 that Uni [K0] 6� TUni [K0]. The corresponding

result also holds for the oracle K:

Theorem 5.4. Uni [K] 6� TUni[K].

Proof. Let f �T K be a partial 0; 1-valued function which has no total K-

recursive extension. Since f is partial recursive in K, by the Limit Lemma

there is a total recursive h : !2 ! ! with f = �x: lims!1 h(x; s) and a so called

modulus function m �T K satisfying (8s � m(x))[h(x; s) = f(x)]. Let

Tx := fxikn : i 2 f0; 1g ^ (8m � n)[h(x; k+m) = i]g:

For all x 2 dom(f) the tree Tx has an in�nite recursive branch � � xi i�

i = f(x). We set C := fTx : x 2 dom(f)g. Since xf(x)m(x)! is an in�nite

recursive branch of Tx for all x 2 dom(f), the class C is in Uni [K].

13

Assume now that C 2 TUni [K] via some total function g �T K. Let

h 2 REC with (8x)['h(x) = Tx] be given. Consider the function

F := �x:

(
'g(h(x))(1) if 'g(h(x))(1) # ,

0 otherwise.

Since g is total, the test whether 'g(h(x))(1) is de�ned is recursive in K. Thus,

F is a total K-recursive function. If x 2 dom(f) then 'g(h(x)) is an in�nite

recursive branch of Tx which implies 'g(h(x))(1) # = f(x). I.e. F is a total

K-recursive extension of f , which is a contradiction.

Note that Uni [K00] = Uni [K0] while TUni[K00] 6� TUni[K0]. Furthermore,

Theorem 4.10 generalizes to TUni since it actually shows that TUni[A0] is

contained in TUni[B]. Thus it provides a counterexample to a generalization

of Theorem 4.9 to TUni. So the following holds:

Theorem 5.5. The structures \Uni [A] � Uni [B]" and \TUni [A] � TUni [B]"

are incomparable: There are A1; B1 with Uni [A1] � Uni [B1], TUni[A1] 6�

TUni[B1] and A2; B2 with Uni [A2] 6� Uni [B2] and TUni [A2] � TUni [B2].

Nevertheless, Theorem 4.8 can be generalized to TUni:

Theorem 5.6. (1) TUni[A] = TUni () A recursive.

(2) If B 6�T K then: TUni [A] � TUni[B] () A �T B.

Sketch of proof. If x � 1 we write log(x) for the unique n with 2n � x < 2n+1.

Adapt the trees Tx;y and the class C of Theorem 4.8 in the following way:

Tx;y := fxy0s : log(y) 62 Ksg [fxyz
! : z > 0 ^ log(y) 2 Kzg;

C := fTx;y :A(log(x)) 6= K(log(y)) ^

log(x) � 2e+100 for all programs e of Tx;yg:

Note, that the Uni [A] procedure in the proof of Theorem 4.8 on input Tx;y
uses A only to compute A(x). There is a total function g 2 REC such that

x � g(e) for all indices e of trees Tx;y 2 C. This allows to adapt the old

procedure of Theorem 4.8 to TUni[A]: The TUni [A]-learner generates an index

which contains the �nite string A�g(e) and simulates the whole Uni [A]-learning

procedure as part of the program execution. If this simulation fails by querying

some x beyond g(e) then it knows that e is not an index of some tree in C

and just stops to do anything, in the other case it simulates the function whose

index is generated by the Uni[A]-learner.

The rest of the proof can be adapted to work also for the new de�nitions of

Tx;y and C. Hereby, the set X is now de�ned as follows:

X := fa : (9s; b)[b 2 Ks ^ xy0 � 'MB
s
(h(x;y));s

for the majority of all x; y with a = log(x) ^ b = log(y)g:

14

6 EX-style Branch Learning

Of course, �nite learning is a very restricted kind of learning. The learner gets

more power if he only has to (syntactically) learn a controller in the limit [10]:

De�nition 6.1. MA EX [A]-branch learns a tree T if on input T the machine

MA produces a sequence of guesses h0h1 : : :hneee : : : such that 'e is an in�nite

recursive branch of T .

A class of trees C is EX [A]-branch learnable (C 2 BranchEx) if there is a

machine MA which EX [A]-branch learns every T 2 C.

The following results can be obtained by modifying the proofs from the cor-

responding results in inductive inference [1, 9, 14]. As in [9] we write G(A) if

A �T G �T K for some 1-generic set G, i.e. if A is either recursive or has the

same degree as a 1-generic Turing degree below K.

Fact 6.2. 1. A �T K =) BranchFin[A] � BranchEx.

2. For all A: BranchEx 1 6� BranchFin[A], where BranchEx 1 means EX -

branch learnable with at most one mind change.

3. BranchEx [A] = BranchEx () G(A).

4. TREE 2 BranchEx [A] () A is high.

5. For all r.e. A: BranchEx [A] � BranchEx [B] () A �T B or B is high.

From [13] we know that BranchEx is incomparable with BranchOnl and Uni .

In analogy to the case of Uni (Theorem 4.4) it is also impossible to capture

BranchEx1 by BranchOnl [A] for any oracle A:

Theorem 6.3. For all A: BranchEx1 6� BranchOnl [A].

Proof. Consider the class C := fT 2 TREE : 0! or 1! is a branch of Tg. C is

in BranchEx1: output a program for 0! until you �nd an m with T (0m) = 0.

Then output a program for 1!.

But a BranchOnl[A]-learner MA for C will eventually output a �rst node

on input 0n + 1n because 0! + 1! 2 C. This node will be the same for 0n + 1!

and 0! + 1n. Thus, on one of the two trees MA fails to enumerate an in�nite

recursive branch.

It is fundamental that Uni and BranchOnl are not included in BranchEx : The

class fTf : f 2 RECg (see De�nition 3.7) is in Uni \ BranchOnl but not in

BranchEx since REC is not in EX . This fundamental di�erence between learn-

ing in the limit on the one side and online learning and uniform computation

on the other side is emphasized by the following result, which shows that only

omniscient oracles enable BranchEx to overcome this di�erence.

Theorem 6.4. A high () Uni � BranchEx [A] () BranchOnl �

BranchEx [A].

15

Proof. If A is high then Uni � BranchEx [A] = TREE by Fact 6.2.4 and if

Uni � BranchEx [A] then BranchOnl � BranchEx [A] since BranchOnl � Uni

[13].

If BranchOnl is included in BranchEx [A] then fTf : f 2 RECg is in

BranchEx [A]. This implies REC 2 EX [A] and thus A high [9].

On the other side there are EX -branch learnable classes of trees for which

in�nite recursive branches cannot be computed uniformly. But in contrast to

Theorem 6.4 Uni does not need an omniscient oracle to capture BranchEx :

Corollary 6.5. BranchEx � Uni [A] () K �T A.

Proof. If BranchEx � Uni [A] then BranchFin[K] � Uni [A] (Fact 6.2.1) which

implies K �T A by Theorem 4.5. The other direction follows from [13, Propo-

sition 19].

In analogy to the results about omniscient degrees, the oracles which give TUni

as much power as BranchEx are again one Turing jump higher than that of Uni :

Theorem 6.6. BranchEx � TUni[A] () K0 �T A.

Proof. (() follows from Corollary 6.5 and Fact 5.2.3:

BranchEx � Uni [K] � TUni[K0]:

For the other direction we slightly modify the trees T e�n of Theorem 5.3 and

code e into the beginning of the trees:

Te := feks : #We;s � kg:

Recall that Te has an in�nite recursive branch i� We is �nite, and #We � �(1)

for every in�nite branch of Te. The class C := fTe : We is �niteg is in BranchEx :

First, decode e from the input. Then, in stage n output a program

for ek! where k = #We;n

If We is �nite | i.e. Te 2 C | then there exists an s with We = We;s. Thus,

in all stage n � s the procedure will output the same program which computes

an in�nite recursive branch of Te.

By hypothesis we get C 2 TUni[A] via some total g �T A. Now the following

algorithm decides Fin = fe : We �niteg:

(i) Input: e

(ii) Compute an index i of Te.

(iii) Let j := g(i), i.e. an index of an in�nite branch of Te in the case that We

is �nite.

(iv) Compute k := 'j(1) if de�ned.

(v) If k = 'j(1) is unde�ned or there is an s with #We;s > k then output

\We is in�nite", otherwise output \We is �nite".

16

If We is �nite then k = 'j(1) is de�ned and k � #We. Thus, in this case the

algorithm terminates with output \We is �nite".

If We is in�nite then, if k = 'j(1) de�ned, there is an s with #We;s > k.

Thus, in this case the algorithm terminates with output \We is in�nite".

Let us now analyze the complexity of the algorithm. Step (iii) uses the

oracle A, and the steps (iv) and (v) are recursive in K. Since BranchEx �

TUni[A] � Uni [A] we can conclude from Corollary 6.5 that K �T A. Thus,

the algorithm is recursive in A and K0 �T Fin �T A.

Note, that Theorem 5.4 can also be obtained as a direct conclusion from Corol-

lary 6.5 and Theorem 6.6.

7 BC- and Weak BC-style Branch Learning

In contrast to EX -style learning in BC -style learning the learner has only to

converge semantically to a correct controller. Note, that there may be many

correct controllers. This is the reason why there are two notions of BC -style

branch learning, while there exists only one notion of BC -style function learn-

ing.

De�nition 7.1. MA BC [A]-branch learns a tree T if on input T the machine

MA produces a sequence of guesses h0h1 : : : such that there is an in�nite re-

cursive branch f of T with 'hn = f for almost all n.

MA weakly BC[A]- orWBC [A]-branch learns T if 'hn is an in�nite recursive

branch of T for almost all n.

C 2 BranchBC [A] and C 2 BranchWBC [A] for classes C � TREE are de-

�ned similar to the previous de�nitions (e.g. C 2 BranchEx [A] in De�nition 6.1).

As in the case of �nite versus EX -style branch learning it follows directly from

EX � BC that BranchEx � BranchBC . The weak version of BC -style learning

does not appear in classical inductive inference since there is only one target

object | namely the input object itself. It was proven in [13] that BranchBC �

BranchWBC .

For the omniscient BC degrees there is no nice characterization known in

inductive inference. And the results in [9] suggest that there exists no nice one.

Therefore it is remarkable that such a characterization exists for BranchBC

and BranchWBC :

Theorem 7.2. A is high () TREE 2 BranchBC [A] () TREE 2

BranchWBC [A].

Proof. Fact 6.2.4 already states: If A is high then TREE 2 BranchEx[A].

Since the inclusion BranchEx � BranchBC � BranchWBC relativizes to A,

any high oracle is omniscient for BranchBC and BranchWBC, too. The trees

from [13, Proposition 21] can be used to prove the reverse directions.

We now summarize the facts which follow from results in inductive inference

by modi�cations of the corresponding proofs [9, 14]:

17

Fact 7.3. 1. A high () BranchBC � BranchEx [A].

2. BranchEx [A] � BranchBC () G(A).

3. BranchBC [A] = BranchBC () G(A).

4. For all r.e. A;B: BranchBC [A] � BranchBC [B] () A �T B or B

high.

In Theorem 6.4 we have seen that we need omniscient oracles A to capture Uni

and BranchOnl by BranchEx [A]. The following result shows that oracles A

with REC 2 BC [A] su�ces to capture BranchOnl by BranchBC [A] and both,

BranchOnl and Uni , by BranchWBC [A]. This demonstrates the power of BC

and even more the power of BranchWBC (capturing both), since only high

oracles are omniscient for BranchBC and BranchWBC (Theorem 7.2) | but

there are low sets A with REC 2 BC [A] ([9]).

Theorem 7.4. The following are equivalent:

(1) REC 2 BC [A],

(2) BranchOnl � BranchBC [A],

(3) BranchOnl � BranchWBC [A],

(4) Uni � BranchWBC [A].

Proof. (1)) (2): Assume C 2 BranchOnl via M . On input T 2 C enumerate

an in�nite branch of T via M and BC[A]-learns an index for it.

(2)) (3): Obvious, since BranchBC [A] � BranchWBC [A].

(3)) (1): From fTf : f 2 REC g 2 Uni � BranchWBC [A] (see De�nition

3.7) we directly get REC 2 BC [A].

(1)) (4): Assume C 2 Uni via g. On input T 2 C we BC[A]-learn an

index for T , say by the sequence of guesses h1h2 : : : . Then g(h1)g(h2) : : : is a

sequence of guesses such that almost all compute an in�nite recursive branch

of T .

(4)) (3): Obvious, since BranchOnl � Uni .

Note that in the proof of (1)) (4) we can not conclude Uni � BranchBC since

the sequence h1; h2; : : : may converge to di�erent indices for T , and the branch

computed by g may depend on the indices for T , which g receives as input.

The following theorem shows that we actually need an omniscient oracle A

to capture Uni by BranchBC [A]. This gives a measure for the advantage of

WBC -style over BC -style branch learning. This advantage of WBC -style over

BC -style branch learning is additionally demonstrated by the result that for

capturing BranchWBC by BranchBC [A] also an omniscient oracle A is needed.

As a corollary we get the existence of classes in Uni such that the uniform

computation of branches depends on the index of the input tree.

Theorem 7.5. A is high () Uni � BranchBC [A] () BranchWBC �

BranchBC [A].

18

Proof. Since high oracles are omniscient for BranchBC (Theorem 7.2) we only

have to show that Uni � BranchBC [A] and BranchWBC � BranchBC [A]

imply A high.

Assume that A is not high. Then there is a family of recursive functions

S 2 BC � EX [A] ([14]). We consider the class B(S) (see De�nition 4.2). B(S)

is in Uni by Lemma 4.3. B(S) is also in BranchWBC :

From the input Rf(0); Rf(1); : : : extract an enumeration f(0); f(1); : : : for

f . Apply the BC -learner on f which yields a sequence h0h1 : : : of guesses for

f such that almost all guesses are correct. By Lemma 4.3 there is a g 2 REC

with (8e)(8f)['e = f =) 'g(e) is an in�nite recursive branch of Rf]. Thus,

g(h0)g(h1) : : : is a sequence of guesses such that almost all compute an in�nite

recursive branch or Rf .

Assume B(S) 2 BranchBC [A] via MA. We will show that this implies

S 2 EX [A] which is a contradiction:

Translate the input sequence f(0); f(1); : : : for f 2 S into an enumeration

Rf(0); Rf(1); : : : (Lemma 4.3). By Applying MA to Rf � 0; Rf � 1; : : : we get

a sequence of guesses h0h1 : : : which BC [A]-converges to an in�nite recursive

branch of Rf . Let k(n) := maxfm � n : 'hm;n(0) #g. Then ('hk(n)(0))n2!
EX [A]-converges to an index for f by Lemma 4.3.

Corollary 7.6. There exists a class C 2 Uni such that for all g with C 2 Uni

via g:

(9T 2 C)(9i; j)[i 6= j ^ 'i = 'j = T ^ 'g(i) 6= 'g(j)]:

In Corollary 6.5 we have seen that BranchEx � Uni [A] i� A �T K. This result

also holds for BC -branch learning by the analogous proof, since Proposition 19

from [13] actually states BranchBC � Uni [K]:

Corollary 7.7. BranchBC � Uni [A] () A �T K.

What oracle do we need to capture BranchWBC by Uni [A]? The power of

WBC -style branch learning appears most clearly under this \Uni-oracle mea-

sure". The gap between capturing BranchBC and BranchWBC by Uni [A] is

a whole Turing jump. BranchWBC is so powerful that only omniscient oracles

give Uni [A] as much power:

Theorem 7.8. BranchWBC � Uni [A] () A �T K
0.

Proof. (() follows by Fact 4.6. For the direction ()) we de�ne

Te := feka0 : : : an : (8m � n)[(#We;m � k =) am = 0) ^

(#We;m > k =) #We � m ^ am = �t[#We;t � m])]g:

Let U ek := f� : ek� 2 Teg be the subtree above ek. If #We � k then Uk = 0!.

If #We > k then Uk contains an in�nite recursive branch i� We is in�nite.

The class C := fTe : e 2 !g is in BranchWBC :

Wait until you can decode e from the enumeration of Te. Then

output in stage s a program for eka0a1 : : : where k = #We;s and

am = �t[#We;m � k _#We;t � m].

19

If We is �nite then there is an s with We = We;s. Thus, for k = #We;s we have

Uk = 0! and all guesses from stage s on will compute the branch ek0!. If We is

in�nite then every ekUk contains an in�nite recursive branch and every guess

computes such a branch. (Note that in this case the learner produces in�nitely

many di�erent branches.)

Since BranchWBC � Uni [A] there is a partial A-recursive g with C 2

Uni [A] via g. We choose an h 2 REC with Te = 'h(e) for all e. Note, that

range(h) � dom(g). Then Inf = fe : We in�niteg is recursively enumerable

in A, since Inf = fe : (9s)[#We;s > 'g(h(e))(1)]g. Let k = 'g(h(e))(1). If

k > #We;s then ekUk contains an in�nite recursive branch, since C 2 Uni

via g. Then We must be in�nite because of #We;s > k. And if We is in�nite

then there certainly exists an s with #We;s > 'g(h(e))(1).

Since BranchBC � BranchWBC � Uni [A] we get K �T A by Corollary

7.7. The index set Fin = fe : We �niteg is recursively enumerable in K and

thus also r.e. in A. I.e. Inf and the complement of Inf are r.e. in A which

implies A �T Inf �T K
0.

A similar result can be obtained for the comparison of BranchWBC with TUni:

Theorem 7.9. BranchWBC � TUni[A] () A �T K
00.

Proof. (() follows by Theorem 5.3. For the other direction we slightly modify

the trees of Theorem 5.3 by coding e into the beginning of Te:

Te := feka0 : : : an : (8m � n)[am = �s[fk; : : : ; k+mg 2 We;s]]g:

Recall that Te contains in�nite recursive branches i� We is co�nite, and that

every in�nite recursive branch � of Te satis�es maxWe < �(1). The class

C := fTe : We co�niteg is in BranchWBC :

Decode e from the input. Then in stage n output a program for

�n := ena0a1 : : : where am = �s[fn; : : : ; n+mg 2 We;s].

If the input tree Te is in C | i.e. We is co�nite | then almost all �n are in�nite

branches of Te.

By hypothesis we get C 2 TUni[A] via some total g �T A. Since TUni [A] �

Uni [A] it follows A �T K
0 by Fact 4.6. Let h 2 REC with (8e)['h(e) = Te] be

given. Then We is co�nite i�

(i) 'g(h(e)) is total and

(ii) 'g(h(e)) is an branch of Te.

Note, that we use the totality of g since g(h(e)) converges for all e not only for

e with We co�nite, i.e. Te 2 C. The index g(h(e)) is computable in A. Step (i)

is recursive in K0 �T A and step (ii) is recursive in K <T A. At all it follows

K00 �T fe : We co�niteg �T A.

In summary, BranchBC and BranchWBC have the same omniscient degrees

and behave similar when compared to BranchOnl . But in the comparisons

with Uni the two BC -style branch learning notions behave very di�erent. The

two notions di�er also with respect to the the trivial degree:

20

Theorem 7.10. 1. BranchWBC [A] = BranchWBC () A is recursive.

2. For all A �T K: BranchWBC [A] � BranchWBC [B] () A �T B or B

high.

Proof of (2). ((): Follows from 3.4 and Theorem 7.2.

()): Since A �T K, by the Limit Lemma there is a total computable

function u : !2 ! ! with A = �x: lims!1 u(x; s). Let f 2 REC be given. We

combine the constructions of the trees Rf in 4.2 and the trees Tx in Theorem

4.5 to de�ne recursive trees Qf :

Qf := fef(e)a0 : : : aeb0 : : : bn : (8m � n)

[bm = �t[t > bm�1 ^ 'e;t(m) # = f(m)^ (8x � e)[u(x; t) = ax]]]g:

Hereby, we set b�1 = �1. Qf has an in�nite recursive branch � with e � �

i� 'e = f , in which case the in�nite recursive branch � � e is unique and

eA(0) : : :A(e) � �.

Assume that B is not high. Then there is a family of recursive functions

S 2 BC �EX [A] ([14]). We consider the class C := fQf : f 2 Sg. Analogously

to the trees Rf (Lemma 4.3) one can e�ectively translate an enumeration of Qf
into an enumeration of f . Moreover, from f one can compute uniformly in A

an in�nite recursive branch of Qf :

Given the index e of f output a program for e'e(e)A(0) : : :A(e)b0b1 : : :

where bm := (� t > bm�1)['e;t(m) # ^ (8x � e)[u(x; t) = A(x)]].

Note, that in contrast to the trees Rf , here we need the oracle A to compute

from f an in�nite recursive branch of Qf . Now, one shows C 2 BranchWBC [A]

similar as in the proof of B(S) 2 BranchWBC (Theorem 7.2): Translate the

enumeration for Qf into one for f . From this enumeration BC-learn an index

for f . On the resulting sequence of guesses for f apply the above A-recursive

procedure for uniform computation of in�nite branches.

Since BranchWBC [A] � BranchWBC [B] the class C is also in

BranchWBC [B] via some machine MB.

Assume that MB converges on all T 2 C to a �nite set of in�nite recursive

branches, i.e. f'MB(T �n) : n 2 !g is �nite for all T 2 C. Then the machine

NB(T�n) :=MB(T�maxfm � n : 'MB(T �m);n(0) #g);

where max ; = 0 by convention, converges for all Qf to a �nite set of programs

for f , i.e. there is an n0 such that fNB(Qf � n) : n � n0g is a �nite set of

programs, which compute in�nite recursive branches of Qf . Since enumerations

for f can be e�ectively translated into enumerations for Qf , and '�(0) = f for

every in�nite recursive branch of Qf , it follows that S 2 FEx [B] = EX [B] (see

[6]), which is a contradiction.

Hence, there is a tree T 2 C such that MB converges on T to an in�nite

set of in�nite recursive branches of T , i.e. f'MB(T �n) : n 2 !g is in�nite. We

choose an n0 such that MB(T�n) is an in�nite recursive branch for all n � n0.

By de�nition, the tree T has for all e at most one in�nite recursive branch �

21

with e � �. Thus, for each x 2 ! there is an n � n0 such that 'MB(T �n)(0) � x.

Setting s(x) := �n � n0['MB(T �n)(0) � x] the procedure �x:'MB(T �s(x))(x+ 2)

decides A relative in B, i.e. A �T B.

Proof of (1). BranchWBC [A] = BranchWBC implies BC [A] = BC via the

trees Tf from De�nition 3.7:

S 2 BC [A]

=) fTf : f 2 Sg 2 BranchBC [A] � BranchWBC [A] = BranchWBC

=) S 2 BC :

Thus, G(A) and in particular A �T K holds. By (2) we get A �T ;.

8 Equivalence between binary and arbitrary trees

When we consider the concept of branch learning as a model for process learn-

ing, it seems more natural to de�ne the trees over a �nite alphabet. This is

because the states of the process and the actions of the controller actually are

bounded. It is clear that trees over a �nite alphabet can always be coded as

trees over f0; 1g. But in theoretical considerations proofs often get more simple

if we work with arbitrary trees, i.e. trees over the in�nite alphabet !. In this

section we show that it does not matter whether we base the de�nition on ar-

bitrary trees or on binary trees. TREE0;1 := fT 2 TREE : T is a binary treeg

denotes the set of all binary trees in TREE . We will use the following well

known fact (see e.g. [24, Proposition V.5.25]):

Fact 8.1. There is an in�nite recursive binary tree eT without in�nite recursive

branches. eT has in�nitely many leafs (i.e. � 2 eT with �0; �1 62 eT). The set

L := f� : � is a leaf of eTg is decidable, thus there is an e�ective enumeration

of L without repetitions, which we denote by �0; �1; : : : .

Theorem 8.2. For all C � TREE, there is a class B � TREE0;1, such that

for all criteria Crit, which we consider in this paper, and all oracles A:

B 2 Crit [A] () C 2 Crit [A]:

Proof. For an arbitrary T 2 TREE let

ST := f�a0 : : : �an� : a0 : : :an 2 T ^ � 2
eT but � is not a leaf of eTg:

ST is recursive: To decide � 2 ST �rst compute the decomposition � =

�a0 : : :�an� such that no pre�x of � is in L. This decomposition is computable

and unique, since L is decidable and there are no �0; �00 2 L with �0 � �00. If

�0 2 L then �0 = �a for a = �k[�k = �0]. Now, � 2 L i� a0 : : : an 2 T and

� 2 eT .
If a0a1 : : : is an in�nite recursive branch of T , then clearly �a0�a1 : : : is an

in�nite recursive branch of ST . And if � is an in�nite branch of ST then either

� � = �a0�a1 : : : for an in�nite branch a0a1 : : : of T . � is recursive i�

a0a1 : : : is recursive.

22

T �T T
MA

����!
Crit[A]

�T

	1

??y x??�1 	2

x?? ??y�2

ST
MA

����!
Crit[A]

�ST ST �ST

Figure 1: Reductions between T and ST .

� or � = �a0 : : : �an
 for a nonrecursive in�nite branch
 of eT , in which

case � is also not recursive.

It follows that ST is in TREE0;1. We set B := fST : T 2 Cg.

The idea of the proof is to reduce the Crit [A]-procedures for B and C to each

other as illustrated in Figure 1. E.g., assume B 2 Crit [A] via MA. From MA

we can build an Crit [A]-procedure for C by translating an input tree T 2 C into

the tree ST (transformation 	1). On ST we apply the machineMA which yields

an in�nite recursive branch �ST of ST . From the branch �ST we then compute

an in�nite recursive branch �T of T (transformation �1). The reduction for the

other direction (reducing B to C) works analogously.

Therefore, we have to show that the transformations i and �i can be done

e�ectively according the the requirements of the di�erent criteria. In general

we say that YX can be computed uniformly from X 2 X , where X 2 X and YX
are decidable sets, if there is a partial recursive function g such that

(8e)(8X 2 X)['e = X =) g(e) # ^ 'g(e) = YX]:

Enumerations of (the characteristic functions of) sets X 2 X can be translated

e�ectively into enumerations of (the characteristic functions of) YX if there are

computable functions h1; h2 such that for all X 2 X and all n 2 !:

YX(n) = h1(X�h2(n)):

All learning criteria require that the transformations i translate enumerations

of T and ST e�ectively into each other. Uni requires that T and ST can be

computed uniformly from each other. For the output transformations �i only

BranchOnl requires translation of enumerations. All other criteria need uniform

computations between �T and �ST .

If enumerations for X 2 X can be translated e�ectively into enumerations

for YX , then YX can obviously also be computed uniformly from X . Thus, it

remains to show the statements about e�ective translations of enumerations.

It follows from the decision procedure for ST described above that given

the value of T (a0 : : : an) one can compute ST (�) | where � = �a0 : : : �an� is

decomposed as above. Thus, an enumeration of T can e�ectively be translated

into an enumeration for ST .

The converse | that an enumeration of ST can be be translated e�ectively

into an enumeration of T | holds since

a0 : : :an 2 T () �a0 : : :�an 2 ST :

23

It directly follows from the above argumentation about the in�nite branches of

T and ST that the enumerations of in�nite recursive branches of T and ST can

be translated e�ectively into each other.

Theorem 2.1 from Section 2 directly follows from the above theorem.

Acknowledgements: We would like to thank John Case, Martin Kummer

and Martin Riedmiller for helpful discussions and comments.

References

[1] L. Adleman and M. Blum. Inductive inference and unsolvability. Journal

of Symbolic Logic, 56(3):891{900, 1991.

[2] O. Arnold and K. P. Jantke. Therapy plan generation as program synthesis.

In Proc. 5th Int. Workshop on Algorithmic Learning Theory, pages 40{55.

Springer-Verlag, 1994.

[3] L. Blum and M. Blum. Towards a mathematical theory of inductive infer-

ence. Information and Control, 28:125{155, 1975.

[4] J. R. B�uchi and L. H. Landweber. Solving sequential conditions by

�nite-state strategies. Transactions of the American Mathematical Society,

138:295{311, 1969.

[5] J. Case, S. Kaufmann, E. Kinber, and M. Kummer. Learning recursive

functions from approximations. In EuroCOLT'95, volume 904 of LNCS,

pages 140{153. Springer-Verlag, 1995.

[6] J. Case and C. Smith. Comparison of identi�cation criteria for machine

inductive inference. Theoret. Comput. Sci., 25:193{220, 1983.

[7] D. Cenzer and J. Remmel. Recursively presented games and strategies.

Mathematical Social Sciences, 24:117{139, 1992.

[8] O. F�ollinger. Regelungstechnik. H�uthig, Heidelberg, 8th edition, 1994.

[9] L. Fortnow, W. Gasarch, S. Jain, E. Kinber, M. Kummer, S. Kurtz,

M. Pleszkoch, T. Slaman, R. Solovay, and F. Stephan. Extremes in the

degrees of inferability. Annals of Pure and Applied Logic, 66:21{276, 1994.

[10] E. M. Gold. Language identi�cation in the limit. Information and Control,

10:447{474, 1967.

[11] S. Kaufmann and M. Kummer. On a quantitative notion of uniformity.

In Mathematical Foundations of Computer Science, volume 969 of LNCS,

pages 169{178. Springer-Verlag, 1995.

[12] M. Kummer and M. Ott. E�ective strategies for enumeration games. In

H. K. B�uning, editor, Proceedings of Computer Science Logic CSL '95,

pages 368{387, Berlin, 1996. Springer.

24

[13] M. Kummer and M. Ott. Learning branches and learning to win closed

games. In Proceedings of Ninth Annual Conference on Computational

Learning Theory, pages 280{291, New York, 1996. ACM.

[14] M. Kummer and F. Stephan. On the structure of degrees of inferability.

Journal of Computer and System Sciences, 52(2):214{238, Apr. 1996.

[15] A. H. Lachlan. On some games which are relevant to the theory of recur-

sively enumerable sets. Annals of Mathematics, 91(2):291{310, 1970.

[16] D. Luzeaux. Machine learning applied to the control of complex systems. In

8th International Conference on Arti�cial Intelligence and expert systems

applications, Paris, France, 1996.

[17] D. Luzeaux and E. Martin. Steps or stages for incremental control? In

Symposium on training issues in incremental learning, Stanford University,

CA, USA, 1993. AAAI-93 Spring Symposium Series.

[18] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers

for timed systems. In STACS 95, volume 900 of LNCS, pages 229{242.

Springer-Verlag, 1995.

[19] E. Martin. Oracles for learning programs. In IEEE International Confer-

ence on Systems Man Cybernetics, Le Touquet, France, 1993.

[20] E. Martin, D. Luzeaux, and B. Zavidovique. Learning and control from

a recursive viewpoint. In IEEE International Symposium on Intelligent

Control, Glasgow, Ecosse, 1992.

[21] R. McNaughton. In�nite games played on �nite graphs. Annals of Pure

and Applied Logic, 65:149{184, 1993.

[22] W. T. Miller, R. S. Sutton, and P. J. Werbos, editors. Neural networks for

control. MIT Press, Cambridge, Massachusetts, 1990.

[23] K. S. Narendra and S. Mukhopadhyay. Intelligent control using neural

networks. IEEE Control Systems Magazine, 12(5):11{18, April 1992.

[24] P. Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam,

1989.

[25] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn. MIT Press,

Cambridge, Massachusetts, 1986.

[26] M. Riedmiller. Learning to control dynamic systems. In R. Trappl, editor,

Proceedings of the 13th. European Meeting on Cybernetics and Systems

Research - 1996 (EMCSR '96), Vienna, 1996.

[27] J. G. Thistle and W. M. Wonham. Control of in�nite behavior of �nite

automata. SIAM Journal on Control and Optimization, 32(4):1075{1097,

1994.

25

[28] W. Thomas. Automata on in�nite objects. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, pages 133{191. Elsevier Sci-

ence Publishers B. V., 1990.

[29] W. Thomas. On the synthesis of strategies in in�nite games. In STACS

95, volume 900 of LNCS, pages 1{13. Springer-Verlag, 1995.

[30] W. Thomas and H. Lescow. Logical speci�cation of in�nite computations.

In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, A Decade

of Concurrency: Re
ections and Perspectives, volume 803 of LNCS, pages

583{621. Springer-Verlag, 1993.

[31] D. A. White and D. A. Sofge, editors. Handbook of Intelligent Control.

Van Nostrand Reinhold, New York, 1992.

26

